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Abstract. Non-interactive zero-knowledge proofs play an essential role in many
cryptographic protocols. We suggest several NIZK proof systems based on prime
order groups with a bilinear map. We obtain linear size proofs for relations among
group elements without going through an expensive reduction to an NP-complete
language such as Circuit Satisfiability. Security of all our constructions is based
on the decisional linear assumption.
The NIZK proof system is quite general and has many applications such as digital
signatures, verifiable encryption and group signatures. We focus on the latter and
get the first group signature scheme satisfying the strong security definition of
Bellare, Shi and Zhang [7] in the standard model without random oracles where
each group signature consists only of a constant number of group elements.
We also suggest a simulation-sound NIZK proof of knowledge, which is much
more efficient than previous constructions in the literature.
Caveat: The constants are large, and therefore our schemes are not practical.
Nonetheless, we find it very interesting for the first time to have NIZK proofs
and group signatures that except for a constant factor are optimal without using
the random oracle model to argue security.

Keywords: Non-interactive zero-knowledge, simulation-sound extractability,
group signatures, decisional linear assumption.

1 Introduction

A non-interactive proof system allows a prover to convince a verifier about the truth of
a statement. Zero-knowledge captures the notion that the verifier learns no more from
the proof than the truth of the statement. We refer to the full paper [28] for formal
definitions of non-interactive zero-knowledge (NIZK) proofs. Our goal in this paper is
to construct short efficient prover NIZK proofs for languages that come up in practice
when constructing cryptographic protocols. As an example of the usefulness of these
new techniques, we construct group signatures consisting of a constant number of group
elements.
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1.1 Setup

We use two cyclic groupsG,G1 of orderp, wherep is a prime. We make use of a
bilinear mape : G×G → G1. I.e., for allu, v ∈ G anda, b ∈ Z we havee(ua, vb) =
e(u, v)ab. We require thate(g, g) is a generator ofG1 if g is a generator ofG. We also
require that group operations, group membership, and the bilinear map be efficiently
computable. Such groups have been widely used in cryptography in recent years.

Let G be an algorithm that takes a security parameter as input and outputs
(p,G,G1, e, g) such thatp is prime, G,G1 are descriptions of groups of orderp,
e : G × G → G1 is an admissible bilinear map as described above andg is a ran-
dom generator ofG.

We use the decisional linear assumption from Boneh, Boyen and Shacham [10].

Definition 1 (Decisional Linear Assumption (DLIN)). We say the decisional linear
assumption holds for the bilinear group generatorG if for all non-uniform polynomial
time adversariesA we have

Pr
[
(p,G,G1, e, g)← G(1k);x, y, r, s← Zp :

A(p,G,G1, e, g, g
x, gy, gxr, gys, gr+s) = 1

]
≈ Pr

[
(p,G,G1, e, g)← G(1k);x, y, r, s, d← Zp :

A(p,G,G1, e, g, g
x, gy, gxr, gys, gd) = 1

]
.

Throughout the paper, we work over a bilinear group(p,G,G1, e, g) ← G(1k) gener-
ated such that the DLIN assumption holds forG. We call this a DLIN group. Honest
parties always check group membership ofG,G1 when relevant and halt if an element
does not belong to a group that it was supposed to according to the protocol.

Given a DLIN group(p,G,G1, e, g) we can set up a semantically secure cryp-
tosystem as in [10]. We choose at randomx, y ← Z∗

p. The public key is(f, h), where
f = gx, h = gy, and the secret key is(x, y). To encrypt a messagem ∈ G we choose
r, s← Zp and let the ciphertext be(u, v, w) = (fr, hs, gr+sm). To decrypt a ciphertext
(u, v, w) ∈ G3 we computem = D(u, v, w) = u−1/xv−1/yw.

The cryptosystem(Kcpa, E,D) has several nice properties. The DLIN assump-
tion for G implies semantic security under chosen plaintext attack (CPA). All triples
(u, v, w) ∈ G3 are valid ciphertexts. Also, the cryptosystem is homomorphic.

E(m1; r1, s1)E(m2, r2, s2) = E(m1m2; r1 + r2, s1 + s2).

1.2 Pairing Product Equations

Given a group(p,G,G1, e, g) we define a pairing product equation of length` over
variablesa1, . . . , an to be an equation of the following form.

∏̀
j=1

e(qj,0, qj,1) = 1, where qj,b = bj,b

n∏
i=1

a
ej,b,i

i with bj,b ∈ G , ej,b,i ∈ Zp.



Given a setS of pairing product equationseq1, . . . , eqm we can ask the natural
question:Is there a tuple(a1, . . . , an) ∈ Gn such that all equations inS are simulta-
neously satisfied?

To illustrate the generality of the language of satisfiable pairing product equa-
tions we observe a reduction from the NP-complete language Circuit Satisfiability.
Let a1, . . . , an correspond to the wires of the circuit, which without loss of general-
ity contains only NAND-gates. LetS contain equationse(ai, aig

−1) = 1 forcing each
ai = gbi to encode a bitbi ∈ {0, 1}. For each NAND-gate with input wiresi0, i1 and
outputi2 add toS the equatione(ai0 , ai1) = e(g, ga−1

i2
), which is satisfied if and only

if bi2 = ¬(bi0 ∧ bi1).
Our main motivation for being interested in satisfiability of pairing product equa-

tions is not NP-completeness though. Satisfiability of pairing product equations comes
up in practice when constructing cryptographic protocols and by making a direct NIZK
proof instead of first reducing the problem to some other language such as Circuit Sat-
isfiability we keep proofs short.

For concreteness, let us use verifiable encryption as an example of a pairing product
satisfiability question that may come up in practice. Suppose(u, v, w) is a ciphertext
under the public key(f, h) of the DLIN-based cryptosystem described earlier. We are
interested in whether this ciphertext encrypts a particular messagem. This is the case,
if and only if there existsa such thate(g, u) = e(a, f) ande(h,wm−1a−1)) = e(v, g).
If we know r, s we can compute the satisfiability witnessa = gr.

1.3 NIZK Proofs for Satisfiability of Pairing Product Equations

NIZK PROOFS. The central technical contribution of this paper is an NIZK proof of
sizeO(n + `) group elements for satisfiability of a set of pairing product equations of
combined length̀ =

∑m
j=1 `j . The proof system has perfect completeness and perfect

soundness.

RELATED WORK ON NIZK PROOFS. NIZK proofs were introduced by Blum, Feld-
man and Micali [9] and they suggested an NIZK proof for a single statement based on
the hardness of deciding quadratic residousity. Blum et al. [8] extended this to multi-
theorem NIZK proofs. Feige, Lapidot and Shamir [25] and Kilian and Petrank [33] give
constructions based on trapdoor permutations.

Recently Groth, Ostrovsky and Sahai [30] have constructed NIZK proofs from com-
posite order bilinear groups introduced by Boneh, Goh and Nissim [11]. Even more
recently Groth, Ostrovsky and Sahai [29] have introduced the setting in this paper, a
bilinear group of prime order and the DLIN assumption. They construct non-interactive
witness-indistinguishable proofs without any setup assumptions. In the common refer-
ence string (CRS) model both results give NIZK proofs for Circuit Satisfiability of size
O(|C|) group elements.

All the above-mentioned papers have in common that they focus on an NP-complete
language, usually Circuit Satisfiability, and suggest a bit-by-bit or gate-by-gate NIZK
proof for this language. Our paper differs by introducing new techniques that allows
makingdirectNIZK proofs for satisfiability of pairing product equations. This allows us
to construct constant/linear size cryptographic protocols for digital signatures, RCCA-
secure encryption[20], verifiable encryption and group signatures.



The only other way we know of to get linear size NIZK proofs/arguments for any
practical language is the Fiat-Shamir heuristic: Make a 3-move public coin (honest ver-
ifier) zero-knowledge protocol non-interactive by computing the verifier’s challenge as
a hash of the statement and the initial protocol message. To argue security, one models
the hash-function as a random oracle [6]. It is well known that using the random oracle
model sometimes results in insecure real life protocols [18, 19, 34, 27, 4]. In compari-
son, our NIZK proofs haveprovable securityunder the DLIN assumption.

SIMULATION -SOUND EXTRACTABLE NIZK PROOFS. Combining the definitions of
simulation-soundness introduced by Sahai [35] and proofs of knowledge from De San-
tis and Persiano [23], we get simulation-sound extractability. Here the simulator first
creates a simulated CRS together with a simulation trapdoor and an extraction trap-
door. We require that even after the adversary has seen simulated proofs on arbitrary
statements, if it constructs a new valid proof on any statement, then we can extract a
witness. Simulation-sound extractability is a very strong notion, in particular it implies
non-malleability as defined by De Santis et al. [22].

We construct a simulation-sound extractable NIZK proof for satisfiability of pairing
product equations. Our NIZK proof has a CRS with a description of the group and a
constant number of group elements, and the proofs consist ofO(n+ `) group elements.

RELATED WORK ON SIMULATION-SOUND NIZK PROOFS. As stated before, our in-
terest in this paper is satisfiability of pairing products equations. However, in order to
compare our scheme with previous work let us look at the case of Circuit Satisfiabil-
ity. [35] constructed a one-time simulation-sound NIZK proof system using techniques
from Dwork, Dolev and Naor [24]. Later a construction for unbounded simulation-
sound extractable NIZK arguments was given by [22], where the adversary can see
many simulated arguments of arbitrary statements. The schemes from both these papers
are based on trapdoor permutations but are not practical. For the sake of fairness in eval-
uating the quality of our contribution, we have also considered whether the techniques
from [30] could be used to get good efficiency for simulation-sound extractability. The
answer to this question seems to be negative, the best construction we can think of using
GOS-techniques gives an additive polynomial size overhead.

Scheme NIZK proof bit size Assumption
[22] O(|C|poly(k)) Trapdoor permutations
Potential use of [30] techniquesO(|C|k + poly(k)) Subgroup decision

This paper O(|C|k) DLIN

Fig. 1.Comparison of simulation-sound extractable proofs for Circuit Satisfiability

COMMON REFERENCE STRING VERSUS UNIFORM RANDOM STRING. We will con-
struct NIZK proofs and simulation-sound extractable NIZK proofs in the common ref-
erence string model, where the prover and the verifier both have access to a CRS chosen
according to some distribution. If this distribution is uniform at random we call it the
uniform random string model. In some settings it is easier to work with a URS, for in-
stance a URS can easily be jointly generated using multi-party computation techniques.



Our NIZK proofs use a common reference string that contains a description of a
bilinear group and a number of group elements. Depending on the group elements, the
CRS will give either perfect soundness of perfect zero-knowledge. With overwhelming
probability random group elements will lead to a perfect soundness CRS. Assuming that
we can use a uniform random string to get a description of a DLIN group and a number
of random group elements, we will therefore get NIZK proofs and simulation-sound
NIZK proofs in the URS-model. Since there is a negligible chance of picking a per-
fect zero-knowledge CRS, this gives statistical soundness instead of perfect soundness,
which is the best we can hope for in the URS-model. We remark that natural candidates
for bilinear DLIN groups based on elliptic curves are efficiently samplable from a URS
[29]. For the sake of simplicity we will just work with the CRS-model in the paper, but
invite the reader to note that all constructions work in the URS-model as well.

1.4 An Application: Constant Size Group Signatures

Group signatures, introduced by Chaum and van Heyst [21], allow a member to sign
messages anonymously on behalf of a group. A group manager controls the group and
decides who can join. In case of abuse, the group manager is able to open a signature
to reveal who the signer is. It is hard to design group signatures and most schemes [17,
16, 3, 14, 2, 13, 31, 15, 10, 26, 32] use the random oracle model in the security proof.

Bellare, Micciancio and Warinschi [5] suggest rigorous security definitions for
group signatures in thestatic case where the set of members is fixed from the start
and never changes. Bellare, Shi and Zhang [7] extend the security model to the partially
dynamiccase where the group manager can enroll new members in the group. Both
[5] and [7] suggest constructions of group signatures based on trapdoor permutations.
These constructions are very inefficient and only indicate feasability.

Boyen and Waters [12] use a combination of the Waters signature scheme [36] and
the [30] NIZK proofs. They assume a static setting and as part of a group signature they
encrypt the identity of the signer bit by bit. This means that a group signature consists of
O(log n) group elements, wheren is the number of members in the group. The group
signature scheme satisfies a relaxed version of the [5] security definition, where the
anonymity is guaranteed only when no signatures have been opened and traced to the
signer. In comparison, the full-anonymity definition in [5] demands that anonymity is
preserved even when the adversary can get an opening of any other signature than the
challenge.

Ateniese et al. [1] use a bilinear group of prime order. The advantage of this scheme
is that it is very efficient, a group signature consists of 8 group elements. However, they
use several strong security assumptions and their security model is even weaker than
that of [12] since it does not protect against key-exposures; knowledge of a signing key
immediately allows one to tell which signatures this member has made. In comparison,
the BMW,BSZ-models do guard against key exposure.

The tools in this paper give a construction of group signatures where both keys and
signatures consist of a constant number of group elements. The construction involves
carefully constructing and tailoring a signature scheme and the simulation-sound ex-
tractable NIZK proof system such that they fit each other. The constant is large; we



do not claim this to be a practical scheme. Rather this should be seen as an interest-
ing feasibility result; under a simple and natural security assumption there exists an up
to a constant optimal dynamic group signature scheme satisfying the strong security
definitions from [5, 7].

Scheme Signature in bitsSecurity model Assumption
[5] poly(k) BMW [5] (fixed group) Trapdoor permutations
[7] poly(k) BSZ [7] (dynamic group) Trapdoor permutations
[12] 3k + 2k log n BMW [5], CPA-anonymity Subgroup decision and CDH
[1] 8k UC-model, non-adaptive adv.Strong SXDH, q-EDH, strong LRSW

This paper O(k) BSZ [7] DLIN

Fig. 2.Comparison of group signature schemes

2 Preliminaries

2.1 Definitions: Non-interactive Zero-Knowledge Proofs

We provide formal definitions of non-interactive proofs, perfect completeness, perfect
soundness, unbounded adaptive zero-knowledge, composable zero-knowledge, perfect
proofs of knowledge, simulation soundness and simulation-sound extractability in the
full paper. Here we will just sketch one useful stronger definition of zero-knowledge
that we have not seen elsewhere in the literature.

COMPOSABLE ZERO-KNOWLEDGE. We define composable zero-knowledge by mak-
ing two requirements. First, a real CRS is computationally indistinguishable from a
simulated CRS; we call this reference string indistinguishability. Second, the adversary
even when it gets access to the simulation trapdoorτ , cannot distinguish real proofs on
the simulated CRS from simulated proofs. We call this simulation indistinguishability.
We refer to the full paper for the formal definition and a proof that composable zero-
knowledge implies the standard notion of unbounded adaptive zero-knowledge usually
found in the literature.

Our motivation for introducing the notion of composable zero-knowledge is that
it allows different zero-knowledge proofs fordifferent languages to use thesame
CRS. Suppose we have relationsR1, . . . , Rn and corresponding NIZK proof systems
(K,P1, V1), . . . , (K,Pn, Vn) with composable zero-knowledge using the same key
generator and CRS simulatorK,S1. A hybrid argument shows that no non-uniform
polynomial time adversary can distinguish real proofs on a simulated CRS from simu-
lated proofs on this CRS for relationRi, even if it sees arbitrary proofs or simulations
for statements inLj 6=i using the same CRS. The reason is that in the definition of sim-
ulation indistinguishability we giveτ to the adversary, so it can itself implement the
simulatorS2,j for any relationRj 6=i.

Composable zero-knowledge implies that the zero-knowledge property still makes
sense when many different NIZK proofs use the same CRS. In our paper, all the NIZK



proofs will indeed generate the CRS in the same way and simulate the CRS in the same
way, so we get better performance by not having to deal with different CRSs for each
proof system. At the same time, it simplifies the paper.

2.2 A Homomorphic Commitment Scheme

We use the cryptosystem from Section 1.1 to create a homomorphic commitment
scheme such that depending on how we generate the public key we get either a per-
fectly binding commitment scheme or a perfectly hiding trapdoor commitment scheme.
The idea is that ifK is an encryption of1, thenKmE(1; r, s) is also an encryption of
1 and we have a perfectly hiding commitment tom. On the other hand, ifK is not an
encryption of 1, thenKmE(1; r, s) is perfectly binding.

Perfectly binding key generation: Let ck = (p,G,G1, e, g, f, h, u, v, w) wheref, h
is a public key for the cryptosystem and(u, v, w) = (fru , hsv , gtw) with tw 6=
ru + sv is an encryption of a non-trivial element.

Perfectly hiding trapdoor key generation: Let ck = (p,G,G1, e, g, f, h, u, v, w)
wheref, h is a public key for the cryptosystem and(u, v, w) = (fru , hsv , gru+sv )
is an encryption of1.
The corresponding trapdoor key istk = (ck, x, y, ru, sv).

Commitment: To commit to messagem ∈ Zp pick r, s← Zp and let the commitment
bec = (c1, c2, c3) = com(m; r, s) = (umfr, vmhs, wmgr+s).

The commitment schemes(Kbinding, com) and (Khiding, com) have several nice
properties. The CPA-security of the cryptosystem implies that one cannot distinguish
perfect binding keys from perfect hiding keys. This in turn implies computational hiding
respectively computational binding for the two schemes. The homomorphic property of
the cryptosystem transfers to the commitment scheme.

com(m1 +m2; r1 + r2, s1 + s2) = com(m1; r1, s1)com(m2; r2, s2).

For the perfectly binding commitment scheme, anyc ∈ G3 is a commitment to some
messagem ∈ Zp.

3 Efficient Non-interactive Zero-Knowledge Proof Systems

The construction of our NIZK proof for satisfiability of pairing product equations is
very complex and requires many new techniques. We will therefore build it in a modular
fashion from NIZK proofs for simpler relations. Even some of these simpler NIZK
proofs are complex and we can only sketch the ideas behind the constructions here. The
full paper [28] contains full constructions and security proofs.

3.1 Common Reference String

All the NIZK proofs in this section use the same CRS generatorK and CRS simula-
tor S1 described below. A CRS is a public key for the perfectly binding commitment



scheme described in the previous section. The soundness of the NIZK proofs comes
from the perfect binding property of the commitment scheme, which makes it impos-
sible for any adversary to cheat. In simulations, we use a public key for the perfectly
hiding commitment scheme as the simulated CRS.

Common reference string:
Generateσ = (p,G,G1, e, g, f, h, u, v, w)← Kbinding(1k).1

Simulated reference string:
Generate(σ, τ) ← Khiding(1k), whereσ = (p,G,G1, e, g, f, h, u, v, w) andτ =
(x, y, ru, su).

The CPA-security of the cryptosystem gives us the following lemma.

Lemma 1. If (p,G,G1, e, g) is a DLIN group, then(K,S1) has reference string indis-
tinguishability.

3.2 NIZK Proofs for Commitment to 0

LetRzero = {(c, (r, s)) | c = com(0; r, s)} define the language of commitments to 0.
The proof of the following theorem can be found in the full paper.

Theorem 1. There exists an NIZK proof system(K,Pzero, Vzero, S1, Szero) for Rzero

with perfect completeness, perfect soundness and composable zero-knowledge with per-
fect simulation indistinguishability under the DLIN assumption forG. The proof con-
sists of 1 group element (π = gr). Verification corresponds to evaluating two pairing
product equations.

3.3 Proof for Committed Multiplicative Relationship

Consider three commitmentsca, cb, cc such that the corresponding messages
have a multiplicative relationshipmc = mamb. The corresponding relation is
Rmult = {((ca, cb, cc), (ma, ra, sa,mb, rb, sb, rc, sc)) | ca = com(ma; ra, sa), cb =
com(mb; rb, sb), cc = com(mamb; rc, sc)}.

Theorem 2. There exists an NIZK proof(K,Pmult, Vmult, S1, Smult) for Rmult with
perfect completeness, perfect soundness and composable zero-knowledge if the DLIN
assumption holds forG. A proof consists of 36 group elements. Verification corresponds
to evaluating a set of pairing product equations.

Sketch of proof.ca, cb, cc have a multiplicative relationship if and only if

cc = cma

b com(0; rc −marb, sc −masb).

1 Both the CRS generatorK and the CRS simulatorS1 first create a DLIN group honestly. This
means that instead of generating the CRSs from scratch, it is also possible to build any of the
NIZK proofs we construct in the following sections on top of an already existing DLIN group.
When doing so we writeσ ← K(p, G, G1, e, g) or (σ, τ)← S1(p, G, G1, e, g).



To prove the latter, it suffices to revealma, and prove thatcacom(−ma; 0, 0) and
ccc

−ma

b are commitments to 0. To get zero-knowledge, we tweak this idea in a way
such thatma is not revealed directly.

The main trick in the NIZK proof is to pick exponentsr, s at random, which will be
used to hidema. Using(K,Pzero, Vzero) we prove that

cacom(1; 0, 0)−(r+s+ma)(com(1; 0, 0)π0,1)r(com(1; 0, 0)π0,3)s

and ccc
−(r+s+ma)
b (cbπ0,2)r(cbπ0,4)s

are commitments to 0, whereπ0,1, π0,2, π0,3, π0,4 are themselves commitments to 0.
Revealing the componentscom(1; 0, 0)r+s+ma , cr+s+ma

b , the verifier can use
the bilinear maps to check that there exists some common exponentt = r +
s + ma, even though it cannot compute the exponent itself. Similarly, revealing
(com(1; 0, 0)π0,1)r, (cbπ0,2)r and(com(1; 0, 0)π0,3)s, (cbπ0,4)s allows the verifier to
check that there exist common exponentsr, s.

We are verifiably using the same exponentsr, s, t on com(1; 0, 0) and cb to get
respectivelyca andcc. This shows that

cacom(1; 0, 0)r+s−t and ccc
r+s−t
b

are both commitments to 0. The only way this can be possible is whenma = t− r− s.
Computational simulation indistinguishability follows from the fact that while we

use the same exponents, we use different bases. Therefore, at no point is any element
itself raised toma, which the adversary could potentially use to detect whether it was a
correct proof or one created by a simulator, which does not knowma. The commitments
π0,1, π0,2, π0,3, π0,4 rerandomize the bases that we raise tor, s and thereforet = r +
s+ma is indistinguishable fromt random, soma is hidden. �

3.4 NIZK Proof for Commitment to Exponent

We have two elementsa, b and a commitmentc to the exponentm so b = am.
Rexpo = {((a, b, c), (m, r, s)) | b = am, c = com(m; r, s)} defines the language of
such statements.

Theorem 3. There exists an NIZK proof(K,Pexpo, Vexpo, S1, Sexpo) for Rexpo with
perfect completeness, perfect soundness and composable zero-knowledge with perfect
simulation indistinguishability if the DLIN assumption holds forG. A proof consists of
8 group elements. Verification consists of evaluating a set of pairing product equations.

Sketch of proof.If a 6= 1 then one can use the bilinear map to verify that a pair of
commitmentsπ1, πm have the same exponentm soπm = πm

1 . If π1 is a commitment
to 1, thenπm is a commitment tom. What remains is to prove thatπ1com(−1; 0, 0) and
cmπ

−1
m are commitments to 0, which we can do with the NIZK proof for commitment

to 0.
To prove zero-knowledge we observe that on a perfect hiding keyck

π1 = (axr1 , ays1 , ar1+s1) and πm = (bxr1 , bys1 , br1+s1)

gives us commitments soπm = πm
1 , even though we do not knowm itself. �



3.5 NIZK Proof for Generalized Pedersen Commitment

Consider a Pedersen commitment to many messagesb = gt
∏n

i=1 a
mi
i . Let

ct, c1, . . . , cn be commitments to the exponents. The language of multi-message Peder-
sen commitments and corresponding exponent-commitments is defined byRm−ped =
{((a1, . . . , an, b, ct, c1, . . . , cn), (t, rt, st,m1, r1, s1, . . . ,mn, rn, sn)) | b =
gt

∏n
i=1 a

mi
i , ct = com(t; rt, st), ci = com(mi, ri, si)}.

Theorem 4. There exists an NIZK proof(K,Pm−ped, Vm−ped, S1, Sm−ped) for
Rm−ped with perfect completeness, perfect soundness and composable zero-knowledge
if the DLIN assumption holds forG. The proof consists of63n− 4 group elements. The
verification consists of evaluating a set of pairing product equations.

Sketch of Proof.The hard part in constructing an NIZK proof forRm−ped is to construct
a proof for the one-message Pedersen commitment relationRped, which is done with
techniques related to the NIZK proof for multiplicative relationship, see the full paper
for details. Once we have that, we splitb into n one-message Pedersen commitments
b =

∏n
i=1 bi =

∏n
i=1(a

mi
i gti) choosing theti’s at random sot =

∑n
i=1 ti and make

commitmentscti
to theti’s. We make an NIZK proof forRped for each of the statements

(ai, bi, ci, cti
). �

3.6 NIZK Proof for Committed Bilinear Product

We can commit toa1, b1, . . . , an, bn in the following way. We formAi = griai and
commitmentscri

to ri. Similarly, we formBi = gsibi and commitmentscsi
to si. We

are interested in knowing whether
∏n

i=1 e(ai, bi) = 1.
LetRbil−prod = {(A1, cr1 , B1, cs1 , . . . , An, crn

, Bn, csn
), (r1, rr1 , sr1 , s1, rs1 , ss1 ,

. . . , rn, rrn
, srn

, sn, rsn
, ssn

) | Ai = griai, Bi = gsibi, cri
= com(ri; rri

, sri
), csi

=
com(si; rsi

, ssi
),

∏n
i=1 e(ai, bi) = 1}.

Theorem 5. There exists an NIZK proof(K,Pbil−prod, Vbil−prod, S1, Sbil−prod) for
Rbil−prod with perfect completeness, perfect soundness and composable zero-
knowledge under the DLIN assumption forG. Proofs consist of228n−3 group elements
and verification corresponds to evaluating a set of pairing product equations.

Sketch of proof.The key observation in the construction is that if and only if∏n
i=1 e(ai, bi) = 1. we have for arbitraryR1, S1, . . . , Rn, Sn ∈ Zp that

n∏
i=1

e(Ai, Bi) =
n∏

i=1

e(gri , gsibi)e(griai, g
si)e(gri , gsi)−1

n∏
i=1

e(ai, bi)

=
n∏

i=1

e(g,Bi)rie(Ai, g)sie(g, g)−risi = e(g, g−
∑n

i=1 risi

n∏
i=1

Asi
i B

ri
i )

= e(g, g−
∑n

i=1(risi+RiSi)
n∏

i=1

Asi
i B

ri
i )

n∏
i=1

e(gRi , gSi).



In the NIZK proof, we pickR1, S1, . . . , Rn, Sn at random. We commit to
Ri, Si and we already have commitments tori, si. We reveal the2n + 1 el-
ementsgR1 , gS1 , . . . , gRn , gSn and g−

∑n
i=1(risi+RiSi)

∏n
i=1A

si
i B

ri
i . We then use

NIZK proofs forRexpo, Rmult, Rm−ped to prove that they have been formed correctly.
In the simulation, we observe that for arbitraryR1, S1, . . . , Rn, Sn

n∏
i=1

e(Ai, Bi) = e(g, g−
∑n

i=1 RiSi

n∏
i=1

A−Si
i B−Ri

i )
n∏

i=1

e(gRiAi, g
SiBi).

PickingR1, S1, . . . , Rn, Sn randomly means all elements have the same distribution
as in a real proof on a simulated CRS. We can then simulate the NIZK proofs for
Rexpo, Rmult, Rm−ped. �

3.7 NIZK Proof for Satisfiability of Pairing Product Equations

Recall from the introduction that a pairing product equation is of the form

eq(a1, . . . , an) :
∏̀
j=1

e(qj,0, qj,1) = 1 , where qj,b = bj,b

n∏
i=1

a
ej,b,i

i ,

for knownbj,b ∈ G andej,b,i ∈ Zp. A setS of pairing product equationseq1, . . . , eqm

is said to be satisfiable if there exists(a1, . . . , an) ∈ Gn such that all equations are
satisfied. LetRppsat = { S | ∃(a1, . . . , an) ∈ Gn ∀eqk ∈ S : eqk(a1, . . . , an) =
true }. We conclude this section with the following main theorem.

Theorem 6. There exists an NIZK proof(K,Pppsat, Vppsat, S1, Sppsat) forRppsat with
perfect completeness, perfect soundness and composable zero-knowledge if the DLIN
assumption holds forG. Proofs consist of4n + 228` − 3m group elements, where
` =

∑m
k=1 `k. Verification consists of evaluating a set of pairing product equations.

Sketch of proof.In the NIZK proof, we first commit to eachai asgtiai andcom(ti). Us-
ing homomorphic properties, it is straightforward forqk,j,b in equationeqk to compute
gtk,j,bqk,j,b andcom(tk,j,b) as

bk,j,b

n∏
i=1

(gtiai)ek,j,b,i = g
∑n

i=1 tiek,j,b,i(bk,j,b

n∏
i=1

a
ek,j,b,i

i )

and
n∏

i=1

com(ti)ek,j,b,i = com(
n∑

i=1

tiek,j,b,i).

For each pairing product equationeqk make an NIZK proof forRbil−prod that∏`k

j=1 e(qk,j,0, qk,j,1) = 1. �

NESTING NIZK PROOFS. Since verification consists of verifying a set of pairing prod-
uct equations, we can nest NIZK proofs inside one another. I.e., we can prove that there
exists an NIZK proof such that there exists an NIZK proof such that, etc. Each level of
nesting costs a constant blow-up factor. In comparison, this is very expensive with other
NIZK proofs and impossible in the random oracle model.



REDUCING THE NUMBER OF VARIABLES. Consider a set of pairing product equations
overn variables with combined length̀. We show in the full paper that there is a set
of pairing product equations of length̀overn′ ≤ 2` variables, such that this set is
satisfiable if and only if the original set is satisfiable. This gives us NIZK proofs of
lengthO(`) group elements for satisfiability of pairing product equations.

4 Simulation-Sound Extractable NIZK Proof for Satisfiability of
Pairing Product Equations

A CMA- SECURE SIGNATURE SCHEME. With the help of the NIZK proof forRppsat,
we can construct a digital signature scheme secure against adaptive chosen message
attack (CMA).

Theorem 7. Under the DLIN assumption there exists a CMA-secure digital signature
scheme(Ksign,Sign,Ver) for signingn group elements with perfect correctness. The
verification key and the signatures consist ofO(n) group elements and the verification
process consists of evaluating a set of pairing product equations.

Due to lack of space we refer the reader to the full paper [28] for the construction and
the proof. We remark on one issue that makes the construction non-trivial. Our NIZK
proofs work for pairing product equations. Since we want to use the NIZK proofs on
encrypted signatures, we cannot use a hash-function in the signature scheme, since we
do not know how to make NIZK proofs for correct hashing without an expensive NP-
reduction to e.g. Circuit Satisfiability.

SIMULATION -SOUND EXTRACTABLE NIZK PROOFS. We will combine the CMA-
secure signature scheme with the NIZK proofs to construct an unbounded simulation-
sound extractable NIZK proof forRppsat.

Common reference string and simulated reference string:Given a group
(p,G,G1, e, g) pick CMA-secure signature keys(vk, sk)← Ksign(p,G,G1, e, g),
keys for the CPA-secure cryptosystem(pk, skcpa) ← Kcpa(p,G,G1, e, g) and
make a ciphertextc1 ← Epk(t) for t 6= 1. Letσ ← K(p,G,G1, e, g) be a CRS for
our NIZK proofs.
The CRS isΣ = (vk, pk, c1, σ).
In the simulation we pickc1 = Epk(1; rc, sc) and let the simulation trapdoor be
τ = (sk, rc, sc) while the extraction key isξ = skcpa.

Proof: Given a set of pairing product equationsS and a satisfiability witnessw =
(a1, . . . , an) the proof is constructed as follows.
Pick keys(vksots, sksots) for a strong one-time signature scheme.2 Encryptcw ←
Epk(a1, . . . , an) andcs = Epk(1, . . . , 1). Make an NIZK proofπssor of the fol-
lowing statement: Eithercw contains a satisfying witness, orc1 contains 1 andcs
contains a signature undervk on vksots. We refer to the full paper how to use the
NIZK proof for Rppsat to prove satisfiability of at least one out of two sets of pair-
ing product equations. Finally, sign everythingssots ← Signsksots

(S, cw, cs, πssor).
The proof isπ = (vksots, cw, cs, πssor, ssots).

2 See the full paper for a DLIN group based strong one-time signature scheme.



Simulation: Pick keys(vksots, sksots) for a strong one-time signature scheme. Sign
vksots ass ← Signsk(vksots). Encryptcw ← Epk(1, . . . , 1) andcs = Epk(s).
Make an NIZK proofπssor of the following statement: Eithercw contains a satisfy-
ing witness, orc1 contains 1 andcs contains a signature undervk onvksots. Finally,
sign everythingssots ← Signsksots

(S, cw, cs, πssor).
Verification and extraction: Accept the proof if and only if the strong one-time sig-

naturessots and the proofπssor are valid.
To extract a witness simply decryptcw.

Theorem 8. If (p,G,G1, e, g) is a DLIN group then
(Ksse, Psse, Vsse, S1,sse, Ssse, E1,sse, Esse, SE1,sse) is an NIZK proof for Rppsat

with perfect completeness, perfect soundness, perfect knowledge extraction and
composable zero-knowledge and unbounded simulation-sound extractability. The size
of the CRS isO(1) group elements, while the NIZK proofs consist ofO(n + `) group
elements.

Sketch of proof.On a real CRS,c1 does not contain 1, and therefore by the perfect
soundness of the NIZK proofcw must contain a satisfiability witnessw. In simulations,
c1 does contain 1, however, since the prover does not know the signing keysk he cannot
create signatures onvksots of his own choosing and he cannot recycle avksots either
because he does not know the corresponding signing keysksots. Therefore, he cannot
encrypt a signature incs, so he must still encrypt a satisfiability witness incw. We can
then decryptcw and extract the witness. We refer to the full paper for details. �

5 Constant Size Group Signatures without Random Oracles

SECURITY DEFINITIONS. [7] define three security properties that a group signature
must satisfy: anonymity, traceability and non-frameability. We refer to the full paper for
formal definitions and to [7] for a discussion of why this is a strong security definition
that incorporates previous security requirements found in the literature. The definition
allows for separating the roles of the group manager into an issuer who can enroll
members and an opener that can open signatures to see who created it.

Anonymity: Only the opener can see who created a signature. This property must hold
even if the members’ keys are exposed and the issuer is corrupt.

Traceability: If the issuer is honest then all signatures will be correctly opened to some
member.

Non-frameability: Even if the issuer and opener are both corrupt, they still cannot
create a valid signature and a convincing opening that frames an honest member
that did not sign it.

A GROUP SIGNATURE SCHEME. We imagine that there is a PKI in place so we have
authenticated public keys. We model this by having a public key registryreg where only
useri has one-time write access toreg[i], we do not attempt to keep this information
secret. Useri stores his secret key ingsk[i], unless compromised only the user has
access to this key.



Key generation: We create the group public keygpk = (vk, pk,Σ), wherevk is a
verification key for the CMA-secure signature scheme,pk is a public key for the
CPA-secure cryptosystem andΣ is a CRS for the simulation-sound extractable
NIZK proof. The issuer’s keyik is the signing key for the signature scheme, while
the opener’s keyok is the decryption key for the cryptosystem.

Join/Issue: The useri registers a public keyvki for the CMA-secure signature scheme
in reg[i] and stores the corresponding secret keyski. The issuer signs it ascerti ←
Signik(vki). The user verifies the correctness of the signature and storesgsk[i] =
(ski, vki, certi).

Sign: To signm ∈ {0, 1}∗, memberi creates a strong one-time signature key pair
(vksots, sksots). Usingski he signs the verification key,si ← Signski

(vksots). He
then creates an encryptionc of (vki, certi, si) and makes a simulation-sound ex-
tractable NIZK proofπ that the plaintext is correctly formed. Finally, he makes a
strong one-time signaturessots ← Signsksots

(m, vksots, c, π).
The group signature onm is s = (vksots, c, π, ssots).

Verify: Accept if the strong one-time signature and the NIZK proof are valid.

Open: To open a valid group signature we decryptc. We get some(vk∗, cert∗, s∗) and
look up the memberi who registeredvk∗. In case no such member exists, we set
i = issuer . We return an opening(i, ψ), whereψ = (vk∗, cert∗, s∗).

Judge: Anybody can check whethercert∗ is a signature onvk∗ undervk, and whether
s∗ is a signature onvksots undervk∗. If vk∗ has been registered for useri, or no
vk∗ has been registered andi = issuer we accept the opening.

Theorem 9. If the DLIN assumption holds forG then there exists a group signature
scheme with anonymity, traceability and non-frameability and perfect correctness. All
public keys containO(1) group elements, openings containO(1) group elements, and
signatures containO(1) group elements and elements fromZp.

Sketch of proof.We get anonymity, because the information(vki, certi, si) that could
identify the signer is encrypted and the NIZK proof is zero-knowledge. Seeing openings
of other group signatures does not help, because when a CPA-secure cryptosystem is
combined with a simulation-sound proof of knowledge of the plaintext, then it becomes
CCA2-secure, see also [23].

We get traceability because by the soundness of the NIZK proof system we must
have a correct(vk∗, cert∗, s∗) inside the ciphertext. Since only the issuer knows the
signing keyik, nobody else can forge a certificatecert∗. This means, the group signa-
ture must point to some memberi, not the issuer.

We have non-frameability because a valid signature and a valid opening pointing to
i contains a signatures∗ undervki on vksots, sovksots must have been signed by the
member. Furthermore, since it is a strong one-time signature scheme and the public key
vksots is used only once byi, it must also be this member that made the signaturessots
on (m, vksots, c, π).

The full paper [28] contains a more detailed construction and the full proof.�
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