Two-Party Computing with Encrypted Data

Seung Geol Choi', Ariel Elbaz', Ari Juels?, Tal Malkin!, Moti Yung'

1 Columbia University
{sgchoi, arielbaz, tal, moti}@cs.columbia.edu
2 RSA Laboratories
ajuels@rsasecurity.com

Abstract. We consider a new model for online secure computation on
encrypted inputs in the presence of malicious adversaries. The inputs
are independent of the circuit computed in the sense that they can be
contributed by separate third parties. The model attempts to emulate
as closely as possible the model of “Computing with Encrypted Data”
that was put forth in 1978 by Rivest, Adleman and Dertouzos which
involved a single online message. In our model, two parties publish their
public keys in an offline stage, after which any party (i.e., any of the
two and any third party) can publish encryption of their local inputs.
Then in an on-line stage, given any common input circuit C' and its set
of inputs from among the published encryptions, the first party sends a
single message to the second party, who completes the computation.

Keywords: Computing with Encrypted Data, Secure Two-Party Com-
putation,CryptoComputing, oblivious transfer

1 Introduction

In “Computing with Encrypted Data”, first a public key is published by one
party, followed by collection of data encrypted under this key (potentially from
various sources and independent of the actual computation). Later, in an online
stage, a computing party who possesses a circuit of a function acts on the en-
crypted data, and sends the result (a single message) to the owner of the public
key for output decryption. This wishful single message scenario for secure com-
putation, was put forth as early as 1978 by Rivest, Adleman and Dertouzos [24].
This model is highly attractive since it represents the case where a database
is first collected and maintained and only later a computation on it is decided
upon and executed (i.e., data mining and statistical database computation done
over the encrypted database). However, in its most general form (and the way
[24] envisioned it), the model requires an encryption function that is homomor-
phic over a complete base (sometimes called doubly homomorphic encryption),
which is a construction that we do not have (finding such a scheme is a long
standing open problem and would have far reaching consequences); further, we
have indications such a scheme cannot be highly secure [3].

In this paper we put forth a relaxation of the above model, that relies on
two party secure computations, yet retains much of the desired properties of

the original model, namely, it allows computing of any feasible functions over
encrypted data, it further allows the data to come from various sources, and it
employs a single online message as well. Our proposed relaxation is to allow two
parties (rather than one) to publish a shared pubic key, and both parties hold
shares of the private key and use their shares of the secret key to do computations
on data encrypted with the public key. Once the public key is published, data
contributors publish encrypted (committed) data as before (this is called the
off-line stage). Then, in the on-line stage, one of the two parties (the compiler)
is sending a single message to the second party (the cryptocomputer), that
contains a circuit for a function to compute, and a garbled circuit of the same
function, allowing the second party to compute the result securely (i.e., while
keeping the inputs private, and gaining no computational advantage beyond
what it can compute from the result and the inputs it knows). Note that because
of its essentially non-interactive nature, our model is also particularly suitable for
applications involving low-latency remote executions, such as for mobile agent
applications [26].

We give two protocols in this model, which differ only in the cryptographic
assumptions and the communication complexity. Both protocols are secure even
against malicious parties, and both allow computing any polynomial function (or
sequence of functions) by a single on-line message exchange, in a sense satisfying
the original vision of [24] for computing with encrypted data.

If we limit the input contribution to the two parties involved, our model
matches naturally the theory of general secure two party computation (see [17,
32] and [20, 21] for some of the earliest and the latest works in this area). While it
may be possible to turn many of the works on two party computations to single
message protocols (based on random oracle or non-interactive proofs), we have
not seen this mentioned explicitly (the closest being [4]) or a proof of security
given for it. To the best of our knowledge none of the previous garbled-circuit-
based two party secure computation results allows for data contribution by third
parties (an issue that was not even modeled earlier).

In the general two party computation setting, two parties Alice and Bob have
private inputs x4 and z g respectively, and wish to compute a function f(x4,xp)
securely, without leaking any further information. A particularly useful setting is
where Alice and Bob have published commitments s4, sp on their inputs, which
allows secure computation to proceed more efficiently. Applying our results to
this setting, we can have Alice and Bob encrypt their input during the off-line
stage (independently of any computation); then the subsequent secure compu-
tation (or “cryptocomputing” [27]) only requires a single message per function
to be computed. A similar result was previously known only for functions of
restricted complexity classes (e.g., [27] show how to securely compute functions
in NC1), while we provide a protocol for any function in P.

The idea of minimizing the on-line stage in cryptographic primitives goes
back to the notion of Off-line On-line Signature of Even, Goldreich and Micali
where they minimized the amount of computations of a signature at the on-line
stage (after a message is given as an input) [12].

1.1 Our Model and Results

As outlined above, we propose the off-line/on-line model for crypto-computing
using a single message (and thus optimal round complexity) for the on-line stage.
For k > 2, there are parties Py,..., P.. We name P; as Alice and P, as Bob.
The model consists of the following four stages.

1. Alice and Bob publish prospective shares of the public key, y4 and yp.

2. Separable Data Collection: Parties P, ..., Py publish their data, encrypted
by a shared public key y.

3. Communication: Given an input circuit C with m designated inputs bits, Al-
ice sends to Bob a single message containing a set of indexes to the published
encrypted inputs {idz;}™,, and a garbled circuit C.

4. Computation: Bob decides if the message is consistent with the input circuit
and its inputs, verifying that the indices to the encrypted inputs are valid,
and that C'is a garbled version of C'. If all these tests succeed, Bob computes
C on the committed inputs.

Note that since we deal with any polynomial-size function (or circuit), we
can have some of the data encode circuits and the on-line circuit be a universal
one [31].

We give two protocols that are secure within this model. The first is based
on the traditional and quite minimal DDH assumption and uses ElGamal en-
cryption, and the other is based on the DCR assumption and uses the simplified
Camenisch-Shoup encryption scheme (introduced by [20]). The latter protocol
achieves better communication complexity, at the price of using a stronger more
recent assumption and encryption method.

We use non-interactive zero-knowledge proofs (NIZK) for the malicious case,
which can be achieved either in the common reference string model or in the
random oracle model. Under the common reference string model, the NIZK PoK
of De Santis and Persiano [28] can be used, assuming dense secure public-key
encryption scheme. Under the random oracle model, the well-known Fiat-Shamir
technique [14] can be used.

A main primitive our work relies upon is a conditional exposure primitive we
call CODE (Conditional Oblivious Decryption Exposure). CODE is a two-party
non-interactive protocol, which allows Bob to learn the plaintext of a cyphertext
¢, if two other cyphertexts a, b encrypt the same value. Unlike other conditional
exposure primitives (e.g. Gertner et al [16] and Aeillo et al [1]), in CODE the
three cyphertexts a, b, ¢ are encrypted with a shared public key, such that third
parties can contribute them, and neither Alice nor Bob alone know anything else
about the result of CODE. The conditional exposure primitive of Aeillo et al. [1]
is a natural translation of a logical 'if a equals b’ to arithmetics on cyphertexts
using encryption that is homomorphic in the plaintext. The CODE primitive
uses homomorphic properties of the keys and of the plaintexts and gives more
freedom to design protocols that include inputs shared among the parties.

This allows for oblivious yet secure “input directed navigation” in a garbled
circuit based on a single trigger, given encrypted inputs. The technique also

allows efficient combination with zero-knowledge proofs to assure robustness of
the overall protocol.

We note that we concentrate on a single message computation and present
the protocols with respect to the most efficient random oracle based proofs.
Modifying the scheme to employ non-interactive proofs in the standard model
and modifying the single message scheme to consider the universal composability
model of security are possible as well.

1.2 Previous work

As mentioned above, Rivest, Adleman, and Dertouzos [24] offer perhaps the first
proposal for the study of blind computation on cyphertexts, considering them as
a primitive for private data manipulation. Feigenbaum and Merritt [13] subse-
quently urged more focused investigation on cryptosystems with algebraic homo-
morphisms. The term “CryptoComputing” and the first non-trivial instantiation
originated with Sander, Young, and Yung [27], who present a CryptoComuting
protocol for functions f in NC!. In their model, Alice does not publish her input
sa, but instead sends it (hides it) within her transcript, and information theo-
retic security is achieved with respect to Bob. This is to say that Bob learns no
information whatever about s4 apart from the output of f. Beaver [2] extends
[27] to accommodate any function in NLOGSPACE. Other reduced round secure
computations (two message constructions, in fact) have been suggested by Naor,
Pinkas, and Sumner [22] and by Cachin, Camenisch, Kilian, and Miiller [4]. Their
approaches are based on the two-party secure function evaluation scheme of Yao
[32] and Goldreich, Micali, and Wigderson [17].

Recently the area of robust two-party computations in constant rounds has
gained some attention. Specifically, the works of Jarecki and Shmatikov [20],
Lindell and Pinkas [21] and Horvitz and Katz [19] gave protocols for two-party
computation using Yao’s garbled circuit that are secure against malicious ad-
versaries. [20] uses a modified Camenisch-Shoup verifiable encryption scheme [6]
to allow the party that sends the garbled circuit to prove its correctness. Our
simplified-Camenisch-Shoup based protocol was devised by combining the ideas
of our first protocol with those from [20], in order to satisfy our model with
better communication complexity. Lindell and Pinkas [21] use a cut-and-choose
approach to proving security of Yao’s garbled circuit against malicious adver-
saries and their method is more generic yet requires a few more rounds. Horvitz
and Katz [19] showed a UC-secure protocol in two rounds (four messages) us-
ing the DDH assumption. In their protocol, the two parties essentially run two
instances of Yao’s protocol simultaneously.

2 Preliminaries

In the primitives we describe below, as well as in our main protocol, we assume
that Alice and Bob agree in advance on some groups over which the computation
is being done.

Let ¢ be a security parameter. In the constructions below, it is generally
appropriate to let ¢ = logq. We say that a function f(I) is negligible if for
any polynomial poly, there exists a value d such that for any [> d, we have
f(1) < 1/lpoly(l)|. To achieve non-interactive proofs in the malicious case, we
also assume a random oracle for the underlying hash function.

2.1 ElGamal Cryptosystem

We employ the ElGamal cryptosystem [11] in our first construction. ElGamal
encryption takes place over the group G, over which it is hard to compute discrete
logarithms. Typically, G, is taken to be a subgroup of Z, where ¢ | p — 1, for
large primes p and g. We denote g as a published generator of Qq.3

Let y = ¢” be the public key for the secret key x. The encryption of a
message m (denoted E,(m)) is (¢",m - y") for r €r [1,q]. The decryption of
a cyphertext (a,3) (denoted D, (c,) is f/a®. The ElGamal cryptosystem is
semantically secure [18] under the Decision Diffie-Hellman (DDH) assumption
[10] over G,. We intensively use the multiplicative homomorphism of the ElGamal
cryptosystem: Ey,(mq) - E,(ma) = Ey(mq - ma).

Our protocol makes use of a private/public keys (z4,y4 = g*4) for Alice, as
well as a private/public key (zp,ys = g*2) for Bob. We denote by y the shared
public key y4 - yg, for which the corresponding private key is x4 + . Note
that y may be established implicitly by Alice on learning yp and by Bob on
learning y4. In particular, there is no need for interaction between the parties
to determine the shared key. Since the public keys are published, we assume all
parties hold the joint public key y.

2.2 simplified-Camenisch-Shoup Cryptosystem

For sCS cryptosystem, Alice and Bob work over Z*, for n = pq, where p =
2+ 1,9 =2¢ + 1, and p,q,p’,¢ are all primes, and |p| = |q|. Let n’ = p'qp’,
and h = (1+n). The group Z*, has unique (up to isomorphism) decomposition
as the direct-product of four cyclic groups 7", = G, X G x G2 X T', where G,
is generated by h and has order n, G, has order n’, and G5 and T are of order
2. Let ¢’ be a random element of Z*,. We know that the order of ¢’ divides
#(n?) = n-¢(n) = 4nn’. With very high probability, the order of ¢’ is a multiple
of n/, and g = (¢’)*" thus has order n’ and is a generator of G,,.

For the simplified-Camenisch-Shoup (as well as the original Camenisch-Shoup),
all operations take place in Z,. Note that h has order n and that h¢ =1+ cn
(mod n?). The DCR assumption [23] is that given only n, random elements of
Z*, are hard to distinguish from random elements of P, which is the subgroup
of Z*, consisting of all nth powers of elements in Z7%,.

The sCS encryption scheme, introduced by [20] (and based on the CS scheme
of [6]), is semantically secure under the DCR assumption.

3 In the settings where p = 2¢ + 1 and Gy is the set of quadratic residues in Zj,
plaintexts not in G, can be mapped onto G, by appropriate forcing of the LeGendre
symbol, e.g., through multiplication by a predetermined non-residue.

Key generation A private key is z € [0, "72] A public key is (n,g,y) for
y=g°.

Encryption We map the message m to an integer in (—%, %]. The encryption
Epk(m) is a pair (u,e) = (9", h™y") for a random integer r € [0, §].

Decryption Given a pair (u, e), if this is a valid cyphertext it is of the form
(9", h"™y"). Let i = (-%)2. If 7 is valid, it is (1+n)™ =14+nm (mod n?) for
some m, so check that n|m—1 and reject otherwise. Else, let m’ = (7h—1)/n (over
the integers), let m” =m’/2 (mod n), and recover the message m = m/ rem n,
where (a rem b) is a if a < b/2 and otherwise it is b — a.

2.3 CODE (Conditional Oblivious Decryption Exposure)

The linchpin of our construction is a protocol that we newly introduce in this
paper. We refer it to as Conditional Oblivious Decryption Exrposure. One of the
main differences between CODE and previously suggested conditional exposure
primitives is that CODE allows for third parties to contribute encryptions using
a public key, and then Alice and Bob, who share the private key can perform
the conditional exposure.

Definition 1. Conditional Oblivious Decryption Exposure Let (x4,y4)
and (zp,yp) be two secret/public key pairs and E (resp. D) be the encryption
(resp. decryption) function. Let c¢q,ca,cs be three cyphertexts encrypted under
the joint key y = ya - yg. The functionality CODE is defined by

(L, (e1,¢2,¢3,Dz(c3)) if Dy(c1) = Dy(c2)
((c1,c2,¢3,24,9yB), (B, ya)) — { (L, (c1,c2,c3,7)) otherwise.

Where x = x4 +xp and r €r Gy.

In this functionality, the decryption of c3 is exposed to the second party con-
ditioned on ¢; = ¢ (i.e., if they encrypt the same message). Moreover the first
party is oblivious of the outcome of the protocol.

We show protocols for secure implementations of CODE functionality using
eitehr ElGamal and sCS encryptions. impCODE is a protocol for the CODE
functionality secure in the honest-but-curious case.

impCODE. Let’s call the first party Alice and the second party Bob. The CODE
implementation consists of a single CODE transcript sent from Alice to Bob.
Let 1 = (Oévﬁ) = (grlamlyrl), Co = (73 5) = (gr27m2yrz)v and C3 = ()‘7}1“) =
(9", mgy"). Alice sends (e, ¢, D) to Bob where

1. e=(a/y)¢ and ¢ = (B/9)¢, for e €r Z,

2. D = (e\)*a.
Bob computes m3 = % where D' = (e - \)*? and outputs (c1, 2, 3, 13).
Note that
mlyrl ¢ 73
- may”2 “msy mi c
ms = = — - ms3
ma

(=)r)

that is, if mq, = msg, then ms = mg3, as required.

Theorem 1. The protocol inpCODE securely implements the functionality CODE
for the honest-but-curious two parties under DDH assumption.

Proof. We show a simulator S = (SIM4, STMpg) for impCODE. The case of
corrupted Alice is easy; since Alice does not get any message from Bob, the
simulator SIM, is trivial. For a corrupted Bob, the simulator SIMp has to
simulate the view of Bob. Formally,

{SIMB ((xBayA)a (C]_,CQ,Cg,d))} é {VieWB ((01702703733,4’93), (-WB,?JA))}

In other words, given the input and output of Bob, SIMp has to simulate the
impCODE transcript (¢,(, D) that Alice sends to Bob. The simulator SIMpg
computes

Cp
d-D'’

and outputs (e, ¢, D). The simulated (¢, () have the same distribution as in the
real protocol. Given (¢, () and d, D is uniquely determined.

€ €R qu ez(a/we’ <:(ﬂ/5)67 D,:<€>‘)IB’ D=

3 Honest-but-curious protocol

3.1 Intuition

In our one-message secure function evaluation scheme, Alice sends a garbled
circuit to Bob, and Bob computes the function f using the garbled circuit.
Let C be a circuit with gates G1,Ga, ..., G, that computes the function f of
interest, and let T, 75, ..., T;, be the corresponding truth tables. Sometimes we
interchangeably use the term gates and tables.

First of all, Alice garbles each table by encrypting all the entries and then
permuting the rows. See Table 1 for example, where Alice garbled an AND gate
with shuffling permutation (1 2 3).

[T; [[1" (left input) [I7 (right input) [O (output) | [T¢ [I [IF | O]
1 0 0 0 1 || E[1] | E|0] | E]O]
2 0 1 0 2 || E[0] | E[0] | E]0]
3 1 0 0 3 || El|0] | E[1] | E[0]
4 1 1 1 4 | BO) | BQ) | B

In case of ElGamal encryption scheme, E[0] and E[1] actually mean E[g°]

and E[g'] respectively. We still use the notation E[0] and E[1] to handle both
ElGamal and sCS encryption schemes.

Fig. 1. Alice Garbles an AND gate T; with permutation (1 2 3) and gets T;".

As in Yao’s garbled circuit, Bob’s computation of a gate G; depends on the
computation of the two gates G;, G\ associated with the inputs to Gj, where

(2 [17] O [Plugs, | [T/ 1" [1"] O [Plugs; .
L |l E[1] | E0] | E[O] | (n,yyn) L |l E[1] | E[0] | E[0]
2 || El0] | E[0] | E[0] | (nyy:n) 2 || E[0] | E[0] | E[0]
3 | E[0]| E[1] | E[0] | (ny.y.n) 3 || E[0] | E[1] | E[0]
4 || EQ) | E[N] | E[] (ynny) 4 || EQ) | EQ) | E[Q]

Fig. 2. Plugs are now added.

these gates’ outputs are used in the decryption of the encrypted truth table
T;. One notable difference from Yao’s technique, is that here we add another
level of separation between these gates’ (encrypted) outputs and the key for
decrypting gate G - this is done using CODE. We thank the annonymous referee
for commenting that indeed, in the honest-but-curious case, it is enough for us
to use CODE ouly in the input gates (where Yao’s protocol uses Oblivious
Transfer), improving our construction’s efficiency and readability. However, using
CODE is still required for assuring security in the malicious case.

With only isolated garbled tables, however, Alice cannot have Bob compute
the function. She needs to give to him ‘wiring information’ between a row of a
table (output) and a row of an upper-level table (input). The wiring information
is hereafter called a plug. See Table 2 for example. Suppose that T’ ;’ is the upper-
level table of T} where T}’s output is propagated into T}’s left input. We denote
the plugs in the v-th row of the table TP by Plugsj;_,;;(v), and, more specif-
ically, Plug};_, ;j(v,w) denotes the w-th element of Plugs,_,;(v). For example,
Plugs;;_.;(1) = (n,y,y,n) and Plugj;_,;(1,2) = y. The plug Plug;,_;(1,2) =y
means that the output value on the first row of T,;b is equal to the left-input value
on the second row of T;’. On the other hand, from the plug Plug[iéﬂ (1,4) = n, we
know that the output value of the first row of 77 is different from the left-input
value on the fourth row of T;’.

However, if Bob is honest-but-curious, he might be able to find out more
than the output of the function by following other computation paths because
all the plug information is exposed. For example, even if Bob determines that
O; is the correct output for table Tib7 he can experiment and try computing
another computation path using a different output O} on another row of the
same table. Such an attack, if successful, can enable Bob to explore a rich set of
different computational paths for f, potentially leaking information about the
secret input.

The aim of our protocol is to restrict Bob’s exploration exclusively to the
correct computational path. Suppose that we have three tables T7, TJI»’ and T,é’
where the output of Tib and the left input of T;.’ are connected together and so
are the output of 77 and the right input of T;’. Let Oy, (resp. Ok,) be the
output for a given row v; in T (resp. for a given row vy in TP), and I jLM (resp.
I ﬁvj) be the left (resp. right) input for a given row v; in T;.’. Now suppose that
Bob has the plugs Plug;_,;;(v;) and Plugy,_, ;(vk), and wants to retrieve plugs

in the table T;’. We want to make sure that Bob obtains the plug for the v;-th
row of the le-’ only when O, ,, = Iﬁyj and Oy, = vaj. Since the same will be
true for all gates in C, Bob can only follow the correct computational path, and
learns nothing about other paths.

In order to achieve our goal, for each row of a table Alice generates an
encryption key pair (pk, sk), exposes the public key pk, and hides the secret key
sk by encrypting it with the global encryption key (i.e., ¥ = y4 - yp). She then
encrypts the plug information with pk. She wants Bob to obtain the key sk and
therefore get the plug information only when Bob follows correct computation
path. The idea is using CODE transcript as a plug. Recall that CODE, given
three cyphertexts ¢y, co and c3, outputs the decryption of c3 when ¢; = co. Here,
c1 and cy corresponds to O; ,, and Ijij (or Og,y, and If”vj), and and c3 to the
cyphertext of sk. Below, we describe our protocols in detail.

3.2 Protocol details: Publication of keys and inputs

Alice and Bob publish their keys y4 and ypg. Input contributors encrypt input
bits using the public key y = ya - yp. Let s be an n-bit input string that is
contributed by input contributors. Denote the i-th bit of s by s;. When ElGamal
encryption scheme is used, s is encrypted as {(¢", g% -y"*)}i_,, where r; €g Z,,.
When sCS scheme is used, s is encrypted as {(¢",h% - y")}* ,, where r; €g
[0,n/4].

3.3 Protocol details: Alice

Structure of the Table Alice reads Bob’s published key and input cyphertexts
and computes y = yayp. Now, in order to incorporate CODE we must extend the
underlying table structure to incorporate plugs and associated keys. To do so,
we append two columns to the basic table Tib, and denote the resulting expanded
table by T;. See Table 3.

’Tz H - ‘ I% ‘ O ‘ KT (left key) ‘ KT (right key) ‘ Plugs;_, ;
1 || Ey(1) | £,(0) | E,(0) Ey(ki,u),gk““ Ey(ki,12)7gki‘12 Ez“(/)i,n), -,Ez“(/)i 14)
2 || Ey(0) | By(0) | Ey(0) |By(kio1),g" | Ey(kio2), ¢ |Ez, ,(pia1), -, Ezy 5 (pia)
31| Ey(0) | By(1) | Ey(0) |By(kis1),g" 2| Ey(kis2), ¢ |Ez, 4(pis1), -, Bz 5 (pisa)
4 | E,(1) | By(1) | By(1) |Ey(kiar),g" | Ey(kiaz), "% Bz (piar), ... Bz (piaa)

1. The value ks, vw for v € [1,4],w € [1,2] is chosen randomly from Z,.

2. The public key z;, = g*i1 - gFiv2 for v € [1,4] is used to encrypt plugs of the
v-th row.

3. When we want to emphasize on the abstract view of the plug pivw (resp.

E., ., (pivw)), we use the notation Plug,_ ;;(v,w) (resp. FTI-u\g[iﬂj] (v, w)).

Fig. 3. Schematic depiction of table T';.

Here, Bob obtains a key k; ,1 (resp. ki ,2) from the plug of the lower-level
table when he makes a successful match against the left (resp. right) input on
the row v.

Construction of the Overall Garbled Circuit Alice has to construct three
types of tables: input, output and intermediate gates. First, Alice constructs the
set of intermediate tables {T;} as follows.

1. Alice mixes each table T; and encrypts all the entries to yield T?.

2. For each table Tib and row v, Alice selects k; 1, ki v2 €r Z4 to construct two
columns of K* and K% in T;.

3. Alice computes Plugs|;_,. |(v) for each row v.

Inputs to the circuits are plugs connecting input ciphertexts and the first-
level intermediate gates. Again, plugs are constructed using CODE.

Output gates have much the same structure as intermediate gates. The only
difference is in the last column. Rather than providing encrypted plugs to enable
the computation to be continued, Alice provides encrypted output bits for the
function f.

3.4 Protocol details: Bob

Now let us consider how Bob evaluates the transcript sent by Alice. We assume,
by recursion, that when Bob tries to evaluate the output of gate G, he has the
plugs (i.e., Plugsj;_,;;(v;) and Plugsy,_, ;(vx)) for these ciphertexts into T';.

1. For each v € {1, 2, 3,4}, Bob performs impCODE with the two plugs
Plug;_. ;(vi,v) and Plug,_, ;) (v, v) trying to obtain keys k; ,1 and kj yo. If

he fails (by checking if g” z g¥i1 where 7 is the output of impCODE), he
tries the next row. -
2. If he succeeds, he decrypts Plugs;;_.. ;(v) with the decryption key (k; .1 +
kjv2) and gets the plug information Plugs;;_,. |(v). Note that z;,, = gFavithiez,
3. He proceeds with the computation using the obtained plugs.

When Bob has obtained all outputs from output gates, and so he learns the
output of the circuit.

3.5 Communication Complexity in the Honest-But-Curious Case

Consider a single truth table; Each row of the table has 12 values of Z; except
the plugs. Plugs of each row has 4 -4 = 16 values of Z;. Therefore, each (output
or intermediate) table contains 4 - (12 + 16) = 112 = O(1) values of Z;. Each
input plug has 5 values for Alice, and 3 values for Bob. Thus, we need 8n values
of Z, for inputs of Alice and Bob. We need another n bits for Bob to send the
result of the function back to Alice. Summing all the above, it is clear that the
total communication complexity is O((m + n)log p) bits.

10

4 Full protocol

4.1 Intuition

While the protocol described above is secure assuming honest-but-curious par-
ticipants, it it not secure against active cheating on the part of Alice.

A corrupted party (either Alice or Bob) can publish a public key which is
not chosen randomly. For example, Alice can wait for Bob to publish his public
key yp, pick a shared private key x of her choice, and send ¢g*/yp as her public
key yg. This gives Alice knowledge of the shared private key and the power to
decrypt any of the inputs (including Bobs: she just needs to re-encrypt Bob’s
input with yp, and then she can decrypt them with x). To overcome this kind
of attacks, the malicious case protocol requires that Alice and Bob publish non-
malleable PoK for the knowledge of the discrete logs of their respective public
keys, together with their public keys. We note that both in the common reference
string model and in the random oracle model, adding non-malleability to NIZK
PoK [28] is simple: In the CRS, we follow the technique of [25]; In the random
oracle model, adding non-malleability to Fiat-Shamir style NIZK PoK [14] is
simple: include the name of the publisher in hash function evalution.

A corrupt Alice may cheat in the construction of the gate. First, Alice may
send encrypted truth tables that do not correspond to the gates of the circuit.
In Section 4.2 we show how Alice can prove that the truth tables are correct.
Second, Alice may fake the plugs. Specifically, Alice may use the fact that the
plugs are encrypted, and encrypt random values instead of valid plugs at selected
locations. If Bob does complete the protocol, Alice learns that these invalid plugs
were not decrypted, thus learning about Bob’s computation path.

Therefore, in our full protocol, Alice sends Bob not only the garbled circuit
but also the proof of its correct construction. The proof comprises two parts: the
proof of correct construction of basic gates, and the proof of correct construction
of plugs.

4.2 Proof of Correct Construction of Basic Gates

In this section, we give a zero knowledge proof of knowledge for a correct con-
struction of gates. We assume that the circuit consists of NAND gates.

Zero-knowledge Proof of Knowledge. Informally, a Proof of Knowledge is a
proof for a relation R, in which the prover convinces the verifier that an instance
is in the language, and also that the prover knows a witness for this instance,
rather then just the existence of such a witness. In a (standard) proof of knowl-
edge for the discrete log, the prover convinces the verifier that she knows the
value of b, such that a = ¢g°, when a is known to both. We denote such proof by
PK{b:a= g"}. There are many variants on these proofs, such as in [30]. In this
paper, we make use of variants in which Alice proves conjunctive statements,
and statements regarding her knowledge of sets of discrete logs. See [9, 29, 5] for

11

a description of how to achieve such variants in an efficient manner.

Proof of Boolean Plaintext. Let 0 = 1 and o' represent boolean values 0 and
1, respectively. Specifically, we define ¢ := ¢ in ElGamal encryption while o := h
in sCS encryption. Cramer et al. [8] showed how to prove that the plaintext of
an ElGamal cyphertext A = (a, 3) is Boolean, i.e.,

Bool(A) = PK{r:a=g",(B=y"orB=0-y")}.

Proof of Equality /Inequality of Boolean Plaintext. Using ZK PoK for the
discrete log it is easy to prove equality/inequality of the plaintexts of two ElGa-
mal/sCS cyphertexts. Given the two cyphertexts A = (a, 8) and A’ = (¢/,),
let (€,9) = (a/a’,3/5"), and let (u,v) = (ad’,B6'/0). To prove equality of
D,(A) = D,(4"), we give PK{e : y = g°,§ = ¢} and denote such proof by
Eq(A, A’). To prove inequality of D, (A) # D.(A’), we give PK{e:y =g pu=
v} and denote such proof by Neq(A, A').

Shuffling Lists of Cyphertexts We adopt a protocol of [15] for non-interactively
proving that two lists of cyphertexts are equivalent, and that one is a permuta-
tion of the other. We denote this protocol Shuffle and note that the length of the
transcript of the protocol is linear with the number of cyphertexts. While the
protocol of [15] is originally designed for ElGamal encryptions, it can be easily
applied to sCS encryptions too.

(L[IR [O] [I [Ir [[O]
A | B || Cu AT B[CY 110
As | B> Co AL | BS || O% A | By
As | Bs || Cs Ay | By || ¢ Ay | By
Ay | By || C4 Ay | By || Cy

Fig. 4. base NAND gate, NAND gate, and OUTPUT gate.

Correct Construction of NAND Gate. For an NAND gate, we give a two-
part proof; the first part shows the structure of the gate. However this part leaks
information on the truth table, thus the second part shuffles and re-encrypts the
truth table entries. For two ElGamal/sCS cyphertexts Y = (a, () and Y/ =
(', '), denote Y @ Y’ = (ac’, 33'). Let X = (1,1/0?) be a trivial encryption
of 1/02. We use the following fact to construct the base gate:

c=aNAND b <= a+b+2(c—1) € {0,1}.

The base NAND gate:
1. Bool(A4),...,Bool(Cy)
2. Eq(A1, Az), Eq(As, As), Neq(A;, Az)

12

[T | It \ It \ [0) \ Kt \ KE | Plugs,
|| (11, By11) | (@12, B5,12) | (v4,1565,1) | (Njan, pg11)s kg1 | (Njoa2, pg,12), Kj,12
2 || (a1, Bj,21) | (@22, Bj22) | (75,2,05,2) | (Njj21s ig,21), kg1 | (Ag,22, 1g,22), iy,
3 || (a1, B5,31) | (@325 Bj,32) | (75,3, 05,3) | (Nj31s k,31), k531 | (Njs2, 15,32), 4,32
4 || (oja1,B5,41) | (@j,42, Bja2) | (15,4, 05,4) | (Njar, pg.a1); k4,01 | (Nja2, f5,42), Kja2
S Y S K" | K" | Plugs; ;) |
1| (i1, Bi11) | (@i2, Bin2) | (75,1505,1) | (Nija1, pa11)s ka1 | (Na12, ti,12), Ki12 | Plugs
2 || (eu,21, Bi21) | (22, Bi22) | (Vi,2,05,2) | (Na,21, 4,21), Raj21 | (Aij22, f,22), Ki,22 | Plug
3 || (4,31, 8,31) | (32, Bi32) | (7i,3,04,3) | (Nij31, 14,31), Kiys1 | (Ni,32, p4,32), Ka,32 | Plug
4 || (as,a1, Bia1) | (a2, Biaz) | (Visa, 05,a) | (Nijan, phia1), Kia1 | (Nijaz, pija2), ka2 | Plugs;,

Fig. 5. Variable-based representation of table T; and T';.

3. E(Z](Bl,Bg)7 Eq(Bg,B4), Neq(Bl,BQ)

The second and the third items show the input columns are valid. The last item
shows the output columns are valid. Note that the proof in this step reveals
some information such as equality of cyphertexts in the same column. Hence,
the second part: Shuffle((4,;, B;, C’i>?:1 , (AL, B, Cz{>?:1)'

Correct Construction of an OUTPUT Gate. The proof for the correct
construction is as follows:

The OUTPUT gate:
1. Bool(A4;), Bool(Az), Bool(B;), Bool(Bs)
2. Neq(Al,Ag), Eq(Al,Bl), Eq(AQ,BQ)

4.3 Correct Construction of Plugs

Structure of the Plug. We modify the structure of P/I\ug[i_,ﬂ (v, w). a little bit
in the full protocol. We assume that the output of the gate G; and the left input
of the gate G; are connected together. See Figure 5 for the representation of the
two tables T; and Tj. The plug is an encryption of impCODE transcript* for
1 = (w1, Bjw1), €2 = Viw,0iu)s €3 = (Xjwi,jw1)- The actual transcript

will be of the following form Plug;_, (v, w) = (€, (, D), where
| Ywl ¢ _ ﬂj,wl c o TA
eER Zq, € = ” y C— T y D—(é')\j7,w1) .

Note that we don’t have to encrypt € or (; the exponent e for € and (is
already hard to find due to the hardness of DLP. So we only have to apply

4 1f the output of G; were the right input of G, it would be ¢1 = (aj,w2, Bj,w2), c2 =
(Yi,oy i0)5 €3 = (Njw2, tj,w2)-

13

ElGamal encryption to D. The plug now looks as follows:

P/|Ll\g[l*u] (va w) = <67 C, (gTaD : Zir,v)>v where r €g Zq~
We denote the (¢", D - 2] ,) by (1, D).
When Bob obtains the (decrypted) plug Plugy;_, (v, w), he executes imp-

CODE scheme and gets an output k by computing

]%: %7 Where D/:(G-Aj7w1)aj5.
He checks if gF = ;. holds; if it holds, he decides that (cvjup1,Bjw1) =
(’Yi,vv 5i,v)'

ZKVerify : Proof of Correct Plug Construction. The goal of the ZKVer-
ify proof is for Alice to prove that the encrypted CODE transcripts are valid.
Specifically we show how to generate the proof for the plug Plug;_, ; (v, w). The
plug is encrypted using a key z;., = Ki o1 - Kiw2 = gFiwt - gFivz (See Table 3 and
5 for notations), and the corresponding secret key is obtained by Bob only if he
learns correctly k; .1 and k; 2 (this limits his computation to a single computa-
tional path in the circuit). ZKVerify proves two things: (1) given two ciphertexts
Ey(kiv1), Ey(kiv2), the encrypted part of the plug, i.e., (¢", D - 2{,,) is actually
encrypted using the public key z;,; (2) she knows the discrete-log used in the
rest part of the plug:

e (32 - ()
' Yiv ’ 5i,v .

In the ElGamal based construction, we assume that both p and ¢ are safe
primes such that p = 2¢ + 1 and ¢ = 2¢’ + 1 (i.e., p is a double decker). It is
claimed that there are infinitely many such tuples of primes, and they are easy
to find. We let k; ,1 = f™, and k; 4o = f™, where f is a generator in G4. The

pI‘OOf ZKVerlfy ((>\i,1)1 s Miwl s gm'“l) 5 ()\1',1)2 s Miw2 glii.,w)) PT[ES[i—U] (an))
is as follows:

T1

T
la Ri vl :gf)

PK{(ﬁ,Tl,Tz,Tz,emg,xA) P A1 =6, i =f ey
_ T2 _ fT2 T2 I
Aiw2 =972, Mip2=F72 Y2, Kiw2=9" ",

€ = (jw1/%iw) s ¢ = Bjw1/0iv)" s

ya=g"* n=g" D=2 (e Xjuw1)" }
The above proof uses proofs of knowledge of the double discrete log, which can be
constructed by using Camenisch and Stadler [7]. They showed how to construct

such proof in their paper, and this costs ©(f) communication complexity (¢ is
security parameter).

14

For the sCS based protocol, ZKVerify is simpler, and we do not need to
construct ki, ks in a special form. The proof shows directly that x; 1 = gkivt.
The proof ZKVerify is as follows:

. _r _ 1kin r
PKQ (11,771,772, T2,€,73,Z4) ¢ Aip1 =g, fip1 ="y

1) _ ki
y Ripwl = ¢ ’
T2

Niwz2 = g™, Hiw2 = B2y kg = gFio,
€= (ajw1/%iw)" ¢ = (Bjwi/diw)",

ya=g"* n=9", D=2z (e Nju)™ }

Note, in the sCS based protocol, the ZKVerify proof does not include a double
discrete log proof.

4.4 Protocol Details: Input Contribution

The parties contibuting inputs might be malicious. For example, an input con-
tributed may generate a committed input by mauling other committed input.
To avoid this kind of attack, the input contributors add non-malleable zero-
knowledge proofs of knowledge to each of their committed input bits. In addi-
tion, the parties who manage the public directory that stores the committed
inputs check the committed inputs and reject any inputs that have the same
proofs.

4.5 Protocol Details: Alice

Alice sends the tables as in the honest-but-curious case, and in addition, for
each gate G;, she sends a proof of correct construction of the gate and of the

plugs ZKVerify (O\ml s Hiwt s 97 (Niw2 s Mgz, §700%) PIUgS[iHﬂ(”)))
where by PTLES[i_)j] (v) we mean the four encrypted pairs, one for each CODE
transcript, which are all encrypted using z;, = g"ivtHrivz,

4.6 Protocol Details: Bob

In the full version of the protocol, Bob first verifies that all the proofs Alice
sent are valid. That is, for each gate G; Bob verifies that the proof of correct
construction of the gate is valid. For each row v of table T;, Bob verifies that
the proof for correct encryption of the plugs Plugs|;_, ; (v) is valid. If any of the
proofs is invalid, Bob aborts the protocol. Otherwise (if all proofs are valid), Bob
continues as described in Section 3.

4.7 Communication Complexity in the Malicious Case

In addition to the communication costs of the garbled circuit, the malicious
case incurs the complexity of sending the additional proofs. When ElGamal
encryption is used, the total communication complexity costs are O((m - ¢ +
n)log p bits mainly due to proof of double discrete log. When sCS encryption is
used, the total communication complexity costs are O((m + n)logp) bits.

15

References

1.

2.

10.

11.

12.

13.

14.

15.

W. Aijello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to sell digital
goods. Advances in Cryptology — (EUROCRYPT 2001), 2045:119-135, 2001.

D. Beaver. Minimal-latency secure function evaluation. In B. Preneel, editor,
Advances in Cryptology — (EUROCRYPT 2000), volume 1807 of Lecture Notes
in Computer Science, pages 335—350. Springer-Verlag, 2000.

D. Boneh and R. Lipton. Algorithms for black-box fields and their application
to cryptography. In Advances in Cryptology — (CRYPTO 1996), pages 283-297,
1996.

C. Cachin, J. Camensich, J. Kilian, , and J. Miiller. One-round secure computation
and secure autonomous mobile agents. In Proc. 27th International Colloquium on
Automata, Languages and Programming (ICALP), 2000.

J. Camenisch and M. Michels. Proving that a number is the product of two safe
primes. In J. Stern, editor, Advances in Cryptology — (EUROCRYPT 1999), vol-
ume 1592 of Lecture Notes in Computer Science, pages 107-122. Springer-Verlag,
1999.

J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In Advances in Cryptology — (CRYPTO 2003), pages 126—
144, 2003.

Jan Camenisch and Markus Stadler. Efficient group signature schemes for large
groups. In Burt Kaliski, editor, Advances in Cryptology — (CRYPTO 1997), vol-
ume 1296 of Lecture Notes in Computer Science, pages 410-424. Springer-Verlag,
1997.

R. Cramer, R. Genaro, and B. Schoenmakers. A secure and optimally efficient
multi-authority election scheme. In W. Fumy, editor, Advances in Cryptology —
(EUROCRYPT 1997), volume 1233 of Lecture Notes in Computer Science, pages
103-118. Springer-Verlag, 1997.

R. Cramer, I. Damgard, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In Y.G. Desmedst, editor, Advances in
Cryptology — (CRYPTO 199/), volume 839 of Lecture Notes in Computer Science,
pages 174-187. Springer-Verlag, 1994.

Whitfield Diffie and Martin E Hellman. New directions in cryptography. IEEE
Trans. on Information Theory, IT-22(6):644-654, November 1976.

Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In IEEE Transactions on Information Theory, volume 31,
pages 469-472, 1985.

S. Even, O. Goldreich, and S. Micali. On-line/off-line digital schemes. In Advances
in Cryptology — (CRYPTO 1989), pages 263-275, 1989.

J. Feigenbaum and M. Merritt. Open questions, talk abstracts, and summary of
discussions. In DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 1-45, 1991.

A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identifi-
cation and signature problems. In J. L. Massey, editor, Advances in Cryptology
— (CRYPTO 1986), volume 263 of Lecture Notes in Computer Science, pages
186-194. Springer-Verlag, 1986.

J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In Advances
in Cryptology — (CRYPTO 2001), volume 2139 of Lecture Notes in Computer
Science, pages 368-387, 2001.

16

16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in
private information retrieval schemes. Proceedings of the thirtieth annual ACM
symposium on Theory of computing, pages 151-160, 1998.

O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proc.
19th Annual ACM Symposium on Theory of Computing (STOC), pages 218-229.
ACM Press, 1987.

Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270-299, April 1984.

Omer Horvitz and Jonathan Katz. Universally-composable two-party computation
in two rounds. In Advances in Cryptology — (CRYPTO 2007), pages 111-129,
2007.

S. Jarecki and V. Shmatikov. Efficient two-party secure computation on committed
inputs. In Advances in Cryptology — (EUROCRYPT 2007), 2007.

Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In Advances in Cryptology — (EUROCRYPT
2007), 2007.

M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism
design. In 1st ACM Conference on FElectronic Commerce, 1999.

Pascal Paillier. Public-key cryptosystems based on composite degree residuos-
ity classes. In Jacques Stern, editor, Advances in Cryptology — (EUROCRYPT
1999), volume 1592 of Lecture Notes in Computer Science, pages 107—122. Springer-
Verlag, 1999.

R. Rivest, L. Adelman, and M.L. Dertouzos. On data banks and privacy homo-
morphisms. In R.A. DeMillo, D.P. Dobkin, A.K. Jones, and R.J. Lipto, editors,
Foundations of Secure Computation, pages 169-17. Academic Press, 1978.

Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In Proc. 40th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 543-553, 1999.

T. Sander and C.F. Tschudin. Protecting mobile agents against malicious hosts.
In G. Vigna, editor, Mobile Agents and Security, volume 1419 of Lecture Notes in
Computer Science, pages 44—-61. Springer-Verlag, 1998.

T. Sander, A. Young, and M. Yung. Non-interactive cryptocomputing for NC!. In
Proc. 40th IEEE Symposium on Foundations of Computer Science (FOCS), pages
554-567, 1999.

A. De Santis and G. Persiano. Zero-knowledge proofs of knowledge without in-
teraction. In Proc. 38rd IEEE Symposium on Foundations of Computer Science
(FOCS), pages 427-437, 1992.

Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung. On
monotone formula closure of SZK. In Proc. 35th IEEE Symposium on Foundations
of Computer Science (FOCS), pages 454-465. IEEE Computer Society Press, 1994.
C.P. Schnorr. Efficient signature generation by smart cards. In Journal of Cryp-
tology, volume 4, pages 161-174, 1991.

L. Valiant. Universal circuits. In Proc. 8th Annual ACM Symposium on Theory of
Computing (STOC), pages 196-203, 1976.

A.C. Yao. How to generate an exchange secrets. In Proc. 27th IEEE Symposium
on Foundations of Computer Science (FOCS), pages 162-167, 1986.

17

