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Abstract. We consider the problem of cheating in secret sharing schemes,
cheating in which individuals submit forged shares in the secret recon-
struction phase in an effort to make another participant reconstruct an
invalid secret. We introduce a novel technique which uses universal hash
functions to detect such cheating and propose two efficient secret sharing
schemes that employ the functions. The first scheme is nearly optimum
with respect to the size of shares; that is, the size of shares is only one
bit longer than its existing lower bound. The second scheme possesses a
particular merit in that the parameter for the probability of successful
cheating can be chosen without regard to the size of the secret. Further,
the proposed schemes are proven to be secure regardless of the probabil-
ity distribution of the secret.

1 Introduction

A secret sharing scheme is a cryptographic primitive in which a secret is divided
into shares and distributed among participants in such a way that only a qualified
set of participants can recover the secret. It is a fundamental building block for
many cryptographic protocols and is often used in the general composition of
secure multiparty computations. While seminal papers were presented by Shamir
[10] and Blakley [1] more than a quarter century ago, because of its importance
in cryptography, it is still being studied actively today.

Tompa and Woll have pointed out that in Shamir’s k-out-of-n threshold secret
sharing scheme, even a single user can fool other participants by submitting
invalid shares at the secret reconstruction phase. They also proposed a scheme
which can detect the fact of cheating when invalid shares are submitted at that
point. Ogata, Kurosawa and Stinson also have presented an efficient scheme
for detecting cheating [8]. While the size of shares in their scheme is proven to
be optimum, the scheme is proven to be secure only if the secret is uniformly
distributed, and the size of the secret will restrict possible value for the successful
cheating probability.

In this paper, we propose two efficient k-out-of-n threshold secret sharing
schemes which are secure regardless of the probability distribution of the secret.
The first scheme is nearly optimum with respect to the size of shares; that is, the



size of shares is only one bit longer than its existing bound. In the second scheme,
the size of shares is somewhat larger than the first scheme, but the second scheme
possesses a particular merit in that the successful cheating probability can be
chosen without regard to the size of the secret. This is not the case in either
the first scheme or the scheme in [8]. The size of shares in the second scheme is
much smaller than that in the scheme by Tompa and Woll, which is also secure
for arbitrary secret distribution and whose successful cheating probability can
be also chosen without regard to the size of the secret. The size of shares in the
second scheme will be even smaller than that in [8] when ε > |S|−1/2, where
ε denotes the successful cheating probability and S denotes the set of secrets1.
This interesting phenomenon results from inflexibility of parameter values in
[8]. Note that the condition ε > |S|−1/2 is quite reasonable since ε is usually
required to be 2−128 or 2−256, whereas the the size of the secret can be as large
as |S| = 21024 or more.

The main idea of the proposed schemes is to use universal hash functions
(more precisely, a variant of ASU2, an almost strongly universal class of hash
functions) for cheating detection. Here, the key for the universal hash functions
is distributedly shared together with the share of the secret. In reconstructing
the secret, both the secret and the key are reconstructed, and each participant
verifies that the secret and the hash value are consistent. We additionally provide
some techniques to reduce the size of shares and to prevent the hash value from
revealing any information about the secret.

The rest of the paper is organized as follows. In Section 2, we briefly review
models of secret sharing schemes capable of detecting cheating, and we discuss
previous works done on them. In Section 3, we introduce a novel technique for
detecting cheating via a universal hash family, and we present efficient schemes
based on it. In Section 4, we describe two generalizations of the schemes pre-
sented in Section 3. In Section 5, we introduce new models which deal with more
powerful cheaters than those in existing models, and we present schemes secure
in the new models. In Section 6, we summarize our work.

2 Preliminaries

2.1 Secret Sharing Schemes

In secret sharing schemes, there are n participants P = {P1, . . . , Pn} and a
dealer D. The set of participants who are allowed to reconstruct the secret is
characterized by an access structure Γ ⊆ 2P ; that is, participants Pi1 , . . . , Pik

are
allowed to reconstruct the secret if and only if {Pi1 , . . . , Pik

} ∈ Γ (for instance,
the access structure of a k-out-of-n threshold secret sharing scheme is defined by
Γ = {A | A ∈ 2P , |A| ≥ k}.) A model consists of two algorithms: ShareGen and
Reconst. Share generation algorithm ShareGen takes a secret s ∈ S as input and
outputs a list (v1, v2, . . . , vn). Each vi ∈ Vi is called a share and is given to a par-
ticipant Pi. Ordinarily, ShareGen is invoked by the dealer. Secret reconstruction
algorithm Reconst takes a list of shares and outputs a secret s ∈ S.
1 Throughout the paper, the cardinality of the set X is denoted by |X |.



A secret sharing scheme is called perfect if the following two conditions are
satisfied for the output (v1, . . . , vn) of ShareGen(ŝ) where the probabilities are
taken over the random tape of ShareGen.

1. if {Pi1 , . . . , Pik
} ∈ Γ then Pr[Reconst(vi1 , . . . , vik

) = ŝ] = 1,
2. if {Pi1 , . . . , Pik

} 6∈ Γ then Pr[S = s | Vi1 = vi1 , . . . ,Vik
= vik

] = Pr[S = s]
for any s ∈ S.

2.2 Secret Sharing Schemes Secure against Cheating

A secret sharing schemes capable of detecting cheating was first presented by
Tompa and Woll [12]. They considered the scenario in which cheaters who do not
belong to the access structure submit forged shares in the secret reconstruction
phase. Such cheaters will succeed if another participants in the reconstruction
accepts an incorrect secret2. There are two different models for secret sharing
schemes capable of detecting such cheating. Carpentieri, De Santis and Vaccaro
[3] first considered a model in which cheaters who know the secret try to make
another participant reconstruct an invalid secret. We call this model the “CDV
model.” Recently, Ogata, Kurosawa and Stinson [8] introduced a model with
weaker cheaters who do not know the secret in forging their shares. We call this
model the “OKS model.”

As in ordinary secret sharing schemes, each of these models consists of two
algorithms. A share generation algorithm ShareGen is the same as that in the
ordinary secret sharing schemes. A secret reconstruction algorithm Reconst is
slightly changed: it takes a list of shares as input and outputs either a secret or
the special symbol ⊥ (⊥ 6∈ S.) Reconst outputs ⊥ if and only if cheating has
been detected. To formalize the models, we define the following simple game for
any (k, n) threshold secret sharing scheme SS = (ShareGen, Reconst) and for any
(not necessarily polynomially bounded) Turing machine A = (A1, A2), where A
represents cheaters Pi1 , . . . , Pik−1 who try to cheat Pik

. Please note that in this
section and the next we will focus on the (k, n) threshold type access structure.
A more general access structure will be discussed in Section 4.

Game(SS, A)
s ← S; // according to the probability distribution over S.
(v1, . . . , vn) ← ShareGen(s);
(ii, . . . , ik−1) ← A1(X);
// set X = s for the CDV model, X = ∅ for the OKS model.
(v′

i1
, . . . , v′

ik−1
, ik) ← A2(vi1 , . . . , vik−1 , X);

The advantage of cheaters is expressed as Adv(SS, A) = Pr[s′ ∈ S ∧ s′ 6= s] ,
where s′ = Reconst(v′

i1
, v′i2 , . . . , v

′
ik−1

, vik
) and the probability is taken over the

distribution of S, and over the random tapes of ShareGen and A.
2 Please note that here we focus on the problem of detecting the fact of cheating with

unconditional security. Neither secret sharing schemes which identify cheaters [2, 6]
nor verifiable secret sharing schemes [9, 4] are within the scope of this paper.



Definition 1. A (k, n) threshold secret sharing scheme SS is called a (k, n, ε)-
secure secret sharing scheme if Adv(SS, A) ≤ ε for any adversary A.

2.3 Previous Work

In this subsection, we briefly review the known bounds and constructions of
(k, n, ε)-secure secret sharing schemes. A lower bound for the size of shares in
the CDV model is described as follows:

Proposition 1. [3] In the CDV model, the size of shares for (k, n, εCDV)-secure
secret sharing schemes is lower bounded by |Vi| ≥ |S|

εCDV
.

Ogata et al. improved this bound when the secret is uniformly distributed:

Proposition 2. [8] In the CDV model, if the secret is uniformly distributed,
then the size of shares |Vi| for (k, n, εCDV)-secure secret sharing schemes is lower
bounded by |Vi| ≥ |S|−1

ε2CDV
+ 1 .

Ogata et al. also presented the lower bound for the size of shares for (k, n, εOKS)-
secure secret sharing scheme in the OKS model as follows.

Proposition 3. [8] In the OKS model, the size of shares for (k, n, εOKS)-secure
secret sharing schemes is lower bounded by |Vi| ≥ |S|−1

εOKS
+ 1 .

The following corollary may be seen to be straightforward from Proposition 2
since it has to hold for a uniformly distributed secret.

Corollary 1. In the CDV model, the size of shares for (k, n, εCDV)-secure se-
cret sharing schemes which satisfy the following two conditions is lower bounded
by |Vi| ≥ |S|−1

ε2CDV
+ 1. (1) Successful cheating probability is upper bounded by ε

regardless of the probability distribution of the secret. (2) Share generation is
independent of the secret distribution (i.e. ShareGen does not need to know the
secret distribution.)

Because it is in general difficult to determine exact probability distributions, we
do not consider here situations in which the share generation algorithm knows
the secret distribution and shares are generated according to the distribution3.

Within the OKS model, Ogata et al. have proposed an elegant (k, n, εOKS)-
secure secret sharing schemes that satisfies the bound of Proposition 3 with
equality [8]. The construction is summarized by the following proposition (please
refer to [7] for the definition of difference set.)

Proposition 4. [8] If there exists an (N, `, λ) difference set then there exists
a (k, n, εOKS)-secure secret sharing scheme in the OKS model which satisfies the
lower bound of Proposition 3 with equality. The scheme is secure if the secret is
uniformly distributed.
3 As mentioned in [8], an example exists in which the size of shares is smaller than

the bound of Proposition 2 when the secret is not uniformly distributed and shares
are generated according to the distribution.



However, there are two drawbacks in the scheme of [8]. The first is that the
scheme is proven to be secure only if the secret is uniformly distributed. This
drawback comes from the property of the scheme that the share of the target
participant can be uniquely determined from the shares of k − 1 cheaters and
the secret. Therefore, if there exists a secret which occurs with high probabil-
ity then cheaters can guess the share of the target participant also with high
probability, which causes the successful cheating probability larger than what
is expected when the secret is uniformly distributed. The second drawback is
that the successful cheating probability is uniquely determined from the size of
the secret; that is, εOKS is determined to be εOKS = 1/|S| in [8]. On the other
hand, the scheme by Tompa and Woll [12] which is secure in the CDV model is
proven to be secure for arbitrary secret distribution and the successful cheating
probability can be chosen without regard to the size of the secret. However, the
size of shares is as large as |Vi| = ( (|S|−1)(k−1)

εCDV
+ k)2.

3 Proposed Schemes

In this section, we propose two efficient (k, n, εCDV)-secure secret sharing schemes
in the CDV model which are proven to be secure for any secret distribution. The
first scheme is nearly optimum with respect to the size of shares; that is, the
size of shares is |Vi| = |S|/ε2CDV which is only one bit longer than the bound of
Corollary 1. The size of shares in the second scheme is |Vi| = |S|(log |S|)2/ε2CDV.
Though the size of share is larger than the first scheme, the second scheme
possesses a particular merit in that the size of the secret and the successful
cheating probability can be chosen independently.

The underlying (and yet naive) idea of the schemes is to use almost strongly
universal hash functions εCDV-ASU2 for cheating detection. A family of hash func-
tions H : A → B with the properties (1) and (2) below is called an ε-ASU2. (1)
For any x ∈ A and y ∈ B, |{he ∈ H | he(x) = y}| = |H|/|B|. (2) For any x1, x2(6=
x1) ∈ A and y1, y2 ∈ B, {he ∈ H | he(x1) = y1, he(x2) = y2}| = ε|H|/|B|. where
he denotes the element of H indexed by the key e ∈ E (clearly |H| = |E| holds.)

Now, consider the secret sharing scheme in which a randomly chosen key
e ∈ E of H (where H : S → B is εCDV-ASU2) is shared as well as the secret
s ∈ S using the Shamir’s (k, n) threshold secret sharing scheme and hash value
b = he(s) is open to the public. In the reconstruction phase, a secret ŝ and a
key ê are reconstructed and Reconst outputs ŝ as the valid secret if and only
if hê(ŝ) = b holds. Intuitively, the scheme seems to be (k, n, εCDV)-secure in the
CDV model since knowledge of the secret s does not help cheaters to compute
ŝ( 6= s) such that hê(ŝ) = b with probability better than εCDV.

However, we must be careful about the following problems. The first problem
is that the key ê ∈ E reconstructed from the shares is not always same as the
original one since cheaters can forge the shares of the key for the hash func-
tions. Therefore, we cannot prove the security of the above scheme directly from
the properties of ε-ASU2. The second problem is that public (and unforgeable)
storage to store the hash value b = he(s) is not always available. If the public



storage is not available then the hash value has to be included in the share of
each participant, which makes the size of shares larger. Further, we must ensure
that the hash value b = he(s) does not reveal any information about the secret
since the scheme is no longer perfect if it is not the case. To overcome the first
problem, we choose the specific ε-ASU2 which can ensure security even when
the key for the hash function is forged4. To overcome the second and the third
problem, we fix the hash value b = he(s) to be the constant (e.g. 0,) by which we
can eliminate the public storage or additional shares without any loss of security.

We use two families of hash functions to construct the schemes. The first
scheme is based on the well known 1

p -ASU2 such that H = {he0,e1 | he0,e1(s) =
e0 − s · e1, ei ∈ GF(p)} (e.g. [11].) The second scheme is generalization of the
first scheme and is based on the hash family H = {he0,e1 | he0,e1(s1, . . . , sN ) =
e0 −

∑N
j=1 sj · ej

1, ei ∈ GF(p)} which is proven to be N
p -ASU2 [5].

3.1 Almost Optimum Scheme

The share generation algorithm ShareGen and the share reconstruction algorithm
Reconst of the first scheme is described as follows where p is a prime power.

Share Generation: On input a secret s ∈ GF(p), the share generation algorithm
ShareGen outputs a list of shares (v1, . . . , vn) as follows:

1. Choose random e0, e1 ∈ GF(p) such that e0 − s · e1 = 0.
2. Generate random polynomials fs(x), fe0(x), fe1(x) ∈ GF(p)[X] of degree

k − 1 such that fs(0) = s, fe0(0) = e0 and fe1(0) = e1.
3. Compute vi = (fs(i), fe0(i), fe1(i)) and output (v1, . . . , vn).

Secret Reconstruction and Validity Check: On input a list of k shares (vi1 , . . . , vik
),

the secret reconstruction algorithm Reconst outputs a secret s or ⊥ as follows:

1. Reconstruct ŝ, ê0 and ê1 from vi1 , . . . , vik
using Lagrange interpolation.

2. Output s if ê0 − ŝ · ê1 = 0 holds. Otherwise Reconst outputs ⊥.

The properties of the first scheme is summarized by the following theorem.

Theorem 1. The scheme of §3.1 is (k, n, ε)-secure secret sharing schemes in the
CDV model with parameters |S| = p, ε = 1/p and |Vi| = p3 (= |S|/ε2). Further,
the scheme is secure for arbitrary secret distribution.

The size of shares in the first scheme is only one bit longer than the lower bound
of Proposition 2 since |S|

ε2 < 2( |S|−1
ε2 + 1) holds for |S| ≥ 2.

3.2 A Scheme with Flexible Parameters

In the first scheme, the successful cheating probability is uniquely determined
from the size of the secret. On the other hand, the successful cheating probability
can be chosen without regard to the size of the secret in the second scheme. The
second scheme can be described as follows.
4 Formal requirements for the family of hash functions are given in Section 4.



Share Generation: On input a secret s = (s1, . . . , sN ) ∈ GF(p)N , the share
generation algorithm ShareGen outputs a list of shares (v1, . . . , vn) according to
the following procedure. Please note that we sometimes regard s = (s1, . . . , sN )
as an element of GF(pN ) instead of GF(p)N .

1. Choose random e0, e1 ∈ GF(p) such that e0 −
∑N

j=1 sje
j
1 = 0.

2. Generate a random polynomials fs(x) ∈ GF(pN )[X] and fe0(x), fe1(x) ∈
GF(p)[X] of degree k − 1 such that fs(0) = s, fe0(0) = e0 and fe1(0) = e1.

3. Compute vi = (fs(i), fe0(i), fe1(i)) and output (v1, . . . , vn).

Secret Reconstruction and Validity Check: On input a list of k shares (vi1 , . . . , vik
),

the secret reconstruction algorithm Reconst outputs a secret s or ⊥ as follows:

1. Reconstruct ŝ, ê0 and ê1 from vi1 , . . . , vik
using Lagrange interpolation.

2. Output s if ê0 −
∑N

j=1 ŝj ê
j
1 = 0 holds. Otherwise Reconst outputs ⊥.

The following theorem holds for the second scheme. Note that the successful
cheating probability ε can be chosen flexibly by choosing the prime power p.

Theorem 2. The scheme of §3.2 is (k, n, ε)-secure secret sharing schemes in the
CDV model with parameters |S| = pN , ε = N/p, |Vi| = pN+2(= |S|(logp |S|)2/ε2).
Further, the scheme is secure for arbitrary secret distribution.

Proof. Without loss of generality, we can assume P1, . . . , Pk−1 are cheaters and
they try to cheat Pk by forging their shares vi = (vs,i, ve0,i, ve1,i) (1 ≤ i ≤ k−1.)

We consider two cases depending on whether the cheaters know the secret.
In the first case, suppose that the cheaters know the secret. The cheaters obtain
the following information about e0 and e1 from their shares v1, . . . , vk−1 and the
secret s ∈ S: e` = Lkve`,k +

∑k−1
j=1 Ljve`,j (for ` = 0, 1,), e0 −

∑N
j=1 sj · ej

1 = 0
where ve0,k and ve1,k are unknown to the cheaters and each Lj is a Lagrange
coefficient. For simplicity, we will rewrite ei by ei = Lkvei,k + Ci (for i = 0, 1)
where Ci =

∑k−1
j=1 Ljvei,j are known to the cheaters. Then we have

Lkve0,k + C0 =
∑N

j=1sj · (Lkve1,k + C1)
j

. (1)

Now suppose that the cheaters try to cheat Pk by forging their shares to v′i =
(v′

s,i, v
′
e0,i, v

′
e1,i) (for 1 ≤ i ≤ k − 1.) They succeed in cheating Pk if e′0 −∑N

j=1 s′j · e
′j
1 = 0 holds where e′0, e

′
1 and s′( 6= s) are computed by e′0 = Lkve0,k +∑k−1

j=1 Ljv
′
e0,j , e′1 = Lkve1,k +

∑k−1
j=1 Ljv

′
e1,j and s′ = Lkvs,k +

∑k−1
j=1 Ljv

′
s,j . Let

C ′
i =

∑k−1
j=1 Ljv

′
ei,j

(for i = 0, 1) then the cheaters succeed in cheating if the
following equality holds (please note that the cheater can control the values of
C ′

0, C
′
1 and s′ as they want by adjusting their shares.5)

Lkve0,k + C ′
0 =

∑N
j=1s

′
j · (Lkve1,k + C ′

1)
j (2)

5 The cheaters can control s′ since they can compute vs,k from their shares and s.



The successful cheating probability ε is computed as follows:

ε = Pr[s′ ∈ S ∧ s′ 6= s] = Pr[eq. (1) and eq. (2) hold | eq. (1) holds] = N/p .

We will show the above equation. The condition “eq. (1) and eq. (2) hold” is
equivalent to “eq. (1) and eq. (3) hold” where eq. (3) is described as follows:∑N

j=1sj · (Lkve1,k + C1)
j − C0 =

∑N
j=1s

′
j · (Lkve1,k + C ′

1)
j − C ′

0 . (3)

Now let J be the largest number such that sJ 6= s′J , then eq. (3) can be rewritten
as the univariate equation (sJ−s′J)LJ

k ·vJ
e1,k+

∑J−1
j=0 aj ·vj

e1,k = 0 of degree J with
the variable ve1,k where all the coefficients can be arbitrarily controlled by the
cheaters except that (sJ − s′J)LJ

k 6= 0. This equation has at most J (≤ N) roots
and for each root ve1,k, there exists a unique ve0,k that satisfies eq. (1). Since
the share generation algorithm ShareGen chooses actual (ve0,k, ve1,k) uniformly
and randomly from the p pairs of (ve0,k, ve1,k) which satisfy eq. (1), we see that
the successful cheating probability of the cheaters is upper bounded by N/p.

Now we consider the second case in which the cheaters do not know the
secret. In this case the successful cheating probability of the cheaters who forge
their shares from vi = (vs,i, ve0,i, ve1,i) to v′

i = (v′s,i, v
′
e0,i, v

′
e1,i), where at least

one v′
s,i must satisfy v′

s,i 6= vs,i, is computed as follows:

ε =
∑

s∈S Pr[S = s] Pr[s′ ∈ S ∧ s′ 6= s]
=

∑
s∈S Pr[S = s] Pr[eq. (1) and eq. (2) hold | eq. (1) holds] = N/p .

The above equality holds since Pr[eq. (1) and eq. (2) hold | eq. (1) holds] = N/p
holds for any s ∈ S. ut

Note that the above proof includes the proof for Theorem 2 since the first scheme
is achieved by setting N = 1 in the second scheme.

4 Generalization

In this section, we present more general results on the access structures and on
the class of hash functions used to detect cheating.

Though the schemes presented in Section 3 only deal with (k, n) thresh-
old type access structure, we can show that the proposed technique can be
applied to any linear secret sharing schemes. A linear secret sharing scheme
is a class of secret sharing schemes with the following properties: (1) The se-
cret s is an element of a finite field F. (2) The shares (v1, . . . , vn) are gen-
erated by (v1, v2, . . . , vn) = (s, r1, . . . , rt−1)M where M is a fixed t × n ma-
trix over F and each ri ∈ F is chosen randomly. (3) For a set of participants
P = {Pi1 , . . . , Pij} ∈ Γ and their shares (vi1 , . . . , vij ), the secret s is computed
by s =

∑j
k=1 cP,j · vij where each cP,j ∈ F is a constant uniquely determined

from P.
We can also generalize the class of hash function used to detect cheating. To

characterize such class of hash function, we define a new class of hash function
called strongly key-differential universal (ε-SKDU2 for short) as follows:



Definition 2. A family of hash functions H : A → B is called a strongly key-
differential universal ε-SKDU2 if there exists b̂ ∈ B such that for any distinct
a, a′ ∈ A and for any c ∈ E,

|{he | e ∈ E , he(a) = b̂, he+c(a′) = b̂}|
|{he | e ∈ E , he(a) = b̂}|

≤ ε. (4)

Further, ε-SKDU2 is called an “efficiently samplable” if there exists an efficient
(i.e. polynomial time) algorithm to choose e ∈ E randomly from the set {e ∈ E |
he(a) = b̂} for any a ∈ A.

The following theorem shows that we can construct secret sharing scheme ca-
pable of detecting cheating in the CDV model from any linear secret sharing
schemes over S and over E , and any efficiently samplable ε-SKDU2 with the
domain S.

Theorem 3. If there exist linear secret sharing schemes over S and E for a
common access structure Γ and an efficiently samplable ε-SKDU2 H : S → B,
then there exists a secret sharing scheme capable of detecting cheating for the
access structure Γ in the CDV model such that the successful cheating probability
is equal to ε for arbitrary secret distribution.

Proof. Let S and E be a set of the secrets and the set of keys for ε-SKDU2, re-
spectively and let SS1 = (ShareGen1,Reconst1) and SS2 = (ShareGen2, Reconst2)
be linear secret sharing schemes over S and over E for the same access structure
Γ , respectively. We construct a secret sharing scheme secure against cheaters
SS = (ShareGen, Reconst) as follows.

Share Generation: On input a secret s ∈ S, the share generation algorithm
ShareGen outputs a list of shares (v1, . . . , vn) as follows:

1. Choose a random e ∈ E such that he(s) = b̂, which can be computed effi-
ciently since the efficiently samplable ε-SKDU2 is used.

2. Generate (vs,1, . . . , vs,n) ← ShareGen1(s) and (ve,1, . . . , ve,n) ← ShareGen2(e).
3. Compute the share vi = (vs,i, ve,i) of each Pi and output (v1, . . . , vn).

Secret Reconstruction and Validity Check: On input t shares (vi1 , . . . , vit) such
that {Pi1 , . . . , Pit} ∈ Γ , the secret reconstruction algorithm Reconst outputs a
secret s ∈ S or ⊥ as follows:

1. Compute ŝ ← Reconst1(vs,i1 , . . . , vs,it) and ê ← Reconst2(ve,i1 , . . . , ve,it).
2. Output s if hê(ŝ) = b̂. Otherwise Reconst outputs ⊥.

Now we show that SS = (ShareGen, Reconst) constructed above is ε-secure.
Without loss of generality we can assume that P = {P1, . . . , Pt} is an element of
Γ and that P1, . . . , Pt−1 are cheaters who try to cheat Pt. There are two cases
to consider. In the first case, suppose that the cheaters know the secret.

Let vi = (vs,i, ve,i) be the share of Pi. Since the cheaters know their shares
v1, . . . , vt−1 and the secret s and that SS1 and SS2 are the linear secret sharing



schemes, the cheaters know he(s) = b̂ holds where e is computed by e = cP,tve,t+∑t−1
j=1cP,jve,j for a constant cP,i. Now suppose the cheaters try to cheat Pt by

forging their shares to v′
i = (v′

s,i, v
′
e,i) (for 1 ≤ i ≤ t − 1.) They succeed in

cheating Pt if he′(s′) = b̂ holds for e′ and s′(6= s) computed by e′ = cP,tve,t +∑t−1
j=1 cP,jv

′
e,j , s′ = cP,tvs,t +

∑t−1
j=1 cP,jv

′
s,j . Since e′ = e+

∑t−1
j=1 cP,j(v′e,j −ve,j)

holds, we see that the cheaters succeed in cheating if he+C(s′) = b̂ holds where
C =

∑t−1
j=1 cP,j(v′

e,j − ve,j) is known to the cheaters. Therefore, the successful
cheating probability ε is computed as follows.

Pr[s′ ∈ S ∧ s′ 6= s]

= Pr[he(s) = b̂ and he+C(s′) = b̂ | he(s) = b̂]

=
Pr[he(s) = b̂ and he+C(s′) = b̂]

Pr[he(s) = b̂]
=

|{he | he(s) = b̂, he+C(s′) = b̂}|
|{he | he(s) = b̂}|

≤ ε

where the last equation directly follows from eq. (4).
It can be proven that the successful cheating probability is upper bounded

by ε when the cheaters do not know the secret by the same technique used in
Theorem 2. ut

It is easily checked that the families of hash function used in the proposed
schemes of Section 3 meet the requirements of efficiently samplable ε-SKDU2.

Constructions of ε-SKDU2 other than those used in the proposed schemes
will be of independent interest. The following theorem shows that an ε-SKDU2

(and therefore, a secret sharing scheme capable of detecting cheating) can be
constructed from an ε-ASU2 with additional properties.

Theorem 4. If a family of hash functions H : A → B is an ε-ASU2 with the
properties (1) and (2) below then H is an efficiently samplable ε-SKDU2.

(1) H is constructed from H∆ : A → B of ε-A∆U2 as follows, where ε-A∆U2 is
a family of hash functions such that |{he ∈ H∆ | he(a)− he(a′) = b}| = ε|H| for
any distinct a, a′ ∈ A and for any b ∈ B.

H = {he0,e1 | he0,e1(a) = h′
e0

(a) + e1, h′
e0

∈ H∆, e1 ∈ B}

(2) H∆ is linear with respect to the key; that is, h′
e+e′(a) = h′

e(a) + h′
e′(a) holds

for any e, e′ ∈ E and for any a ∈ A.

Proof. It is well known that the family of hash functions H constructed as above
is ε-ASU2 (please refer to [11] for the proof.) Let b̂ be an arbitrary element of B
then we will show that H satisfies the conditions of an efficiently samplable ε-
SKDU2. First, it is easy to see that e0 and e1 such that he0,e1(a) = b̂ is efficiently
samplable by choosing e0 ∈ E randomly and by computing e1 = b̂ − he0(a).
Next, we show that eq. (4) holds for H. Since H is constructed based on H∆

with the property h′
e+e′(a) = h′

e(a) + h′
e′(a) for any h′ ∈ H∆, he0+c0,e1+c1(a) =

h′
e0+c0

(a) + (e1 + c1) = (h′
e0

(a) + e1) + (h′
c0

(a) + c1) = he0,e1(a) + hc0,c1(a) holds



for any a ∈ A and for any (e0, e1), (c0, c1) ∈ E × B. Therefore, the following
equation holds.

|{he0,e1 ∈ H | he0,e1(a) = b̂, he0+c0,e1+c1(a
′) = b̂}|

= |{he0,e1 ∈ H | he0,e1(a) = b̂, he0,e1(a
′) = b̂ − hc0,c1(a

′)}|
= |{he0,e1 ∈ H | he0,e1(a) = b̂, he0,e1(a

′) = b̂′}| = ε|H|/|B|

where the last equation follows from the second condition of ε-ASU2. Combining
the above equation and the first property of ε-ASU2: |{he0,e1 ∈ H | he0,e1(a) =

b̂}| = |H|/|B|, we have |{he0,e1∈H|he0,e1 (a)=b̂, he0+c0,e1+c1 (a′)=b̂}|
|{he0,e1∈H|he0,e1 (a)=b̂}|

= ε for any dis-

tinct a, a′ ∈ A and for any (c0, c1) ∈ E × B. ut

Please note that the family of hash function used in the first scheme is con-
structed based on Theorem 4, whereas the family of hash function used in the
second scheme is not. Therefore, we see that SKDU2 can be constructed by other
means than Theorem 4.

5 Coping with More Powerful Cheaters

In this section, we consider the models with more powerful cheaters than those
in the OKS and the CDV models and we present secure schemes against them.

In the OKS model and the CDV model, the secret reconstruction algorithm
Reconst is defined to take only a list of share (vi1 , . . . , vik

) as input. In actual
schemes, however, the identities of the owners i1, . . . , ik are usually required to
reconstruct the secret. This means that we implicitly assume there exist means
to know the correct identities of share holders in the secret reconstruction phase
of both the OKS and the CDV models. In the real life, however, it is very diffi-
cult to realize an identification scheme secure against adversaries with unlimited
computational power. Therefore, it is highly desired to construct secret sharing
schemes capable of detecting cheating without relying on secure identification.

To this end, we define new models: the OKS+ model and the CDV+ model
which are slight modifications of the OKS model and the CDV model, respec-
tively. In both new models, we modify a secret reconstruction algorithm Reconst
and a game Game+ of cheaters A = (A1, A2) against SS = (ShareGen,Reconst) as
follows. The secret reconstruction algorithm Reconst takes a list ((i1, vi1), (i2, vi2),
. . . , (ik, vik

)) of pairs of an identity i` and a share vi`
of Pi`

. Cheaters in the new
models are allowed to forge their identities as well as their shares. To characterize
such cheaters, a game Game+ is defined as follows.

Game+(SS,A)
s ← S; // according to the probability distribution over S.
(v1, . . . , vn) ← ShareGen(s);
(ii, . . . , ik−1) ← A1(X);
// set X = s for the CDV+ model, X = ∅ for the OKS+ model.
((i′1, v

′
i′1

), . . . , (i′k−1, v
′
i′k−1

), ik) ← A2(vi1 , . . . , vik−1 , X);



The advantage of cheaters is redefined by Adv(SS, A) = Pr[s′ ∈ S∧s′ 6= s], where
s′ = Reconst((i′1, v

′
i′1

), (i′2, v
′
i′2

), . . . , (i′k−1, v
′
i′k−1

), (ik, vik
)) and the probability is

taken over the distribution of S, and over the random tapes of ShareGen and A.
Note that all the bounds for the OKS model (resp., the CDV model) (e.g.

Propositions 1–3 and Corollary 1) are also valid for OKS+ model (resp., the
CDV+ model) since a scheme secure in the OKS+ model (resp., the CDV+

model) are also secure in the OKS model (resp., the CDV model.)
Though the schemes secure in the OKS model (resp., the CDV model) are

not necessarily secure in the OKS+ model (resp., the CDV+ model,) the scheme
presented in [8] can be proven to be secure in the OKS+ model and the scheme
presented in [12] can be proven to be secure in the CDV+ model. With respect
to the proposed schemes, the first scheme can be shown to be secure in the
CDV+ model. However, the second scheme is not secure in the CDV+ model.
This is because the security proof of the second scheme strongly relies on the
fact that the cheaters can not manipulate the Lagrange coefficient Lk, which is
not the case in the CDV+ model. When cheaters can manipulate the Lagrange
coefficient as they want, they will succeed in cheating with probability one, which
is possible by forging the Lagrange coefficient Lk to L′

k( 6= Lk) in eq. (2) and by
adjusting s′j , C

′
0 and C ′

1 to make eq. (2) equivalent to eq. (1).
The good news is that the second scheme secure can be made secure in

CDV+ model by slight modification. The main idea of the modified scheme is
to introduce a constant padding to a hash function. Specifically, we choose a key
e of a hash families with which he(s1, . . . , sN , 1, 1, 0, 1) = 0 instead of choosing
a key such that he(s1, . . . , sN ) = 0 as in the second scheme. In this modified
scheme, we can show that cheaters cannot make eq. (2) equivalent to eq. (1)
unless they leave the Lagrange coefficient Lk and the secret s = (s1, . . . , sN )
unchanged. The modified scheme can be described as follows.

Share Generation: On input a secret s = (s1, . . . , sN ) ∈ GF(p)N , the share
generation algorithm ShareGen outputs a list of shares (v1, . . . , vn) according to
the following procedure. Please note that we sometimes regard s = (s1, . . . , sN )
as an element of GF(pN ) instead of GF(p)N .

1. Choose random e0, e1 ∈ GF(p) such that e0 − (eN+4
1 + eN+2

1 + eN+1
1 +∑N

j=1 sje
j
1) = 0.

2. Generate random polynomials fs(x) ∈ GF(pN )[X] and fe0(x), fe1(x) ∈
GF(p)[X] of degree k − 1 such that fs(0) = s, fe0(0) = e0 and fe1(0) = e1.

3. Compute vi = (fs(i), fe0(i), fe1(i)) and output (v1, . . . , vn).

Secret Reconstruction and Validity Check: On input a list of k pair of identities
and shares ((i1, vi1), . . . , (ikvik

)), the secret reconstruction algorithm Reconst
outputs a secret s or ⊥ according to the following procedure.

1. Reconstruct ŝ, ê0 and ê1 from vi1 , . . . , vik
using Lagrange interpolation.

2. Output s if ê0 − (êN+4
1 + êN+2

1 + êN+1
1 +

∑N
j=1 ŝj ê

j
1) = 0 holds. Otherwise

Reconst outputs ⊥.



Security of the modified scheme is summarized by the following theorem.

Theorem 5. The modified scheme presented above is (k, n, ε)-secure secret shar-
ing schemes in the CDV+ model with the following parameters: |S| = pN , ε =
(N +4)/p and |Vi| = pN+2(= |S|(logp |S|+4)2/ε2). Further, the scheme is secure
for arbitrary secret distribution.

Proof. The proof is similar to that of Theorem 2. Let Pj (1 ≤ j ≤ k − 1)
be cheaters who try to cheat Pk by forging their identities j to ij( 6= k) and
corresponding shares to v′ij

= (v′
s,ij

, v′e0,ij
, v′e1,ij

) (1 ≤ j ≤ k − 1.)
As in the proof of Theorem 2, we consider two cases depending on whether

the cheaters know the secret. In the first case, suppose that the cheaters know the
secret. The cheaters obtain the following information about e0 and e1 from their
shares v1, . . . , vk−1 and the secret s ∈ S: e` = Lkve`,k +

∑k−1
j=1 Ljve`,j (` = 0, 1),

e0 − (eN+4
1 + eN+2

1 + eN+1
1 +

∑N
j=1 sj · ej

1) = 0 where ve0,k and ve1,k are unknown
to the cheaters and each Lj is a Lagrange coefficient. For simplicity, we will
rewrite ei by ei = Lkvei,k + Ci (for i = 0, 1) where Ci =

∑k−1
j=1 Ljvei,j is known

to the cheaters. Then we have the following equality.

Lkve0,k + C0 =
∑

j∈{1,2,4}(Lkve1,k + C1)N+j +
∑N

j=1sj · (Lkve1,k + C1)j (5)

Now suppose the cheaters Pj (1 ≤ j ≤ k − 1) try to cheat Pk by forging their
identities to ij and by forging corresponding shares to v′

ij
= (v′s,ij

, v′e0,ij
, v′e1,ij

).

They succeed in cheating Pk if e′0 − (
∑

j={1,2,4} e′N+j
1 +

∑N
j=1 s′j · e

′j
1 ) = 0 holds

where e′0, e
′
1 and s′(6= s) are computed by e′` = L′

kve`,k +
∑k−1

j=1L′
ij

v′
e`,ij

(for

` = 0, 1), s′ = L′
kvs,k +

∑k−1
j=1L′

ij
v′

s,ij
. Let C ′

` =
∑k−1

j=1 L′
ij

v′
e`,ij

(for ` = 0, 1) then
the cheaters succeed in cheating if the following equality holds (as in Theorem
2, the cheaters can control the values of C ′

0, C
′
1 and s′ as they want.)

L′
kve0,k + C ′

0 =
∑

j∈{1,2,4}(L
′
kve1,k + C ′

1)
N+j +

∑N
j=1s

′
j · (L′

kve1,k + C ′
1)

j (6)

The successful cheating probability ε is computed by ε = Pr[s′ ∈ S ∧ s′ 6= s] =
Pr[eq. (5) and eq. (6) hold | eq. (5) holds]. We will show that ε = (N + 4)/p.
First, assume that eq. (5) is not equivalent to eq. (6) (i.e. L′

k × eq. (5) is not
identical to Lk × eq. (6).) In this case, ε is proven to be (N + 4)/p by similar
discussion to the proof of Theorem 2. Next, we will show that if the cheaters make
eq. (6) equivalent to eq. (5) then successful cheating probability becomes 0. This
can be proven by showing that eq. (5) is equivalent to eq. (6) only if the L′

k = Lk,
C ′

i = Ci (for i = 0, 1) and sj = s′j (for 1 ≤ j ≤ N) since the cheaters succeed
in cheating only when Pk accepts s′ such that s′ 6= s. Suppose Lk × eq. (5) and
L′

k × eq. (6) are identical then their coefficients of vN+4
k , vN+3

k , vN+2
k and vN+1

k

must be identical. Therefore, we have the following equations.

L′
kLN+4

k = LkL′N+4
k (7)(

N+4
1

)
C1L

′
kLN+3

k =
(
N+4

1

)
C ′

1LkL′N+3
k (8)



((
N+4

2

)
C2

1 + 1
)

L′
kLN+2

k =
((

N+4
2

)
C ′2

1 + 1
)

LkL′N+2
k (9)((

N+4
3

)
C3

1 +
(
N+2

1

)
C1 + 1

)
L′

kLN+1
k =

((
N+4

3

)
C ′3

1 +
(
N+2

1

)
C ′

1 + 1
)

LkL′N+1
k (10)

From eq. (7) and eq. (8) we have LN+3
k = L′N+3

k and C1/Lk = C ′
1/L′

k. Using
these relations eq. (7)–eq. (10) can be rewritten as follows.

LN+3
k = L′N+3

k , C1/Lk = C ′
1/L′

k, LN+1
k = L′N+1

k , LN
k = L′N

k

The above equalities holds if and only if Lk = L′
k and C1 = C ′

1. Further, sj = s′j
(for 1 ≤ j ≤ N) can be also derived from the condition that the coefficients
of vj

k in eq. (5) and eq. (6) are identical. Finally, C0 = C ′
0 is derived from the

condition that the constant terms of eq. (5) and eq. (6) are identical.
Now we consider the second case in which the cheaters do not know the

secret. In this case the successful cheating probability of the cheaters who forge
their identities and corresponding shares from (j, (vs,j , ve0,j , ve1,j)) to (ij , (v′

s,ij
,

v′
e0,ij

, v′e1,ij
)) is computed as follows:

ε =
∑

s∈S Pr[S = s] Pr[s′ ∈ S ∧ s′ 6= s]
=

∑
s∈S Pr[S = s] Pr[eq. (5) and eq. (6) hold | eq. (5) holds] = (N + 4)/p .

The above equality holds since Pr[eq. (5) and eq. (6) hold | eq. (5) holds] =
(N + 4)/p holds for any s ∈ S. ut

The following theorem gives a generalized result analogous to Theorem 3.

Theorem 6. If there exist linear secret sharing schemes over S and E for a
common access structure Γ and a family of hash functions H : S → B which
satisfies the conditions (1)–(3) below, then there exists a secret sharing scheme
capable of detecting cheating for the access structure Γ in the CDV+ model such
that the successful cheating probability equals ε for arbitrary secret distribution.

1. Addition and (scalar) multiplication over the set of keys E of H are defined.
2. There exists b̂ ∈ B such that for any distinct a, a′ ∈ A and for any c0 and

c1 ∈ E,
|{he | e ∈ E , he(a) = b̂, hc0e+c1(a

′) = b̂}|
|{he | e ∈ E , he(a) = b̂}|

≤ ε. holds.

3. There exists an efficient (i.e. polynomial time) algorithm to choose e ∈ E
randomly from the set {e ∈ E | he(a) = b̂} for any a ∈ A.

Proof. The proof is similar to that of Theorem 3. Let S and E be a set of the
secrets and the set of keys for a function family H, respectively. Further, let
SS1 = (ShareGen1, Reconst1) and SS2 = (ShareGen2, Reconst2) be linear secret
sharing schemes over S and over E for the same access structure Γ , respectively.
The share generation algorithm ShareGen and Reconst are identical to those
defined in the proof of Theorem 3 except that the family of hash functions used
here meets the condition 1–3 of Theorem 6.



Now we show that the above SS = (ShareGen, Reconst) is ε-secure even when
the cheaters forge their identities as well as their shares. Without loss of general-
ity we can assume that P = {P1, . . . , Pt} is an element of Γ and that P1, . . . , Pt−1

are cheaters who try to cheat Pt. There are two cases to consider. In the first
case, suppose that the cheaters know the secret. Let vi = (vs,i, ve,i) be the share
of Pi. Since the cheaters know their shares v1, . . . , vt−1 and the secret s and that
SS1 and SS2 are the linear secret sharing schemes, the cheaters know he(s) = b̂

holds where e is computed by e = cP,tve,t +
∑t−1

j=1cP,jve,j for a constant cP,i.
Now suppose the cheaters try to cheat Pt by forging their identities from j
to ij (for 1 ≤ j ≤ t − 1) and corresponding shares to v′ij

= (v′
s,ij

, v′e,ij
) (for

1 ≤ j ≤ t−1.) They succeed in cheating Pt if he′(s′) = b̂ holds for e′ and s′(6= s)
computed by e′ = c′P,tve,t +

∑t−1
j=1 c′P,ij

v′
e,ij

, s′ = c′P,tvs,t +
∑t−1

j=1 c′P,ij
v′s,ij

.

Since e′ = ( c′P,t

cP,t
)e +

∑t−1
j=1(c

′
P,ij

v′e,ij
−

cP,tc
′
P,ij

c′P,t
· ve,j) holds, we see that the

cheaters succeed in cheating if hC0·e+C1(s
′) = b̂ holds where C0 = c′P,t/cP,t and

C1 =
∑t−1

j=1(c
′
P,ij

v′e,ij
−

cP,tc
′
P,ij

c′P,t
· ve,j) are known to the cheaters. Therefore, the

successful cheating probability ε is computed as follows.

Pr[s′ ∈ S ∧ s′ 6= s] = Pr[he(s) = b̂ and hC0·e+C1(s
′) = b̂ | he(s) = b̂]

=
|{he | he(s) = b̂, hC0·e+C1(s

′) = b̂}|
|{he | he(s) = b̂}|

≤ ε

where the last equation directly follows from the condition (2) of Theorem 6.
It can be proven that the successful cheating probability is upper bounded

by ε when the cheaters do not know the secret by the same technique used in
Theorem 5. ut

6 Conclusion

In this paper, we proposed two efficient (k, n, εCDV)-secure secret sharing schemes
in the CDV model which are proven to be secure for arbitrary secret distribution.
The first scheme is nearly optimum with respect to the size of shares; that is, the
size of share is only one bit longer than the lower bound of Corollary 1. In the
second scheme, the size of share is larger than that in the first scheme. However,
the second scheme possesses a particular merit in that the successful cheating
probability can be chosen without regard to the size of the secret. Table 1 below
compares the bit length of shares in the three schemes for the various security
parameters where the secret is 1024 bit and the access structure considered is 3-
out-of-5 threshold type access structure. Compared to the scheme of [12] the size
of shares in the proposed scheme (the second scheme) is smaller for all security
parameters. It is interesting to note that, when ε > |S|−1/2, the size of the share
in the proposed scheme is even smaller than that in [8] which is proven to be
secure only in the OKS model. This is because ε is determined to be ε = 2−1024

when the secret is 1024 bit in the scheme of [8]. Therefore, ε is forced to be 2−1024



ε Proposed Scheme Tompa and Woll Ogata et al.

2−128 1286 2306 2048

2−256 1540 2562 2048

2−512 2050 3074 2048

2−1024 3072 4098 2048

Table 1. Comparison table of the bit length of the shares (for the secret of 1024 bit)

in [8] even when we only require the security level of ε = 2−128 or ε = 2−256,
which makes the size of share larger than that in the proposed scheme when ε
is relatively large (please note that ε = 2−128 or ε = 2−256 will be secure enough
in most settings.)

It will be a future study to find (k, n, εCDV)-secure secret sharing schemes in
the CDV model which are secure for arbitrary secret distribution and the bound
of Corollary 1 is satisfied with equality.

References

1. G. R. Blakley, “Safeguarding cryptographic keys,” Proc. AFIPS 1979, National
Computer Conference, vol. 48, pp. 313–137, 1979. vol. 4, no. 4, pp. 502–510, 1991.

2. M. Carpentieri, “A Perfect Threshold Secret Sharing Scheme to Identify
Cheaters,” Designs, Codes and Cryptography, vol. 5, no. 3, pp. 183–187, 1995.

3. M. Carpentieri, A. De Santis and U. Vaccaro, “Size of Shares and Probability of
Cheating in Threshold Schemes,” Proc. Eurocrypt’93, Lecture Notes in Computer
Science, vol. 765, Springer Verlag, pp. 118–125, 1993.

4. R. Cramer, I. Damg̊ard and U. M. Maurer, “General Secure Multi-party Com-
putation from any Linear Secret-Sharing Scheme,” Proc. Eurocrypt’00, Lecture
Notes in Computer Science, vol. 1807, Springer Verlag, pp. 316–334, 2000.

5. B. den Boer, “A Simple and Key-Economical Unconditional Authentication
Scheme,” Journal of Computer Security, vol. 2, pp. 65–71, 1993.

6. K. Kurosawa, S. Obana and W. Ogata, “t-Cheater Identifiable (k, n) Secret Shar-
ing Schemes,” Proc. Crypto’95, Lecture Notes in Computer Science, vol. 963,
Springer Verlag, pp. 410–423, 1995.

7. F. MacWilliams and N. Sloane, “The Theory of Error Correcting Codes,” North
Holland, Amsterdam, 1977.

8. W. Ogata, K. Kurosawa and D. R. Stinson, “Optimum Secret Sharing Scheme
Secure against Cheating,” SIAM Journal on Discrete Mathematics, vol. 20, no. 1,
pp. 79–95, 2006.

9. T. Pedersen, “Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing,” Proc. Crypto’91, Lecture Notes in Computer Science, vol 576, Springer
Verlag, pp. 129–149, 1991.

10. A. Shamir, “How to Share a Secret,” Communications of the ACM, vol. 22, no.
11, pp. 612–613, 1979.

11. D. R. Stinson, “On the Connections between Universal Hashing, Combinatorial
Designs and Error-Correcting Codes,” Congressus Numerantium 114, pp. 7–27,
1996.

12. M. Tompa and H. Woll, “How to Share a Secret with Cheaters,” Journal of Cryp-
tology, vol. 1, no. 3, pp. 133–138, 1989.


