
Seven-Property-Preserving Iterated Hashing:

ROX⋆

Elena Andreeva1, Gregory Neven1,2, Bart Preneel1, and Thomas Shrimpton3,4

1 SCD-COSIC, Dept. of Electrical Engineering, Katholieke Universiteit Leuven,
{Elena.Andreeva,Gregory.Neven,Bart.Preneel}@esat.kuleuven.be

2 Département d’Informatique, Ecole Normale Supérieure
3 Dept. of Computer Science, Portland State University, teshrim@cs.pdx.edu

4 Faculty of Informatics, University of Lugano

Abstract. Nearly all modern hash functions are constructed by iter-
ating a compression function. At FSE’04, Rogaway and Shrimpton [28]
formalized seven security notions for hash functions: collision resistance
(Coll) and three variants of second-preimage resistance (Sec, aSec, eSec)
and preimage resistance (Pre, aPre, ePre). The main contribution of this
paper is in determining, by proof or counterexample, which of these
seven notions is preserved by each of eleven existing iterations. Our
study points out that none of them preserves more than three notions
from [28]. As a second contribution, we propose the new Random-Oracle
XOR (ROX) iteration that is the first to provably preserve all seven
notions, but that, quite controversially, uses a random oracle in the iter-
ation. The compression function itself is not modeled as a random oracle
though. Rather, ROX uses an auxiliary small-input random oracle (typ-
ically 170 bits) that is called only a logarithmic number of times.

1 Introduction

Cryptographic hash functions, publicly computable maps from inputs of arbi-
trary length to (short) fixed-length strings, have become a ubiquitous building
block in cryptography. Almost all cryptographic hash functions are iterative:
given a compression function F that takes (n + b) bits of input and produces
n bits of output, they process an arbitrary length input by dividing it into b-bit
blocks and iterating F appropriately. The widely used Strengthened Merkle-
Damg̊ard (SMD) construction [21, 11] is known to yield a collision-resistant iter-
ated hash function if the underlying compression function is collision resistant;
in other words, SMD preserves collision resistance of the compression function.

Unfortunately, designing collision resistant compression functions seems quite
hard: witness the recent collision attacks on several popular hash functions by
Wang et al. [33, 32]. One way out is to aim for a weaker security notion for the
compression function, but not so weak as to make the resulting hash function
useless in practice. A natural question to ask is whether these weaker proper-
ties are also preserved by SMD. For example, does it preserve second-preimage

⋆ Extended abstract; we refer to the full version [1] for more details and proofs.

2 Elena Andreeva, Gregory Neven, Bart Preneel, Thomas Shrimpton

resistance? One may think so, because SMD preserves collision resistance, and
collision resistance can be shown to imply second-preimage resistance, but this
says nothing about what happens if you start with a compression function that is
only second-preimage resistant. Lai and Massey [16] claimed that finding second
preimages for an iterated hash is equally as hard as finding second preimages
for the compression function, but this was found to be incorrect by Dean [12]
and Kelsey and Schneier [15], who show that (for the case of SMD) efficient
collision-finding attacks immediately give rise to second-preimage attacks that
beat the anticipated security bound.

Contributions. We took as a starting point a paper by Rogaway and Shrimp-
ton [28] that provides a unifying framework of seven security notions for hash
functions and the relations among them. Our work explores in detail which of
the seven properties of [28] are preserved by several published hash construc-
tions. Of the eleven schemes we consider (see Table 1), we found that in fact
none preserved all seven. This raises the question whether it is possible at all
to preserve all seven properties. We answer this question in the affirmative, in
the random oracle model [6], by presenting a construction that builds on previ-
ous work by Bellare, Rogaway, Shoup and Mironov [7, 30, 23]. Our construction
iterates a real-world compression function but, in the iteration, makes a logarith-
mic (in the message length) number of calls to an auxiliary small-input random
oracle; we will say more in a moment to justify this choice. The existence of
seven-property-preserving iterations in the standard model is left as an open
problem.

Relevance of the seven properties. Apart from collision-resistance, Rog-
away and Shrimpton consider three variants of second-preimage resistance (Sec)
and preimage resistance (Pre). The standard variants of Sec and Pre are re-
stricted to randomly chosen preimages, and have important applications like the
Cramer-Shoup cryptosystem [10] for Sec and Unix-like password storage [18,
31] for Pre. The stronger everywhere variants (eSec, ePre) consider adversarially
chosen preimages. The notion of eSec is equivalent to the universal one-way hash
functions of Naor and Yung [25] and to the target collision resistance of Bellare
and Rogaway [7]. Bellare and Rogaway show that eSec is sufficient to extend the
message space of signature schemes that are defined for small messages only.

Following the standard convention established by Damg̊ard [11], and Bellare
and Rogaway [7], these notions were formalized for hash function families, in-
dexed by a (publicly known) key K. Current practical hash functions however
do not have explicit keys. In fact, it is not even clear what the family is that
they belong to, so it is rather contrived to regard SHA-256 as a randomly drawn
member of such a family. Instead, the always-notions aSec and aPre capture
the intuition that a hash function ought to be (second-)preimage resistant for
all members of the family, so that it doesn’t matter which one is actually used.
Alternatively, one could see the aSec and aPre notions as the the natural exten-
sions to (second-)preimage resistance of Rogaway’s human-ignorance approach to
collision-resistant hashing with unkeyed compression functions [27]. (See [2] for a
subsequent work on property preservation for iterations of unkeyed compression

Seven-Property-Preserving Iterated Hashing: ROX 3

Table 1. Overview of constructions and the properties they preserve. Each
row in the table represents a hash function construction, each column a security notion
of [28]. The symbol “Y” means that the notion is provably preserved by the construc-
tion; “N” means that it is not preserved, in the sense that we come up with a coun-
terexample; “?” means that neither proof nor counterexample are known. Underlined
entries were known, all other results are new.

Scheme Coll Sec aSec eSec Pre aPre ePre

Strengthened MD [22, 11] Y N N N N N Y

Linear [7] N N N N N N Y

XOR-Linear [7] Y N N Y N N Y

Shoup’s [30] Y N N Y N N Y

Prefix-free MD [9] N N N N N N Y

Randomized [13] Y N N N N N Y

HAIFA [8] Y N N N N N Y

Enveloped MD [4] Y N N N N N Y

Strengthened Merkle Tree [20] Y N N N N N Y

Tree Hash [7] N N N N N N Y

XOR Tree [7] ? ? N ? Y N Y

ROX Y Y Y Y Y Y Y

functions.) In this sense, the aSec and aPre notions strengthen the standard no-
tions of second-preimage resistance and preimage resistance, respectively, in the
way needed to say that a fixed function such as SHA-256 is Sec and Pre secure.
They therefore inherit the practical applications of Sec and Pre security, and are
thus the right notions to consider when instantiating Cramer-Shoup encryption
or Unix-like password storage with a fixed function like SHA-256. The formal
definitions of all seven notions are recalled in Section 2.

Existing constructions. Let us now take a closer look at a number of existing
constructions to see which of the seven notions of [28] they preserve. Our findings
are summarized in Table 1, which we see as the main research contribution
of our paper. Except for the few entries in the table with question marks, we
come up with either proofs or counterexamples in support of our claims. We
found for example that the ubiquitous SMD construction preserves Coll and
ePre security, but surprisingly fails to preserve any of the other notions. Of the
eleven schemes in the table, none preserves all seven notions. In fact, the best-
performing constructions in terms of property preservation are the XOR Linear
hash and Shoup’s hash, which still preserve only three of the seven notions (Coll,
eSec, and ePre). The XOR Tree hash is the only iteration to preserve Pre, and
none of the schemes preserve Sec, aSec or aPre. Remember that the latter two
are particularly relevant for the security of practical hash functions because they
do not rely on the compression functions being chosen at random from a family.

Preserving all properties: the ROX Construction. This rather poor
state of affairs may leave one wondering whether preserving all seven notions
is possible at all. We answer this question in the affirmative, but, quite contro-
versially, were only able to do so in the random oracle model. We explicitly do
not model the compression function itself as a random oracle however. While

4 Elena Andreeva, Gregory Neven, Bart Preneel, Thomas Shrimpton

we view the main interest of our construction to be a feasibility result for seven-
property-preserving hashing, we do have reasons to believe that our construction
makes very “reasonable” use of the random oracle. Allow us to explain.

Our Random-Oracle-XOR (ROX) construction draws largely on the XOR-
linear hash [7] and Shoup’s hash [30]. The latter is an extension of SMD where
a logarithmic (in the message length) number of masks are XORed into the
chaining value. We take the same approach, but have the masks generated by
applying a random oracle to 170-bit inputs, for a security level of 80 bits. To
hash an ℓ-block message, we query the random oracle on a number of domain
points that is logarithmic in ℓ. This limited use of the random oracle has the
important practical ramification that the function instantiating it need not be
as efficient as the compression function, and can therefore be made with large
security margins. We’ll come back to candidate instantiations in Section 4.

The idea of generating the masks through a random oracle is not new; in
fact, it was explicitly suggested at two separate occasions by Mironov [23, 24].
The idea was discarded in [23] for trivializing the problem, but was revisited
in [24] as a viable way to obtain shorter keys for eSec-secure hashing. Indeed, if
one assumes the existence of random oracles with very large domains, then one
can simply use the random oracle to do the hashing. The ROX construction,
on the other hand, still uses a real compression function in the chaining, and
uses a small-domain random oracle to preserve all seven notions of [28] using a
very short key, including the important aSec and aPre notions.5 Moreover, we do
so without changing the syntax of the compression function [8] or doubling its
output size [19], both of which can come at a considerable performance penalty.

What about other properties? The seven security notions formalized
by [28] are certainly not the only ones that are of interest. Kelsey and Kohno [14]
suggest chosen-target forced-prefix security, which can be seen as a special form
of multi-collision resistance, as the right goal to stop Nostradamus attacks. Bel-
lare and Ristenpart [4], following previous work by Coron et al. [9] and Bellare
et al. [3], formalize pseudorandom oracle preservation (PRO-Pr) and pseudoran-
dom function preservation (PRF-Pr) as goals. Their EMD construction is shown
to be PRO-Pr, PRF-Pr and to preserve collision resistance. More recently, and
independently of this work, Bellare and Ristenpart [5] study the Coll, eSec, PRO,
PRF, and MAC (unforgeability) preservation of various iterations, including the
SMD, Prefix-free MD, Shoup, and EMD iterations that we study. Their work
does not cover the five other notions of [28], while our work does not cover the
PRO, PRF, and MAC properties. We leave the study of the preservation of these
properties by our ROX construction to future work.

5 While ROX itself is an explicitly keyed construction, its preservation of aSec/aPre
implies that the instantiating compression function need not be. Indeed, when in-
stantiated with a fixed aSec/aPre-secure compression function like SHA-256, then
the resulting iterated hash is aSec/aPre-secure and therefore also Sec/Pre-secure.
ROX thereby provides a secure way of iterating unkeyed (second-)preimage resis-
tant compression functions.

Seven-Property-Preserving Iterated Hashing: ROX 5

2 Security Definitions

In this section, we explain the security notions for hash functions of [28]. Let
us begin by establishing some notation. Let N = {0, 1, . . .} be the set of natural
numbers and {0, 1}∗ be the set of all bit strings. If k ∈ N, then {0, 1}k denotes
the set of all k-bit strings and {0, 1}k×∗ denotes the set of all bit strings of
length an integer multiple of k. The empty string is denoted ε. If b is a bit then
b denotes its complement. If x is a string and i ∈ N, then x(i) is the i-th bit
of x and xi is the concatenation of i copies of x. If x, y are strings, then x‖y is
the concatenation of x and y. If k, l ∈ N then 〈k〉l is the encoding of k as an
l-bit string. We occasionally write 〈k〉 when the length is clear from the context.

If S is a set, then x
$
← S denotes the uniformly random selection of an element

from S. We let y ← A(x) and y
$
← A(x) be the assignment to y of the output of

a deterministic and randomized algorithm A, respectively, when run on input x.

An adversary is an algorithm, possibly with access to oracles. To avoid trivial
lookup attacks, it will be our convention to include in the time complexity of an
adversary A its running time and its code size (relative to some fixed model of
computation).

Security Notions for Keyed Hash Functions. Formally, a hash function
family is a function H : K×M→ Y where the key space K and the target space
Y are finite sets of bit strings. The message space M could be infinitely large;
we only assume that there exists at least one λ ∈ N such that {0, 1}λ ⊆ M.
We treat (fixed input length) compression functions and (variable input length)
hash functions just the same, the former being simply a special case of the latter.

The seven security notions from [28] are the standard three of collision resis-
tance (Coll), preimage resistance (Pre), and second-preimage resistance (Sec),
and the always- and everywhere-variants of (second-)preimage resistance (aPre,
aSec, ePre, and eSec). The advantage of an adversary A in breaking H under secu-
rity notion atk is given by Adv

atk
H (A) = Pr[Expatk : M 6= M ′ and H(K, M) =

H(K, M ′)] if atk ∈ {Coll, Sec[λ], eSec, aSec[λ]}, and by Adv
atk
H (A) = Pr[Expatk :

H(K, M ′) = Y] if atk ∈ {Pre[λ], ePre, aPre[λ]}, where the experiments Expatk

are given below.

atk Expatk

Coll K
$
← K ; (M, M ′)

$
← A(K)

Sec[λ] K
$
← K ; M

$
← {0, 1}λ ; M ′ $

← A(K, M)

eSec (M, St)
$
← A ; K

$
← K ; M ′ $

← A(K, St)

aSec[λ] (K, St)
$
← A ; M

$
← {0, 1}λ ; M ′ $

← A(M, St)

Pre[λ] K
$
← K ; M

$
← {0, 1}λ ; Y ← H(K,M) ; M ′ $

← A(K, Y)

ePre (Y, St)
$
← A ; K

$
← K ; M ′ $

← A(K, St)

aPre[λ] (K, St)
$
← A ; M

$
← {0, 1}λ ; Y ← H(K,M) ; M ′ $

← A(Y, St)

We say that A is (t, ǫ) atk-secure if no adversary running in time at most t has
advantage more than ǫ. When giving results in the random oracle model, we

6 Elena Andreeva, Gregory Neven, Bart Preneel, Thomas Shrimpton

will talk about (t, qRO, ǫ) atk-secure schemes, where qRO is the total number of
queries that A makes to its random oracles.

Note that the security notions above do not insist that the colliding message
M ′ be of length λ. It is our conscious choice to focus on arbitrary-length security
here, meaning that adversaries may find collisions between messages of varying
lengths. In practice, the whole purpose of hash iterations is to extend the domain
of a compression function to arbitrary lengths, so it makes perfect sense to require
that the hash function withstands attacks using messages of different lengths.

3 Properties Preserved by Existing Constructions

In this section we take a closer look at eleven hash iterations that previously
appeared in the literature, and check which of the seven security properties
from [28] they preserve. The algorithms are described in Fig. 1, the results of
our analysis are summarized in Table 1.

As mentioned in the previous section, we focus on arbitrary-length security
in this paper. Allowing for arbitrary-length message attacks invariably seems
to require some sort of message padding (unstrengthened MD does not pre-
serve collision resistance), but care must be taken when deciding on the padding
method: one method does not fit all. This was already observed by Bellare and
Rogaway [7], who proposed an alternative form of strengthening where a final
block containing the message length is appended and processed with a different
key than the rest of the iteration. This works fine in theory, but since current
compression functions are not keyed, it is not clear how this construction should
be instantiated in practice. In absence of a practical generic solution, we chose
to add standard one-zeroes padding and length strengthening to all chaining it-
erations that were originally proposed without strengthening. For tree iterations
we use one-zeroes padding for the message input at the leaves, and at the root
make one extra call to the compression function on input the accumulated hash
value concatenated with the message length. (Standard length strengthening at
the leaves fails to preserve even collision resistance here.) These strengthening
methods sometimes help but never harm for property preservation.

Strengthened Merkle-Damg̊ard. The Strengthened Merkle-Damg̊ard
(SMD) construction is known to preserve collision resistance [11] and to not
preserve eSec security [7]. In the following two theorems we prove that it also
preserves ePre security, but does not preserve Sec, aSec, Pre, and aPre secu-
rity. τF is the time required for an evaluation of F and ℓ = ⌈(λ + 2n)/b⌉ where
λ = |M |.

Theorem 1. If F is (t′, ǫ′) ePre-secure, then SMDF is (t, ǫ) ePre-secure for ǫ =
ǫ′ and t = t′ − ℓ · τF.

Proof. Given an ePre-adversary A against SMDF, consider the following ePre-
adversary B against F. B runs A to obtain the target value Y and outputs the
same string Y . When it gets a random key K it runs A on the same key to obtain

Seven-Property-Preserving Iterated Hashing: ROX 7

Algorithm SMDF(K, M): Algorithm LH F(K1‖ . . . ‖Kℓ , M):
m1‖ . . . ‖mℓ ← ls-pad(M) ; h0 ← IV m1‖ . . . ‖mℓ ← ls-pad(M) ; h0 ← IV

For i = 1 . . . ℓ do hi ← F(K, mi‖hi−1) For i = 1, . . . , ℓ do hi ← F(Ki, mi‖hi−1)
Return hℓ Return hℓ

Algorithm XLH F(K‖K1‖ . . . ‖Kℓ , M): Algorithm SH F(K‖K1‖ . . . ‖K⌈log ℓ⌉, M):
m1‖ . . . ‖mℓ ← ls-pad(M) ; h0 ← IV m1‖ . . . ‖mℓ ← ls-pad(M) ; h0 ← IV

For i = 1, . . . , ℓ do For i = 1, . . . , ℓ do
hi ← F(K, mi‖(hi−1 ⊕Ki−1)) hi ← F(K, mi‖(hi−1 ⊕Kν(i)))

Return hℓ Return hℓ

Algorithm PfMD
F
(K, M): Algorithm EMDF(K, M):

m1‖ . . . ‖mℓ ← pf-pad(M) ; h0 ← IV m1‖ . . . ‖mℓ ← emd-pad(M) ; h0 ← IV1

For i = 1, . . . , ℓ do hi ← F(K, mi‖hi−1) For i = 1 . . . ℓ− 1 do hi ← F(K, mi‖hi−1)
Return hℓ Return hℓ ← F(K, hℓ−1‖mℓ‖IV2)

Algorithm HAIFAF(K, M): Algorithm RH F(K‖R, M):
m1‖ . . . ‖mℓ ← oz-pad(M, i · b) ; h0 ← IV m1‖ . . . ‖mℓ ← sf-pad(M)

ctr ← 0 ; S
$
← {0, 1}s // S is a salt h0 ← F(K, R‖IV)

For i = 1 . . . ℓ− 1 do For i = 1 . . . ℓ do
ctr ← ctr + b ; hi ← F(K, mi‖〈ctr〉l‖S‖hi−1) hi ← F(K, (mi ⊕ R)‖hi−1)

hℓ ← F(K, mℓ‖〈|M|〉‖S‖hℓ−1) Return hℓ

Return S, hℓ

Algorithm SMT F(K, M): Algorithm TH F(K1‖ . . . ‖Kd+1 , M):
m1‖ . . . ‖mℓ ← tpad(M) m1‖ . . . ‖mℓ ← tpad(M)

For j = 1, . . . , ad−1 do For j = 1, . . . , ad−1 do
h1,j ← F(K, m(j−1)a+1‖ . . . ‖mja) h1,j ← F(K1, m(j−1)a+1‖ . . . ‖mja)

For i = 2, . . . , d and j = 1, . . . , ad−i do For i = 2, . . . , d and j = 1, . . . , ad−i do
hi,j ← F(K, hi−1,(j−1)a+1‖ . . . ‖hi−1,ja) hi,j ← F(Ki, hi−1,(j−1)a+1‖ . . . ‖hi−1,ja)

hd+1,1 ← F(K, hd,1‖〈|M|〉n(a−1)) hd+1,1 ← F(Kd+1, hd,1‖〈|M|〉n(a−1))
Return hd+1,1 Return hd+1,1

Algorithm XTH F(K‖K1‖ . . . ‖Kd+1 , M): Padding algorithms:

m1‖ . . . ‖mℓ ← tpad(M) oz-pad(M, x) = M‖100x−|M|−2

For j = 1, . . . , ad−1 do ls-pad(M) = oz-pad(M, x)‖〈|M|〉b
h1,j ← F(K, (m(j−1)a+1‖ . . . ‖mja)⊕K1) where x = ⌈(|M| + 2)/b⌉ · b

For i = 2, . . . , d and j = 1, . . . , ad−i do emd-pad(M) = oz-pad(M, x)‖〈|M|〉64
hi,j ← F(K, (hi−1,(j−1)a+1‖ . . . ‖hi−1,ja)⊕Ki) where x = ⌈(|M| + 66)/b⌉ · b− 64

hd+1,1 ← F(K, (hd,1‖〈|M|〉n(a−1))⊕Kd+1) tpad(M) = oz-pad(M, x)

Return hd+1,1 where x = a⌈loga |M|⌉ · n

Fig. 1. Some existing iterative hash constructions. Chaining iterations SMD, LH ,
XLH , SH , PfMD, RH , and EMD use a compression function F : {0, 1}k × {0, 1}b+n →
{0, 1}n; HAIFA uses a compression function F : {0, 1}k ×{0, 1}b+l+s+n → {0, 1}n. Tree
iterations SMT , TH , and XTH use a compression function F : {0, 1}k × {0, 1}an →
{0, 1}n. Strings IV , IV 1, IV 2 ∈ {0, 1}n are fixed initialization vectors. Padding algo-
rithms are given on the bottom right; pf-pad(M) and sf-pad(M) are any prefix-free
padding and suffix-free padding algorithms, respectively. The function ν(i) is the largest
integer j such that 2j |i.

a preimage message M ′. Let m′1‖ . . . ‖m′ℓ ← ls-pad(M ′) and let h′ℓ−1 be the one-
but-last chaining value computed in an execution of SMDF(K, M ′). Algorithm
B outputs m′ℓ‖h

′
ℓ−1 as its own preimage.

While at first sight the above proof may seem to go through for Pre and aPre
security as well, this is not the case. The target point Y in a Pre attack on F is

distributed as F(K, m‖h) for a random m‖h
$
← {0, 1}b+n. But the target point

for the iterated structure SMDF is generated as SMDF(K, M) for a random M
$
←

{0, 1}λ. These two distributions can actually be very different, as is illustrated
by the following counterexample.

8 Elena Andreeva, Gregory Neven, Bart Preneel, Thomas Shrimpton

Theorem 2. For atk ∈ {Sec, aSec, Pre, aPre}, if there exists a (t, ǫ) atk-secure
compression function G : K × {0, 1}b+n → {0, 1}n−1, then there exists a (t, ǫ−
1/2n) atk-secure compression function CE1 : K × {0, 1}b+n → {0, 1}n and an
adversary A running in one time step with atk[λ]-advantage one in breaking
SMDCE1

.

Proof. For any compression function G, consider CE1 given by

CE1(K, m‖h) = IV if h = IV

= G(K, m‖h) ‖ IV
(n)

otherwise .

If G is (t, ǫ) atk secure, then CE1 is (t, ǫ − 1/2n) atk secure; we refer to the
full version [1] for the proof. From the construction of CE1, it is clear that
SMDCE1

(K, M) = IV for all M ∈ {0, 1}∗. Hence, the adversary can output any
message M ′ as its (second) preimage.

Linear hash. The Linear Hash (LH) [7] uses ℓ different keys for ℓ-block mes-
sages, because it calls the compression function on a different key at every it-
eration. The Linear Hash is known to preserve eSec-security for same-length
messages, but Bellare and Rogaway claim [7] that length-strengthening does
not suffice to preserve eSec for different-length messages. The following theorem
confirms their claim, and also shows that LH does not preserve Coll. The coun-
terexample CE1 of Theorem 2 can be used to disprove the preservation of Sec,
aSec, Pre and aPre-security. A proof similar to that of Theorem 1 can be used
to show that LH does preserve ePre-security.

Theorem 3. For any atk ∈ {Coll, eSec}, if there exists a (t, ǫ) atk-secure com-
pression function G : {0, 1}k × {0, 1}b+n → {0, 1}n−2, then there exists a (t, ǫ)
atk-secure compression function CE2 : {0, 1}k × {0, 1}b+n → {0, 1}n and an ad-
versary A running in one step time with atk-advantage 1/4 in breaking LH CE2

.

Proof. For any compression function G, consider CE2 given by

CE2(K, m‖h) = IV if m‖h = 010b−2‖IV

= 0n−1 ‖ IV
(n)

if (K(1) = 0 and m‖h = 〈1〉b‖IV)

or (K(1) = 1 and m‖h = 〈b + 1〉b‖IV)

= G(K, m‖h) ‖ 1 ‖ IV
(n)

otherwise ,

In the full version [1] we prove that if G is (t, ǫ) atk-secure for atk ∈ {Coll, eSec},
then CE2 is (t, ǫ) atk-secure. When iterating CE2 through LH CE2

with indepen-

dent keys K1‖K2‖K3, one can easily see that if K
(1)
2 = 0 and K

(1)
3 = 1, then

messsages M = 0 and M ′ = 010b−1 both hash to 0n−1‖IV
(n)

. Since in the
Coll and eSec games this case happens with probability 1/4, we have attacks
satisfying the claim in the theorem.

XOR-Linear Hash. The XOR-Linear Hash (XLH) [7] uses keys that consist
of a compression function key K and ℓ masking keys K1, . . . , Kℓ ∈ {0, 1}n. It

Seven-Property-Preserving Iterated Hashing: ROX 9

is known to preserve eSec security [7]. It can also be seen to preserve Coll and
ePre by similar arguments as used for SMD and LH . Counterexample CE1 can
be used to show that aSec and aPre are not preserved: the adversary gets to
choose the key in these notions, so it can choose K1 = . . . = Kℓ = 0n so that
XLH boils down to SMD. In the following we show that the XLH construction
does not preserve Sec or Pre security either.

Theorem 4. For any atk ∈ {Sec, Pre}, if there exists a (t, ǫ) atk-secure com-
pression function G : K×{0, 1}b+n → {0, 1}n−1, then there exists a (t, ǫ + 1/2b)
atk-secure compression function CE3 : K×{0, 1}b+n → {0, 1}n and an adversary
A running in one step time with atk[λ]-advantage one in breaking XLH CE3 .

Proof. For any λ ≤ 2b and compression function G, consider CE3 given by

CE3(K, m‖h) = 0n if m = 〈λ〉b
= G(K, m‖h)‖1 otherwise .

In the full version [1] we prove that if G is (t, ǫ) Sec or Pre-secure, then CE3

is (t, ǫ + 1/2b) Sec or Pre-secure. It is easy to see that, when iterated through
XLH CE3

, the hash of any λ-bit message is 0n. A Pre[λ] adversary can therefore
simply output any M ′ ∈ {0, 1}λ, a Sec[λ] adversary can output any M ′ 6= M ∈
{0, 1}λ.

Shoup’s Hash. The iteration due to Shoup (SH) [30] is similar to the XOR-
Linear hash but uses a different key scheduling that reduces the key length to
logarithmic in the message length, rather than linear. Shoup’s hash is known
to preserve eSec-security [30], and it can be shown to preserve Coll and ePre-
security as well. The proofs are very similar to the case of SMD, and hence
omitted. Counterexample CE1 disproves preservation of aSec and aPre-security,
and counterexample CE3 disproves preservation of Sec and Pre.

Prefix-free Merkle-Damg̊ard. Bellare and Ristenpart showed [4] that the
prefix-free Merkle-Damg̊ard construction (PfMD) [9] does not preserve Coll secu-
rity. The counterexample of [7] can also be used to show that it does not preserve
eSec, and counterexample CE1 can be used to disprove the preservation of Sec,
aSec, Pre and aPre. Finally, using a proof similar to that for SMD, one can show
that ePre-security is preserved.

Another variant of PfMD by [9] prepends the message length encoding to the
message in advance. The security results of this scheme easily follow from the
ones for the SMD construction.

Randomized hash. The Randomized Hash (RH) [13] XORs each message block
with a random value R ∈ {0, 1}b. The construction was originally proved to
be eSec secure by making stronger assumptions on the underlying compression
function. Its pure security preservation characteristics (i.e., assuming only the
eSec security of the compression function) were never studied. In our security
analysis of RH treating the value R as either randomness per message or fixed
long term key yields identical results with respect to seven property preservation.

10 Elena Andreeva, Gregory Neven, Bart Preneel, Thomas Shrimpton

By arguments similar to the case of SMD, one can show that RH preserves
Coll and ePre security, but none of the other notions are preserved. Counterex-
ample CE1 can be used to contradict preservation of Sec, aSec, Pre, and ePre,
and the counterexample of [7] can be used to contradict preservation of eSec.

HAIFA. While the newly proposed HAsh Iterative FrAmework (HAIFA) [8] does
preclude a number of specific attacks [12, 15, 14] to which SMD admits, they per-
form exactly the same in terms of preservation of our security notions. Similar
proofs as for SMD can be used to show that HAIFA preserves Coll and ePre-
security, counterexample CE1 can be used to contradict the preservation of Sec,
aSec, Pre, and aPre, and the counterexample of [7] applies to contradict preser-
vation of eSec.

Enveloped Merkle-Damg̊ard. The enveloped Merkle-Damg̊ard (EMD) con-
struction [4] is known to preserve collision resistance, pseudo-random-oracle, and
pseudo-random function behavior. For the seven security notions that we con-
sider, however, it does not perform better than SMD. Counterexample CE1 of
Theorem 2 can be used (setting IV = IV 2) to show that neither of Sec, aSec,
Pre, or aPre are preserved. An adaptation of the counterexample of [7] shows
that eSec is not preserved either. Preservation of ePre on the other hand can be
proved in a similar way as done in Theorem 1.

Strengthened Merkle Tree. We consider here the strengthened Merkle
tree [20], the Tree Hash [7], and the XOR Tree Hash [7]. For conciseness we do not
cover other tree iterations that have appeared in the literature (e.g. [17, 29]). The
Merkle tree [20] in its most basic form (i.e., without length strengthening) suffers
from a similar anomaly as basic Merkle-Damg̊ard in that it does not preserve Coll
for arbitrary-length messages. We therefore consider the strengthened variant
SMT here, depicted in Fig. 1. We believe SMT is commonly known to preserve
Coll, but we reprove this in the full version [2] for completeness. The notion of
ePre is easily seen to be preserved as well. It can be seen not to preserve eSec
by a counterexample similar to that of [7] given in the full version [2]. SMT also
fails to preserve Sec, aSec, Pre, and aPre however, as shown in the following
theorem.

Theorem 5. For any atk ∈ {Sec, aSec, Pre, aPre}, if there exists a (t′, ǫ′) atk-
secure compression function G : K × {0, 1}an → {0, 1}n−2, then there exists a
(t, ǫ) atk-secure compression function CE4 : K × {0, 1}an → {0, 1}n for ǫ =
ǫ′ + 1/2n−1, t = t′, and an adversary A running in one step time with atk[λ]
advantage 1 in breaking SMT CE4

.

Proof. For any compression function G, consider CE4 given by

CE4(K, m1‖ . . . ‖ma) = 0n if ma = 0n

= 1n if ma−1 = 0n and ma 6= 0n

= G(K, m1‖ . . . ‖ma) ‖ 10 otherwise .

We prove in the full version [1] that the bounds mentioned above hold for the
atk security of CE4. It is easy to see that, due to the one-zeroes padding to ad

Seven-Property-Preserving Iterated Hashing: ROX 11

bits, any message of length ad−1−1 ≤ λ ≤ ad−1 hashes to 1n, leading to trivial
constant-time attacks for any such length λ.

Tree Hash. The unstrengthened Tree Hash (TH) was proposed in [7] for same-
length messages; we consider the strengthened variant here. It is a variant of SMT

where at each level i of the tree the compression functions use an independent key
Ki. It can be seen to preserve ePre for the same reasons as the SMT construction.
Our counterexample CE4 can be used to exhibit the non-preservation of Sec,
aSec, Pre and aPre security. The case of Coll and eSec are a bit more subtle,
but the counterexample below shows that TH does not preserve these either.

Theorem 6. For any atk ∈ {Coll, eSec}, if there exists a (t′, ǫ′) atk-secure com-
pression function G : {0, 1}k × {0, 1}an → {0, 1}n−1, then there exists a (t, ǫ)
atk-secure compression function CE5 : {0, 1}k × {0, 1}an → {0, 1}n for ǫ = ǫ′,
t = t′, such that there exists an eSec-adversary breaking the eSec security of
TH CE5

in constant time with advantage 1/4.

Proof. For any compression function G, consider CE5 given by

CE5(K, M) = 10n−1 if M = (10n−1)a

= 1n if
(

K(1) = 0 and M = (10n−1)a−1‖〈(a− 1)n〉n
)

or
(

K(1) = 1 and M = (10n−1)a−1‖〈(a2 − 1)n〉n
)

= 0 ‖ G(K, M) otherwise .
(1)

We prove in the full version [2] that CE5 is (t, ǫ) atk-secure whenever G is (t, ǫ)
atk-secure, for atk ∈ {Coll, eSec}.

Let M = (10n−1)a−1 and M ′ = (10n−1)a2−1. Note that tpad(M) = (10n−1)a

and tpad(M ′) = (10n−1)a2

, where tpad is the tree padding algorithm of Fig. 1.

If TH CE5 is instantiated with keys K1‖K2‖K3 such that K
(1)
2 = 0 and K

(1)
3 = 1,

then one can verify that TH CE5
(K1‖K2‖K3, M

′) = TH CE5
(K1‖K2‖K3, M) =

1n. Hence, the adversary that outputs M and M ′ as colliding message pair has
advantage 1/4 in winning the Coll and eSec games.

XOR Tree. The unstrengthened XOR Tree (XTH) was proposed in [7] for fixed-
length messages; we consider the strengthened variant here. It is again a variant
of the Merkle tree, where the inputs to the compression functions on level i are
XORed with a key Ki ∈ {0, 1}an. As for all other iterations, it is straightforward
to see that XTH preserves ePre; we omit the proof. Quite remarkably, the masking
of the entire input to the compression function makes it the only iteration in
the literature that preserves Pre, while at the same time it seems to stand in
the way of even proving preservation of Coll. It does not preserve aSec or aPre
because the adversary can choose Ki = 0an and apply counterexample CE4. We
were unable to come up with either proof or counterexample for Coll, Sec, and
eSec, leaving these as an open question. The proof of preservation of Pre is given
in the full version [1].

12 Elena Andreeva, Gregory Neven, Bart Preneel, Thomas Shrimpton

m1 m2

hℓ

FK
FKFK

IV

µν(1)µν(1) µν(ℓ)

mℓ‖RO2(m, 〈λ〉, 〈1〉)‖...

. . . .

Fig. 2. The ROX Construction. The message is padded with bits generated by
RO2(K, m, 〈λ〉, 〈i〉), where m are the first k bits of M . The last block must contain at
least 2n padding bits, otherwise an extra padding block is added. In the picture above,
IV is the initialization vector, ν(i) is the largest integer j such that 2j |i, and the masks
µi ← RO1(K, m, 〈i〉).

4 The ROX Construction

We are now ready to present in detail our Random-Oracle-XOR (ROX) construc-
tion. Let F : {0, 1}k×{0, 1}b+n→ {0, 1}n be a fixed-length compression function.
Let 2l be the maximum message length in bits; typically one would use k = 80
and l = 64. The construction uses two random oracles RO1 : {0, 1}k × {0, 1}k ×
{0, 1}⌈log l⌉ → {0, 1}n and RO2 : {0, 1}k×{0, 1}l×{0, 1}⌈log b⌉ → {0, 1}2n. These
random oracles can be built from a single one by adding an extra bit to the input
that distinguishes calls to RO1 and RO2. Our construction can be thought of as
a variant of Shoup’s hash, but with the masks being generated by RO1 and the
padding being generated by RO2. More precisely, on input a message M , our
padding function rox-pad outputs a sequence of b-bit message blocks

m1‖ . . . ‖mℓ = M ‖ RO2(m, 〈λ〉, 〈1〉) ‖ RO2(m, 〈λ〉, 〈2〉) ‖ . . . ,

where m are the first k bits of M and λ = |M |. The padding adds a number
of bits generated by RO2 such that the final block mℓ contains at least 2n
bits generated by RO2, possibly resulting in an extra block consisting solely
of padding. It is worth noting though that we do not have a separate length
strengthening block. We assume that λ ≥ k because aPre security, and therefore
seven-property-preservation as a whole, do not make sense for short messages.
Indeed, the adversary can always exhaustively try the entire message space. To
hash shorter messages, one should add a random salt to the message.

Let ν(i) be the largest integer j such that 2j divides i, let IV ∈ {0, 1}n

be an initialization vector, and let m be the first k bits of the message M .
Our construction is described in pseudocode below; a graphical representation
is given in Fig. 2.

Algorithm ROX
RO1,RO2

F (K, M):

m1‖ . . . ‖mℓ ← rox-padRO2(M) ; h0 ← IV

For i = 0, . . . , ⌊log2(ℓ)⌋ do µi ← RO1(K, m, 〈i〉)
For i = 1 . . . ℓ do gi ← hi−1 ⊕ µν(i) ; hi ← F(K, mi‖gi)
Return hℓ .

Seven-Property-Preserving Iterated Hashing: ROX 13

We want to stress that that the ROX construction does not require that the
compression function accept an additional input that might be influenced by the
attacker (such as a salt or a counter). We see this as an important advantage,
since imposing additional requirements on the compression function may make
compression functions even harder to design or less efficient.

It is quite standard in cryptography for new primitives to first find instantia-
tions in the random oracle model, only much later to be replaced with construc-
tions in the standard model. It is interesting to see how the random oracles in the
ROX construction can be instantiated if one were to implement it in practice.
For an 80-bit security level, our results suggest that we should take k = 80 and
n = 160. This means that we need a random oracle that reduces about 170 bits
to 160 bits. A first suggestion might be to re-use the compression function with,
say, three times as many rounds as normal, and with some different values of the
constants. This approach violates good cryptographic hygiene, however, by hav-
ing the design of the random oracle depend on that of the surrounding scheme.
Perhaps a better solution would be to use one or more calls to a blockcipher like
AES that was designed independently of the compression function.

5 Properties Preserved by the ROX Construction

The following theorem states that the ROX construction preserves all seven
security properties that we consider here. We give a proof sketch for the preser-
vation of Coll and a full proof for aSec below; the other proofs can be found in
the full version [2]. We only note that the proofs for Sec, aSec and eSec are in
the programmable random oracle model [26]; that for the case of Pre and aPre
non-programmable random oracles suffice; and that Coll and ePre are preserved
in the standard model.

Theorem 7. For atk ∈ {Coll, Sec, eSec, aSec, Pre, ePre, aPre}, if the compres-
sion function F : {0, 1}k × {0, 1}b+n → {0, 1}n is (t′, ǫ′) atk-secure, then the
iterated function ROX F is (t, qRO, ǫ) atk-secure in the random oracle for

ǫ = ǫ′ +
q2
RO

22n
, t = t′ − 2ℓ · τF for atk = Coll (2)

ǫ = ℓ · ǫ′ +
q2
RO

22n
, t = t′ − 2ℓ · τF for atk = Sec (3)

ǫ = ℓ · ǫ′ +
qRO

2k
+

q2
RO

22n
, t = t′ − 2ℓ · τF for atk = eSec (4)

ǫ = ℓ · ǫ′ +
qRO

2k
+

q2
RO

22n
, t = t′ − 2ℓ · τF for atk = aSec (5)

ǫ = ǫ′ , t = t′ − ℓ · τF for atk ∈ {Pre, ePre} (6)
ǫ = ǫ′ +

qRO

2k
, t = t′ − ℓ · τF for atk = aPre (7)

Here, τF is the time required for an evaluation of F and ℓ = ⌈(λ + 2n)/b⌉ where
λ = |M |.

We repeat that above we do not model the compression function as a ran-
dom oracle, but it is worth considering what the equations tell us if we do.

14 Elena Andreeva, Gregory Neven, Bart Preneel, Thomas Shrimpton

Assuming for simplicity that τF = 1, we know that a collision adversary run-
ning in t′ = 2n/2 steps has probability about 1/2 to find collisions in F, due
to the birthday paradox, but only has probability ǫ′ = 2−n/2 to find preimages
or second preimages. Nevertheless, existing iterations cannot guarantee (second)
preimage resistance against 2n/2-time adversaries, because they merely inherit
their (second) preimage resistance by implication from collision resistance.6 The
ROX construction, on the other hand, can. Assuming that queries to RO1, RO2

take unit time and taking k = n, Equations (2), (3), (6) imply that an ad-
versary running in time t = 2n/2 − 2ℓ ≈ 2n/2 steps has probability at most
ǫ = ℓ · 2−n/2 + 2n/2−k + 2−n ≈ (ℓ + 1) · 2−n/2 to find second preimages, and has
probability at most ǫ′ = 2−n/2 + 2n/2−n ≈ 2−n/2+1 to find preimages.

Proof (Equation (2) (Sketch)). If M, M ′ is a pair of colliding messages, then
consider the two chains of compression function calls in the computation of
ROX F(K, M) = ROX F(K, M ′). If the inputs to the final call to F are different for
M and M ′, then these inputs form a collision on F and we’re done. If they are
the same, then remember that at least 2n bits of these inputs are the output of
RO2(m, 〈λ〉, 〈i〉) and RO2(m

′, 〈λ′〉, 〈j〉), respectively. If these are different queries
to RO2, yet their outputs are the same, then the adversary must have found a
collision on RO2; the odds of it doing so are bounded by q2

RO/22n. If these queries
are the same, however, then we have that m = m

′ and λ = λ′, and therefore that
the masks in both chains µi = µ′i = RO1(K, m, 〈i〉). Identical chaining inputs to
ℓ-th call to F must therefore be caused by identical outputs of the (ℓ− 1)-st call
to F. If the inputs to the (ℓ− 1)-st call are different then we have a collision on
F here, otherwise we repeat the argument to the (ℓ − 2)-nd call, and so on. A
collision on F will be found unless M = M ′. We refer to the full version [2] for
a more detailed proof.

Proof (Equation (5)). Given an aSec[λ] adversary A against ROX F for any λ ∈ N,
we will construct an aSec adversary B against F. The overall strategy will be
that B “embeds” his own challenge message at a random point in the chain, and
hopes that A’s output yields a second preimage at exactly the point in the chain
where B has embedded his challenge.

Algorithm B runs A to obtain a key K ∈ {0, 1}k, responding to its random
oracle queries by maintaining associative arrays T1[·], T2[·]. B outputs the same
key K and is then given as input a random challenge message m‖g ∈ {0, 1}b+n.

It chooses a random index i∗
$
← {1, . . . , ℓ = ⌈(λ + 2n)/b⌉}. We first explain how

B can construct a message M of length λ so that mi∗ = m in m1‖ . . . ‖mℓ ←
rox-padRO2(M); the rest of the message blocks are randomly generated. After
that, we will show how g can be embedded into the chain such that gi∗ = g. If

i∗ = 1 then B sets m to the first k bits of m, otherwise it chooses m
$
← {0, 1}k

6 For the Prefix-free MD [9] and EMD [4] iterations this is a bit paradoxical, because
they were designed to preserve “random oracle behavior”. Surely, (second) preimage
resistance should fall under any reasonable definition of “random oracle behavior”?
The caveat here is that the proof [4, Theorem 5.2] bounds the distinguishing prob-
ability to O(q2

RO/2n), so that the theorem statement becomes moot for qRO = 2n/2.

Seven-Property-Preserving Iterated Hashing: ROX 15

and sets the first k bits of M to m. We distinguish between Type-I message
blocks that only contain bits of M , Type-II message blocks of which the first
λb = (λ mod b) bits are the last λb bits of M and the remaining bits are generated
by RO2, and Type-III message blocks that consist entirely of bits generated by
RO2. Embedding m in a Type-I message block can simply be done by setting b
bits of M to m starting at bit position (i∗ − 1)b + 1. To embed m in a Type-
II message block, B sets the last λb bits of M to the first λb bits of m, and
programs the first (b− λb) bits of T2[m, 〈λ〉, 〈1〉] ‖ T2[m, 〈λ〉, 〈2〉] ‖ . . . to be the
last (b− λb) bits of m. For Type-III blocks, B chooses M completely at random
and sets b bits of T2[m, 〈λ〉, 〈1〉] ‖ T2[m, 〈λ〉, 〈2〉] ‖ . . . to m, starting at the
(b − λb + 1)-st bit position. Bits of M and T2[m, ·] that are still undefined are
chosen at random. If any of these table entries were already defined during A’s
first run, then B aborts. Notice however that A’s view during the first run is
independent of m, so its probability of making such a query is at most qRO/2k.

To enforce that gi∗ = g in the computation of ROX
RO1,RO2

F (K, M), algo-
rithm B runs the reconstruction algorithm of [30, 23] that, given message blocks
m1, . . . , mi∗ and chaining value gi∗ , outputs random mask values µ0, . . . , µt such
that the chaining input to the i∗-th compression function call is gi∗ . B’s goal is
to program these masks into RO1 by setting T1[K, m, 〈i〉] ← µi for 0 ≤ i ≤ t,
such that it is possible to check that the value for gi∗ obtained during the hash
computation is indeed g. However, if any of the hash table entries T1[K, m, 〈i〉]
for 0 ≤ i ≤ t has already been defined, then B aborts. This can only occur when
A asked a query RO1(K, m, 〈i〉) during its first phase, but again, the probability
of it doing so is at most qRO/2k because its view is independent of m.

Algorithm B then runs A again on input target message M , responding to
its random oracle queries as before, until it outputs a second preimage M ′. Let
m′0‖ . . . ‖m′ℓ′ ← rox-padRO2(M ′) be the parsed messages. For the same argu-
ments as in the proof of Equation (2) above, there must exist an index I > 0
such that hI = h′I but mI‖gI 6= m′I‖g

′
I , unless A found a collision in the random

oracle RO2. If i∗ = I, then B outputs m′I‖g
′
I .

B wins the game whenever A does and i∗ = I, unless A succeeded in causing
a collision in RO2 or any of the values that are programmed in RO1, RO2 were
already queried. Let E1 be the event that at least one of the preprogrammed
values is queried by A on a different input and E2 be the event that A manages
to find at least one collision in RO2. Let abort be the event that B aborts, then

Pr [abort] = Pr [E1] + Pr
[

E2 : E1

]

≤ Pr [E1] + Pr [E2] .

Since B perfectly simulates A’s environment, the advantage of B is given by

ǫ′ ≥ Pr [A wins ∧ i∗ = I : abort] · Pr [abort]

≥
ǫ

ℓ

(

1−

(

qRO

2k
+

q2
RO

22n

))

≥
1

ℓ

(

ǫ−
qRO

2k
−

q2
RO

22n

)

.

The running time of B is that of A plus at most 2ℓ evaluations of F. Equation (5)
follows.

16 Elena Andreeva, Gregory Neven, Bart Preneel, Thomas Shrimpton

Possible tweaks. The scheme can be simplified not all seven properties need
to be preserved. For example, if the key K is dropped from the input to RO1,
the ROX construction fails to preserve eSec and ePre, but still preserves all other
notions. Dropping the message bits m from the input of either RO1 or RO2

destroys the preservation of aSec and aPre, but leaves the preservation of other
notions unharmed.

Acknowledgements

We would like to thank David Cash and the anonymous referees for their useful
feedback. This work was supported in part by the European Commission through
the IST Programme under Contract IST-2002-507932 ECRYPT, and in part by
the IAP Programme P6/26 BCRYPT of the Belgian State (Belgian Science
Policy). The first author is supported by a Ph.D. Fellowship and the second
by a Postdoctoral Fellowship from the Flemish Research Foundation (FWO -
Vlaanderen). The fourth author was supported by NSF CNS-0627752.

References

1. E. Andreeva, G. Neven, B. Preneel, and T. Shrimpton. Seven-property-preserving
iterated hashing: ROX. Cryptology ePrint Archive, Report 2007/176, 2007.

2. E. Andreeva, G. Neven, B. Preneel, and T. Shrimpton. Three-property preserving
iterations of keyless compression functions. ECRYPT Hash Workshop 2007.

3. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. In CRYPTO’96, vol. 1109 of LNCS. Springer-Verlag, 1996.

4. M. Bellare and T. Ristenpart. Multi-property-preserving hash domain extension:
The EMD transform. In ASIACRYPT 2006, vol. 4284 of LNCS, pages 299–314.
Springer-Verlag, 2006.

5. M. Bellare and T. Ristenpart. Hash functions in the dedicated-key setting: Design
choices and MPP transforms. In L. Arge, C. Cachin, and A. Tarlecki, editors, 34th

International Colloquium on Automata, Languages and Programming – ICALP

2007, vol. 4596 of LNCS. Springer-Verlag, 2007.

6. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS 93, pages 62–73. ACM Press, 1993.

7. M. Bellare and P. Rogaway. Collision-resistant hashing: Towards making UOWHFs
practical. In CRYPTO’97, vol. 1294 of LNCS. Springer-Verlag, 1997.

8. E. Biham and O. Dunkelman. A framework for iterative hash functions – HAIFA.
Second NIST Cryptographic Hash Workshop, 2006.

9. J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard revisited:
How to construct a hash function. In CRYPTO 2005, vol. 3621 of LNCS, pages
430–448. Springer-Verlag, 2005.

10. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on

Computing, 33(1):167–226, 2003.

11. I. Damg̊ard. A design principle for hash functions. In CRYPTO’89, vol. 435 of
LNCS, pages 416–427. Springer-Verlag, 1990.

Seven-Property-Preserving Iterated Hashing: ROX 17

12. R. D. Dean. Formal Aspects of Mobile Code Security. PhD thesis, Princeton
University, 1999.

13. S. Halevi and H. Krawczyk. Strengthening digital signatures via randomized hash-
ing. In CRYPTO 2006, vol. 4117 of LNCS, pages 41–59. Springer-Verlag, 2006.

14. J. Kelsey and T. Kohno. Herding hash functions and the Nostradamus attack.
In EUROCRYPT 2006, vol. 4004 of LNCS, pages 183–200. Springer-Verlag, 2006.
Available from http://eprint.iacr.org/2005/281.

15. J. Kelsey and B. Schneier. Second preimages on n-bit hash functions for much
less than 2n work. In EUROCRYPT 2005, vol. 3494 of LNCS, pages 474–490.
Springer-Verlag, 2005.

16. X. Lai and J. L. Massey. Hash functions based on block ciphers. In EURO-

CRYPT’92, vol. 658 of LNCS, pages 55–70. Springer-Verlag, 1992.
17. W. Lee, D. Chang, S. Lee, S. H. Sung, and M. Nandi. New parallel domain

extenders for UOWHF. In ASIACRYPT 2003, vol. 2894 of LNCS, pages 208–
227. Springer-Verlag, 2003.

18. M. Luby and C. Rackoff. A study of password security. Journal of Cryptology,
1(3):151–158, 1989.

19. S. Lucks. A failure-friendly design principle for hash functions. In ASI-

ACRYPT 2005, vol. 3788 of LNCS, pages 474–494. Springer-Verlag, 2005.
20. R. C. Merkle. Protocols for public key cryptosystems. In IEEE Symposium on

Security and Privacy, pages 122–134. IEEE Computer Society Press, 1980.
21. R. C. Merkle. A certified digital signature. In CRYPTO’89, vol. 435 of LNCS,

pages 218–238. Springer-Verlag, 1990.
22. R. C. Merkle. One way hash functions and DES. In CRYPTO’89, vol. 435 of

LNCS, pages 428–446. Springer-Verlag, 1990.
23. I. Mironov. Hash functions: From Merkle-Damg̊ard to Shoup. In EURO-

CRYPT 2001, vol. 2045 of LNCS, pages 166–181. Springer-Verlag, 2001.
24. I. Mironov. Collision-resistant no more: Hash-and-sign paradigm revisited. In

PKC 2006, LNCS, pages 140–156. Springer-Verlag, 2006.
25. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic

applications. In 21st ACM STOC, pages 33–43. ACM Press, 1989.
26. J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs:

The non-committing encryption case. In CRYPTO 2002, vol. 2442 of LNCS, pages
111–126. Springer-Verlag, 2002.

27. P. Rogaway. Formalizing human ignorance: Collision-resistant hashing without the
keys. In Vietcrypt 2006, vol. 4341 of LNCS. Springer-Verlag, 2006.

28. P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: Definitions,
implications, and separations for preimage resistance, second-preimage resistance,
and collision resistance. In FSE 2004, vol. 3017 of LNCS, pages 371–388. Springer-
Verlag, 2004.

29. P. Sarkar. Masking-based domain extenders for UOWHFs: bounds and construc-
tions. IEEE Transactions on Information Theory, 51(12):4299–4311, 2005.

30. V. Shoup. A composition theorem for universal one-way hash functions. In EU-

ROCRYPT 2000, vol. 1807 of LNCS, pages 445–452. Springer-Verlag, 2000.
31. D. Wagner and I. Goldberg. Proofs of security for the Unix password hashing

algorithm. In ASIACRYPT 2000, vol. 1976 of LNCS. Springer-Verlag, 2000.
32. X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1. In

CRYPTO 2005, vol. 3621 of LNCS, pages 17–36. Springer-Verlag, 2005.
33. X. Wang and H. Yu. How to break MD5 and other hash functions. In EURO-

CRYPT 2005, vol. 3494 of LNCS, pages 19–35. Springer-Verlag, 2005.

