
Multi-property-preserving Hash Domain Extension and

the EMD Transform

Mihir Bellare and Thomas Ristenpart

Dept. of Computer Science & Engineering 0404, University of California San Diego
9500 Gilman Drive, La Jolla, CA 92093-0404, USA

{mihir,tristenp}@cs.ucsd.edu
http://www-cse.ucsd.edu/users/{mihir,tristenp}

Abstract. We point out that the seemingly strong pseudorandom or-

acle preserving (PRO-Pr) property of hash function domain-extension
transforms defined and implemented by Coron et. al. [1] can actually
weaken our guarantees on the hash function, in particular producing a
hash function that fails to be even collision-resistant (CR) even though
the compression function to which the transform is applied is CR. Not
only is this true in general, but we show that all the transforms pre-
sented in [1] have this weakness. We suggest that the appropriate goal of
a domain extension transform for the next generation of hash functions
is to be multi-property preserving, namely that one should have a single

transform that is simultaneously at least collision-resistance preserving,
pseudorandom function preserving and PRO-Pr. We present an efficient
new transform that is proven to be multi-property preserving in this
sense.

1 Introduction

Background. Recall that hash functions are built in two steps. First, one de-
signs a compression function h: {0, 1}

d+n
→ {0, 1}

n
, where d is the length of a

data block and n is the length of the chaining variable. Then one specifies a do-
main extension transform H that utilizes h as a black box to implement the hash
function Hh: {0, 1}

∗
→ {0, 1}

n
associated to h. All widely-used hash functions

use the Merkle-Damg̊ard (MD) transform [2, 3] because it has been proven [2, 3]
to be collision-resistance preserving (CR-Pr): if h is collision-resistant (CR) then
so is Hh. This means that the cryptanalytic validation task can be confined to
the compression function.

A rising bar. Current usage makes it obvious that CR no longer suffices as
the security goal for hash functions. In order to obtain MACs and PRFs, hash
functions were keyed. The canonical construct in this domain is HMAC [4, 5]
which is widely standardized and used. (NIST FIPS 198, ANSI X9.71, IETF
RFC 2104, SSL, SSH, IPSEC, TLS, IEEE 802.11i, and IEEE 802.16e are only
some instances.) Hash functions are also used to instantiate random oracles [6]
in public-key schemes such as RSA-OAEP [7] and RSA-PSS [8] in the RSA

PKCS#1 v2.1 standard [9]. CR is insufficient for arguing the security of hash
function based MACs or PRFs, let alone hash-function based random oracles. And
it does not end there. Whether hash function designers like it or not, application
builders will use hash functions for all kinds of tasks that presume beyond-CR

properties. Not all such uses can be sanctified, but the central and common ones
should be. We think that the type of usage we are seeing for hash functions
will continue, and it is in the best interests of security to make the new hash
functions rise as far towards this bar as possible, by making them strong and
versatile tools that have security attributes beyond CR.

This paper. Towards the goal of building strong, multi-purpose hash functions,
our focus is on domain extension, meaning we wish to determine which domain
extension transforms are best suited to this task. The first part of our work
examines a natural candidate, namely transforms that are pseudorandom oracle
preserving as per [1], and identifies some weaknesses of this goal. This motivates
the second part, where we introduce the notion of a multi-property preserving
(MPP) transform, argue that this should be the target goal, and present and
prove the correctness of an efficient MPP transform that we refer to as EMD.
Let us now look at all this in more depth.

Random-oracle preservation. Coron, Dodis, Malinaud and Puniya [1] make
the important observation that random oracles are modeled as monolithic enti-
ties (i.e., are black boxes working on domain {0, 1}

∗
), but in practice are instan-

tiated by hash functions that are highly structured due to the design paradigm
described above, leading for example to the extension attack. Their remedy for
this logical gap is to suggest that a transform H be judged secure if, when
modeling h as a fixed-input-length random oracle, the resulting scheme Hh be-
haves like a random oracle. They give a formal definition of “behaving like a
random oracle” using the indifferentiability framework of Maurer et al. [10]. We
use the moniker pseudorandom oracle to describe any construction that is in-
differentiable from a random oracle. (Note that a random oracle itself is always
a pseudorandom oracle.) The framework has the desirable property that any
scheme proven secure in the random oracle model of [6] is still secure when we
replace the random oracles with pseudorandom oracles. We call the new secu-
rity goal of [1] pseudorandom oracle preservation (PRO-Pr). They propose four
transforms which they prove to be PRO-Pr.

PRO-Pr seems like a very strong property to have. One reason one might
think this is that it appears to automatically guarantee that the constructed
hash function has many nice properties. For example, that the hash function
created by a PRO-Pr transform would be CR. Also that the hash function could
be keyed in almost any reasonable way to yield a PRF and MAC. And so on. This
would be true, because random oracles have these properties, and hence so do
pseudorandom oracles. Thus, one is lead to think that one can stop with PRO-Pr:
once the transform has this property, we have all the attributes we desire from
the constructed hash function.

Weakness of PRO-Pr. The first contribution of this paper is to point out
that the above reasoning is flawed and there is a danger to PRO-Pr in prac-
tice. Namely, the fact that a transform is PRO-Pr does not guarantee that the
constructed hash function is CR, even if the compression function is CR. We
demonstrate this with a counter-example. Namely we give an example of a trans-
form that is PRO-Pr, yet there is a CR compression function such that the hash
function resulting from the transform is not CR. That is, the transform is PRO-

Pr but not CR-Pr, or, in other words, PRO-Pr does not imply CR-Pr. What this
shows is that using a PRO-Pr transform could be worse than using the standard,
strengthened Merkle-Damg̊ard transform from the point of view of security be-
cause at least the latter guarantees the hash function is CR if the compression
function is, but the former does not. If we blindly move to PRO-Pr transforms,
our security guarantees are actually going down, not up.

How can this be? It comes about because PRO-Pr provides guarantees only
if the compression function is a random oracle or pseudorandom oracle. But of
course any real compression function is provably not either of these. (One can
easily differentiate it from a random oracle because it can be computed by a small
program.) Thus, when a PRO-Pr transform works on a real compression function,
we have essentially no provable guarantees on the resulting hash function. This
is in some ways analogous to the kinds of issues pointed out in [11, 12] about the
sometimes impossibility of instantiating random oracles.

The transforms of [1] are not CR-Pr. The fact that a PRO-Pr transform
need not in general be CR-Pr does not mean that some particular PRO-Pr trans-
form is not CR-Pr. We therefore investigate each of the four PRO-Pr schemes
suggested by [1]. The schemes make slight modifications to the MD transform:
the first applies a prefix-free encoding, the second “throws” away some of the
output, and the third and fourth utilize an extra compression function applica-
tion. Unfortunately, we show that none of the four transforms is CR-Pr. We do
this by presenting an example CR compression function h such that applying
each of the four transforms to it results in a hash function for which finding col-
lisions is trivial. In particular, this means that these transforms do not provide
the same guarantee as the existing and in-use Merkle-Damg̊ard transform. For
this reason we think these transforms should not be considered suitable for use
in the design of new hash functions.

What this means. We clarify that we are not suggesting that the pseudoran-
dom oracle preservation goal of [1] is unimportant or should not be achieved.
In fact we think it is a very good idea and should be a property of any new
transform. This is so because in cases where we are (heuristically) assuming the
hash function is a random oracle, this goal reduces the assumption to the com-
pression function being a random oracle. What we have shown above, however,
is that by itself, it is not enough because it can weaken existing, standard-model
guarantees. This leads to the question of what exactly is enough, or what we
should ask for in terms of a goal for hash domain extension transforms.

MPP transforms. The two-step design paradigm in current use is compelling
because it reduces the cryptanalytic task of providing CR of the hash function
to certifying only that the compression function has the same property. It makes
sense to seek other attributes via the appropriate extension of this paradigm.
We suggest that, if we want a hash function with properties P1, . . . ,Pn then
we should (1) design a compression function h with the goal of having proper-
ties P1, . . . ,Pn, and (2) apply a domain extension transform H that provably
preserves Pi for every i ∈ [1..n]. We call such a compression function a multi-
property one, and we call such a transform a multi-property-preserving domain
extension transform (from now on simply an MPP transform). Note that we
want a single transform that preserves multiple properties, resulting in a sin-
gle, multi-property hash function, as opposed to a transform per property which
would result in not one but numerous hash functions. We suggest that multi-
property preservation is the goal a transform should target.

Properties to preserve. Of course the next question to ask is which proper-
ties our MPP domain extension transform should preserve. We wish, of course,
that the transform continue to be CR-Pr, meaning that it preserve CR. The sec-
ond thing we ask is that it be pseudorandom function preserving (PRF-Pr). That
is, if an appropriately keyed version of the compression function is a PRF then
the appropriately keyed version of the hash function must be a PRF too. This
goal is important due to the many uses of hash functions as MACs and PRFs via
keying as mentioned above. Indeed, if we have a compression function that can
be keyed to be a PRF and our transform is PRF-Pr then obtaining a PRF or MAC

from a hash function will be simple and the construction easy to justify. The
final goal we will ask is that the transform be PRO-Pr. Compelling arguments
in favor of this goal were made at length in [1] and briefly recalled above.

To be clear, we ask that, for a transform H to be considered suitable, one
should do the following. First, prove that Hh is CR using only the fact that h
is CR. Then show that Hh is a pseudorandom oracle when h is a pseudorandom
oracle. Finally, use some natural keying strategy to key Hh and assume that h is
a good PRF, then prove that Hh is also a good PRF. We note that such a MPP
transform will not suffer from the weakness of the transforms of [1] noted above
because it will be not only PRO-Pr but also CR-Pr and PRF-Pr.

New transform. There is to date no transform with all the properties above.
(Namely, that it is PRO-Pr, CR-Pr and PRF-Pr.) The next contribution of this
paper is a new transform EMD (Enveloped Merkle-Damg̊ard) which is the first
to meet our definition of hash domain extension security: EMD is proven to be
CR-Pr, PRO-Pr, and PRF-Pr. The transform is simple and easy to implement in
practice (see the figure in Section 5). It combines two mechanisms to ensure that
it preserves all the properties of interest. The first mechanism is the well-known
Merkle-Damg̊ard strengthening [2]: we always concatenate an input message with
the 64-bit encoding of its length. This ensures that EMD is CR-Pr. The second
mechanism is the use of an “envelope” to hide the internal MD iteration — we
apply the compression function in a distinguished way to the output of the plain
MD iteration. Envelopes in this setting were previously used by the NMAC and

Transform CR-Pr PRO-Pr PRF-Pr Uses of h for |M | = b ≥ d

Plain MD (MD) No No No ⌈(b + 1)/d⌉

Strengthened MD (SMD) [2, 3] No No ⌈(b + 1 + 64)/d⌉

Prefix-Free (PRE) No [1] [13] ⌈(b + 1)/(d− 1)⌉

Chop Solution (CHP) No [1] ? ⌈(b + 1)/d⌉

NMAC Construction (NT) No [1] ? 1 + ⌈(b + 1)/d⌉

HMAC Construction (HT) No [1] ? 2 + ⌈(b + 1)/d⌉

Enveloped MD (EMD) [2] Thm. 1 Thm. 2 ⌈(b + 1 + 64 + n)/d⌉

Fig. 1. Comparison of transform security and efficiency when applied to a compression
function h: {0, 1}n+d → {0, 1}n. The last column specifies the number of calls to h
needed to hash a b-bit message M (where b ≥ d) under each transform and a typical
padding function (which minimally adds a bit of overhead).

HMAC constructions [4] to build PRFs out of compression functions, and again
in two of the PRO-Pr transforms of [1], which were also based on NMAC and
HMAC. We utilize the envelope in a way distinct from these prior constructions.
Particularly, we include message bits as input to the envelope, which increases
the efficiency of the scheme. Second, we utilize a novel reduction technique in our
proof that EMD is PRO-Pr to show that simply fixing n bits of the envelope’s
input is sufficient to cause the last application of the random oracle to behave
independently with high probability. This simple solution allows our transform
to be PRO-Pr using a single random oracle without using the other work-arounds
previously suggested (e.g., prefix-free encodings or prepending a block of zeros
to input messages). A comparison of various transforms is given in Fig. 1.

Patching existing transforms. We remark that it is possible to patch the
transforms of [1] so that they are CR-Pr. Namely, one could use Merke-Damg̊ard
strengthening, which they omitted. However our transform still has several ad-
vantages over their transforms. One is that ours is cheaper, i.e. more efficient,
and this matters in practice. Another is that ours is PRF-Pr. A result of [13]
implies that one of the transforms of [1] is PRF-Pr, but whether or not this is
true for the others is not clear.

Whence the compression function? We do not address the problem of
constructing a multi-property compression function. We presume that this can
and will be done. This assumption might seem questionable in light of the recent
collision-finding attacks [14, 15] that have destroyed some hash functions and
tainted others. But we recall that for block ciphers, the AES yielded by the NIST
competition was not only faster than DES but seems stronger and more elegant.
We believe it will be the same for compression functions, namely that the planned
NIST hash function competition will lead to compression functions having the
properties (CR and beyond) that we want, and perhaps without increase, or even
with decrease, in cost, compared to current compression functions. We also note
that we are not really making new requirements on the compression function; we
are only making explicit requirements that are implicit even in current usage.

Families of compression functions. Several works [16–18] consider a set-
ting where compression and hash functions are families rather than individual
functions, meaning, like block ciphers, have an extra, dedicated key input. In
contrast, we, following [4, 1, 5], adopt the setting of current practical crypto-
graphic compression and hash functions where there is no such dedicated key
input. An enveloping technique similar to that of EMD is used in the Chain-Shift
construction of Maurer and Sjödin [18] for building a VIL MAC out of a FIL
MAC in the dedicated key input setting. We further discuss this setting, and
their work, in the full version of the paper [19].

2 Definitions

Notation. Let D = {0, 1}
d

and D+ = ∪i≥1{0, 1}
id

. We denote pairwise con-
catenation by || , e.g. M ||M ′. We will often write the concatenation of a se-
quence of string by M1 · · ·Mk, which translates to M1 ||M2 || . . . ||Mk. For
brevity, we define the following semantics for the notation M1 · · ·Mk

d←M where
M is a string of |M | bits: 1) define k = ⌈|M |/d⌉ and 2) if |M | mod d = 0
then parse M into M1, M2, . . ., Mk where |Mi| = d for 1 ≤ i ≤ k, otherwise
parse M into M1, M2, . . ., Mk−1, Mk where |Mi| = d for 1 ≤ i ≤ k − 1 and

|Mk| = |M | mod d. For any finite set S we write s
$
← S to signify uniformly

choosing a value s ∈ S.

Oracle TMs, random oracles, and transforms. Cryptographic schemes,
adversaries, and simulators are modeled as Oracle Turing Machines (OTM) and
are possibly given zero or more oracles, each being either a random oracle or
another OTM (note that when used as an oracle, an OTM maintains state
across queries). We allow OTMs to expose a finite number of interfaces: an
OTM N = (N1,N2, . . . ,Nl) exposes interfaces N1,N2, . . . ,Nl. For brevity, we
write MN to signify that M gets to query all the interfaces of N. For a set Dom
and finite set Rng we define a random function by the following TM accepting
inputs X ∈ Dom:

Algorithm RFDom,Rng(X):

if T [X] = ⊥ then T [X]
$
← Rng

ret T [X]

where T is a table everywhere initialized to ⊥. This implements a random func-
tion via lazy sampling (which allows us to reason about the case in which Dom

is infinite). In the case that Dom = {0, 1}
d

and Rng = {0, 1}
r

we write RFd,r

in place of RFDom,Rng . We similarly define RFd,Rng and RFDom,r in the obvi-
ous ways and write RF∗,r in the special case that Dom = {0, 1}

∗
. A random

oracle is simply a public random function: all parties (including the adversary)
are given access. We write f, g, . . . = RFDom,Rng to signify that f , g, . . . are
independent random oracles from Dom to Rng . A transform C describes how to
utilize an arbitrary compression function to create a variable-input-length hash
function. When we fix a particular compression function f , we get the associated
cryptographic scheme Cf ≡ C[f].

Collision resistance. We consider a function F to be collision resistant (CR)
if it is computationally infeasible to find any two messages M 6= M ′ such that
F (M) = F (M ′). For the rest of the paper we use h to always represent a collision-

resistant compression function with signature h: {0, 1}
d+n
→ {0, 1}

n
.

Note our definition of CR is informal. The general understanding in the
literature is that a formal treatment requires considering keyed families. But
practical compression and hash functions are not keyed when used for CR. (They
can be keyed for use as MACs or PRFs.) And in fact, our results on CR are still
formally meaningful because they specify explicit reductions.

PRFs. Let F : Keys × Dom → Rng be a function family. Informally, we con-
sider F a pseudorandom function family (PRF) if no reasonable adversary can

succeed with high probability at distinguishing between F (K, ·) for K
$
←Keys

and a random function f = RFDom,Rng . More compactly we write the prf-
advantage of an adversary A as

Advprf
F (A) = Pr

[

K
$
←Keys;AF (K,·) ⇒ 1

]

− Pr
[

Af(·) ⇒ 1
]

where the probability is taken over the random choice of K and the coins used
by A or by the coins used by f and A. For the rest of the paper we use e to always
represent a PRF with signature e: {0, 1}

d+n
→ {0, 1}

n
that is keyed through the

low n bits of the input.

PROs. The indifferentiability framework [10] generalizes the more typical indis-
tinguishability framework (e.g., our definition of a PRF above). The new frame-
work captures the necessary definitions for comparing an object that utilizes
public components (e.g., fixed-input-length (FIL) random oracles) with an ideal
object (e.g., a variable-input-length (VIL) random oracle). Fix some number l.
Let Cf1,...,fl : Dom → Rng be a function for random oracles f1, . . . , fl = RFD,R.
Then let SF = (S1, . . . , Sl) be a simulator OTM with access to a random oracle
F = RFDom,Rng and which exposes interfaces for each random oracle utilized
by C. (The simulator’s goal is to mimic f1, . . . , fl in such a way as to convince
an adversary that F is C.) The pro-advantage of an adversary A against C is the
difference between the probability that A outputs a one when given oracle access
to Cf1,...,fl and f1, . . . , fl and the probability that A outputs a one when given
oracle access to F and SF . More succinctly we write that the pro-advantage of
A is

Advpro
C, S(A) =

∣

∣

∣
Pr

[

ACf1,...,fl ,f1,...,fl ⇒ 1
]

− Pr
[

AF,SF

⇒ 1
]∣

∣

∣

where, in the first case, the probability is taken over the coins used by the random
oracles and A and, in the second case, the probability is over the coins used by
the random oracles, A, and S. For the rest of the paper we use f to represent a
random oracle RFd+n,n.

Resources. We give concrete statements about the advantage of adversaries
using certain resources. For prf-adversaries we measure the total number of
queries q made and the running time t. For pro-adversaries we measure the
total number of left queries qL (which are either to C or F) and the number of

right queries qi made to each oracle fi or simulator interface Si. We also specify
the resources utilized by simulators. We measure the total number of queries qS

to F and the maximum running time tS . Note that these values are generally
functions of the number of queries made by an adversary (necessarily so, in the
case of tS).

Pointless queries. In all of our proofs (for all notions of security) we assume
that adversaries make no pointless queries. In our setting this particularly means
that adversaries are never allowed to repeat a query to an oracle.

3 Domain Extension using Merkle-Damg̊ard

The Merkle-Damg̊ard transform. We focus on variants of the Merkle-
Damg̊ard transform. Let c: {0, 1}

d+n
→ {0, 1}

n
be an arbitrary fixed-input-

length function. Using it, we wish to construct a family of variable-input-length
functions F c: {0, 1}

n
× {0, 1}

∗
→ {0, 1}

n
. We start by defining the Merkle-

Damg̊ard iteration c+: D+ → {0, 1}
n

by the algorithm specified below.

Algorithm c+(I,M):
M1 · · ·Mk

d←M ; Y0 ← I
for i = 1 to k do

Yi ← c(Mi || Yi−1)
ret Yk

d

Mk

n
Yk

c

M1 M2

n n

c c
· · ·I

Since I is usually fixed to a constant, the function c+ only works for strings that
are a multiple of d bits. Thus we require a padding function pad(M), which for
any string M ∈ {0, 1}

∗
returns a string Y for which |Y | is a multiple of d. We

require that pad is one-to-one (this requirement is made for all padding functions
in this paper). A standard instantiation for pad is to append to the message a
one bit and then enough zero bits to fill out a block. Fixing some IV ∈ {0, 1}

n
,

we define the plain Merkle-Damg̊ard transform MD[c] = c+(IV , pad(·)).

Keying strategies. In this paper we discuss transforms that produce keyless
schemes. We would also like to utilize these schemes as variable-input-length
PRFs, but this requires that we use some keying strategy. We focus on the key-
via-IV strategy. Under this strategy, we replace constant initialization vectors
with randomly chosen keys of the same size. For example, if e is a particular PRF,
then keyed MDe would be defined as MDe

K(M) = e+(K, pad(M)) (it should be
noted that this is not a secure PRF). We will always signify the keyed version of
a construction by explicitly including the keys as subscripts.

Multi-property preservation. We would like to reason about the security
of MD and its variants when we make assumptions about c. Phrased another
way, we want to know if a transform such as MD preserves security properties
of the underlying compression function. We are interested in collision-resistance
preservation, PRO preservation, and PRF preservation. Let C be a transform
that works on functions from {0, 1}

d+n
to {0, 1}

n
. Let h: {0, 1}

d+n
→ {0, 1}

n

be a collision-resistant hash function. Then we say that C is collision-resistance
preserving (CR-Pr) if the scheme Ch is collision-resistant. Let f = RFd+n,n be a
random oracle. Then we say that C is pseudorandom oracle preserving (PRO-Pr)

if the scheme Cf is a pseudorandom oracle. Let e: {0, 1}
d+n
→ {0, 1}

n
be an

arbitrary PRF (keyed via the low n bits). Then we say that C is pseudorandom
function preserving (PRF-Pr) if the keyed-via-IV scheme Ce

K is a PRF. A trans-
form for which all of the above holds is considered multi-property preserving.

Security of MD and SMD. It is well known that MD is neither CR-Pr, PRO-

Pr, or PRF-Pr [2, 3, 13, 1]. The first variant that was proven CR-Pr was so-called
MD with strengthening, which we denote by SMD. In this variant, the padding
function is replaced by one with the following property: for M and M ′ with
|M | 6= |M ′| then Mk 6= M ′

k (the last blocks after padding are distinct). A
straightforward way to achieve a padding function with this property is to include
an encoding of the message length in the padding. In many implementations,
this encoding is done using 64 bits [20], which restricts the domain to strings of
length no larger than 264. We therefore fix some padding function pad64(M) that
takes as input a string M and returns a string Y of length kd bits for some num-
ber k such that the last 64 bits of Y are an encoding of |M |. Using this padding
function we define the strengthened MD transform SMD[c] = c+(IV , pad64(·)).
We emphasize the fact that preservation of collision-resistance is strongly de-
pendent on the choice of padding function. However, this modification to MD
is alone insufficient for rendering SMD either PRF-Pr or PRO-Pr due to simple
length-extension attacks [13, 1].

4 Orthogonality of Property Preservation

In this section we illustrate that property preservation is orthogonal. Previous
work [1] has already shown that collision-resistance preservation does not imply
pseudorandom oracle preservation. We investigate the inverse: does a transform
being PRO-Pr imply that it is also CR-Pr? We answer this in the negative by
showing how to construct a PRO-Pr transform that is not CR-Pr. While this
result is sufficient to refute the idea that PRO-Pr is a stronger security goal for
transforms, it does not necessarily imply anything about specific PRO-Pr trans-
forms. Thus, we investigate the four transforms proposed by Coron et al. and
show that all four fail to preserve collision-resistance. Finally, lacking a formally
meaningful way of comparing pseudorandom oracle preservation and pseudoran-
dom function preservation (one resulting in keyless schemes, the other in keyed),
we briefly discuss whether the proposed transforms are PRF-Pr.

4.1 PRO-Pr does not imply CR-Pr

Let n, d > 0 and h: {0, 1}
d+n
→ {0, 1}

n
be a collision-resistant hash function and

f = RFd+n,n be a random oracle. Let Dom,Rng be non-empty sets and let C1 be

a transform for which Cf
1 ≡ C1[f] is a pseudorandom oracle Cf

1 : Dom → Rng .

procedure Initialize

000 f = RFd+n,n

procedure f(x)
100 ret f(x)

procedure C(X) Game G0 Game G1

200 Y ← Cf
1 (X)

201 if f(0d+n) = 0n then bad← true; Y ← 0n

202 ret Y

Fig. 2. Games utilized in the proof of Proposition 1 to show that Cf
2 is a PRO.

We create a transform C2 that is PRO-Pr but is not CR-Pr. In other words
the resulting scheme Cf

2 : Dom → Rng is indifferentiable from a random oracle,
but it is trivial to find collisions against the scheme Ch

2 (even without finding
collisions against h). We modify C1[c] to create C2[c] as follows. First check
if c(0d+n) is equal to 0n and return 0n if that is the case. Otherwise we just

follow the steps specified by C1[c]. Thus the scheme Cf
2 returns 0n for any

message if f(0d+n) = 0n. Similarly the scheme Ch
2 returns 0n for any message

if h(0d+n) = 0n. The key insight, of course, is that the differing assumptions
made about the oracle impact the likelihood of this occurring. If the oracle is
a random oracle, then the probability is small: we prove below that Cf

2 is a
pseudorandom oracle. On the other hand, we now show how to easily design a
collision-resistant hash function h that causes Ch

2 to not be collision resistant.

Let h′: {0, 1}
d+n
→ {0, 1}

n−1
be some collision-resistant hash function. Then

h(M) returns 0n if M = 0d+n, otherwise it returns h′(M) || 1. Collisions found
on h would necessarily translate into collisions for h′, which implies that h is
collision-resistant. Furthermore since h(0d+n) = 0n we have that Ch

2 (M) = 0n

for any message M , making it trivial to find collisions against Ch
2 .

Proposition 1. [C2 is PRO-Pr] Let n, d > 0 and Dom,Rng be non-empty

sets and f = RFd+n,n and F = RFDom,Rng be random oracles. Let Cf
1 be a

pseudorandom oracle. Let Cf
2 be the scheme as described above and let S be an

arbitrary simulator. Then for any adversary A2 that utilizes qL left queries, qR

right queries, and runs in time t, there exists an adversary A1 such that

Advpro
C2,S(A2) ≤ Advpro

C1,S(A1) +
1

2n
.

with A1 utilizing the same number of queries and time as A2.

Proof. Let f = RFd+n,n and F = RFDom,Rng be random oracles. Let A be some

pro-adversary against Cf
2 . Let S be an OTM with an interface Sf that on (d+n)-

bit inputs returns n-bit strings. We utilize a simple game-playing argument in
conjunction with a hybrid argument to bound the indifferentiability of C2 by
that of C1 (with respect to simulator S). Figure 2 displays two games, game G0
(includes boxed statement) and game G1 (boxed statement removed). The first

game G0 exactly simulates the oracles Cf
2 and f . The second game G1 exactly

simulates the oracles Cf
1 and f . We thus have that Pr[AC

f
2 ,f ⇒ 1] = Pr[AG0 ⇒ 1]

Prefix-free MD:
PRE[c] = c+(IV , padPF(·))
where padPF: {0, 1}∗ → D+ is a prefix-free
padding function

NMAC Transform:
NT[c, g] = g(c+(IV , pad(·)))
where g: {0, 1}n → {0, 1}n is a function

Chop Solution:
CHP[c] =

first n− s bits of c+(IV , pad(·))

HMAC Transform:
HT[c] =

c(c+(IV , 0d || pad(·)) || 0d−n || IV)

Fig. 3. The four MD variants proposed in [1] that are PRO-Pr but not CR-Pr.

and Pr[AC
f
1 ,f ⇒ 1] = Pr[AG1 ⇒ 1]. Since G0 and G1 are identical-until-bad

we have by the fundamental lemma of game playing [21] that Pr[AG0 ⇒ 1] −
Pr[AG1 ⇒ 1] ≤ Pr[AG1 sets bad] . The right hand side is equal to 2−n because f
is a random oracle. Thus,

Advpro
C2,S(A2) = Pr

[

AG0 ⇒ 1
]

− Pr
[

AG1 ⇒ 1
]

+

Pr
[

AG1 ⇒ 1
]

− Pr
[

AF,SF

⇒ 1
]

≤ Pr
[

AG1 sets bad
]

+ Pr
[

AC
f
1 ,f ⇒ 1

]

− Pr
[

AF,SF

⇒ 1
]

=
1

2n
+ Advpro

C1,S(A1) .

⊓⊔

4.2 Insecurity of Proposed PRO-Pr Transforms

Collision-resistance preservation. The result above tells us that PRO-Pr

does not imply CR-Pr for arbitrary schemes. What about MD variants? One
might hope that the mechanisms used to create a PRO-Pr MD variant are suffi-
cient for rendering the variant CR-Pr also. This is not true. In fact all previously
proposed MD variants proven to be PRO-Pr are not CR-Pr. The four variants
are summarized in Fig. 3 and below, see [1] for more details.

The first transform is Prefix-free MD specified by PRE[c] = c+(IV , padPF(·)).
It applies a prefix-free padding function padPF to an input message and then
uses the MD iteration. The padding function padPF must output strings that
are a multiple of d bits with the property that for any two strings M 6= M ′,
padPF(M) is not a prefix of padPF(M ′). The Chop solution simply drops s bits
from the output of the MD iteration applied to a message. The NMAC trans-
form applies a second, distinct compression function to the output of an MD
iteration; it is defined by NT[c, g] = g(c+(IV , pad(·))), where g is a function
from n bits to n bits (distinct from h). Lastly, the HMAC Transform is defined
by HT[c] = c(c+(IV , 0d || pad(·)) || 0d−n || IV). This transform similarly utilizes
enveloping: the MD iteration is fed into c in a way that distinguishes this last
call from the uses of c inside the MD iteration. The prepending of a d-bit string

of zeros to an input message helps ensure that the envelope acts differently than
the first compression function application.

Let IV = 0n. We shall use the collision-resistant hash function h that
maps 0d+n to 0n (defined in Sect. 4.1). We first show that the PRE construc-
tion, while being PRO-Pr for all prefix-free encodings, is not CR-Pr for all prefix-
free encodings. Let padPF(M) = g2(M) from Sect. 3.3 of [1]. Briefly, g2(M) =

0 ||M1, . . . , 0 ||Mk−1, 1 ||Mk for M1 || · · · ||Mk
d−1

← M || 10r, where r = (d −
1) − ((|M | + 1) mod d − 1). (That is we append a one to M , and then enough
zero’s to make a string with length a multiple of d − 1.) Now let X = 0d−1

and Y = 02(d−1). Then we have that PREh(X) = PREh(Y) and no collisions
against h occur. We should note that some prefix-free encodings will render
PRE CR-Pr, for example any that also include strengthening. The important
point here is that strengthening does not ensure prefix-freeness and vice-versa.

For the other three constructions, we assume that pad(M) simply appends
a one and then enough zeros to make a string with length a multiple of d.
Let X = 0d and Y = 02d. Then we have that CHPh(X) = CHPh(Y) and
NTh(X) = NTh(Y) and HTh(X) = HTh(Y). Never is there a collision generated
against h.

The straightforward counter-examples exploit the weakness of the basic MD
transform. As noted previously, the MD transform does not give any guaran-
tees about collision resistance, and only when we consider particular padding
functions (i.e., pad64) can we create a CR-Pr transform. Likewise, we have il-
lustrated that the mechanisms of prefix-free encodings, dropping output bits,
and enveloping do nothing to help ensure collision-resistance is preserved, even
though they render the transforms PRO-Pr. To properly ensure preservation of
both properties, we must specify transforms that make use of mechanisms that
ensure collision-resistance preservation and mechanisms that ensure pseudoran-
dom oracle preservation. In fact, it is likely that adding strengthening to these
transforms would render them CR-Pr. However, as we show in the next section,
our new construction (with strengthening) is already more efficient than these
constructions (without strengthening).

PRF preservation. It is not formally meaningful to compare PRF preservation
with PRO preservation, since the resulting schemes in either case are different
types of objects (one keyed and one keyless). However we can look at particular
transforms. Of the four proposed by Coron et al. only PRE is known to be
PRF-Pr. Let e be a PRF. Since we are using the key-via-IV strategy, the keyed
version of PREe is PREe

K(M) = e+(K, padPF(M)). This is already known to be
a good PRF [13]. As for the other three transforms, it is unclear whether any of
them are PRF-Pr. For NT, we note that the security will depend greatly on the
assumptions made about g. If g is a separately keyed PRF, then we can apply
the proof of NMAC [4]. On the other hand, if g is not one-way, then an adversary
can determine the values produced by the underlying MD iteration and mount
simple length-extension attacks. Instead of analyzing these transforms further
(which are not CR-Pr anyway), we look at a new construction.

5 The EMD Transform

We propose a transform that is CR-Pr, PRO-Pr, and PRF-Pr. Let n, d be num-
bers such that d ≥ n + 64. Let c: {0, 1}

d+n
→ {0, 1}

n
be a function and let

D◦ = ∪i≥1{0, 1}
(i+1)d−n

. Then we define the enveloped Merkle-Damg̊ard itera-

tion c◦: {0, 1}
2n
×D◦ → {0, 1}

n
on c by the algorithm given below.

Algorithm c◦(I1, I2,M):
M1 · · ·Mk

d←M
P ←M1 · · ·Mk−1

ret c(c+(I1, P) ||Mk || I2)

d

M1

c
· · ·

nn
I1

Mk−1

n

c

Mk

d

n

c

n
YkI2

||

To specify our transform we require a padding function padEMD: {0, 1}
≤264

→
D◦ for which the last 64 bits of padEMD(M) encodes |M |. Fix IV 1, IV 2 ∈ {0, 1}

n

with IV 1 6= IV 2. Then we specify the enveloped Merkle-Damg̊ard transform
EMD[c] = c◦(IV 1, IV 2, padEMD(·)).

EMD utilizes two main mechanisms for ensuring property preservation. The
first is the well-known technique of strengthening: we require a padding function
that returns a string appended with the 64-bit encoding of the length. This
ensures that EMD preserves collision-resistance. The second technique consists
of using an ‘extra’ compression function application to envelope the internal
MD iteration. It is like the enveloping mechanism used by Maurer and Sjoden
in a different setting [18] (which is discussed in more detail in the full version of
the paper [19]), but distinct from prior enveloping techniques used in the current
setting. First, it includes message bits in the envelope’s input (in NMAC/HMAC
and HT, these bits would be a fixed constant, out of adversarial control). This
results in a performance improvement since in practice it is always desirable
to have d as large as possible relative to n (e.g., in SHA-1 d = 512 and n =
160). Second, it utilizes a distinct initialization vector to provide (with high
probability) domain separation between the envelope and internal applications
of the compression function. This mechanism allows us to avoid having to use
other previously proposed domain separation techniques while still yielding a
PRO-Pr transform. (The previous techniques were prefix-free encodings or the
prepending of 0d to messages, as used in the HT transform; both are more costly.)

5.1 Security of EMD

Collision-resistance preservation. Let h: {0, 1}
d+n
→ {0, 1}

n
be a colli-

sion resistant hash function. Then any adversary which finds collisions against
EMDh (two messages M 6= M ′ for which EMDh(M) = EMDh(M ′)) will nec-
essarily find collisions against h. This can be proven using a slightly modified
version of the proof that SMD is collision-resistant [2, 3], and we therefore omit
the details. The important intuition here is that embedding the length of mes-
sages in the last block is crucial; without the strengthening the scheme would

not be collision resistant (similar attacks as those given in Section 4 would be
possible).

PRO preservation. Now we show that EMD is PRO-Pr. We first prove a
slightly different transform is PRO-Pr and then show that EMD reduces to this
other transform. Let f, g = RFd+n,n be random oracles. For any strings P1 ∈ D+

and P2 ∈ {0, 1}
d−n

we define the function gf+: D◦ → {0, 1}
n

by gf+(P || S) =
g(f+(IV 1, P1) || P2 || IV 2). This function is essentially EMDf , except that we
replace the envelope with an independent random oracle g. The following lemma
states that gf+ is a pseudorandom oracle.

Lemma 1. [gf+ is a PRO] Let f, g = RFd+n,n. Let A be an adversary that
asks at most qL left queries, qf right f-queries, qg right g-queries and runs in
time t. Then

Advpro
gf+, SB

(A) ≤
(qL + qg)

2 + q2
f + qgqf

2n

where SB = (SBf ,SBg) is defined in Fig. 4 and qSB ≤ qg and tSB = O(q2
f +qgqf).

We might hope that this result is given by Theorem 4 from [1], which states that
NTf,g is indifferentiable from a random oracle. Unfortunately, their theorem
statement does not allow for adversarially-specified bits included in the input
to g. Thus we give a full proof of Lemma 1, found in the full version of the
paper [19]. The next theorem captures the main result, and its proof is also in
the full version. For completeness, we provide the simulators SB = (SBf ,SBg)
and SA in Fig. 4.

Theorem 1. [EMD is PRO-Pr] Fix n, d, and let IV 1, IV 2 ∈ {0, 1}
n

with
IV 1 6= IV 2. Let f = RFd+n,n and F = RF∗,n be random oracles. Let A be an
adversary that asks at most qL left queries (each of length no larger than ld bits),
q1 right queries with lowest n bits not equal to IV 2, q2 right queries with lowest n
bits equal to IV 2, and runs in time t. Then

Advpro
EMD, SA(A) ≤

(qL + q2)
2 + q2

1 + q2q1

2n
+

lq2
L

2n
.

where the simulator SA is defined in Fig. 4 and qSA ≤ q2 and tSA = O(q2
1+q2q1).

PRF preservation. We utilize the key-via-IV strategy to create a keyed version
of our transform, which is EMDe

K1,K2
(M) = e◦(K1,K2,M) (for some PRF e).

The resulting scheme is very similar to NMAC, which we know to be PRF-Pr [5].
Because our transform allows direct adversarial control over a portion of the
input to the envelope function, we can not directly utilize the proof of NMAC
(which assumes instead that these bits are fixed constants). However, the major-
ity of the proof of NMAC is captured by two lemmas, The first (Lemma 3.1 [5])
shows (informally) that the keyed MD iteration is unlikely to have outputs that
collide. The second lemma (Lemma 3.2 [5]) shows that composing the keyed MD
iteration with a separately keyed PRF yields a PRF. We omit the details.

On query SBf (X):

Y
$
←{0, 1}n

Parse X into U || V s.t.
|U | = d, |V | = n

if V = IV 1 then NewNode(U)← Y
if M1 · · ·Mi ← GetNode(V) then

NewNode(M1 · · ·MiU)← Y
ret Y

On query SBg(X):

Parse X into V || U ||W s.t.
|V | = n, |U | = d− n, |W | = n

if W = IV 2 and

M1 · · ·Mi ← GetNode(V) then

ret F(M1 · · ·MiU)

ret Y
$
←{0, 1}n

On query SA(X):

Parse X into V || U ||W s.t.
|V | = n, |U | = d− n, |W | = n

if W = IV 2 then

if M1 · · ·Mi ← GetNode(V) then

ret F(M1 · · ·MiU)
else ret Y

Parse X into U || V s.t.
|U | = d, |V | = n

if V = IV 1 then NewNode(U)← Y
if M1 · · ·Mi ← GetNode(V) then

NewNode(M1 · · ·MiU)← Y
ret Y

Fig. 4. Pseudocode for simulators SB (Lemma 1) and SA (Theorem 1).

Theorem 2. [EMD is PRF-Pr] Fix n, d and let e: {0, 1}
d+n
→ {0, 1}

n
be a

function family keyed via the low n bits of its input. Let A be a prf-adversary
against keyed EMD using q queries of length at most m blocks and running in
time t. Then there exists prf-adversaries A1 and A2 against e such that

Advprf
EMDe

K1,K2

(A) ≤ Advprf
e (A1) +

(

q

2

)[

2m ·Advprf
e (A2) +

1

2n

]

where A1 utilizes q queries and runs in time at most t and A2 utilizes at most two
oracle queries and runs in time O(mTe) where Te is the time for one computation
of e.

Acknowledgments

The authors are supported in part by NSF grant CNS 0524765 and a gift from
Intel Corporation.

References

1. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgard Revisited: How
to Construct a Hash Function. In: Advances in Cryptology - CRYPTO ’05. Volume
3621 of Lecture Notes in Computer Science, Springer (2004) 21–39.

2. Merkle, R.C.: One way hash functions and DES. In: Advances in Cryptology -
CRYPTO ’89. Volume 435 of Lecture Notes in Computer Science, Springer (1989)
428–446.

3. Damg̊ard, I.: A design principle for hash functions. In: Advances in Cryptology -
CRYPTO ’89. Volume 435 of Lecture Notes in Computer Science, Springer (1989)
416–427.

4. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Advances in Cryptology - CRYPTO ’96. Volume 1109 of Lecture
Notes in Computer Science, Springer (1996) 1–15.

5. Bellare, M.: New Proofs for NMAC and HMAC: Security Without Collision-
Resistance. In: Advances in Cryptology - CRYPTO ’06. Volume 4117 of Lecture
Notes in Computer Science, Springer (2006) 602–619.

6. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS ’93, ACM Press (1993) 62–73.

7. Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: Advances in Cryp-
tology - EUROCRYPT ’94. Volume 950 of Lecture Notes in Computer Science,
Springer (1994) 92–111.

8. Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures - How to Sign
with RSA and Rabin. In: Advances in Cryptology - EUROCRYPT ’96. Volume
1070 of Lecture Notes in Computer Science, Springer (1996) 399–416.

9. RSA Laboratories: RSA PKCS #1 v2.1: RSA Cryptography Standards (2002).
10. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results

on Reductions, and Applications to the Random Oracle Methodology. In: TCC
’04. Volume 2951 of Lecture Notes in Computer Science, Springer (2004) 21–39.

11. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4) (2004) 557–594.

12. Bellare, M., Boldyreva, A., Palacio, A.: An Uninstantiable Random-Oracle-Model
Scheme for a Hybrid-Encryption Problem. In Cachin, C., Camenisch, J., eds.:
Advances in Cryptology - EUROCRYPT ’04. Volume 3027 of Lecture Notes in
Computer Science, Springer (2004) 171–188.

13. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: the
cascade construction and its concrete security. In: FOCS ’96: Proceedings of the
37th Annual Symposium on Foundations of Computer Science, IEEE Computer
Society (1996) 514–523.

14. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Advances in
Cryptology - CRYPTO ’05. Volume 3621 of Lecture Notes in Computer Science,
Springer (2005) 17–36.

15. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Advances
in Cryptology - EUROCRYPT ’05. Volume 3494 of Lecture Notes in Computer
Science, Springer (2005) 19–35.

16. An, J.H., Bellare, M.: Constructing VIL-MACs from FIL-MACs: message authen-
tication under weakened assumptions. In: Advances in Cryptology - CRYPTO ’99.
Volume 1666 of Lecture Notes in Computer Science, Springer (1999) 252–269.

17. Bellare, M., Rogaway, P.: Collision-Resistant Hashing: Towards Making UOWHFs
Practical. In: Advances in Cryptology - CRYPTO ’97. Volume 1294 of Lecture
Notes in Computer Science, Springer (1997) 470–484.

18. Maurer, U., Sjödin, J.: Single-key AIL-MACs from any FIL-MAC. In: ICALP ’05.
Volume 3580 of Lecture Notes in Computer Science, Springer (2005) 472–484.

19. Bellare, M., Ristenpart, T.: Multi-property-preserving Hash Domain Extension
and the EMD Transform (full version of this paper) (2006) http://www.cse.ucsd.
edu/users/mihir.

20. National Institute of Standards and Technology: FIPS PUB 180-1: Secure Hash
Standard. (1995) Supersedes FIPS PUB 180 1993 May 11.

21. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Framework for
Code-Based Game-Playing Proofs. In: Advances in Cryptology - EUROCRYPT
’06. Volume 4004 of Lecture Notes in Computer Science, Springer (2006) 409–426.

