
On the Equivalence of RSA and Factoring

regarding Generic Ring Algorithms

Gregor Leander and Andy Rupp

Horst-Görtz Institute for IT-Security,
Ruhr-University Bochum, Germany.

leander@itsc.rub.de
arupp@crypto.rub.de

Abstract. To prove or disprove the computational equivalence of solv-
ing the RSA problem and factoring integers is a longstanding open prob-
lem in cryptography. This paper provides some evidence towards the
validity of this equivalence. We show that any e�cient generic ring al-
gorithm which solves the (�exible) low-exponent RSA problem can be
converted into an e�cient factoring algorithm. Thus, the low-exponent
RSA problem is intractable w.r.t. generic ring algorithms provided that
factoring is hard.

Keywords: Computational Equivalence, RSA Problem, Factorization
Problem, Generic Algorithms.

1 Introduction and Related Work

The security of the well-known RSA encryption and signature scheme [1]
relies on the hardness of the so-called RSA or root extraction problem: Let
n = pq be the product of two large primes and let e be a positive integer s.t.
gcd(e, φ(n)) = 1. Then given n, e and an element x ∈ Zn, the challenge is
to �nd an element y ∈ Zn s.t. ye = x. The RSA problem is closely related
to the problem of factoring integers, i.e., in the case of an RSA modulus,
�nding p and q given n. While it is well-known that the RSA problem can
be reduced to the factorization problem it is a longstanding open problem
whether the converse is true, i.e., if an algorithm for �nding e-th roots can
be utilized in order to factor n e�ciently.

Theoretical results towards disproving resp. proving the existence of
such a reduction from the factorization to the RSA problem have been
provided by Boneh and Venkatesan [2] resp. Brown [3]. In both papers
the low-exponent variant of the RSA problem (LE-RSA) is considered,
where the public exponent e is restricted to be smaller than some �xed
constant or a product of small factors. Moreover, the results given in these

papers are limited to (slight extensions) of straight line programs (SLPs).
These are non-probabilistic algorithms only allowed to perform a �xed
sequence of addition, subtraction and multiplication steps on their inputs
without branching or looping. Thus, the result of such a program can be
represented by a �xed integer polynomial in its inputs.

Boneh and Venkatesan [2] show that any straight line program that
e�ciently factors n given access to an oracle solving the LE-RSA problem
can be converted into a real polynomial-time factoring algorithm. This
means, there exists no straight line reduction from factoring to LE-RSA,
unless factoring is easy. The authors also show that this holds for algebraic
reductions, which are straight line reductions extended by basic branching
steps based on equality tests.

Recently, Brown [3] shows that any straight line program solving the
LE-RSA problem also reveals the factorization of the RSA modulus. In
other words, the LE-RSA problem is intractable for SLPs provided that
factoring is hard. More precisely, he proves that an e�cient SLP for break-
ing LE-RSA can always be transformed into an e�cient factoring algo-
rithm. Moreover, Brown outlines (see Appendix F in [3]) how this result
extends to a generalization of SLPs (called SLEEPs) which are addition-
ally allowed to perform basic branching steps based on the equality of
elements.

At �rst sight, Brown's result seems to be contradictory to [2], since
an SLP for breaking LE-RSA aids in factoring the modulus. However, the
factoring algorithms considered by Brown which make use of the LE-RSA
SLP are no straight line programs and in addition the LE-RSA SLP is
not simply used as a black-box as it is done in [2]. So both results do not
contradict but are results in opposite directions.

Another important theoretical result about the hardness of the RSA
problem is due to Damgård and Koprowski [4]. They studied the problem
of root extraction in �nite abelian groups of unknown order and prove that
both the standard and the �exible RSA problem, where the parameter e
is no �xed input but can be chosen freely, are intractable w.r.t. generic
group algorithms.

The concept of generic group algorithms has been introduced by Nechaev
[5] and Shoup [6]. Loosely speaking, generic algorithms are probabilistic
algorithms that given a group G as black box, may only perform a set of
basic operations on the elements of G such as applying the group law, in-
version of group elements and equality testing. Since the group is treated
as black-box, the algorithms cannot exploit any special properties of the
representation of group elements.

It is important to note that the generic algorithms for solving the
(�exible) RSA problem considered in [4] are restricted in the following
respects: They can only exploit the group structure of the multiplicative
group Z∗

n and not the full ring structure of Zn which would be more
natural in the case of the RSA problem. Moreover, the RSA modulus n
is not given as input to them. Instead, the multiplicative group is chosen
at random according to a publicly known probability distribution and the
algorithms know that the group order lies in a certain interval. Damgård
and Koprowski leave it as an open problem to consider the RSA problem in
a more natural generic model not having the restrictions described above.

1.1 Our Contribution

In this paper we propose a solution to the open problem stated in [4] by
considering the hardness of the �exible LE-RSA problem w.r.t. to generic
ring algorithms. We consider the following model of a generic ring algo-
rithm: Let σ : Zn → Sn, where Sn ⊂ {0, 1}dlog2(n)e and |Sn| = n, denote
a random encoding function for Zn which is a function randomly chosen
from the set of bijective mappings from Zn into the set of bit strings of
su�cient length. A generic ring algorithm for the �exible RSA problem is
a probabilistic algorithm which is given n, Sn and the encodings σ(0), σ(1)
and σ(x) as input. These encodings are the initial content of the encod-

ing list which contains all encodings σ(xi) of ring elements xi occurring
during a computation. In a computation the algorithm can query a ring

oracle, which given two indices i and j into this list computes σ(xi±xj) or
σ(xixj) and appends this encoding to the list. After some queries the al-
gorithm �nally outputs a pair (e, σ(y)) where e > 1 and gcd(e, φ(n)) = 1.
It succeeds i� ye = x.

Note that given the factorization of n, computing e-th roots is possible
using O(log(n)) oracle queries. So clearly it is not possible to prove that
a generic ring algorithm given n needs exponential many oracle queries
to solve the problem, since the algorithm might �rst factor n (without
using the oracle) and then compute the e-th root using O(log(n)) queries.
Therefore any approach to prove something about the hardness of the
problem in this model has to relate the RSA problem to the factorization
problem.

We show that any e�cient generic ring algorithm which solves the
�exible LE-RSA problem with non-negligible probability can be converted
into an e�cient factoring algorithm having non-negligible probability. The
considered generic algorithms can thereby only choose e from the set of
exponents having some small �xed constant factor. Thus, the LE-RSA

problem is intractable w.r.t. generic ring algorithms unless factoring is
easy.

The paper at hand extends the results by Brown to a broader and
more natural class of algorithms: First, the class of generic ring algorithms
is clearly larger than the class of SLPs. Moreover, each SLEEP can be
implemented as generic ring algorithm. However, it is not known if every
generic ring algorithm can be realized as a SLEEP. We note that for part
of our proof we use a Theorem given in [3].

2 Relating Flexible LE-RSA to Factoring

2.1 Generic Ring Algorithms

We formalize the notion of a generic algorithm for the ring Zn based on
Shoup's generic group model [6]. To this end, the group oracle just needs
to be extended by a multiplication operation in order to make the full ring
structure of Zn available. However, the ring oracle O we present slightly
di�ers from such an extended group oracle in the following sense: Instead
of using the ring Zn for the internal representation of ring elements, these
elements are represented by polynomials in the variable X over Zn which
are evaluated with x each time the encoding of a newly computed element
must be determined. It is easy to see that both versions of a generic ring
oracle are actually equivalent. However, we believe that the presented
version is a better starting point for doing and understanding proofs in
the generic model.

The generic oracle O is de�ned as follows:
Input:As inputO receives x ∈U Zn, the modulus n and a list {σ1, . . . , σn}
of n pairwise distinct bit strings randomly chosen from Sn.
Internal State: As internal state O maintains two lists L and E which al-
ways have the same length. For an index j ∈ {1, . . . , |L|} let Lj denote the
j-th element of L and Ej the j-the element of E. In the list L, polynomi-
als Lj ∈ Zn[X] are stored which represent computed ring elements Lj(x).
The list E contains the encodings Ej of the corresponding ring elements
Lj(x). Moreover, O maintains a counter c which counts the number of
di�erent elements contained in E and the encoding function σ : Zn → Sn

which will be gradually de�ned during computation by the assignments
between computed ring elements and the bit strings σ1, . . . , σn.
Encoding elements: Each time a polynomial P is appended to the list
L (during the initialization or query-handling phase described below) it is
checked whether the corresponding element P (x) has already been com-

puted. More precisely, O checks if there exists any j ∈ {1, . . . , |L|} s.t.

(P − Lj)(x) ≡ 0 mod n .

If this is not the case, O increases the counter c and appends the ran-
dom bit string σc ∈ Sn \ E to E which is di�erent from all encodings so
far contained in E. Additionally, the partially de�ned encoding function
is updated with the new assignment, i.e., σ := σ ∪ {P (x) 7→ σc}. If the
equation holds for any j the bit string Ej is again appended to E.
A run of O consists of three phases:
Initialization: In this phase all lists are �rst set to the empty list, c is set
to zero and the encoding function σ is set to be unde�ned for all x ∈ Zn.
After that, L is appended with the polynomials 0, 1 and X, E is appended
with the respective encodings and σ and c are updated accordingly.
Query-handling: In the query-handling phase O handles at most m
queries. A query is a triple (◦, j1, j2) where ◦ ∈ {+,−, ·} identi�es an op-
eration and j1, j2 are indices identifying the list elements the operation
should be applied to. A query (◦, j1, j2) is handled by computing the poly-
nomial P := Lj1 ◦ Lj2 , appending P to L and the respective encoding to
E and updating σ and c accordingly.
Finalization: After an algorithm A has made at most m queries to O, it
signalsO to �nalize the computation before it eventually does its �nal out-
put. Upon receiving this signal, O updates the encoding function σ by as-
signing (in some �xed order) the n−c ring elements x ∈ Zn \ {P (x)|P ∈ L}
which have not already occurred during computation to the random bit
strings σc+1, . . . , σn. After that, O signals A to output its solution (e, out),
where out ∈ Sn, e > 1 and gcd(e, φ(n)) = 1. We de�ne the following suc-
cess event

S: A outputs an encoding out = σ(y) and an integer e such that
ye ≡ x mod n.

2.2 Main Theorem

Our result lower bounding the hardness of �exible RSA in terms of the
hardness of factoring integers can be stated as follows:

Theorem 1. Let O be a generic ring oracle for the ring Zn of order n =
pq as de�ned above. Let A be a generic algorithm that makes at most m
oracle queries to O and let (e, σ(y))← AO(n, Sn, σ(0), σ(1), σ(x)), where
e > 1 and gcd(e, φ(n)) = 1, be its �nal output. Then the probability that

y is an e-th root of x is upper bounded by

Pr[ye = x] ≤
(
4φ(e′) + 2

)
γ +

1
n−m− 3

,

where e′ is the smallest factor of e and γ is a lower bound on the probability

that n can be factored using A and O((φ(e′)2 + log(n))m2) additional

operations in Zn.

Note that the above theorem gives an upper bound on the probability
that A �nds an e-th root which depends on the particular exponent e
chosen by A. More precisely, it is dependent on the size of the factors of
e. This in particular means that we do not obtain a useful lower bound
for exponents e consisting of �large� factors only. �Large� in this context
means that the factors cannot be bounded by a polynomial in the security
parameter log(n). However, if we restrict the class of allowed exponents
A can choose from to �low exponents�, i.e., exponents having at least one
factor which is smaller than some �xed constant C, we always obtain a
useful bound.

Corollary 1 (Hardness of Flexible LE-RSA). Let O be a generic

ring oracle for the ring Zn of order n = pq as de�ned above and let C be

an arbitrary constant. Let A be a generic algorithm that makes at most m
oracle queries to O and let (e, σ(y))← AO(n, Sn, C, σ(0), σ(1), σ(x)) be its
�nal output, where e > 1 has a factor smaller than C and gcd(e, φ(n)) = 1.
Then the probability that y is an e-th root of x is upper bounded by

Pr[ye = x] ≤ (4C + 2) γ +
1

n−m− 3
,

where γ is a lower bound on the probability that n can be factored using A
and O((C2 + log(n))m2) additional operations in Zn.

Let us assume that the number of queries m is polynomial bounded.
Then observe that the probability γ is negligible if factoring is assumed
to be hard since γ is a lower bound on the probability of factoring n using
a polynomial bounded number of operations in Zn. Thus, in this case also
the upper bound on the probability Pr[ye = x] given in the corollary is
negligible because m and C are polynomial bounded and γ is negligible.
Hence, if factoring is hard Corollary 1 implies that the standard and the
�exible LE-RSA problem are intractable w.r.t. generic ring algorithms.
On the other hand, if for some special n root extraction is easy for generic
algorithms, which might be possible, we know from our corollary that n
can easily be factored.

Remark 1. In [4] special care has to be taken of the distribution of the
group orders. More precisely, the order of the multiplicative group has
to be randomly chosen according to certain so-called �hard� distributions
in order to derive the desired exponential lower bounds on the running
time of generic group algorithms. This was an extension of Shoup's origi-
nal model for the purpose of handling groups of hidden order. From this
perspective things are easier in our model. As the order n of the additive
group of the ring is given we do not have to worry about any special prop-
erties of the distribution according to which the order of the multiplicative
group is chosen.

3 Proof of the Main Theorem

3.1 Outline

As usually done in proofs within the scope of the generic (group) model, we
replace the original oracle O with an oracle Osim that simulates O with-
out using the knowledge of the secret x. Then we show that the behavior
of Osim is perfectly indistinguishable from O unless a certain simulation
failure F occurs. From this, it immediately follows that the success prob-
ability of A when interacting with O is upper bounded by the sum of
failure probability and the success probability of A when interacting with
Osim. We upper bound these probabilities in terms of the probability γ
from Theorem 1 and the number of oracle queries.

Remark 2. The main di�culty in proving Theorem 1 is to bound the
probability of a simulation failure F . Usually, Osim is de�ned in a way
that a simulation failure occurs i� two distinct polynomials Li, Lj ∈ L
become equal under evaluation with x and one can determine a useful
(i.e., negligible) upper bound on the probability of F in terms of the
maximal degree of such a di�erence polynomial Li − Lj . However, here
we face the problem that by using repeated squaring, A can generate
polynomials in L with exponential high degrees. Thus, we cannot derive
non-trivial bounds anymore using this well-known technique. Note that
this di�culty is inherent to the ring structure and does usually not occur
when we consider cryptographic problems over generic groups. We solve
it by simulating O in a new way and relating the probability of F to the
probability γ.

3.2 The Simulation Game

The simulation oracle Osim is de�ned exactly like O except that it de-
termines the encoding of elements di�erently in order to be independent
of the secret x. To this end, each time a polynomial P is appended to
the end of list L (during initialization or query-handling), Osim does the
following: Let Li = P denote the last entry of the updated list. Then for

each j < i the oracle chooses a random element x
(i)
j ∈U Zn and checks

whether
(Li − Lj)(x

(i)
j) ≡ 0 mod n .

If this equation holds for some j1, . . . , jk the encoding Ej , where j =
min(j1, . . . , jk), is appended as the encoding of the newly computed el-
ement to the list E.1 If no j exists s.t. the equation holds, counter c is
increased and the random bit string σc ∈ Sn \ E which is di�erent from
all encodings already contained in E is appended to E. Moreover, σ is
updated by the assignment P (x) 7→ σc.

Note that due to the modi�cations to the computation of encodings,
it is now possible that both an element P (x) is assigned to two or more
di�erent encodings and more than one element is assigned to the same
encoding. Thus, the number r1 := n− c of unused encodings remaining
after the query-handling phase may be greater or smaller than the number
r2 := n− |{P (x)|P ∈ L}| of elements not occurring during computation.
In the �nalization phase Osim therefore assigns only min(r1, r2) elements
from Zn \ {P (x)|P ∈ L} to the encodings σc+1, . . . , σc+min(r1,r2) (but us-
ing the same order as O).

Let us consider the following events which can occur in an interaction
with the simulation oracle:

F : There exists i > j ∈ {1, . . . , |L|} such that

(Li − Lj)(x) ≡ 0 mod n and (Li − Lj)(x
(i)
j) 6≡ 0 mod n

or

(Li − Lj)(x) 6≡ 0 mod n and (Li − Lj)(x
(i)
j) ≡ 0 mod n .

Ssim: A outputs (e, out) such that out is the encoding of an unique
element y and ye = x.

1 Note that it is not important how j is determined from {j1, . . . , jk}. j can be chosen
from this set in an arbitrary way.

The event Ssim is the success event in a simulation game. The event F is
called simulation failure. It is important to observe that the original game
and the simulation game proceed identically unless F occurs: Assume that
O and Osim receive the same arbitrary but �xed input. Then issuing the
same sequence of queries to O and Osim results in the same sequence of
encodings contained in E, the same sequence of polynomials contained
in L and the same bijective encoding function σ, provided that F does
not happen. Furthermore, consider an algorithm Ā with an arbitrary but
�xed input on its random tape. Since Ā is deterministic, it issues the same
sequence of queries in both interactions if it receives the same sequence
of encodings from O and Osim. So assuming that F does not happen, Ā
outputs the same exponent and encoding in both interactions and wins
the simulation game if and only if it wins the original game. Thus, we
have the following relation between the considered events

S ∧ ¬F ⇔ Ssim ∧ ¬F .

Using this relation we immediately obtain the desired upper bound on
the success probability Pr[S] in the original game in terms of the failure
probability Pr[F] and the probability Pr[Ssim∧¬F] that no failure occurs
and the algorithm succeeds in the simulation game.

Pr[S] = Pr[S ∧ ¬F] + Pr[S ∧ F]
= Pr[Ssim ∧ ¬F] + Pr[S ∧ F]
≤ Pr[Ssim ∧ ¬F] + Pr[F]

In the following we relate these probabilities to the probability γ.

3.3 Simulation Failure Probability

For arbitrary but �xed indices i > j ∈ {1, . . . ,m + 3} we consider the
di�erence polynomial ∆ := Li − Lj . Let

N(∆) := {a ∈ Zn | ∆(a) ≡ 0 mod n}

denote the set of zeros of this polynomial. Using the Chinese Remainder
Theorem we can split N(∆) into two sets

N(∆) ∼= Np(∆)×N q(∆), where

Np(∆) = {a ∈ Zp |∆(a) ≡ 0 mod p} and N q(∆) = {a ∈ Zq |∆(a) ≡ 0 mod q} .

Let the value |Np(∆)|/p be denoted by µ∆ and |N q(∆)|/q by ν∆. The
probability that a randomly chosen element a ∈U Zn is a zero of the
polynomial ∆ can then be written as

Pr[∆(a) ≡ 0 mod n; a ∈U Zn] = ν∆µ∆ .

Thus, the probability Pr[F∆] that for a �xed polynomial ∆ a simulation
failure occurs is given by

Pr[F∆] = Pr[∆(x) ≡ 0 mod n;x ∈U Zn](1− Pr[∆(x(i)
j) ≡ 0 mod n;x(i)

j ∈U Zn])
+ Pr[∆(x(i)

j) ≡ 0 mod n;x(i)
j ∈U Zn](1− Pr[∆(x) ≡ 0 mod n;x ∈U Zn])

= 2ν∆µ∆(1− ν∆µ∆) .

Now, we relate the failure probability Pr[F∆] with the probability γ
from Theorem 1. First observe that if we can �nd an element

a ∈ ((Zp \Np(∆))×N q(∆)) ∪ (Np(∆)× (Zq \N q(∆))) ,

the polynomial ∆ gives us the factorization of n by computing gcd(∆(a), n).
Thus, the probability γ∆ that the factorization can be revealed in this way
by choosing a random a ∈U Zn is given by

γ∆ = µ∆(1− ν∆) + (1− µ∆)ν∆ = µ∆ + ν∆ − 2µ∆ν∆ .

The crucial observation is the following lemma.

Lemma 1. For any polynomial ∆ ∈ Zn[X] it holds that Pr[F∆] ≤ 2γ∆.

Proof. We can see that 2γ∆ − Pr[F∆] ≥ 0 by considering the following
function:

f : R× R→ R
f(µ, ν) = (µν)2 − 3µν + µ + ν

In order to prove the lemma, we have to show that this function does
not reach any negative values in [0, 1]. The only critical point in the set
[0, 1]× [0, 1] and therefor the only possible extremum is

(µ0, ν0) =

(√
3− 1
2

,

√
3− 1
2

)

and we have f(µ0, ν0) > 0. Furthermore for the boundaries of the set
[0, 1]× [0, 1] we get

f(0, ν) = ν ≥ 0 ,

f(µ, 0) = µ ≥ 0 ,

f(1, ν) = (ν − 1)2 ≥ 0 ,

f(µ, 1) = (µ− 1)2 ≥ 0 .

Thus it follows that for all (µ, ν) ∈ [0, 1]× [0, 1] we have f(µ, ν) ≥ 0. ut

Now, given A consider an algorithm that evaluates all possible dif-
ference polynomials ∆ with a randomly chosen element a ∈U Zn and
computes for each integer ∆(a) the value gcd(∆(a), n). The probability
that n can be factored in this way is given by∑

1≤j<i≤|L|:∆:=Li−Lj

γ∆ .

The evaluation of all polynomials ∆ can be done using a total of O(m2)
operations. Computing all greatest common divisors requires O(log(n)m2)
operations using the Euclidean algorithm. So the probability of this fac-
toring algorithm can be upper bounded by γ (cf. Theorem 1).

Using Lemma 1 we obtain the following bound on the probability of a
simulation failure

Pr[F] ≤
∑

1≤j<i≤|L|:∆:=Li−Lj

Pr[F∆]

≤
∑

1≤j<i≤|L|:∆:=Li−Lj

2γ∆

≤ 2γ .

3.4 Success Probability in the Simulation Game

Let us split up the success event Ssim in two sub-events: We say that
the generic algorithm wins if either it outputs a new encoding out 6∈ E
corresponding to an unique element y which is an e-th root of x or if a
polynomial in the list yields an e-th root when evaluated with the element
x. We denote these events by

S1
sim: A outputs (e, out) s.t. out 6∈ E, out is the encoding of an unique

element y and ye = x.

S2
sim: There exists a polynomial P ∈ L s.t. P (x)e = x.

Note that S2
sim is more than actually needed: Here we do not require that

A actually outputs an encoding corresponding to P (x), the existence of
such a polynomial P in L is su�cient. We therefore have

Ssim ⇒ S1
sim ∨ S2

sim

and thus
Pr[Ssim ∧ ¬F] ≤ Pr[S1

sim ∧ ¬F] + Pr[S2
sim] .

Probability of Event S1
sim∧¬F . Assume that the event F has not hap-

pened during computation andA outputs a pair (e, out) s.t. out 6∈ E. Since
no simulation failure has occurred, σ is a bijective mapping and in partic-
ular the encodings σc+1, . . . , σn not used in the query-handling phase are
uniquely associated with the n− c elements in Zn \ {P (x)|P ∈ L}. So the
encoding out corresponds to a randomly chosen element y ∈ Zn \ {P (x)|P ∈ L}.
Thus, we have

Pr[S1
sim ∧ ¬F] ≤ Pr[S1

sim | ¬F ∧ out 6∈ E] ≤ 1
n− (m + 3)

.

Probability of Event S2
sim. Here we use the following Lemma which

corresponds to (a slight extension of) Theorem 6 in [3].

Lemma 2. Let n = pq, p, q prime and e ∈ N with gcd(e, φ(n)) = 1. Let
a polynomial P ∈ Zn[X] be given that can be evaluated for any element

x ∈ Zn using at most m additions and multiplications in Zn. For random

x ∈U Zn let the probability Pr[P (x)e = x] be denoted by εP . Then using

this polynomial n can be factored with probability

γP ≥
(e′ − 1)(N − 1)

φ(e′)e′N
εP

with at most O(3φ(e′)2m) operations in Zn, where e′ is the smallest factor

of e and N is the base of the natural logarithm.

The main idea behind this result is to evaluate P over an appropriate
extension of Zn, where the mapping x 7→ xe′

is not a bijection anymore.
Then one can use the well-known techniques to factor n given two di�erent
e′-th roots of the same element.

We now apply this result in our setting. First, observe that clearly all
polynomials P ∈ L can be evaluated using at most m operations in Zn.

Thus, we can apply Lemma 2 to each P , i.e., we consider an algorithm
that applies the procedure outlined in the proof of Theorem 6 in [3] to
every polynomial in L. The running time of this algorithm is O(φ(e′)2m2).
The probability that n can be factored this way is given by

∑
P∈L γP and

by the de�nition of γ (cf. Theorem 1) it follows that∑
P∈L

γP ≤ γ .

Furthermore, it is easy to see that

εP ≤
φ(e′)e′N

(e′ − 1)(N − 1)
γP ≤ 4φ(e′)γP .

So we can conclude that the probability of the event S2
sim is bounded by

Pr(S2
sim) ≤

∑
P∈L

εP

≤
∑
P∈L

4φ(e′)γP ≤ 4φ(e′)γ .

3.5 Putting Things Together

Using the bounds on the probabilities in the simulation game we can
bound the success probability in the original game. For a generic algorithm
A which makes m queries to O and outputs a pair (e, σ(y)) consider an
algorithm which

� chooses an element a ∈U Zn,
� computes gcd((Li − Lj)(a), n) for each i > j ∈ {1, . . . ,m + 3} and
� applies the procedure given in the proof of Theorem 6 in [3] to each

Li.

The running time of this algorithm is O((φ(e′)2 + log(n))m2) and by
de�nition of γ its probability to factor n is less than γ.

Hence, the probability that y is an e-th root of the randomly chosen
element x is bounded by

Pr[ye = x] ≤ Pr[Ssim ∧ ¬F] + Pr[F]
≤ Pr[S1

sim ∧ ¬F] + Pr[S2
sim] + Pr[F]

≤ 1
n−m− 3

+ 4φ(e′)γ + 2γ

=
(
4φ(e′) + 2

)
γ +

1
n−m− 3

.

This completes the proof of Theorem 1 and Corollary 1.

Acknowledgments. We would like to thank Ivan Damgård, Daniel Brown
as well as the anonymous reviewers for their valuable comments.

References

1. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2) (1978) 120�126

2. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring.
In: Advances in Cryptology: Proceedings of EUROCRYPT 1998. Volume 1403 of
Lecture Notes in Computer Science., Springer-Verlag (1998) 59�71

3. Brown, D.R.L.: Breaking RSA may be as di�cult as factoring. Cryptology ePrint
Archive, Report 2005/380 (2006) http://eprint.iacr.org/.

4. Damgård, I., Koprowski, M.: Generic lower bounds for root extraction and signa-
ture schemes in general groups. In: Advances in Cryptology: Proceedings of EURO-
CRYPT 2002. Volume 2332 of Lecture Notes in Computer Science., Springer-Verlag
(2002) 256�271

5. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes 55(2) (1994) 165�172

6. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Advances
in Cryptology: Proceedings of EUROCRYPT 1997. Volume 1233 of Lecture Notes
in Computer Science., Springer-Verlag (1997) 256�266

