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Abstract. Recently, Desmedt et al. studied the problem of achievicgree:-
party computation over non-Abelian groups. They considléhe passive ad-
versary model and they assumed that the parties were oohyedl to perform
black-box operations over the finite groap They showed three results for the
n-product functionfg(z1,...,zn) := 1 - 22 - ... - Tn, Where the input of
party P isxz; € G fori € {1,...,n}. First, ift > [3] then it is impossible
to have at-private protocol computings. Second, they demonstrated that one
couldi-privately computefe for anyt < [4] — 1in exponential communication
cost. Third, they constructed a randomized algorithm \@th t) communica-
tion complexity for anyt < 5g=.

In this paper, we extend these results in two directionsstFwe use percola-
tion theory to show that for any fixed > 0, one can design a randomized al-
gorithm for anyt < e usingO(n®) communication complexity, thus nearly
matching the known upper bourjd; | — 1. This is the first time that percola-
tion theory is used for multiparty computation. Second, whilgt a determin-
istic construction having polynomial communication castdnyt = O(n'~¢)
(again for any fixed > 0). Our results extend to the more general function
fa(x1,...,Zm) = 21 22 - ... xm Wherem > n and each of they parties
holds one or more input values.

Keywords: Multiparty Computation, Passive Adversary, Non-Abelfaroups, Graph
Coloring, Percolation Theory.

1 Introduction

In multiparty computation, a set of parties{ P, . .., P,,} want to compute a function
of some secret inputs held locally by these participantieits introduction by Yao



[19], multiparty computation has been extensively studidst multiparty computa-
tion protocols rely on algebraic structures which are atlédelian groups [14] as in
[1, 3, 4,8, 10, 11, 12] for instance. The usefulness of Alpedjeoups in cryptography
is not restricted to multiparty computation as numeroupimgraphic primitives are
developed over such groups [6, 7, 17]. However, the corsbruof efficient quantum
algorithms to solve the discrete logarithm problem as wsetha factoring problem pre-
vent the use of many of these primitives over those machirjs $ince quantum algo-
rithms seem to be less efficient over non-Abelian groupsetiséncreasingly a need for
developing cryptographic constructions over such mattieaiatructures. The reader
may be aware of the existence of public key cryptosystemsuon groups [15, 16].

Recently, Desmedt et al. studied the problem of designiogrse:-party protocol
over non commutative finite groups for tpassive(or semi-hone3tadversary model
[5]- Their goal is to guarantee unconditional security dymysing a black-box represen-
tation of the finite non-Abelian groufd, -). This assumption means that thearties
can only perform three operations (i, -): the group operatiof\(z,y) — z - y), the
group inversion(z — z~*) and the uniformly distributed group samplifig € G).

Desmedt et al. focused on the existence and the desigprodfate protocols for the
n product functionfg (z1, . . ., z) := x1-. . .-x, Where the input of party; isz;, € G
fori € {1,...,n}. In such a protocol, no colluding sefsof at mostt participants
learn anything about the data hold by any of the remaining bees{ P, ..., P, } \ C.
Desmedt et al. obtained three important results. Firgtif [ 2] (dishonest majority)
thenitis impossible to constructeprivate protocol to computg;. Second, it < [%]
then one can always design a deterministfrivate protocol computingc with an

exponential communication complexity 6f(n (gtjl)Q) group elements. Third, they
built a probabilistic-private protocol computing; with a polynomial communication

complexity ofO(n t?) group elements when< 5018 -

That work leads to two important questions. First, we woikie to know if it is pos-
sible to construct a-private protocol for values of € [Q_QW, (5] — 1} with polyno-
mial communication complexity. Second, Desmedt et al.isstmiction shows that one
cant-privately computefi with polynomial communication cost for amy= O(log n).

A natural issue is to determine the existence and to corisirdeterministi¢-private
protocol with polynomial communication complexity for ethvalues: (ideally, up to
the threshold 5| — 1).

In this article, we give a positive answer to these two qoesti First, we demon-
strate that the random coloring approach and the graphroetisin by Desmedt et al.
can be used to guarantegrivacy for anyt < - (for any fixede > 0). The communi-
cation complexity of our construction @&(n?) group elements. This result is obtained
using percolation theory. To the best of our knowledge,ithise first use of this theory
in the context of multiparty computation. Second, we prexaddeterministic construc-
tion for anyt = O(n'~¢). This scheme has polynomial communication complexity as



well.

This paper is organized as follows. In the next section, weregall the different
reductions performed in [5] to solve thieprivacy issue over non-Abelian groups. In
Sect. 3, we present our randomized construction achievpriyacy for any valug <
77. Which is closed to the theoretical boung| — 1. In Sect. 4, we show how to
construct deterministi¢-private protocols having polynomial communication cast f
anyt = O(n'~¢). In the last section, we conclude our paper with some remgiopen
problems for multiparty computation over non-Abelian tidmx groups.

2 Achieving Secure Computation over Non-Abelian Groups

In this section, we present some of the results and constnsatieveloped by Desmedt
et al. which are necessary to understand our improvememts $ect. 3 and Sect. 4.
First, we recall the definition of secure multiparty compigtain the passive, computa-
tionally unbounded attack model, restricted to deterntim&/mmetric functionalities
and perfect emulation as in [5].

We denote[n] the set of integerg1,...,n}, {0,1}" the set of all finite binary
strings and A| the cardinality of the sed.

Definition 1. We denotef : ({0,1}*)" — {0,1}* ann-input and single-output func-
tion. Let[] be an-party protocol for computing’. We denote the-party input se-
quence by = (z1,...,z,), the joint protocol view of parties in subsétC [n] by
VIEW IH(X), and the protocol output b@UTIL(x). For 0 < ¢ < n, we say thaf ]

is at-private protocol for computing if there exists a probabilistic polynomial-time
algorithm S, such that, for every C [n] with |I| < ¢ and everyx € ({0,1}")", the
random variables

(S(L,xr, f(x)), f(x)) and(VIEW H(x), ouTIL(x))

are identically distributed, where; denotes the projection of theary sequence on
the coordinates if.

In the remaining of this paper, we assume that p&tlgias a personal input € G
(for i € [n]) and the function to be computed is theparty productfc(z1, ..., z,) =
X1 ... Tp.

Desmedt et al. first reduced the problem of constructing@gvaten-party proto-
col for f to the problem of constructing symmetric (strongj-private protocol[ ]’
(see [5] for a detailed definition of symmetric privacy) tomoute the share?-product
function f/,(z,y) := « - y where the inputs: andy are shared amongst theparties.
They demonstrated that iteratifig — 1) times the protoco]|" would give at-private
protocol to computée.



The second reduction occurring in [5] consists of consingca ¢-private n-party
shared2-product protoco[ [’ from a suitable coloring over particular directed graphs.
We will detail the important steps of this reduction as thély serve the understanding
of our own constructions.

Definition 2 ([5]). We call graphG an admissible Planar Directed Acyclic Graph
(PDAG) with share parametef and size parametem(> ¢) if it has the following
properties:

— The nodes of are drawn on a square: x m grid of points (each node @ is
located at a grid point but some grid points may not be ocaliie nodes). The
rows of the grid are indexed from top to bottom and the colufram left to right
by the integers, 2, ..., m. A node ofj at row: and columry is said to have index
(¢,7). G has2 ¢ input nodes on the top row, arfcbutput nodes on the bottom row.

— The incoming edges of a node on rownly come from nodes on roiv— 1, and
outgoing edges of a node on rawnly go to nodes on row-+ 1.

— For each rowi and columny, lety{"”) < ... < ngﬁjj)) denote the ordered column

indices of they(i, j) > 0 nodes on level+ 1 which are connected to nodg j) by
an edge. Then, for eaghe [m — 1], we have:
i,j i,j+1
7751(1‘2‘) <ot
which means that the rightmost node on level 1 connected to nodg, j) is to
the left of (or equal to) the leftmost node on leis¢l1 connected to nodg, j + 1).

An admissible PDAG ha&/ input nodes. The first ones (i.e.(1,1),...,(1,£))
represent the-input nodes while the remaining ones representti®put nodes. Let
C': [m] x [m] — [n] be an-coloring function that associates to each n6deg) of G a
color C(4, j) chosen from a set of possible colors. The following notion will be used
to express the property we expect the graph coloring to lreweder to build[]" .

Definition 3 ([5]). We say that” : [m] x [m] — [n] is at-reliablen-coloringfor the
admissiblePDAG G (with share parametef and size parameten) if for eacht-color
subset/ C [n], there existj* € [¢] andj; € [{] such that:

— There exists a patRATH,, in G from thej*th z-input node to the*th output node,
such that none of the path node colors are in sulisgt is called an/-avoiding
path), and

— There exists ad-avoiding pathPATH, in G from thej; th y-input node to thg*th
output node.

If j, = j* forall I, we say that' is asymmetrict-reliable n-coloring.

Important Remark : Even if the graphg is directed, it is regarded asn-directed
when building thel-avoiding paths in Definition 3.

Desmedt et al. built a protocd][' (G, C) taking as input a grapé and an color-
ing C. We do not detail this protocol in our paper as its internaligie does not have



any influence in our work. The reader can find it in [5]. Howewerorder to ease the
understanding of our work, we recall the relation betweeltiparty protocols over a
non-Abelian groug> and coloring of admissible PDAGs as it appear in [5].

The n participants{ P, ..., P,} are identified by the: colors of the admissible
PDAG G. The input/output nodes of the graghare labeled by the input/output ele-
ments of the groug:. Each edge represents a group element sent from one panticip
to another one. Each internal node contains an intermedihte of the protocol. Those
values are computed, at each nddef G, as the group operation between the elements
along all the incoming edges df from the leftmost one to the rightmost one. This
intermediate value is then redistributed along all the oimg edges of\" using the fol-
lowing Or-0f-O s secret sharing wher@, represents the number of outgoing edges
of nodeN.

Proposition 1 ([5]). Let g be an element of the non-Abelian groGp Denote)\ and

p two integers wherg: € [\]. We create a\-of-A sharing(sq(1),...,s4())) of g by
picking theh — 1 shares{sg(g)}éem\{#} uniformly and independently at random from
G, and computing, (¢) to be the unique element 6fsuch that:

g =54(1) - 54(2) ...+ 54(N)
Then, the distribution of the sharés, (1), ..., s4())) is independent of.
We recall the following important result:

Theorem 1 ([5]). If G is an admissiblePDAG and C' is a symmetrict-reliable n-
coloring for G then[]'(G, C) achieves symmetric stromgprivacy.

The last reduction is related to the admissible PDAG. Desreeal. only consider
admissible PDAGs as defined below and represented in Fig. 1.

Definition 4 ([5]). The admissibI®DAG G;,;(¢',¢) is a¢’ x ¢ directed grid such that:

— [horizontal edges] fori € [¢'] and forj € [¢ — 1], there is a directed edge from
node(i, j + 1) to (i, j),

— [vertical edges] fori € [¢' — 1] and forj € [¢], there is a directed edge from node
(i,7) tonode(z + 1, j),

— [diagonal edges] fori € [¢/ — 1] and forj € {2,...,¢}, there is a directed edge
from node(s, j) to node(i + 1,5 — 1).

According to Definition 2, an admissible PDAG h2$ input nodes and no hori-
zontal edges. Desmedt et al. indicated thattfieput nodes could be arranged along a
column ongG;.; (¢, £) instead of being along the same row as thi@put nodes. They
also explained thai;,; (¢, £) could also be drawn according the requirements of Defini-
tion 2. By rotatingg,,-;(¢', ¢) by 45 degrees anticlockwise, thenput nodes ang-input
nodes oG,,.; (¢, ¢) are now on the same row and the horizontal edgék,ef?’, ¢) have
become diagonal edges which satisfies Definition 2.

A priori, G- (¢',¢) is a rectangular grid. In [5], Desmedt et al. considered sgua
gridsG,.; (¢, £) for which they introduced the following notion.
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Fig. 1. The admissible PDAG;;(¢', ).

Definition 5 ([5]). We say thaC' : [{] x [¢] — [n] is a weaklyt-reliable n-coloring for
Gri (¢, 0) if for eacht-color subsef C [n]:

— There exists ad-avoiding pathP, in G;.;(¢,¢) from a node on the top row to a
node on the bottom row. Such a path is called/aavoiding top-bottom path.

— There exists ad-avoiding pathP, in G;;(¢, ¢) from a node on the rightmost col-
umn to a node on the leftmost column. Such a path is callddamiding right-left
path.

As said in [5], the admissible PDAG requirements (Definit®)rare still satisfied
if we remove fromg,,; some ’'positive slope’ diagonal edges and add some 'negative
slope’ diagonal edges (connecting a nédeg) to node(i+1, j+1), forsomei € [¢'—1]
andj € [¢ — 1]). Such a generalized admissible PDAG is dengigg; .

Lemmal ([5]).LetC : [¢] x [¢] — [n] be a weaklyt-reliable n-coloring for square
admissiblePDAG G.,; (¢, ¢). Then, we can constructtareliable n-coloring for a rect-
angular admissibl&®DAG G g+ (2¢ — 1, ¢).

Thus, Desmedt et al. have demonstrated that it was suffitieget a weaklyt-
reliable n coloring for someg,,.;(¢,¢) in order to construct a-private protocol for
computing then-productj. The cost communication cost of this protocolis— 1)
times the number of edges @§;,; (2¢ — 1, ¢). Since that grid is obtained frog,; (¢, £)
using a mirror, the communication cost of the whole protasaD(n ¢?) group ele-
ments. The constructions that we propose in this paper dogirgs of some grids
gtri (87 é)

3 A Randomized Construction Achieving Maximal Privacy

In this section, we present a randomized construction érgsthret-privacy of the com-

putation off¢ up to 5. Our scheme has a linear share parameterO(n).



We use the same random colori6g,,q for the gridG;,;(¢, ¢) as in [5]. However,
our analysis is based on percolation theory while Desmealt esed a counting-based
argument. We first introduce the following definition whighllustrated in Fig. 2.

Algorithm 1 ColoringC.4n4

Input: A grid Giri(¢, £).
1. For each(i, j) € [¢] x [¢], choose the colo€' (i, j) of node(z, ) independently and uni-
formly at random fronn].

Output: A n-coloring of the grid.

Definition 6. Thetriangular lattice of deptli denotedZ (¢) is a directed graph drawn
over al x (3¢ — 2) grid such that:

— [horizontal edges] foii € [¢] and forj € [¢ — 1], there is a directed edge from node
(i,i+2j)to(i,i+2(j—1)),

— [right downwards edges] foi € [¢ — 1] and forj € {0,...,¢ — 1}, there is a
directed edge from nodg, i + 2 j) tonode(i + 1,5 +2j + 1),

— [left downwards edges] for € [¢ — 1] and forj € [¢ — 1], there is a directed edge
from node(s, 7 + 2 7) to node(i + 1,7 + 25 — 1).

VANV ANVANVAN
DVANVANVANVAN

R VANVANVANVAN
; NN TN

Fig. 2. The triangle7 (5).
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Proposition 2. For any positive integer, we have a graph isomorphism between
Geri(€,£) and7 ().

Proof. Consider the mapping:

Geri(£,0) — T(0)
(@) (5,1 +2(j = 1))

It is easy to see that the nodes of the two graphs are in bigectirrespondence while
the direction of each edge is maintained. a



Theorem 2. For anye > 0, there exists a constant such that ift < 2%6 and? > c.n,
then there exists a weakiyreliable n-coloring for G,,.; (¢, ¢).

Proof. We prove that the coloring’,..,.q Will work with high probability. Lett. =
{ﬁJ where| -] denotes the floor function. Instead of considering the pridiathat
Crana 1S @ weaklyt.-reliable n-coloring for G;,;(¢, ¢), we study the complementary

event. A suitable value fafwill be given at the end of this demonstration.

The coloringC:....q is calledbadif there exists a color sdt C [n] with |I| = ¢, such
that either there are nbavoiding top-bottom paths or there are havoiding right-left
paths. By the union bound, we obtain the following upper ltbomPr(C:..,.4 is bad:

2 Pr(3I C [n], |I| = t., there are nd-avoiding top-bottom paths iG;,; (¢, £))

<2 Z Pr(there are nd-avoiding top-bottom paths i@;,.; (¢, ¢)). (1)
IC[n],|I|=t.

The factor2 in (1) comes from the fact the top-bottom probability is ddoahe right-
left probability due to the symmetry of the giil,.; (¢, £) and the coloring”,4.4-

Next, we demonstrate that for a fixed color et [n] with |I| = ¢., the probability
that there are nd-avoiding top-bottom paths i6,...,4 is exponentially small. Let us
fix the color setl. We call a vertexclosedif its color belongs tol. Otherwise, the
vertex is calledbpen The random coloring’...4 Of each vertex is equivalent to open it
independently and randomly with probabiljy= 1 — % An [-avoiding path is simply
anopen pathTherefore, we get:

Pr(there are nd-avoiding top-bottom paths i6;,.; (¢, ¢))
= Pr,(there are no open top-bottom pathsjin; (¢, ¢))
=1 — Prp(there is an open top-bottom pathgp.; (¢, ¢)) (2)

We have the following result.
Lemma 2 ([2]). The triangular latticeZ (¢) has the following property:

Pr,(there is an open top-bottom pathT(¢))
+
Pr,(there is a closed right-left path iff (¢))
=1

When we combine Lemma 2, Proposition 2 and (2), we obtaindhewing:

Pr(there is nal-avoiding top-bottom path i6,,.;(¢, ¢))

Pr,(there is a closed right-left path ih(¢))

Pri_p(there is an open right-left path iA(¢)) 3)



In (3), Pr1_,(-) means that we open each vertex with probabiity p. We have the
following result from percolation theory.

Lemma 3 ([13]).LetT be the triangular lattice in the plane. Then, the criticabpa-
bility of site percolatiorps(T") is equal to%.

When the open probability is less than the critical probgbithe percolation has the
following properties (see for example Chapter 4, Theorem[2]).

Lemma 4 ([9]).If p < pi(T), then there is a constant= c(p),
Pr,(0 ) < e ™

where{z -~} is the event that there is an open path frerto a point in.S,, (z) with
Sp(x) :={y :d(z,y) =n} andd(z,y) denotes the distance betweeandy.

Remark: The value0 from Lemma 4 represent the zero elemenZok Z when the
graph is represented as a lattice over that set. In the cabe afiangular lattice de-
picted as Fig. 2, the valuican be identified to the node, 1).

e < 5= < pi(T). Using Lemma 4, we get:

In our case, we hava:— p =

Pr,_,(there is an open right-left path i(¢)) < ¢ Pry_,(0 £3) < e (a)
The first inequality is due to the fact that any right-leftipaas length at leagt — 1)
in 7 (¢). Combining (1)-(4), we obtain:

€

Pr(CTand is baC) <2 (:) [6*0(471)
Thus, if we choosé := ¢, n for some large enough constant we have:

Pr(Crana is bad < 2%
which guarantees the fact thé@t.... is a weaklyt.-reliable n-coloring for G;,.;(¢, ¢)
with overwhelming probability im. a

Corollary 1. There exists a black bax-private protocol for f¢ with communication
complexityO(n?®) group elements where = | 5% |- Moreover, for anys > 0, we
can construct a probabilistic algorithm, with run-time gabmial inn andlog(5—1),
which outputs a protoco][ for f¢ such that the communication complexity[dfis
O(n?log?®(6~1)) group elements and the probability that is nott -private is at most
0.

Proof. The existence of the protocol is a direct consequence of FEne@ as well as
the different reductions exposed in Sect. 2. As our constucequirest = O(n),
we deduce that the communication cost of the protocol com@ut; is O(n?). The
justification of the running time of the algorithm and the lpability of failure ¢ is
identical to what is done in [5]. a



We showed that it was possible to build a randomized algmrtmachieve[ QiEJ -

private computation of ; usingO(n?) group elements. Even if the probability of fail-
ure of our previous construction is small, we would like toncve the randomized
restriction so that we can get a (deterministic) protocoiclhs always guaranteed to
succeed. In [5], Desmedt et al. only provided determinstatocols to computgc in
polynomial communication cost wheén= O(logn). In the next section, we present a
deterministic construction for any= O(n'~¢) wheree is any positive constant. Our
construction requires polynomial communication compieas well.

4 A Deterministic Construction for Secure Computation

In this section, we show how to build a determinigtiprivate protocol to computés
with polynomial complexity cost for anyy= O(n'~¢). First, we will focus on particu-
lar pairs(t, n). Second, we generalize our result to dtyn) with t = O(n!~¢).

We recursively construct our admissible PD&G.. and its coloring’,.... Letd €
N\ {0, 1} be a constant. Denotg; the binomial coefficien* —,').
Theorem 3. For any positive integerk, there is a weaklyt,-reliable nj-coloring
Crec(€y) for the square admissibl®DAG G,..(¢;), where the parameters are:

tei=dF —1,np = (2d — 1)" and ¢, = B (Ba + .
Proof. We prove the theorem by induction én
k=1:Wehavel; =d—1,n; =2d—1andl; = By. We seG,.c.(¢1) := Giri (41, £1).

We defineC,..(¢1) as being the combinatorial colorirtg.,.,, designed in [5] and re-
called as Algorithm 2.

Algorithm 2 Coloring Coms

Input: A L x L grid whereL = ().
1. Letly,..., I denote the sequence of dltcolor subsets ofN] (in some ordering).
2. For eacH(7, j) € [L] x [L], define the colo€’(z, ) of node(%, j) in the grid to be any color
in the setSi,j = [N] \ (IL U IJ)

Output: A N-coloring of the grid.

Desmedt et al. noticed that, even if we removed the diagal@fronG,,; (¢1, £1),
we still had the existence dfavoiding top-bottom and right-left paths. Thus, we as-
sume thag,..(¢1) has no such edges so tltat.(¢;) is a square grid the side length of
which is¢; nodesg,...(¢1) is an admissible PDAG.

k > 1: Suppose we already have the construction and coloring,fare recursively
CoNStrucG, cc(Ci11) from G e.(4x).



We first build the block gridB by copying(By + 1) x (Bg 4+ 1) timesG,...(¢1). The
connections between two copiestt.(¢;) are as follows. Horizontally, we draw a di-
rected edge from nodg, 1) in the right-hand side copy to nodg ¢;) in the left-hand
side copy fori € [¢;] (i.e. we horizontally connect nodes at the same level).id4lly,
we draw a directed edge from nod@, ;) in the top side copy to nodgd, j) in the
bottom side copy foy € [¢1] (i.e. we vertically connect nodes at the same level).

The blockBis a (B4 (Ba + 1)) x (B4 (Ba + 1)) grid. It has the following property the
proof of which can be found in Appendix A.

Proposition 3. The block gridB admits a(2 d — 1)-coloring (just use the sam@.,,»
for each copy o6,..(¢1)), such that for anyfd — 1)-color subset/ C [2d — 1], there
are B4 + 1 horizontal (vertical)/-avoidingstraight linesin B.

Now, we construcg,..(¢x+1) and its coloring’,....(¢x+1) as follows. We replace each
node inG,..(¢x) by a copy ofB. If the node ofG,..(¢x) was colored by the color
¢ € [ng], then we coloB with the set of color§(2d —1)(c—1)+ 1, (2d—1)(c—1) +
2,...,(2d —1) ¢}, usingC.oms- All the edges within each copy @ remain identical
in grac(ékJrl)-

Now, we show how to connect two copies Bf We first focus on vertical connec-
tions. Consider an edge #)...(¢;) from a node in the-th row to another node in the
(i + 1)-th row. Since these two nodes have been replaced by twosopie, we de-
note the nodes on the top copy (i.e. those correspondingetaddes of the-th row

iN Grec(fr)) @svia, ..., v1.8,,V2,1,- - -, UB,+1,8, and the nodes on the bottom copy as
W11y, W1,B4,W2,15--+,WB;+1,By+

For each(i, j) € [Bq] x [Ba], we add a directed edde; ;, w; j+i—1) iN Gree(Urt1). If

the index(j + ¢ — 1) is greater thaBq, w; ;+;—1 is the nodew; 1 ;4;—1-5,. Figure 3
gives the example faf = 2. The connection process works similarly for two consec-
utive columns where we replace each horizontal edge om(¢;) by Bg different
edges iG,ec(frkt1)-

It is clear that the number of nodes on each side of the sdyaré/.+1) is:

U1 = Ba(Ba+1) -4y, = BE (B + 1)

and the number of colors used..(fx+1) isngr1 = (2d—1) -nx = (2d — 1)’““.

The gridG,..(¢x+1) obtained by this recursive process is also an admissibleG@i.fe
to the horizontal/vertical connection processes betweertbpies ofB (as well as two
copies 0fG,...(¢1) inside B).

The last point to prove is that for anty,-color subsetl C [ny1], there is anl-
avoiding top-bottom (and right-left) path @...(¢x+1). We only prove the existence
of a top-bottom path in this paper as the demonstration oéxiietence for a right-left
path is similar. For each € [ny], we define the sel; as:

L=In{@d-1)(G—-1)+1,2d—1)G—-1)+2,...,(2d—1)j}
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Fig. 3. How to vertically connect two copies @& whend = 2.

Since

L]+ T | = ) = tea = ™ 1 ()
and eachl;| < 2d — 1, there are at leagt;, — t) subsets having at mo&t — 1)
elements. Indeed, in the opposite case, we would have:

L+ 4 || >d (g — (g —tp — 1)) =d - d¥ = dFF,

which would contradict (5). Assume th&tC [n] is the set of these indices (i.e. for
eachj € S, |I;| < d—1). We haveing] \ S| < tx. By the induction hypothesis, there
is a([nk] \ S)-avoiding top-bottom path ig,...(¢), i.e., the colors used on this path
all belong toS. Letwy, . .., v, be the vertices of the path and denote the color of node
vj asc; € S(j € [m]).

Now, we show there is anl-avoiding top-bottom path inG,c.(¢x+1). In
Grec(r+1), €ach nodey; has been replaced by a co@y,, with colors in {(2d —
)(c; —1)+1,(2d = 1)(c; — 1) +2,...,(2d — 1) ¢;}. Since the color sef.; sat-
isfies|I.;| < d — 1, by Proposition 3 we deduce that there &ghorizontal and3,
vertical I, -avoiding paths in,, .

One can show that this property involves the existence of-amoiding top-bottom
path inG,e.(¢x+1). This top-bottom path is the connection of n-avoiding path
(from B,,), anl.,-avoiding path (fromB,,),. . ., anl.  -avoiding path (fronB,, ). The
reader can find more details about this process in Appendixdmilar demonstration
leads to the existence of dravoiding right-left path irG,..(¢x+1) which achieves the
demonstration of our theorem. O

The communication complexity of the protocol tg-privately compute the function
fa(x1,...,m,,) using the previous admissible PDAGn,, £ ) group elements whe-
re:

2(2d—1)

O < Bs(Bd + 1)k71 < 2(2d71)k « 2(2d71)(k71) < 22k(2d—1) < n,@



1
Note that the last inequality comes frath = n,™2 ®*" "

Now, we generalize our result to aig; n) wheret = O(n'~¢) for any fixed pos-
itive €. The clasO(n'~¢) is the set of all functiong such that3r; > 03ng > 0 :
Vn > ng f(n) < 7pn'7C In our case, the functiofi is the privacy levet. Our main
result is stated as follows.

Theorem 4. For any fixede > 0, for any fixedr > 0, there exists a constant . € N,
such that for anyn > n. ., if t < 7n!™¢, then there exists a black-baxprivate
protocol to computef with communication complexity polynomial in Moreover,
there is a deterministic polynomial time algorithm to cauast the protocol.

Proof. We fix e > 0 andr > 0. We setd = 2/¥1~! andk = [log(,,_)n|. We have

d > 2.1fn>2d— 1thenk > 1. In such a condition, we can apply Theorem 3 for
the pair(k, d). There exists #,-private protocol to compute the valge (x4, ..., zn, )
usingO(n Eﬁ) group elements whetg, ny, ¢, are defined as in Theorem 3. It is clear
that the construction alsg-privately computesc(z1, ..., z,/) for any (¢',n") such
thatt < t, andn’ > ny. So, we only need to shown'!=¢ < t,, n > n, and

£}, = poly(n). Due to our choice of andk, we have:

ne < (2d — 1)L10g<2d71> nl < (2d — 1)10g(2d71) " <p

And:
logo d logg d
logo (2d—1) logo 2d
t > dlosea—nyn] _ 1 > do8ea-nyn=1 _q > % —-1> neet 1
Sinced = 2/#1-1, we get:
r21-1
t >n%1 1> % 1> nt i 1
I N E T T

2
1

has an infinite limit.

Sincee is a fixed positive constant, the mapping— 2(% —
ThereforeTn. . >0 : Vn > n., 22— >7+ L

ol 21-1 nl—e-

Remember that we early required> 2d — 1 in order to use Theorem 3. If we set
Ne,r = max(2d — 1,7, . ) then:

ng <n
n Z Ne,r {tk 2 Tnl—e Zt
. . 2(2d-1) . .
It remains to argue aboui,. Sincen;, < n, we haveX;, < n'ke2@d-D, Sinced is
independent from, ;. is upper bounded by a polynomialin a

The previous theorem claims that for any fixedf n is chosen large enough then
we cant-privately computef for anyt = O(n!=€). Such an asymptotic survey is also



performed in [5]. However, in practical applications, thember of participants is not
asymptotically large. The deterministic construction bsshedt et al. has polynomial
cost whent = O(logn). We now present a result valid for any group sizevhich
guarantees privacy for largés than in [5] using polynomial communication as well.

Theorem 5. For any positive integen no smaller tharB, there exists a black-box pro-
tocol for f¢ which is(["1°;32] — 1)-private. It requires the: participants to exchange
O(n®%) group elements. Moreover, there is a deterministic polyiabtime algorithm to

construct the protocol.

Proof. We setd = 2 andk := |logs(n)]. The protocol obtained using Theorem 3 has
142 logg 2

parametet; > ”10—532 — landn; < n. We haveBB; = 3. Therefore?;, < *—;
Thus, we obtainug 2 = O(n®). O

5 Conclusion and Open Problems

In this paper, we first demonstrated that we could constrymoaabilistict-private
protocol computing the-product function over any non-Abelian group fmyt up to
o1 (for any fixed positiver), thus nearly matching the known upper boyrgd — 1.

As the communication complexity of our construction($n?) group elements, this
result answers one of the questions asked by Desmedt enakrong the largest col-
lision resistance achievable with an admissible PDAG a&f pialynomial inn. Note that
Desmedt et al. indicated the discovery of a constructioivior) = (24, 11) improving
locally their own theoretical bounglg = sincell ~ %482. Our result demonstrates the
existence of such a construction for any fixed positiya [5], we have the particular
casec = 0.182). Since the scheme developed in [5] (exclusively validifer 5-;=)
only requiresO(n t?) elements to be exchanged, a direction to further invegtigahe
existence of a (randomizedprivate protocol for any < [ ] — 1 having at most the

cost of Desmedt et al.'s scheme.

Second, we showed that it was possible to construct a detestini-privaten-party
protocol to computg having a polynomial communication cost for any O(n'=¢).
For practical purpose, one may want to optimize the choigeaohmeters in our con-
struction. For example, we have proved that one coyddvately computef; for any

. . nlogs 2
(t,n) satisfyingt < [ 5 W -1

Desmedt et al. argued that the reduction from a protocol caimg then-product
to a subroutine computing the sharegroduct extended to the more general function
fG(xl, ce s Tm) =T - To - ... Ty, Wherem > n and each of the parties holds one
or more input values. This ensured the validity of their pool to securely computﬁg
as well. Since the constructions that we presented arepktiadmissible PDAGS, our
results are also valid to compufg.

Our work leads to the following two questions. First, is itspible to reduce the
communication cost when= O(n'~¢)? Second, can we generalize this approach to



design a deterministic polynomial communication cost atgm for anyt¢ up to the
threshold[ 5| — 1?

Apart from the previous points which constitute directibmsmprove the security
for the passive adversary model, a problem which requitesitadn is the possibility
of achieving secure computation fif: against malicious parties. Indeed, even if mul-
tiparty computation can be used with small groups (as in #se ©f the Millionaires’
problem [19]), the general purpose is to enable large conzation groups to perform
common computations and the larger the number of partitisasnore likely (at least)
one of them will deviate from the given protocol.
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A Proof of Proposition 3

Let I be a(d — 1)-color subset of2d — 1]. In [5], Desmedt et al. demonstrated that
there were d-avoiding top-bottom path andfaavoiding right-left path irG;,.; (¢1, ¢1).
They also showed that those two paths were straight liness,Tdne can remove the
diagonal edges df;.;(¢1, /1) while preserving those paths. This means that there ex-
ist aI-avoiding top-bottom path and/aavoiding right-left path irG,..(¢1) which are
straight lines.

SinceBis a{B;+1) x (Bs+1)-copy ofG,..(¢1) and, due to the vertical/horizontal
connections of these copies, we deduce that theré®re- 1) I-avoiding top-bottom
paths and B, + 1) I-avoiding right-left paths irB. Moreover, each of these paths is a
straight line.

B Connection of Color Avoiding Paths

It was shown in the proof of Theorem 3 that each blétk had5,; horizontal and3,
vertical I..,-avoiding paths. In this appendix, we show how to construbtazoiding
top-bottom path inG,..(¢x+1). Our path will start at the top oB,, and ends at the
bottom of B, .



Every grid from the family(G,..(¢x)),~, iS a square grid. Thus, the sequence of
blocksB,,, ..., B,,, iNn G...(¢x+1) is determined by the position &,, as well as the
m-tuple of letters from{ £, R, T, B} (Left, Right, Top, Bottom) indicating the output
side of the bloclB,, for i € [m]. Note that the last letter of the tuple is alwapssince

the I-avoiding top-bottom path ends at the bottomBf .

This tuple has the property the two consecutive letters ain@ opposite to each
other (i.e, one cannot hayg, R), (R, £), (T, B) or (B, T)). This means that you leave
a block on a different side that you entered it. The readercback the correctness of
this claim by a simple recursive process on the paramiet@his property is trivially
true fork = 1 sinceG,..(¢1) = Giri(¢1). The recursion follows from the path construc-
tion that we will design below.

Proposition 4. Let: be any element din|. Assume thalV" is any node on a side of
B,, belonging to al.,-avoiding straight line path. For each other sid¢g of B,,, we
can construct d,., -avoiding path from\V to any of thg3; + 1) nodes or&; belonging
to a I.,-avoiding straight line path.

Proof. We only provide a proof wheV is on the top side oB3,, (the three other
cases are similar). The three possible output side$ta® andR. The blockB,, is
a-(Bg+ 1) x (Bg + 1)-copy of the original gridj,...(¢1). Thus,B,, can be treated as a
(Bq+1) x (Bg+ 1) array of gridsJ,..(¢1). Based on this observation, we will use the
terminologygrid-row (respectivelygrid-column to denote a set oB; + 1 horizontal
(respectively vertical) grid§,...(¢1) in B,,.

1. &; = B. The verticall,., -avoiding path starting at nod¥ intersects th&orizontal
1..,-avoiding path located within the bottom grid-row Bf,, at nodeZ. That horizontal
path intersects each of th#; + 1 vertical I.,-avoiding paths (one within each grid-
column)atz,,...,Zg,+1. Note thatZ = Z,, for someu € [B;+ 1]. Once we are at one
of theZ;’s, we simply go vertically downwards to the noﬂfj‘- located at the bottom
side of the blockB,, .

Thus, we can construct a path fro¥hto each of thé3; + 1 output nodes on the bottom
side of B,,, belonging to the vertical.,-avoiding paths. Those paths &%, Z, Z;, N;)
forj € [Bq + 1).

2. &; = fR. The verticall..,-avoiding path starting at nod¥ intersects théorizontal
1..,-avoiding path located within the top grid-row Bf,, at nodeZ. That horizontal path
intersects thevertical I.,-avoiding path located within the rightmost grid-column of

B,, at nodeZ. This vertical path intersects each of thg+ 1 horizontal I.,-avoiding
paths (one within each grid-row) a, ... ,fgdﬂ. As before, we geff = f# for some

i € [Bq+1]. Once we are at one of tlf@’s, we horizontally go rightwards to the node
j\/; located on the right hand side of the bloBk; .

Thus, we can construct a path fraM to each of the3; + 1 output nodes on the
right hand side of3,; belonging to the horizontdl., -avoiding paths. Those paths are



N, Z,Z,Z;,N}) for j € [By + 1.
3.6, = £. This is analogous to the previous case. a

We can finally construct &-avoiding top-bottom path if,..(¢x+1). We denote the
m-tuple of output sides a5, ..., S,,). As previously said, we havey,,, = 8.

We start any nodeN; located on the top side &,,, and on a vertical,., -avoiding
path. Using Proposition 4, we can conn@ét to any of thel5; + 1 nodes on sidé&;
of B,, using al., -avoiding path. An important remark is that each block ofihmle
grid Gre.(Yi41) isaset of By + 1) x (By + 1) identical copies 0f,....(¢1) (including
the coloring). As a consequence, thése+ 1 nodes have the same location in their
respective copies @,..(¢1). Given the connection process between any pair of blocks
within G,...(¢x+1), one of thesd3,; + 1 nodes must be connected to a nddefrom
block B,, belonging to a.,-avoiding straight line path. Similarlyy, is connected via
al.,-avoiding path inB,,, to a nodeN; from B,,, belonging to al..,-avoiding straight
line path. If we repeat this process for each of the remaihlogks, we obtain a set of
m — 1 nodesNy, ..., N,,_1. The last nodéV,,,_; can be connected to a nodg, on
the bottom side oB,,,, using al.., -avoiding path. Thusy; (top side ofG,c.(¢x+1)) is
connected taV,, (bottom side 0l,..(¢x+1)) using al-avoiding path which achieves
the demonstration of our theorem.

Remark: As claimed above, this construction involves that the twasecutive side
letters of them-tuple cannot be opposite to each other.



