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Abstract. Non-interactive zero-knowledge proofs play an essential role in many
cryptographic protocols. We suggest several NIZK proof systems based on prime
order groups with a bilinear map. We obtain linear size proofs for relations among
group elements without going through an expensive reduction to an NP-complete
language such as Circuit Satisfiability. Security of all our constructions is based
on the decisional linear assumption.

The NIZK proof system is quite general and has many applications such as digital
signatures, verifiable encryption and group signatures. We focus on the latter and
get the first group signature scheme satisfying the strong security definition of
Bellare, Shi and Zhang [7] in the standard model without random oracles where
each group signature consists only of a constant number of group elements.

We also suggest a simulation-sound NIZK proof of knowledge, which is much
more efficient than previous constructions in the literature.

Caveat: The constants are large, and therefore our schemes are not practical.
Nonetheless, we find it very interesting for the first time to have NIZK proofs
and group signatures that except for a constant factor are optimal without using
the random oracle model to argue security.

Keywords: Non-interactive zero-knowledge, simulation-sound extractability,
group signatures, decisional linear assumption.

1 Introduction

A non-interactive proof system allows a prover to convince a verifier about the truth of
a statement. Zero-knowledge captures the notion that the verifier learns no more from
the proof than the truth of the statement. We refer to the full paper [28] for formal
definitions of non-interactive zero-knowledge (NI1ZK) proofs. Our goal in this paper is
to construct short efficient prover NIZK proofs for languages that come up in practice
when constructing cryptographic protocols. As an example of the usefulness of these
new techniques, we construct group signatures consisting of a constant number of group
elements.

* Supported by NSF grant No. 0456717, and NSF Cybertrust grant.



1.1 Setup

We use two cyclic group&, G, of orderp, wherep is a prime. We make use of a
bilinear mape : G x G — G;. l.e., for allu,v € G anda, b € Z we havee(u®,v") =
e(u,v)??. We require that(g, g) is a generator o, if g is a generator ofs. We also
require that group operations, group membership, and the bilinear map be efficiently
computable. Such groups have been widely used in cryptography in recent years.

Let G be an algorithm that takes a security parameter as input and outputs
(p,G,Gq,e, g) such thatp is prime, G, G; are descriptions of groups of order
e : G x G — Gy is an admissible bilinear map as described abovegaisda ran-
dom generator of.

We use the decisional linear assumption from Boneh, Boyen and Shacham [10].

Definition 1 (Decisional Linear Assumption (DLIN)). We say the decisional linear
assumption holds for the bilinear group generagif for all non-uniform polynomial
time adversariesAd we have

Pr |:(p7GaG1aeyg) — g(lk);x,y,r,s — Zp :
A(p’G’Gl,e’g’gﬂ?’gy’gwr’gys’ngrs) = 1]
~ Pr [(p’G,Gl’e’g) <_g(lk);‘r?yv’rasad(_ZP:

A(pa G7 lee7gagx>gyagw7.7gys7gd) = 1j| .

Throughout the paper, we work over a bilinear gr¢upG, G, e, g) «+ G(1*) gener-
ated such that the DLIN assumption holds ¢rWe call this a DLIN group. Honest
parties always check group membershifGofc; when relevant and halt if an element
does not belong to a group that it was supposed to according to the protocol.

Given a DLIN group(p, G, Gy, e,g) we can set up a semantically secure cryp-
tosystem as in [10]. We choose at randeny « Z;. The public key iS(f, k), where
f =9¢% h = gY, and the secret key i, y). To encrypt a message € G we choose
r,s <« Z, and let the ciphertext ble:, v, w) = (", h*, g""*m). To decrypt a ciphertext
(u,v,w) € G> we computen = D(u,v,w) = u~ /v~ /Yy,

The cryptosystem{K ..., E, D) has several nice properties. The DLIN assump-
tion for G implies semantic security under chosen plaintext attack (CPA). All triples
(u,v,w) € G* are valid ciphertexts. Also, the cryptosystem is homomorphic.

E(mq;r1,81)E(ma, 12, 52) = E(mima;ri + 12,51 + S2).

1.2 Pairing Product Equations

Given a group(p, G, G4, ¢, g) we define a pairing product equation of lendtlover
variablesay, . . ., a, to be an equation of the following form.

n
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[ e(@0,q51) =1, where g;, = b, [[ o™ with bjs € G, ejp.: € Zyp.
j=1 i=1



Given a setS of pairing product equationsq;, . .., eq,, wWe can ask the natural
questionis there a tuplg(ay, . . .,a,) € G™ such that all equations ¥ are simulta-
neously satisfied?

To illustrate the generality of the language of satisfiable pairing product equa-
tions we observe a reduction from the NP-complete language Circuit Satisfiability.
Letay,...,a, correspond to the wires of the circuit, which without loss of general-
ity contains only NAND-gates. Lef contain equations(a;,a;g~') = 1 forcing each
a; = g to encode a bib; € {0,1}. For each NAND-gate with input wireis, i; and
outputi, add toS the equatiore(a,, a;,) = e(g, ga;l), which is satisfied if and only
if bi2 = ﬁ(bio AN bil)-

Our main motivation for being interested in satisfiability of pairing product equa-
tions is not NP-completeness though. Satisfiability of pairing product equations comes
up in practice when constructing cryptographic protocols and by making a direct NIZK
proof instead of first reducing the problem to some other language such as Circuit Sat-
isfiability we keep proofs short.

For concreteness, let us use verifiable encryption as an example of a pairing product
satisfiability question that may come up in practice. Supfase, w) is a ciphertext
under the public key f, ) of the DLIN-based cryptosystem described earlier. We are
interested in whether this ciphertext encrypts a particular messagdis is the case,
if and only if there exists such thak(g, u) = e(a, f) ande(h,wm~ta=1)) = e(v, g).

If we know r, s we can compute the satisfiability withess-= ¢".

1.3 NIZK Proofs for Satisfiability of Pairing Product Equations

NIZK PROOFS The central technical contribution of this paper is an NIZK proof of
sizeO(n + ¢) group elements for satisfiability of a set of pairing product equations of
combined lengtlf = Z;":l £;. The proof system has perfect completeness and perfect
soundness.

RELATED WORK ON NIZK PROOFS NIZK proofs were introduced by Blum, Feld-
man and Micali [9] and they suggested an NIZK proof for a single statement based on
the hardness of deciding quadratic residousity. Blum et al. [8] extended this to multi-
theorem NIZK proofs. Feige, Lapidot and Shamir [25] and Kilian and Petrank [33] give
constructions based on trapdoor permutations.

Recently Groth, Ostrovsky and Sahai [30] have constructed NIZK proofs from com-
posite order bilinear groups introduced by Boneh, Goh and Nissim [11]. Even more
recently Groth, Ostrovsky and Sahai [29] have introduced the setting in this paper, a
bilinear group of prime order and the DLIN assumption. They construct non-interactive
witness-indistinguishable proofs without any setup assumptions. In the common refer-
ence string (CRS) model both results give NIZK proofs for Circuit Satisfiability of size
O(|C]) group elements.

All the above-mentioned papers have in common that they focus on an NP-complete
language, usually Circuit Satisfiability, and suggest a bit-by-bit or gate-by-gate NIZK
proof for this language. Our paper differs by introducing new techniques that allows
makingdirectNIZK proofs for satisfiability of pairing product equations. This allows us
to construct constant/linear size cryptographic protocols for digital signatures, RCCA-
secure encryption[20], verifiable encryption and group signatures.



The only other way we know of to get linear size NIZK proofs/arguments for any
practical language is the Fiat-Shamir heuristic: Make a 3-move public coin (honest ver-
ifier) zero-knowledge protocol non-interactive by computing the verifier's challenge as
a hash of the statement and the initial protocol message. To argue security, one models
the hash-function as a random oracle [6]. It is well known that using the random oracle
model sometimes results in insecure real life protocols [18, 19, 34, 27, 4]. In compari-
son, our NIZK proofs haverovable securityinder the DLIN assumption.

SIMULATION -SOUND EXTRACTABLE NIZK PROOFS Combining the definitions of
simulation-soundness introduced by Sahai [35] and proofs of knowledge from De San-
tis and Persiano [23], we get simulation-sound extractability. Here the simulator first
creates a simulated CRS together with a simulation trapdoor and an extraction trap-
door. We require that even after the adversary has seen simulated proofs on arbitrary
statements, if it constructs a new valid proof on any statement, then we can extract a
witness. Simulation-sound extractability is a very strong notion, in particular it implies
non-malleability as defined by De Santis et al. [22].

We construct a simulation-sound extractable NIZK proof for satisfiability of pairing
product equations. Our NIZK proof has a CRS with a description of the group and a
constant number of group elements, and the proofs consi3t:oft ¢) group elements.

RELATED WORK ON SIMULATION-SOUND NIZK PROOFS As stated before, our in-
terest in this paper is satisfiability of pairing products equations. However, in order to
compare our scheme with previous work let us look at the case of Circuit Satisfiabil-
ity. [35] constructed a one-time simulation-sound NIZK proof system using techniques
from Dwork, Dolev and Naor [24]. Later a construction for unbounded simulation-
sound extractable NIZK arguments was given by [22], where the adversary can see
many simulated arguments of arbitrary statements. The schemes from both these papers
are based on trapdoor permutations but are not practical. For the sake of fairness in eval-
uating the quality of our contribution, we have also considered whether the techniques
from [30] could be used to get good efficiency for simulation-sound extractability. The
answer to this question seems to be negative, the best construction we can think of using
GOS-techniques gives an additive polynomial size overhead.

Scheme NIZK proof bit size|Assumption

[22] O(|C|poly(k)) |Trapdoor permutations
Potential use of [30] techniqu&s(|C|k 4 poly(k))|Subgroup decision
[This paper [ O(|C|k) [DLIN |

Fig. 1. Comparison of simulation-sound extractable proofs for Circuit Satisfiability

COMMON REFERENCE STRING VERSUS UNIFORM RANDOM STRINGNe will con-

struct NIZK proofs and simulation-sound extractable NIZK proofs in the common ref-
erence string model, where the prover and the verifier both have access to a CRS chosen
according to some distribution. If this distribution is uniform at random we call it the
uniform random string model. In some settings it is easier to work with a URS, for in-
stance a URS can easily be jointly generated using multi-party computation techniques.



Our NIZK proofs use a common reference string that contains a description of a
bilinear group and a number of group elements. Depending on the group elements, the
CRS will give either perfect soundness of perfect zero-knowledge. With overwhelming
probability random group elements will lead to a perfect soundness CRS. Assuming that
we can use a uniform random string to get a description of a DLIN group and a number
of random group elements, we will therefore get NIZK proofs and simulation-sound
NIZK proofs in the URS-model. Since there is a negligible chance of picking a per-
fect zero-knowledge CRS, this gives statistical soundness instead of perfect soundness,
which is the best we can hope for in the URS-model. We remark that natural candidates
for bilinear DLIN groups based on elliptic curves are efficiently samplable from a URS
[29]. For the sake of simplicity we will just work with the CRS-model in the paper, but
invite the reader to note that all constructions work in the URS-model as well.

1.4 An Application: Constant Size Group Signatures

Group signatures, introduced by Chaum and van Heyst [21], allow a member to sign
messages anonymously on behalf of a group. A group manager controls the group and
decides who can join. In case of abuse, the group manager is able to open a signature
to reveal who the signer is. It is hard to design group signatures and most schemes [17,
16, 3,14,2,13,31, 15,10, 26, 32] use the random oracle model in the security proof.

Bellare, Micciancio and Warinschi [5] suggest rigorous security definitions for
group signhatures in thstatic case where the set of members is fixed from the start
and never changes. Bellare, Shi and Zhang [7] extend the security model to the partially
dynamiccase where the group manager can enroll new members in the group. Both
[5] and [7] suggest constructions of group signatures based on trapdoor permutations.
These constructions are very inefficient and only indicate feasability.

Boyen and Waters [12] use a combination of the Waters signature scheme [36] and
the [30] NIZK proofs. They assume a static setting and as part of a group signature they
encrypt the identity of the signer bit by bit. This means that a group signature consists of
O(logn) group elements, whereis the number of members in the group. The group
signature scheme satisfies a relaxed version of the [5] security definition, where the
anonymity is guaranteed only when no signatures have been opened and traced to the
signer. In comparison, the full-anonymity definition in [5] demands that anonymity is
preserved even when the adversary can get an opening of any other signature than the
challenge.

Ateniese et al. [1] use a bilinear group of prime order. The advantage of this scheme
is that it is very efficient, a group signature consists of 8 group elements. However, they
use several strong security assumptions and their security model is even weaker than
that of [12] since it does not protect against key-exposures; knowledge of a signing key
immediately allows one to tell which signatures this member has made. In comparison,
the BMW,BSZ-models do guard against key exposure.

The tools in this paper give a construction of group signatures where both keys and
signatures consist of a constant number of group elements. The construction involves
carefully constructing and tailoring a signature scheme and the simulation-sound ex-
tractable NIZK proof system such that they fit each other. The constant is large; we



do not claim this to be a practical scheme. Rather this should be seen as an interest-
ing feasibility result; under a simple and natural security assumption there exists an up

to a constant optimal dynamic group signature scheme satisfying the strong security

definitions from [5, 7].

Scheme |[Signature in bitsSecurity model Assumption

[5] poly (k) BMW [5] (fixed group) Trapdoor permutations

[7] poly (k) BSZ [7] (dynamic group) |Trapdoor permutations

[12] 3k + 2klogn |BMW [5], CPA-anonymity |Subgroup decision and CDH

[1] 8k UC-model, non-adaptive ad®trong SXDH, g-EDH, strong LRSW
[This papef  O(k) [BSZ[7] [DLIN |

Fig. 2. Comparison of group signature schemes

2 Preliminaries

2.1 Definitions: Non-interactive Zero-Knowledge Proofs

We provide formal definitions of non-interactive proofs, perfect completeness, perfect
soundness, unbounded adaptive zero-knowledge, composable zero-knowledge, perfect
proofs of knowledge, simulation soundness and simulation-sound extractability in the
full paper. Here we will just sketch one useful stronger definition of zero-knowledge
that we have not seen elsewhere in the literature.

COMPOSABLE ZERGKNOWLEDGE. We define composable zero-knowledge by mak-
ing two requirements. First, a real CRS is computationally indistinguishable from a
simulated CRS; we call this reference string indistinguishability. Second, the adversary
even when it gets access to the simulation trapdg@annot distinguish real proofs on

the simulated CRS from simulated proofs. We call this simulation indistinguishability.
We refer to the full paper for the formal definition and a proof that composable zero-
knowledge implies the standard notion of unbounded adaptive zero-knowledge usually
found in the literature.

Our motivation for introducing the notion of composable zero-knowledge is that
it allows different zero-knowledge proofs fatifferent languages to use theame
CRS. Suppose we have relatioRs, . . ., R,, and corresponding NIZK proof systems
(K, P, Vh),...,(K, P,,V,,) with composable zero-knowledge using the same key
generator and CRS simulatéf, S;. A hybrid argument shows that no non-uniform
polynomial time adversary can distinguish real proofs on a simulated CRS from simu-
lated proofs on this CRS for relatidR;, even if it sees arbitrary proofs or simulations
for statements il ;; using the same CR$he reason is that in the definition of sim-
ulation indistinguishability we give to the adversary, so it can itself implement the
simulatorsS, ; for any relationR;.;.

Composable zero-knowledge implies that the zero-knowledge property still makes
sense when many different NIZK proofs use the same CRS. In our paper, all the NIZK



proofs will indeed generate the CRS in the same way and simulate the CRS in the same
way, so we get better performance by not having to deal with different CRSs for each
proof system. At the same time, it simplifies the paper.

2.2 A Homomorphic Commitment Scheme

We use the cryptosystem from Section 1.1 to create a homomorphic commitment
scheme such that depending on how we generate the public key we get either a per-
fectly binding commitment scheme or a perfectly hiding trapdoor commitment scheme.
The idea is that ifX’ is an encryption ofl, then K™ E(1;r, s) is also an encryption of

1 and we have a perfectly hiding commitmentito On the other hand, ik is not an
encryption of 1, thedK™ E(1;r, s) is perfectly binding.

Perfectly binding key generation: Let ck = (p, G, Gy, e, g, f, h,u,v,w) where f, h
is a public key for the cryptosystem arid, v, w) = (f™,hsv,g'v) with ¢, #
ry + S, IS @an encryption of a non-trivial element.

Perfectly hiding trapdoor key generation: Let ck = (p,G,Gq,e, g, f, h,u,v, w)
wheref, h is a public key for the cryptosystem afd, v, w) = (f7=, hsv, grutsv)
is an encryption of.

The corresponding trapdoor keytis = (ck, x, y, 7., Sv)-

Commitment: To commit to message. € Z, pickr, s < Z, and let the commitment

bec = (c1, c2,c3) = com(m;r, s) = (U™ f7,v™hS, wmg ).

The commitment schem&gy,inding, com) and (Khiaing, com) have several nice
properties. The CPA-security of the cryptosystem implies that one cannot distinguish
perfect binding keys from perfect hiding keys. This in turn implies computational hiding
respectively computational binding for the two schemes. The homomorphic property of
the cryptosystem transfers to the commitment scheme.

com(my + ma;ry + 72,81 + S2) = com(my; 7y, s1)com(ma; e, S2).

For the perfectly binding commitment scheme, any G? is a commitment to some
messagen € Z,,.

3 Efficient Non-interactive Zero-Knowledge Proof Systems

The construction of our NIZK proof for satisfiability of pairing product equations is
very complex and requires many new techniques. We will therefore build it in a modular
fashion from NIZK proofs for simpler relations. Even some of these simpler NIZK
proofs are complex and we can only sketch the ideas behind the constructions here. The
full paper [28] contains full constructions and security proofs.

3.1 Common Reference String

All the NIZK proofs in this section use the same CRS generat@and CRS simula-
tor S; described below. A CRS is a public key for the perfectly binding commitment



scheme described in the previous section. The soundness of the NIZK proofs comes
from the perfect binding property of the commitment scheme, which makes it impos-
sible for any adversary to cheat. In simulations, we use a public key for the perfectly
hiding commitment scheme as the simulated CRS.

Common reference string:
Generater = (p, G, Gy, e,9, f, h,u,v,w) — Kbinding(lk).l

Simulated reference string:
Generatgo, 7) < Khiding(1¥), Whereo = (p, G, Gy, e, g, f, h,u,v,w) andr =
(T, Y, Tuy Su)-

The CPA-security of the cryptosystem gives us the following lemma.

Lemma 1. If (p,G, Gy, e, g) is a DLIN group, ther( K, S1) has reference string indis-
tinguishability.

3.2 NIZK Proofs for Commitment to O

Let Ryero = {(c, (1, 8)) | ¢ = com(0;r, s)} define the language of commitments to 0.
The proof of the following theorem can be found in the full paper.

Theorem 1. There exists an NIZK proof systeif{, Pero, Vaero, S15 Szero) fOr Ryero

with perfect completeness, perfect soundness and composable zero-knowledge with per-
fect simulation indistinguishability under the DLIN assumptiondorThe proof con-

sists of 1 group element (= ¢"). Verification corresponds to evaluating two pairing
product equations.

3.3 Proof for Committed Multiplicative Relationship

Consider three commitments,,c,,c. such that the corresponding messages
have a multiplicative relationshipn., = m,m;. The corresponding relation is
Rt = {((Cay by Ce)s (Ma, Tay Say M, Tby Sby Tey Se)) | Ca = com(ma;Ta, Sa),ch =
com(myp; Ty, Sp), Cc = com(mgMpy; T'e, Sc) }-

Theorem 2. There exists an NIZK prodfK, Puuit, Vinult, S1, Smuis) for Rpa With

perfect completeness, perfect soundness and composable zero-knowledge if the DLIN
assumption holds fa¥. A proof consists of 36 group elements. Verification corresponds

to evaluating a set of pairing product equations.

Sketch of proof,, ¢;, c. have a multiplicative relationship if and only if
ce = ¢y com(0; 7 — MgTh, Se — MaSp).

! Both the CRS generatdt and the CRS simulatd#, first create a DLIN group honestly. This
means that instead of generating the CRSs from scratch, it is also possible to build any of the
NIZK proofs we construct in the following sections on top of an already existing DLIN group.
When doing so we write — K (p, G, G1, e, g) or (o,7) < S1(p,G,G1,e€,g).



To prove the latter, it suffices to reveal,, and prove that,com(—m,;0,0) and
cec, " are commitments to 0. To get zero-knowledge, we tweak this idea in a way
such thatn, is not revealed directly.

The main trick in the NIZK proof is to pick exponentss at random, which will be
used to hiden,. Using (K, Pero, Vaero) We prove that

cqocom(1;0,0)~+s+ma) (com(1; 0, 0)mo 1 )" (com(1; 0, 0)mo 3)°
and Cccb_(r+5+ma)(Cbﬂ'o’g)r(cbﬂ'o’zl)s

are commitments to 0, whevg 1, 7o 2, 70,3, mo,4 are themselves commitments to 0.

Revealing the componentsom(1;0,0)"+s+ma c;+5+™e " the verifier can use
the bilinear maps to check that there exists some common expeneat r +
s + mg, even though it cannot compute the exponent itself. Similarly, revealing
(com(1;0,0)mo1)", (cpmo,2)" and (com(1;0,0)m 3)%, (cpmo,4)® allows the verifier to
check that there exist common exponents

We are verifiably using the same exponents, ¢ on com(1;0,0) and¢, to get
respectively, andc,.. This shows that

ceeom(1;0,0)" 7" and  c.cp Tt

are both commitments to 0. The only way this can be possible iswhea t — r — s.
Computational simulation indistinguishability follows from the fact that while we

use the same exponents, we use different bases. Therefore, at no point is any element

itself raised tan,, which the adversary could potentially use to detect whether it was a

correct proof or one created by a simulator, which does not kngwlhe commitments

0,1, 70,2, 70,3, 0,4 ferandomize the bases that we raise,toand therefore = r +

s 4+ my is indistinguishable front random, son, is hidden. O

3.4 NIZK Proof for Commitment to Exponent

We have two elements,b and a commitment to the exponentn sob = a™.
Rexpo = {((a,b,¢), (m,r,s)) | b = a™,c = com(m;r,s)} defines the language of
such statements.

Theorem 3. There exists an NIZK prodfK, Pexpo, Vexpos 51, Sexpo) fOr Rexpo With

perfect completeness, perfect soundness and composable zero-knowledge with perfect
simulation indistinguishability if the DLIN assumption holds ¢brA proof consists of

8 group elements. Verification consists of evaluating a set of pairing product equations.

Sketch of prooflf a # 1 then one can use the bilinear map to verify that a pair of
commitmentsry , 7,,, have the same exponemtsor,, = «{". If 71 is a commitment
to 1, thenr,, is a commitment ten. What remains is to prove thatcom(—1;0,0) and
cmm,l are commitments to 0, which we can do with the NIZK proof for commitment
to 0.

To prove zero-knowledge we observe that on a perfect hiding:key

T = (awm,ay517ar1+51) and m,, = (b$T1,bysl’bT1+81)

gives us commitments sg,, = 77, even though we do not know itself. O



3.5 NIZK Proof for Generalized Pedersen Commitment

Consider a Pedersen commitment to many messages- g¢‘[[._,a)". Let

i=1%
¢, 1, - - ., Cn, DB commitments to the exponents. The language of multi-message Peder-
sen commitments and corresponding exponent-commitments is defined iy =
{((a]_,-.-,an,b,Ct,C]_,.--,Cn),(t,Tt,St,ml,Tl,Sl,...,mn,'l"n,Sn)) | b =

9' Ty @™, cp = com(t; 14, 5¢), ¢; = com(my, 74, 5:) }.

Theorem 4. There exists an NIZK proof{ K, Pn_ped; Vim—ped; S1; Sm—ped) fOr

R _peq With perfect completeness, perfect soundness and composable zero-knowledge
if the DLIN assumption holds faf. The proof consists @3n — 4 group elements. The
verification consists of evaluating a set of pairing product equations.

Sketch of ProofThe hard part in constructing an NIZK proof f&, _ .4 is to construct

a proof for the one-message Pedersen commitment rel&iign which is done with
techniques related to the NIZK proof for multiplicative relationship, see the full paper
for details. Once we have that, we sglitnto n one-message Pedersen commitments
b =TI, b =1 (a]"g") choosing the;’s at random sa@ = >_""_, ¢; and make
commitments;, to thet;'s. We make an NIZK proof foRR,,.q for each of the statements
(ai,bi,ci,cti). O

3.6 NIZK Proof for Committed Bilinear Product

We can commit tauy, by, ..., an, b, in the following way. We form4; = ¢"ia; and
commitments:,, to r;. Similarly, we formB; = ¢*:b, and commitments,, to s;. We
are interested in knowing whethgf;_, e(a;, b;) = 1.

LetRbilfprod = {(Ala Cryy Bh Csyyevvs Ana Cr,» Bna Csn)v (7’1, TrysSr1yS1,Ts15 sy
ey Py T Se Sny s, Ss, ) | Ai = 97 aq, Bi = g%b;, ¢, = com(ri; 70, Sp, )y Cs, =
com(s;; s, Ss, )5 | Loeq €(as, b;) = 1}

Theorem 5. There exists an NIZK proof, Phii—prod; Vbil—prod: S1, Sbil—prod) fOr
Ryi—proa With perfect completeness, perfect soundness and composable zero-
knowledge under the DLIN assumption ébrProofs consist af28n — 3 group elements

and verification corresponds to evaluating a set of pairing product equations.

Sketch of proof.The key observation in the construction is that if and only if
[T, e(a;,b;) = 1. we have for arbitrary?y, S1, . .., Ry, Sy, € Z,, that

[TeAi, Bi) =]]elg g% bi)elg™ ai,g* )elg™ )" [ ] elai. bi)

1=1 1=1

i=1

e(g, B))" e(Ai 9)elg, 9) " = elg, g~ == [T Ay B
i=1

|

Il
—

3
n

= e(g,g~ Zimlret RSO TT A% BT T e(9™, 9%).

i=1 i=1



In the NIZK proof, we pick Ry,S4,...,R,,S, at random. We commit to
R;,S; and we already have commitments tg,s;. We reveal the2n + 1 el-

ementsgf, g% ... gfn g% and g7 i HRSO TR | A% BT We then use
NIZK proofs for Rexpo, Rmult, Bm—ped t0 prove that they have been formed correctly.
In the simulation, we observe that for arbitraky, S1, ..., R,, S,

[Te(Ai,Bi) = e(g, g~ == "5 [T A7 B ™) [ e(9™ Ai, 6% By).
i=1 i=1

i=1

Picking Ry, S1,. .., Ry, S, randomly means all elements have the same distribution
as in a real proof on a simulated CRS. We can then simulate the NIZK proofs for
Rexpo, Rmul‘m Rm—ped- O

3.7 NIZK Proof for Satisfiability of Pairing Product Equations

Recall from the introduction that a pairing product equation is of the form

4
eq(ag,. .., H e(gj0,qj1) =1 Wherequ—bijae””
j=1 =1
for knownb; , € G ande; ; € Z,. A setS of pairing product equationsy, , . . ., eq,,
is said to be satisfiable if there exigis,,...,a,) € G™ such that all equations are

satisfied. LetRppsat = { S | I(a1,...,an) € G" Veqr, € S : eqrlar,...,an) =
true }. We conclude this section with the following main theorem.

Theorem 6. There exists an NIZK pro@#, Pypsat, Vppsats S1, Sppsat ) fOr Rppsats With

perfect completeness, perfect soundness and composable zero-knowledge if the DLIN
assumption holds fo§. Proofs consist ofin + 228¢ — 3m group elements, where

¢ =3"7", 4. Verification consists of evaluating a set of pairing product equations.

Sketch of prooin the NIZK proof, we first commit to eadhy asg!a; andcom(#;). Us-
ing homomorphic properties, it is straightforward ar; , in equationeg, to compute
gt gy i p andcom(ty, ;) @s

n n
b | [(g7ai)aes = ghimitickava(py ;0 T ag™o")

i=1 i=1

and Hcom kg = com( Zt €k, j,bi)-

i=1

For each pairing product equatiany, make an NIZK proof for Rpi_proa that

Ly
Hj:l e(qk,j,0,qk,5.1) = 1. U
NESTING NIZK PROOFS Since verification consists of verifying a set of pairing prod-
uct equations, we can nest NIZK proofs inside one another. l.e., we can prove that there
exists an NIZK proof such that there exists an NIZK proof such that, etc. Each level of
nesting costs a constant blow-up factor. In comparison, this is very expensive with other
NIZK proofs and impossible in the random oracle model.



REDUCING THE NUMBER OF VARIABLES Consider a set of pairing product equations
overn variables with combined length We show in the full paper that there is a set
of pairing product equations of lengthovern’ < 2¢ variables, such that this set is
satisfiable if and only if the original set is satisfiable. This gives us NIZK proofs of
lengthO(¢) group elements for satisfiability of pairing product equations.

4 Simulation-Sound Extractable NIZK Proof for Satisfiability of
Pairing Product Equations

A CMA-SECURE SIGNATURE SCHEMEWith the help of the NIZK proof folR,psat,
we can construct a digital signature scheme secure against adaptive chosen message
attack (CMA).

Theorem 7. Under the DLIN assumption there exists a CMA-secure digital signature
scheme Ky, Sign, Ver) for signingn group elements with perfect correctness. The
verification key and the signatures consist{fn) group elements and the verification
process consists of evaluating a set of pairing product equations.

Due to lack of space we refer the reader to the full paper [28] for the construction and
the proof. We remark on one issue that makes the construction non-trivial. Our NIZK
proofs work for pairing product equations. Since we want to use the NIZK proofs on
encrypted signatures, we cannot use a hash-function in the signature scheme, since we
do not know how to make NIZK proofs for correct hashing without an expensive NP-
reduction to e.g. Circuit Satisfiability.

SIMULATION -SOUND EXTRACTABLE NIZK PROOFS We will combine the CMA-
secure signature scheme with the NIZK proofs to construct an unbounded simulation-
sound extractable NIZK proof faR .

Common reference string and simulated reference string:Given a group
(p,G, Gy, e, g) pick CMA-secure signature keysk, sk) < Kgign(p, G, Gy, €, g),
keys for the CPA-secure cryptosystepk, skepa) «— Kepa(p, G,G1,¢€,9) and
make a ciphertext; «— E,;(¢t) fort # 1. Leto «— K(p,G, Gy, ¢, g) be a CRS for
our NIZK proofs.

The CRS is¥ = (vk, pk, c1,0).
In the simulation we picky; = E,(1;r., s.) and let the simulation trapdoor be
T = (sk, 7., s.) while the extraction key i§ = skcpa.

Proof: Given a set of pairing product equatio§sand a satisfiability witness) =
(ai,...,ay) the proof is constructed as follows.

Pick keys(vksots, Sksots) fOr @ strong one-time signature schefréncryptc,, «
Epi(ai,...,an) andes = Epi(1,...,1). Make an NIZK proofrgs,, of the fol-
lowing statement: Eithet,, contains a satisfying witness, or contains 1 and,
contains a signature undek on vkg.s. We refer to the full paper how to use the
NIZK proof for R, psat t0 prove satisfiability of at least one out of two sets of pair-
ing product equations. Finally, sign everythings < Signg. (S, cw, Cs, Tssor)-
The proof ist = (vVksots, Cuws Cs, Tssors Ssots )-

sots(

2 See the full paper for a DLIN group based strong one-time signature scheme.



Simulation: Pick keys(vksots, sksots) fOr a strong one-time signature scheme. Sign
Vksots 8Ss «— Sign,y (vksots). ENCrypte,, «— Epi(l,...,1) andes, = Epi(s).
Make an NIZK proofrg,, Of the following statement: Either,, contains a satisfy-
ing witness, or; contains 1 and, contains a signature undet onvk,.. Finally,
Sign everything;sots — Signskwtﬁ (Sa Cw, Cs, 7Tssor)-

Verification and extraction: Accept the proof if and only if the strong one-time sig-
naturesg,is and the proofrg,, are valid.

To extract a witness simply decrygt,.

Theorem 8. If (p,G,Gy,e,9) is a DLIN group then

(Ksse; Psse7 ‘/ssea Sl,ssea Sssea El,sse7 Esse7 SEl,sse) is an NIZK prOOf for Rppsat

with perfect completeness, perfect soundness, perfect knowledge extraction and
composable zero-knowledge and unbounded simulation-sound extractability. The size
of the CRS i€0(1) group elements, while the NIZK proofs consist{f + ¢) group
elements.

Sketch of proofOn a real CRS¢; does not contain 1, and therefore by the perfect
soundness of the NIZK proef, must contain a satisfiability witness In simulations,

c1 does contain 1, however, since the prover does not know the signing: keycannot
create signatures ok, Of his own choosing and he cannot recycleig,s either
because he does not know the corresponding signingkgy;. Therefore, he cannot
encrypt a signature in;, so he must still encrypt a satisfiability withesscin. We can
then decrypt,, and extract the witness. We refer to the full paper for details. O

5 Constant Size Group Signatures without Random Oracles

SECURITY DEFINITIONS. [7] define three security properties that a group signature
must satisfy: anonymity, traceability and non-frameability. We refer to the full paper for
formal definitions and to [7] for a discussion of why this is a strong security definition
that incorporates previous security requirements found in the literature. The definition
allows for separating the roles of the group manager into an issuer who can enroll
members and an opener that can open signatures to see who created it.

Anonymity: Only the opener can see who created a signature. This property must hold
even if the members’ keys are exposed and the issuer is corrupt.

Traceability: If the issuer is honest then all signatures will be correctly opened to some
member.

Non-frameability: Even if the issuer and opener are both corrupt, they still cannot
create a valid signature and a convincing opening that frames an honest member
that did not sign it.

A GROUP SIGNATURE SCHEMEWe imagine that there is a PKI in place so we have
authenticated public keys. We model this by having a public key registryvhere only
useri has one-time write access teg[i|, we do not attempt to keep this information
secret. Usel stores his secret key igsk[i], unless compromised only the user has
access to this key.



Key generation: We create the group public keypk = (vk,pk, X)), wherevk is a
verification key for the CMA-secure signature schepiejs a public key for the
CPA-secure cryptosystem arid is a CRS for the simulation-sound extractable
NIZK proof. The issuer’s keyk is the signing key for the signature scheme, while
the opener’s keyk is the decryption key for the cryptosystem.

Join/Issue: The usel registers a public keyk; for the CMA-secure signature scheme
in reg[i] and stores the corresponding secret &gy The issuer signs it agrt; «—
Sign,;, (vk;). The user verifies the correctness of the signature and siek¢s$ =
(ski, vk;, cert;).

Sign: To signm € {0,1}*, member; creates a strong one-time signature key pair
(VEsots, sksots ). USing sk; he signs the verification key; « Sign,;, (vksots). He
then creates an encryptierof (vk;, cert;, s;) and makes a simulation-sound ex-
tractable NIZK proofr that the plaintext is correctly formed. Finally, he makes a
strong one-time signaturg,es «— Signg, (M, vksots, ¢, 7).

The group signature om is s = (vksots, ¢, T, Ssots )-
Verify: Accept if the strong one-time signature and the NIZK proof are valid.

Open: To open a valid group signature we decryptVe get soméuvk,, cert., s.) and
look up the membei who registered k.. In case no such member exists, we set
1 =1issuer . We return an opening, v), wherey) = (vk., cert., s.).

Judge: Anybody can check whetheert, is a signature onk, undervk, and whether
s, IS @ signature omks.is Undervk,. If vk, has been registered for usgror no
vk, has been registered ane- issuer we accept the opening.

Theorem 9. If the DLIN assumption holds faF then there exists a group signature
scheme with anonymity, traceability and non-frameability and perfect correctness. All
public keys contai®¥ (1) group elements, openings contai{1) group elements, and
signatures contail¥ (1) group elements and elements frdm

Sketch of proofWe get anonymity, because the informatierk;, cert;, s;) that could
identify the signer is encrypted and the NIZK proof is zero-knowledge. Seeing openings
of other group signatures does not help, because when a CPA-secure cryptosystem is
combined with a simulation-sound proof of knowledge of the plaintext, then it becomes
CCA2-secure, see also [23].

We get traceability because by the soundness of the NIZK proof system we must
have a correcfvk., cert., s.) inside the ciphertext. Since only the issuer knows the
signing keyik, nobody else can forge a certificate-t,. This means, the group signa-
ture must point to some membimot the issuer.

We have non-frameability because a valid signature and a valid opening pointing to
1 contains a signature, undervk; on vkges, SOVksots MUst have been signed by the
member. Furthermore, since it is a strong one-time signature scheme and the public key
vksots 1S USed only once by, it must also be this member that made the signadlie
on (m, vksots, ¢, ).

The full paper [28] contains a more detailed construction and the full proofJ
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