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Abstract. Pseudorandom Generators (PRGs) based on the RSA inver-
sion (one-wayness) problem have been extensively studied in the litera-
ture over the last 25 years. These generators have the attractive feature
of provable pseudorandomness security assuming the hardness of the
RSA inversion problem. However, despite extensive study, the most effi-
cient provably secure RSA-based generators output asymptotically only
at most O(logn) bits per multiply modulo an RSA modulus of bitlength
n, and hence are too slow to be used in many practical applications.

To bring theory closer to practice, we present a simple modification to the
proof of security by Fischlin and Schnorr of an RSA-based PRG, which
shows that one can obtain an RSA-based PRG which outputs 2(n) bits
per multiply and has provable pseudorandomness security assuming the
hardness of a well-studied variant of the RSA inversion problem, where
a constant fraction of the plaintext bits are given. Our result gives a
positive answer to an open question posed by Gennaro (J. of Cryptology,
2005) regarding finding a PRG beating the rate O(log n) bits per multiply
at the cost of a reasonable assumption on RSA inversion.

Key Words: Pseudorandom generator, RSA, provable security, lattice
attack.

1 Introduction

Background. The RSA Pseudorandom bit generator (RSA PRG) works by iterat-
ing the RSA encryption mapping z — ¢ mod N (with public RSA modulus N of
length n bits and public exponent e coprime to ¢(IN)) on a secret random initial
seed value xp € Zy to compute the intermediate state values x;411 = 2§ mod N
(fori =0,1,2,...) and outputting r least-significant bits of the state value z; per
iteration. The pseudorandomness of the RSA PRG (especially the case r = 1)
was studied extensively by several researchers [19, 2,30, 1, 14]. However, even the
best security proof so far [14, 28] only applies to the case when only a very small
number of bits r = O(logn) is output per iteration. Consequently, even with
small public exponent e, these proven RSA PRG variants only output O(logn)
bits per multiply modulo N and hence are too slow for most practical applica-
tions. As far as we are aware, these are currently the most efficient RSA-based
PRGs with proven pseudorandomness security.



Our Approach. Our approach to studying the provable security of efficient
variants of the RSA PRG is based on two observations.

First, we observe that existing security proofs of the RSA PRG have always
attempted to prove the security assuming the hardness of the classical RSA
one-wayness problem (given RSA modulus N and y = 2° mod N for random
x € Zy, find z). If we instead make a stronger hardness assumption, we can
hope to prove the security of much more efficient and practical variants of the
RSA PRG, with » = 2(n). But we must be careful in choosing this stronger
hardness assumption to ensure that it is based on substantial evidence — it must
be a hard problem which has been undoubtedly studied extensively by experts.
This leads to our second observation.

Our second observation is that over the last decade, beginning with the work
of Coppersmith [11], the following variant of the RSA one-wayness problem has
been studied explicitly:

(0,€)-Small Solution RSA ((d,e)-SSRSA) Problem. Given a random
n-bit RSA modulus N, the coefficients of a univariate polynomial f(z) = a.z¢+
Ae—12°"1 4+ -+ + ag € Zn|2] of degree e (with a. € Zy) and y = f(2) mod N
for a random integer z < N° (with 0 < § < 1), find z (note that we will only
be interested in instances where f is such that Z is uniquely determined by

(N f.y))-

The celebrated lattice-based attack of Coppersmith [11] shows that for small
e, the (4, €)-SSRSA problem can be solved in polynomial time (in n) whenever
0 < 1/e. But when 6 > 1/e + ¢ for some constant € > 0, the lattice attack
fails, and the only known attack (beyond factoring N) is to run the lattice
attack O(N°) times for each guess of the e - n most-significant bits of z. Hence,
when € is made sufficiently large to make the above lattice attack slower than
factoring N (namely even € = O((logn/n)?/?) suffices), the best known attack
against (1/e 4 ¢,¢e)-SSRSA problem is to factor N. Importantly, this hardness
assumption is supported by explicit evidence in the literature that the (1/e+e¢, e)-
SSRSA problem has been studied by experts [12, 26, 10], yet these studies have
not yielded an efficient algorithm for the (1/e + €, e)-SSRSA problem.

Our Result. We present a simple modification to the proof of security of
the RSA PRG by Fischlin and Schnorr [14] which shows that assuming the
hardness of a certain specific (1/e + ¢, ¢e)-SSRSA one-wayness problem suffices
to prove the pseudorandomness of the RSA PRG outputting » = (1/2 — 1/e —
€ —o(1)) - n LS bits per iteration. Our specific (1/e + ¢, €)-SSRSA one-wayness
problem can be posed as RSA inversion with some known plaintext bits, namely:
Given N, y = [z°]n, 7 LS bits of z and w = n/2 MS bits of z, for x €r Zy,
find z. For small (constant) e > 3 we therefore obtain a throughput of (2(n)
output pseudorandom bits per multiply modulo the RSA modulus N, which is a
significant improvement over the O(logn) bits per multiply throughput obtained
using previous proof of security relative to the RSA assumption. We believe this
answers in the positive an open question raised by Gennaro [15], who asked
whether one can obtain a PRG which beats the rate O(logn) bits per multiply
at the cost of a stronger but reasonable assumption on RSA inversion.



Organization. In Section 1.1 we discuss additional related work. Section 2 con-
tains definitions and notations. In Section 3, we review the RSA PRG construc-
tion and its proof of security by Fischlin and Schnorr [14]. Section 4 presents our
modified security proof for the RSA PRG assuming the hardness of a (1/e+e, e)-
SSRSA problem. In Section 5, we estimate concrete parameters and associated
PRG performance for given proven security level and security assumptions. In
Section 6 we investigate the potential for performance improvements using a
stronger hardness assumption. Section 7 concludes the paper with some open
problems.

1.1 Additional Related Work

Related PRG constructions can be divided in two classes.

The first class contains PRGs based on related hardness assumptions. The
well known Blum-Blum-Shub (BBS) generator [6] has the same structure as
the RSA PRG, but uses the Rabin squaring iteration function instead. Similar
security results as for the RSA PRG are known for this generator [14], but we
need a less known assumption to prove the security of efficient variants of this
generator (see Section 6). The factoring-based construction by Goldreich and
Rosen [17] has a throughput of O(1) bits per multiply modulo an n bit modulus.
The Micali-Schnorr RSA-based constructions [24] have a throughput of 2(n)
bits per multiply, but their pseudorandomness security is only proven assuming
the pseudorandomness of the RSA function with small inputs whereas for our
construction we can prove pseudorandomness assuming only a much weaker
assumption of one-wayness of RSA with small inputs. The PRG of Boneh et
al [9] also achieves a throughput of {2(n) bits per multiply (and in fact may use
a smaller prime modulus), but its provable pseudorandomness security also relies
on a pseudorandomness assumption rather than a one-wayness assumption.

The second class of PRGs achieve provable pseudorandomness based on dif-
ferent one-wayness assumptions. The construction by Impagliazzo and Naor [21]
is based on the hardness of the Subset Sum problem. Although this construc-
tion is potentially very efficient, its concrete security against lattice-based subset
sum attacks is difficult to estimate and requires carefully chosen large parameters
with a small number of bits output per function evaluation. Very recently, a more
practical ‘QUAD’ construction by Berbain et al [3] was proposed, using similar
ideas to [21] in its security proof, but based on the hardness of solving a random
system of multivariate quadratic equations over a finite field (‘MQ’ problem).
We compare the practical performance of our construction with QUAD in Sec-
tion 5. The fastest PRG based on the hardness of a variant of the Discrete-Log
one-wayness problem is due to Gennaro [15] (improving on earlier work by Patel
and Sundaram [27]), but its throughput is at most O((%)Qm) = o(n) bits per
multiply, compared to {2(n) bits per multiply for our construction with same
modulus length n and conjectured security level.

Finally, we also wish to mention the lattice-based attacks of Blackburn et
al [5,4] on a class of PRGs having the same iterative structure as our RSA
PRG. These attacks show that the RSA PRG is insecure when the number of



bits output per iteration r is larger than about %n [5] for e = 2, and about
(1— m)n [4] in the general case (these results are obtained for » MS bits
output per iteration and prime moduli, but we believe that with appropriate
modifications they hold also for r LS bits and RSA moduli). We remark that
the general case attacks in [4] use low-dimension lattices and are rigorously
proven. A heuristic extension of these attacks to high dimension lattices using the
Coppersmith method [11] suggests that the RSA PRG is insecure asymptotically
with » > (1 — eJ%l)n (we omit details of these calculations here). These lower
bounds for insecure values of r are greater by a factor of about 2 than the upper
bounds on 7 for which our security proof applies. Closing this remaining gap
between best attack and best proof is an interesting open problem.

2 Preliminaries

Notation. For integers x and N, we use [z]y to denote the remainder  mod N.
We use L,(z) = [x]or to denote the r least significant bits of the binary repre-
sentation of x. Similarly, we use M,.(z) = (x — L,—.(x))/2"" (where n is the bit
length of ) to denote the r most significant bits of the binary representation of
x. For x € Z N, we use M, ~,r(z) to denote any approximation of z with additive
error |x — M\Nr(xﬂ < N/2".

Probability Distributions and Distinguishers. Let D denote a probability
distribution over {0,1}*. We denote by s « D the assignment to s of a random
element sampled from the distribution D. If S denotes a set then we let s €g S
denote the assignment to s of a uniformly random element sampled from S. Let
D; and D5 denote two probability distributions on some finite set. We say that
an algorithm D is a (7, 9) distinguisher between Dy and D5 if D runs in time
at most T and has distinguishing advantage at least § between Dy and D-, i.e.
|Prsp,[D(s) = 1] — Prsep,[D(s) = 1]| > 4. The statistical distance between
two distributions Dy and Da is § Y |D1(s) — D2(s)]. It gives an upper bound on
the distinguishing advantage of any distinguisher between D; and Ds, regardless
of run-time.

Pseudorandom Bit Generators (PRGs). We use the following definition of
pseudorandom generators and their concrete pseudorandomness.

Definition 1 ((7,9) PRG). A (T,9) Pseudorandom Generator (family) PRG
is a collection of functions Gy : Sy — {0,1}* indexed by N € I,. Here T,
(PRG function index space) and Sy (PRG seed domain) are both efficiently
samplable subsets of {0,1}™, where n is the security parameter. We require that
any (probabilistic) distinguisher algorithm D running in time T has distinguish-
ing advantage at most § between the pseudorandom distribution Dp, and the
random distribution D, on £-bit strings, which are defined as follows:

'Dp’g = {S N €ER In;.%'() €ER SN;S = GN(xo)}

while
D]{g = {S IS ER {0, 1}5}



If algorithm D runs in time T and has distinguishing advantage at least § between
Dpy and Dry, we say that D is a (T,0) distinguisher for PRG.

The RSA Inversion Problem. The classical RSA inversion problem is defined
as follows.

Definition 2 ((n,e)-RSA problem). Let e be a fized integer. Let I, denote
the set of all n-bit RSA moduli N = pq (for p,q primes of n/2 bits each) such
that ged(e, (p—1)(¢—1)) = 1. The (n, e)-RSA inversion problem is the following:
given N €g T, and y = [z°|x for x €r Zy, find x. We say that algorithm A
is a (T, €) inversion algorithm for (n,e)-RSA if A runs in time T and succeeds

with probability € over the choice of N €g I, * €g ZnN and the random coins
of A.

Lattices. Let {by,...,b,} be a set of n linearly independent vectors in IR".
The set
L={zz=c1b1+...+c,by;c1,...,¢, €EZ}

is called an n-dimensional (full-rank) lattice with basis {bi,...,b,}. Given a
basis B = {by,...,b,} for a lattice £, we define the associated basis matriz
M B to be the (full-rank) n x n matrix whose ith row is the ith basis vector b;
for i = 1,...,n. The quantity |det(M, )| is independent of B. It is called the
determinant of the lattice £ and denoted by det(L£). Given any basis of a lattice
L, the well-known LLL algorithm [22] outputs in polynomial time a reduced basis
for £ consisting of short vectors. We use the following result [8] bounding the
length of those vectors.

Lemma 1. Let L be a lattice of dimension d with basis matriz B, in lower
diagonal form whose diagonal elements are greater or equal to 1. Then the Fu-
clidean norm of the first two vectors in the LLL reduced basis for L is at most
24/2(det(L)) 7T .

3 Overview of the Fischlin-Schnorr Security Proof

The RSA PRG. We begin by recalling the RSA PRG construction.

Definition 3 ((n,e,r, £)-RSAPRG Pseudorandom Generator). The psue-
dorandom generator family (n,e,r,£)-RSAPRG is defined as follows. The PRG
function index space T, is the set of all n-bit RSA moduli N = pq (for p,q primes
of n/2 bits each) such that ged(e, (p—1)(¢—1)) = 1. Given index N € I,, the PRG
seed domain is Zy. Assume that £ is a multiple of r. Given a seed xg €Er ZN,
the PRG function Gy : Zy — {0,1}* is defined by

Gn(zo) = (80, -y 80/r—1) : 8i = Lp(x3), w301 = [2f]n fori=0,...,0/r —1.

As will become clear below, our result builds on the Fischlin-Schnorr result
in essentially a ‘black box’ way, so our result can be understood without knowing
most of the internal details of the reduction in [14]. Hence, in this section we



provide only a very high-level overview of the basic security reduction [14] for
the RSA PRG from the RSA assumption, in the case of r LS bits output per
iteration (refer to the full version of the paper [29] for more details).

Using our notation, the Fischlin-Schnorr security result can be stated con-
cretely as follows.

Theorem 1 (Fischlin-Schnorr [14]). For alln > 2°, any (T,d) distinguisher
D for (n,e,r,£)-RSAPRG can be converted into a (Trnv,6/9) inversion algorithm
A for the (n,e)-RSA problem with run-time at most

Triny = 2°7714(¢/8) nlog(n) - (T + O(¢/r log(e)n?)). (1)

Proof. We are given a distinguisher D with run-time 7" and distinguishing ad-
vantage Adv(D) > ¢ between the pseudorandom distribution Dp, (obtained by
iterating m = ¢/r times and outputting r LS bits per iteration) and the random
distribution Dg ¢ on £ bit strings, namely:

Dpe={Gn(z0): N €rL,;x0 €R ZN}

while
Dro={s:5¢cg {0,1}}.

We use D to construct the (n,e)-RSA inversion algorithm A as follows.

As a first step, we note that the pseudorandom distribution Dp, is taken
over the random choice of modulus N €r 7Z,, as well as random seed zg €r
Z . For the remainder of the proof, we wish to fix N and find a lower bound
on the distinguishing advantage Advy (D) between Dg ¢ and the pseudorandom
distribution Dpy n taken over just the random choice of xg € Zx for this fixed
N, that is:

Dpen ={Gn(z0) : o €Er ZN}.

To do so, we use an averaging argument over V.

Lemma 2. There exists a subset G, C T, of size at least |G| > §/2|Z,,| such
that D has distinguishing advantage at least 6/2 between the distributions Dpe n
and Dr ¢ for all N € G,,.

From now on we assume that N € G, (which happens with probability at
least /2 over N €g Z,,) so that D has distinguishing advantage at least /2 be-
tween Dpy n and Dy (We remark that this first step is actually omitted in [14]
which always assumes a fixed N; however we add this step since we believe it is
essential for a meaningful security proof: to demonstrate an efficient algorithm
for RSA inversion contradicting the RSA assumption, one must evaluate its suc-
cess probability over the random choice of modulus N, since for any fixed N an
efficient algorithm always exists; it has built into it the prime factors of N).

We now convert £/r-iteration distinguisher D into a 1-iteration distinguisher
D’. This is a ‘hybrid’ argument using the fact that the mapping x — [2¢]x is a
permutation on Z . Note that the ‘hybrid’ argument underlying this reduction
has been known since the work of [18,7] and it is not explicitly included in [14].



Lemma 3 (m = {/r iterations to 1 iteration.). Any (T,9) distinguisher
D between the m-iteration pseudorandom distribution Dpe n and the random
distribution Dg ¢ can be converted into a (T + O(mlog(e)n?),5/m) 1-iteration
distinguisher D' between the distributions

Dprn ={(y=[2In,s = Lp(2)) : © € ZN}

and
D}ir’N ={(y=[2°|n,5):z €Er Zn;s €r {0,1}"}.

The main part of the Fischlin-Schnorr reduction [14] is the conversion of the
distinguisher D’ into an inversion algorithm that recovers the RSA preimage x
from y = [z¢]y with the help of some additional information on x, namely r least-
significant bits of [az]n and [bz]x for some randomly chosen known a,b € Zy,
as well as rough approximations to [az|x and [bz]x. This is stated more precisely
as follows.

Lemma 4 (Distinguisher to Inverter). For all n > 2°, any (T,6) distin-
guisher D" between the distributions Dp,.  and Dy . n (see Lemma 3) can be
converted into an inversion algorithm A’ that, given N and (y = [z°]n,a ERr
?\N,Sl = LT([ax]N),ul = MN7k([ax]N),b €ER ZN,SQ = LT([bZ‘]N)7UQ =
My ([bx]n)), for any x € Z N with k = 3log(r/d) +4 and | =log(r/d) +4, out-
puts x with probability €y > 2/9 (over the choice of a €g Zn, b E€r Zn and
the random coins of A') and runs in time T}y, = 4nlog(n)(r/8)? - (T + O(n?)).
Here M\Nyk(x) denotes any approximation of x with additive error |]T4\Nk(x) -
x| < on—k,

Putting it Together. On input (N,y = [x°]n5), the RSA inversion algorithm A
runs as follows. It applies Lemmas 2 and 3 to convert the (T, §) distinguisher D
into a (T+O(mlog(e)n?),§/(2m)) distinguisher D’ between distributions Dy, N
and D}, y which works for at least a fraction /2 of N € Z,,. Then A applies
Lemma 4 to convert D’ into the inversion algorithm A’. A now chooses random
a and b in Zy. Since A does not know the ‘extra information’ s; = L,([ax]n),
w = Myy(lazly), s2 = Le([baln) and up = My (be]x)) required by A’
A just exhaustively searches through all Ng possible values of (s1,u1, S2,us)
and runs A’ on input (N,y = [x°],51,U1, 82, Uz) for every guessed possibility
(81,11, 2, U2) until A’ succeeds to recover x. Note that to find an approximation
M, ~.k([ax]n) correct within additive error N/2¥ it is enough to search through
2F=1 yniformly spaced possibilities (N/2F=1)i for i = 0,...,2*=! — 1. Since
k = 3log(2mr/d) + 4 = 3log(2¢/0) + 4 and | = log(2¢/0) + 4, there are at most

Ng = 64(20/6)*22" (2)

guessing possibilities for L,([az]n), J/\4\N7k([aas]N), L, ([bx]n), M\NJ([bx]N) to
search through. So the run-time bound of A is
Tywy = N - (4nlog(n) (24/6)%) - (T + O(mlog(e)n?))
= 22 H14(20/8)0nlog(n) - (T + O(mlog(e)n?)). (3)



For at least a fraction 6/2 of N € Z,, with the correct guessed value of the
‘extra information’, A’ succeeds with probability at least 2/9 over the choice of
a,b. Hence we conclude that the success probability of A is at least e;ny > 0/9,
as claimed. a

We can interpret Theorem 1 as follows. Suppose we assume that the expected
run-time Tyyv /erny of any (Trnv,erny) RSA inversion algorithm is at least
Ty,. Then Theorem 1 can be used to convert a (T, 0) distinguisher for (n,e,r, £)-
RSAPRG to an RSA inverter contradicting our hardness assumption only if we
output at most r bits per iteration, where

1 T,
1 = . 4
°8 <9 21 . nlognl66=7 T) )

Hence asymptotically, if we take T;, = poly(n) (i.e. assume no poly-time
RSA algorithm) then we get » = O(log(n)) bits per iteration. If we assume
that Ty, = 0(20"1/3(10g ”)2/3) for constant ¢ (run-time of the Number Field Sieve
factoring algorithm [23]) then we can have r = O(n'/310g?/3 n). But in any case,
r = o(n).

4 Our Modified Security Proof from an SSRSA Problem

We now explain how we modify the above reduction to solve a well-studied
SSRSA problem and the resulting improved PRG efficiency/security tradeoff.

Our goal is to remove the search factor Ng = 64 - 227(¢/5)* from the run-
time bound (3) of the reduction in the proof of Theorem 1. The simplest way
to do so is to provide the inversion algorithm A with the correct values for the
‘extra information’ required by the inversion algorithm A’ of Lemma 4. This
leads us to consider the following (not well-known) inversion problem that we
call (n,e,r k,1)-FSRSA :

Definition 4 ((n,e,r, k,1)-FSRSA Problem.). Given RSA modulus N, and
(y = [{Ee]N,a E/Ii ZN,Sl = LT([GLL'}N),’LH = Mk([ax] ) b €gr ZN782 =
L, ([bx]n),u2s = M([bz]N)), for x €r Zy, find x (here MN’k( ) denotes any
approzimation to x with additive error |]T4\Nk(x) — x| < N/2%). We say that
algorithm A is a (T, n) inversion algorithm for (n,e,r, k,1)-FSRSA if A runs in
time at most T and has success probability at least ) (over the random choice of

N er1,, x,a,b €Eg Zn and the random coins of A, where I,, is the same as in
Definition 2).

With the search factor Ng removed from the Fischlin-Schnorr reduction we
therefore have that the hardness of the inversion problem (n,e,r, k,)-FSRSA
(with k = 3log(2¢/6) + 4 and | = log(2¢/J) + 4) suffices for the ‘simultaneous
security’ of the r least-significant RSA message bits (i.e. indistinguishability of
distributions D}, v and D% .y in Lemma 3) and hence the pseudorandomness
of (n,e,r, 0)- RSAPRG, with a much tighter reduction than the one of Theorem 1
relative to the RSA problem.



Theorem 2. For all n > 2%, any (T,6) distinguisher D for (n,e,r,{)-RSAPRG
can be converted into a (Trnv,0/9) inversion algorithm A for the (n,e,r k,l)-
FSRSA problem (with k = 3log(2¢/6) + 4 and | = log(2¢/6) + 4) with run-time
at most

Tiny =16 - (£/6)*nlog(n) - (T + O(¢/rlog(e)n?)). (5)

Proof. We use the same inversion algorithm A as in the proof of Theorem 1, ex-
cept that when applying Lemma 4, A runs inversion algorithm A’ just once
using the correct values of (a,b,s1 = L,([az]n), w1 = Myi([az]n),s2 =
L. ([bx]n),us = ]\//.TNJ([bx]N)) given as input to A, eliminating the search through
Ng = 64(2¢/6)*2%" possible values for (sy,u1, s2,u2). O

We defer to Section 6.1 our cryptanalysis of the (n,e,r, k,1)-FSRSA problem
using the lattice-based method introduced by Coppersmith [11], which leads us
to conjecture that the problem is hard whenever r/n < 1/2 — 1/(2e) — (k +
1)/2n — € for constant € > 0. This assumption together with the above reduction
already implies the security of the efficient variants of (n,e,r, £)-RSAPRG with
r = 2(n). Unfortunately, (n, e, r, k,1)-FSRSA is a new problem and consequently
our conjecture on its hardness is not currently supported by extensive research.
However, we will now show that in fact for r/n = 1/2—max(k,l)/n—1/e—e (note
that this is smaller by (max(k,l) — (k+1)/2)/n+ 1/(2e) than the largest secure
value of r/n conjectured above), the problem (n,e,r k,1)-FSRSA is at least
as hard as a specific (1/e + ¢, ¢e)-SSRSA problem (i.e. with a specific univariate
polynomial f of degree e) which we call (n, e, r, w)-CopRSA and define as follows:

Definition 5 ((n,e,r,w)-CopRSA Problem.). Given RSA modulus N, and
(y = [2°|n,sL = Lr(2), 80 = My j240(2)), for v €g Zy, find x (here My(x)
denotes the k most-significant bits of the binary representation of x). We say that
algorithm A is a (T, n) inversion algorithm for (n,e,r,w)-CopRSA if A runs in
time at most T and has success probability at least n (over the random choice

of N er1L,, x €g Zn and the random coins of A, where I, is the same as in
Definition 2).

To see that (n, e, r,w)-CopRSA problem is a specific type of SSRSA problem,
note that it is equivalent to finding a small solution z < 2"/2=("+%) (consisting
of bits r + 1,...,(n/2 — w) of the randomly chosen integer z) to the equation
f(2) = y mod N, where the degree e polynomial f(z) = (2"z + $)¢, where s =
sg - 2"/27" 4 51, is known. Hence (n, e, r,w)-CopRSA is a (1/e + €,¢)-SSRSA
problem when 1/2 — (r+w)/n=1/e+e¢€ ie. r/n=1/2—1/e —e—w/n.

Theorem 3. Let A’ be a (T',7n') attacker against (n,e,r,w—1,w—1)-FSRSA.
Then we construct a (T,n) attacker A against (n,e,r,w)-CopRSA with

T = 4T+ O(n?) and n =17 —4/2"/2.

Proof. On input (N,y = [2°|n, s = Ly(x),s5 = My /244(7)), for N €r Z,, and
x €Rr Zn, the attacker A runs as follows:



— Choose a uniformly random b €r Z .
— Compute an integer ¢ coprime to N with |¢| < N'/2 such that |[b-c|y| < N1/
(here [z]y € (—N/2, N/2) denotes the ‘symmetrical’ residue of z modulo N,

Le. [2]y < 2] if [z]w € [0,N/2) and [z]y % [2]y — N if [2]y € (N/2,N)).
It is well known that such a ¢ exists and can be computed efficiently (in time
O(n?)) using continued fractions (see, e.g. Lemma 16 in [25]).

— Observe that [cz]y = cx — w.N, where w, = [§F]. Let T = sy - on/2-—w,
Notice that T approximates x within additive error A, < 2"/2=% and con-

sequently the rational number % approximates % within additive error

MA’ < A, /NVZ < on/2=w 9(n=1)/2 < 1 where we have used the fact that

|c| < N2 and w > 1. Tt follows that w,. € {LCIJ LCIJ +1} (where the + sign
applies if ¢ > 0 and the — sign applies otherwise). So A obtains 2 candidates
for we.

— Using L, ([cz]n) = Ly (cx —wN) = Ly (Ly(¢)- Ly (x) — Ly (w.N)), A computes
(with the known s, = L,.(z), ¢ and N) 2 candidates for L,.([cz]y) from the
2 candidates for w,.

— Similarly, writing [bex]ny = [be]y - @ — wch With Whe = L[bcj]\,lmj, using
Ibe]n| < N2 we obtain wp. € {L | £ 1} (with + sign if
[bc]y > 0 and — sign otherwise), so A also computes 2 candidates for wp.
and two corresponding candidates for L, ([bcz]n) = Ly ([bc]nz — wpeN) =
Ly (Ly([be]y ) L (2) — wpeN).

— Using ¥ and the 2 candidates for w. computed above, A computes two can-
didate approximations ¢Z — w.N for [cz]y. Since T approximates x within
additive error A, < 2"/27% we have that ¢z —w,.N approximates [cz]y within
additive error |¢|A, < N1/22(n=1/2 jgw=1/2 < N/ow=1 ysing N > 2"~ 1.

— Similarly, using ¥ and the 2 candidates for wy. computed above, A computes
two candidate approximations [bc] T — wpN for [bex]n, one of which has
additive error |[bc]n|A, < N/2w—1

[bc] Nr [bc] Nx
Rt

— Choose a uniformly random a € va and compute 3y = [(a"te)y|y =
[(a=tex)]n.

— Collecting all of the above information, A obtains 4 candidates for (N,y’ =
[(a™tex)]n, a, 81 = L.([ez]n),u1 = My w-1([cx]n),b0 = [abln,s2 =
L,([bex|n),ue = Mpyw—1([bcz]n)). Note that this is a valid instance of
(n,e,r,w — 1,w — 1)-FSRSA. Furthermore, it has almost exactly the cor-
rect distribution, since the triple (z' = [a™'cx]n,a,b = [ab]y) is uni-

formly random in Zx x Z X Zy thanks to the uniformly random choice
of (z,a,b) € Zn x Z x Zn. The FSRSA instance distribution is not ex-
actly correct because here a is uniform on Z} while it should be uniform
on Zy. However, simple calculation shows that the statistical distance be-
tween the uniform distribution on Z} and the uniform distribution on Z
is negligible, namely 1 — ¢(N)/N = (p +q — 1)/N < 4/2"/2.

— A runs A’ on the above 4 candidate (n,e,r,w — 1,w — 1)-FSRSA instances.
On one of those runs, A’ outputs 2’ = [a~lcz]y with probability at least

n —4/2"/2 from which z is easily recovered as = = [ac™'2/] .



Note that the run-time of A is bounded as T' < 47" +O(n?) and A succeeds with
probability at least n — 4/ 27/2 as required. This completes the proof. a

So, combining Theorems 2 and 3, we conclude:

Corollary 1. For alln > 2°, any (T,0) distinguisher D for (n,e,r,{)-RSAPRG
can be converted into a (Trnv,€erny) tnversion algorithm A for the (n,e,r,w)-
CopRSA problem (with w = 3log(2¢/6) + 5) with

Tiny = 64-(£/6)*nlog(n)- (T +O0(¢/rlog(e)n?)) and e;ny = 6/9—4/2"/2. (6)

Remark. Fischlin and Schnorr [14] also outline an alternative security reduc-
tion (worked out in detail and optimized for the Rabin iteration function by
Sidorenko and Schoenmakers [28]) for the (n,e,r, £)-RSAPRG with » > 1 based
on a general ‘Computational XOR Lemma’ [30,16]. However, this alternative
reduction has an inherent exponential run-time factor 22" which we do not know
how to eliminate, even using our stronger SSRSA assumption on RSA inversion.

5 Concrete Parameters and Estimated Performance

Using (6) we obtain an upper bound on the pseudorandom string length ¢ for
a given security level (7',0) and assumed expected run-time lower bound 77, for
breaking the (n,e,r, 3log(2¢/6) 4+ 5)-CopRSA problem. Recall that the latter is
a (1/e + ¢€,¢e)-SSRSA problem when

r/n=1/2—1/e —e— (3log(2¢/6) + 5)/n, (7)

and that (1/e + €,¢)-SSRSA problem is conjectured to take time Tp =
min(Tr(n), Te(n,€)), where Tp(n) is a lower bound for factoring N and
Tc(n,€) = poly(n) - 2™ is the time for the Coppersmith attack on (1/e + ¢, €)-
SSRSA. Asymptotically, we therefore have for any constant ¢ > 0 that T, =
Tr(n) since Tp(n) is subexponential in n, so for any ¢/6 = poly(n) and e > 3
we can use r/n=1/2—1/e — e — o(1), i.e. r = 2(n). The exact bound on r for
a given modulus length n depends on the value of € such that Tr(n) = Tc(n, €).
To estimate concrete values, we used the Number Field Sieve (NFS) factoring
run-time model from [23] (we refer to the full version of the paper for more
details [29]) — the results are summarised in Table 1.

Our estimates indicate that we can (with n = 6144 bit and e = 8) achieve a
rate around 19300 cycles/byte (0.87 Mbit/s with 2.1 GHz clock) on a Pentium
4 Processor, outputting more than 230 bits with provable 270 instructions dis-
tinguishing run-time (under the (1/e + ¢, €)-SSRSA assumption). This seems to
be close to practical requirements of some stream cipher applications (it is sev-
eral hundred times faster than the basic Blum-Blum Shub generator outputting
one bit per iteration with the same modulus length). Compared to the recent
provably secure QUAD PRG construction [3] (based on the ‘MQ’ problem), our
PRG seems to have a lower throughput, although it is difficult to make a fair
comparison since unlike our figures above, the performance figures reported in [3]



n |log(¢{)|Rate,e =8| Thrpt |Rate,e =9| Thrpt |Rate,e =2| Thrpt
(bit) (bit/mult) |(Mbit/s)|(bit/mult)|(Mbit/s) |(bit/mult)|(Mbit/s)
30721 9.3 341 1.68 267 1.31 660 3.2
4096 | 18.0 460 1.28 360 1.00 899 2.5
5120| 25.4 581 1.03 454 0.80 1140 2.0
6144 32.0 702 0.87 549 0.67 1383 1.7

Table 1. Estimate of achievable performance for provable T = 27° instructions distin-
guishing time to achieve advantage 6 = ﬁ, using e = 8,9 (assuming hardness of the
CopRSA SSRSA problem) and e = 2 (assuming hardness of FSRSA problem - see Sec-
tion 6). Throughput ("Thrpt’) columns are estimated throughput based on Wei Dai’s
Crypto++ benchmarks page [13] (for Pentium 4 2.1GHz processor) and extrapolation
assuming classical arithmetic.

(between 3000 and 4500 cycles/byte on Pentium 4) are for a ‘practical’ choice
of parameters, smaller than those for which the security proof can be applied. A
possible advantage of our construction is its significantly smaller static parame-
ters (i.e. non-secret parameters defining the pseudorandom generator) of length
n /2 5 kbit, while in [3] the static parameters are longer than 1 Mbit (this might
allow our construction to be implemented with less code memory requirements).
On the other hand, our construction has a longer state and is based on the hard-
ness of factoring so is insecure against potential future quantum attacks, while
the MQ problem in [3] may be secure even against such attacks.

6 Potential Improvements
6.1 Cryptanalysis of the FS-RSA Problem

As observed in Section 4, the (n,e,r k,1)-FSRSA problem, although not well-
known, gives a more direct proof of security for the RSA PRG than the SSRSA
problem. In this section we describe a ‘Coppersmith-type’ lattice attack on
(n,e,r, k,1)-FSRSA (which we believe is essentially optimal) and show that it is
likely to succeed only when r/n > 1/2— (k+1)/(2n) —1/(2¢). This value of r/n
is larger by about 1/(2e) + (max(k,l)/n — (k +1)/(2n)) than that the largest
value for which the corresponding SSRSA problem in Section 4 is secure, leading
to improved throughput for the RSA PRG by using this stronger assumption.

The attack on (n,e,r, k,[)-FSRSA problem works as follows. First we reduce
the problem to solving two modular equations in two small unknowns z; and
z9. Namely, given (y = [2¢|n,a €r Zn, 51 = Ly ([az]n),u1 = My x([az]n),b €Rr
ZN,SQ = Lr([bx]N),UQ = MNJ([Z)I]N)), we have

=y (mod N), (8)

[ax]N:sl—i-Zi-2"';|[ax}N—u1\§N/2k (9)

and
[bx] N = so + 25 - 273 | [bx]n — ua| < N/2! (10)



where zZ; < N/2" and 2z, < N/2" consist of the n —r MS bits of [az]y and
[bz]n, respectively. Let z; = [*5"L]. From (9) we conclude that |z} — Z1| <
(lamly=siy _(mosiy| 41 < N/2MFR 41 < NJ2THESL (for 27K < N) and
hence letting z; = z] — z; we obtain [az]y = (s1 + 2"21) + 2"Z; where integer
|z1| < N/2r+F=1. Similarly, from (10) we obtain [bx]y = (s2+2"22)+2" 2, where
integer |z| < N/2"H=1 (for 2"*! < N) and 2y = [(u2 — s2)/2"]. Treating the
last two equations for [axz]y and [bz]y as congruences modulo N, we eliminate
the unknown variable x (by multiplying the second congruence by [ab~!]x and
subtracting from the first) to obtain a single linear polynomial f(z1,22) in two
variables z1, zo, having the desired small unknowns Zzi, zo as a zero modulo N
(i.e. f(21,22) =0 (mod N)), namely:

f(z1,22) =21 + 22 + 3, (11)

where @ = [—ab~ !y and B = [—a71027"(s1 + 27Z1) + 27" (s2 + 27%2)] N are
known. Also, substituting = = a=!(s; +2721) +2"a"'Z; (mod N) into (8) we
obtain a degree e univariate polynomial in z; having the small unknown z; as a
zero modulo N (i.e. g(21) =0 (mod N)):

~

9(z1) = (21 + Q)" = B, (12)

where @ = [27"s1 + %]y and 3 = [—(a27")%]n are known. To find the small
zero (Z1,22) of (11) and (12) we use the bivariate modular polynomial lattice
method of Coppersmith [11] as simplified by Howgrave-Graham [20] and used
in many subsequent works. Namely, for an integer m we use the polynomials
f(z1,22) and g(z1) to construct the following family of polynomials h; i (21, 22)

indexed by a pair of integers ¢ = 0,1,...,me (which we refer to as the ‘block
index’) and k = 0,...,4 (which we call the ‘inner index’) for each block i:
hig(z1, 22) = N™emGhtled) e g Y LE f 2y 25)7 k. (13)

Observe that each of the polynomials h; (21, z2) has (21, Z2) as a zero modulo
N™¢ because f(z1,%) * =0 (mod N*%) and g(z)l¢) =0 (mod NLE).

It follows that any integer linear combination of the polynomials h; (21, 22)
also has (21, %) as a zero modulo N™¢. Let By = N/2" k=1 and B, = N/2r -1
denote the upper bounds derived above on |z;| and |Za|, respectively. We set
up a lattice £ to search for linear combinations of the polynomials h; (21, 22),
which have sufficiently small coefficients such that they have (Z1,22) as a zero
over the integers, not just modulo N™¢. Given two such linearly independent
polynomials we can take their resultant to obtain a single univariate polynomial
equation in z; over the integers which is easy to solve. The square basis matrix
B for lattice £ has rows and columns indexed by pairs of integers (i, k), where
the (¢/,k")th column of the (i, k)th row of B, contains the coefficient of the
monomial zf/zg_k/ in the polynomial h; j(B121, Baz2). With this ordering, B, is
in lower diagonal form and its determinant det(£) is the product of the diagonal
elements of B.. Some straightforward calculations (see full paper [29]) show that



det(L) = Nmedme)=Wim.e) (B, B,)D(me)/2 where d(me) = 3 (me+1)(me+2) is

the dimension of £, D(me) = §m3 +O(m?) and W(m, e) = $D(me) + e—;m?’ +
O(m?). Let hy(z1,22) and ha(21,22) denote the polynomials corresponding to
the first two vectors in the reduced basis of £ returned by LLL on input B,.
Using Lemma 1, we can show (see full paper [29]) that hy; and hy will have a

common zero over Z if the following condition is satisfied:
2(me) /2 gog (L) T < (14)

d(me)

Plugging the expression for det(£) into this condition, we obtain (B; Bz)'/? <

W (m,e)—me d(me)—1
N7 Dmer /y(me), where the factor y(me) def (v/d(me)24(me)/2)"Dtmer is inde-
pendent of n and so is of order O(N 0(1)) as n increases. For increasing parameter
W (m,e)—me

Dime) approaches

m, the leading m?3 terms dominate, and hence the ratio

2
asymptotically the value % + ;?g = % + 2% So the attack success condition

becomes (3132)1/2 < N1/2+1/@2e)=o(1) for large n and m. Using B, = w%
and By = W% and NV < 2™ we obtain the asymptotic attack success bound

r (k+1)
- >1/2-1/(2¢) — ——= 1). 15
L 1/2-1/2e) - S o) (15)
Although the attack is heuristic (in the sense that resultant of h; and ho
may be a zero polynomial), our numerical experiments (see [29]) suggest that
the attack works in practice. We conjecture that bound (15) is essentially optimal

for ‘Coppersmith-type’ lattice attacks on (n,e,r, k,1)-FSRSA (see [29]).

6.2 Using Even Exponents

Assuming Hardness of FSRSA Problem. If we assume that the attack
of the previous section is optimal so the (n,e,r, k,1)-FSRSA problem is hard
when the bound (15) is violated, then we can allow r/n to approach 1/4 even
for e = 2, with only one modular squaring required per iteration. It is shown
in [14] that with appropriate modifications to the proof, Lemma 4 holds also

for e = 2 if we replace the iteration function # — [z¢]x by the ‘absolute Rabin

function’ f,(z) = |22y < min([z?]y, N — [22]n), choose N = pq to be a Blum

RSA modulus with p =¢ =3 (mod 4), and choose the PRG seed z¢p €r My,

where My & ZyN(+1) N (0,N/2), and Z(+1) denotes the subset of elements

of Z} having Jacobi symbol +1. Since f, permutes the set My, the proof of
Lemma 3 holds as well. Refer to Table 1 for performance of this PRG variant,

where it is assumed that the best attack on (n,e,r k,1)-FSRSA with r/n =
1/2 —1/(2e) — (l%z) + € takes time min(7Tr(n),2"), where Tr(n) is the time
needed to factor V. We stress however that this assumption is new and needs
further study.

Assuming Hardness of SSRSA Problem. Our reduction (Theorem 3) from
the CopRSA to FSRSA problem also extends with some small modifications to
the case of even e (see [29]). For e = 8, it actually gives better rate than the best

odd exponent assuming the hardness of SSRSA (e = 9) — see Table 1.



7 Conclusion

We have shown that an efficient variant of the RSA PRG is provably secure
assuming the hardness of a well-studied variant of the RSA inversion problem
in which some of the plaintext bits are known.

We see two avenues for further improvement. Even using the FSRSA assump-
tion in Section 6, the PRG rate which we can prove secure is r = (1/2—1/(2e) —
€ —o(1))n for ‘small’ e. Can this rate be improved using a different proof (but a
similar inversion assumption) up to r = (1—1/e—e—o0(1))n? The other question
is whether the factor ¢? in the reduction run-time factor O((¢/8)?*nlog(n)) can
be significantly reduced.

Finally we remark that besides generic applications of PRGs, our result can
also be applied to prove security of an efficient semantically secure (IND-CPA)
RSA-based public key encryption scheme, assuming the hardness of the SSRSA
one-wayness problem (see [29]). An interesting open problem is to construct
additional efficient cryptographic primitives based on this problem.
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