
Compact Proofs of Retrievability

Hovav Shacham1 and Brent Waters2?

1 University of California, San Diego
hovav@cs.ucsd.edu

2 University of Texas, Austin
bwaters@csl.sri.com

Abstract. In a proof-of-retrievability system, a data storage center con-
vinces a verifier that he is actually storing all of a client’s data. The
central challenge is to build systems that are both efficient and provably
secure – that is, it should be possible to extract the client’s data from
any prover that passes a verification check. In this paper, we give the first
proof-of-retrievability schemes with full proofs of security against arbi-
trary adversaries in the strongest model, that of Juels and Kaliski. Our
first scheme, built from BLS signatures and secure in the random oracle
model, has the shortest query and response of any proof-of-retrievability
with public verifiability. Our second scheme, which builds elegantly on
pseudorandom functions (PRFs) and is secure in the standard model, has
the shortest response of any proof-of-retrievability scheme with private
verifiability (but a longer query). Both schemes rely on homomorphic
properties to aggregate a proof into one small authenticator value.

1 Introduction

In this paper, we give the first proof-of-retrievability schemes with full proofs of
security against arbitrary adversaries in the Juels-Kaliski model. Our first scheme
has the shortest query and response of any proof-of-retrievability with public
verifiability and is secure in the random oracle model. Our second scheme has the
shortest response of any proof-of-retrievability scheme with private verifiability
(but a longer query), and is secure in the standard model.

Proofs of storage. Recent visions of “cloud computing” and “software as a ser-
vice” call for data, both personal and business, to be stored by third parties, but
deployment has lagged. Users of outsourced storage are at the mercy of their
storage providers for the continued availability of their data. Even Amazon’s S3,
the best-known storage service, has recently experienced significant downtime.3

In an attempt to aid the deployment of outsourced storage, cryptographers
have designed systems that would allow users to verify that their data is still
? Supported by NSF CNS-0749931, CNS-0524252, CNS-0716199; the US Army Re-

search Office under the CyberTA Grant No. W911NF-06-1-0316; and the U.S. De-
partment of Homeland Security under Grant Award Number 2006-CS-001-000001.

3 See, e.g., http://blogs.zdnet.com/projectfailures/?p=602.

available and ready for retrieval if needed: Deswarte, Quisquater, and Säıdane [8],
Filho and Barreto [9], and Schwarz and Miller [15]. In these systems, the client
and server engage in a protocol; the client seeks to be convinced by the protocol
interaction that his file is being stored. Such a capability can be important to
storage providers as well. Users may be reluctant to entrust their data to an
unknown startup; an auditing mechanism can reassure them that their data is
indeed still available.

Evaluation: formal security models. Such proof-of-storage systems should be
evaluated by both “systems” and “crypto” criteria. Systems criteria include: (1)
the system should be as efficient as possible in terms of both computational
complexity and communication complexity of the proof-of-storage protocol, and
the storage overhead on the server should be as small as possible; (2) the system
should allow unbounded use rather than imposing a priori bound on the number
of audit-protocol interactions4; (3) verifiers should be stateless, and not need to
maintain and update state between audits, since such state is difficult to maintain
if the verifier’s machine crashes or if the verifier’s role is delegated to third parties
or distributed among multiple machine.5 Statelessness and unbounded use are
required for proof-of-storage systems with public verifiability, in which anyone
can undertake the role of verifier in the proof-of-storage protocol, not just the
user who originally stored the file.6

The most important crypto criterion is this: Whether the protocol actually
establishes that any server that passes a verification check for a file – even a
malicious server that exhibits arbitrary, Byzantine behavior – is actually storing
the file. The early cryptographic papers lacked a formal security model, let alone
proofs. But provable security matters. Even reasonable-looking protocols could
in fact be insecure; see Appendix C of the full paper [16] for an example.

The first papers to consider formal models for proofs of storage were by
Naor and Rothblum, for “authenticators” [14], and by Juels and Kaliski, for
“proofs of retrievability” [12]. Though the details of the two models are different,
the insight behind both is the same: in a secure system if a server can pass an
audit then a special extractor algorithm, interacting with the server, must be
able (w.h.p.) to extract the file.7

4 We believe that systems allowing a bounded number of interactions can be useful,
but only as stepping stones towards fully secure systems. Some examples are bounded
identity-based encryption [11] and bounded CCA-secure encryption [7]; in these
systems, security is maintained only as long as the adversary makes at most t private
key extraction or decryption queries.

5 We note that the sentinel-based scheme of Juels and Kaliski [12], the scheme of
Ateniese, Di Pietro, Mancini, and Tsudik [3], and the scheme of Shah, Swaminathan
and Baker [17] lack both unbounded use and statelessness. We do not consider these
schemes further in this paper.

6 Ateniese et al. [1] were the first to consider public verifiability for proof-of-storage
schemes.

7 This is, of course, similar to the intuition behind proofs of knowledge.

A simple MAC-based construction. In addition, the Naor-Rothblum and Juels-
Kaliski papers describe similar proof-of-retrievability protocols. The insight be-
hind both is that checking that most of a file is stored is easier than checking
that all is. If the file to be stored is first encoded redundantly, and each block of
the encoded file is authenticated using a MAC, then it is sufficient for the client
to retrieve retrieves a few blocks together with their MACs and check, using his
secret key, that these blocks are correct. Naor and Rothblum prove their scheme
secure in their model.8 The simple protocol obtained here uses techniques sim-
ilar to those proposed by Lillibridge et al. [13]. Signatures can be used instead
of MACs to obtain public verifiability.

The downside to this simple solution is that the server’s response consists of
λ block-authenticator pairs, where λ is the security parameter. If each authen-
ticator is λ bits long, as required in the Juels-Kaliski model, then the response
is λ2 · (s+ 1) bits, where the ratio of file block to authenticator length is s : 1.9

Homomorphic authenticators. The proof-of-storage scheme described by Ate-
niese et al. [1] improves on the response length of the simple MAC-based scheme
using homomorphic authenticators. In their scheme, the authenticators σi on
each file block mi are constructed in such a way that a verifier can be convinced
that a linear combination of blocks

∑
i νimi (with arbitrary weights {νi}) was

correctly generated using an authenticator computed from {σi}.10
When using homomorphic authenticators, the server can combine the blocks

and λ authenticators in its response into a single aggregate block and authen-
ticator, reducing the response length by a factor of λ. As an additional benefit,
the Ateniese et al. scheme is the first with public verifiability. The homomorphic
authenticators of Ateniese et al. are based on RSA and are thus relatively long.

Unfortunately, Ateniese et al. do not give a rigorous proof of security for
their scheme. In particular, they do not show that one can extract a file (or
even a significant fraction of one) from a prover that is able to answer auditing
queries convincingly. The need for rigor in extraction arguments applies equally
to both the proof-of-retrievability model we consider and the weaker proof of
data possession model considered by Ateniese et al.11

Our contributions. In this paper, we make two contributions.

1. We describe two new short, efficient homomorphic authenticators. The first,
based on PRFs, gives a proof-of-retrievability scheme secure in the stan-

8 Juels and Kaliski do not give a proof of security against arbitrary adversaries, but
this proof is trivial using the techniques we develop in this paper; for completeness,
we give the proof in Appendix D of the full paper [16].

9 Naor and Rothblum show that one-bit MACs suffice for proving security in their less
stringent model, for an overall response length of λ ·(s+1) bits. The Naor-Rothblum
scheme is not secure in the Juels-Kaliski model.

10 In the Ateniese et al. construction the aggregate authenticator is
Q
i σ

νi
i mod N .

11 For completeness, we give a correct and fully proven Ateniese-et-al.–inspired, RSA-
based scheme, together with a full proof of security, in Appendix E of the full pa-
per [16].

dard model. The second, based on BLS signatures [5], gives a proof-of-
retrievability scheme with public verifiability secure in the random oracle
model.

2. We prove both of the resulting schemes secure in a variant of the Juels-Kaliski
model. Our schemes are the first with a security proof against arbitrary
adversaries in this model.

The scheme with public retrievability has the shortest query and response of any
proof-of-retrievability scheme: 20 bytes and 40 bytes, respectively, at the 80-bit
security level. The scheme with private retrievability has the shortest response
of any proof-of-retrievability scheme (20 bytes), matching the response length
of the Naor-Rothblum scheme in a more stringent security model, albeit at the
cost of a longer query. We believe that derandomizing the query in this scheme
is the major remaining open problem for proofs of retrievability.

1.1 Our Schemes

In our schemes, as in the Juels-Kaliski scheme, the user breaks an erasure en-
coded file into n blocks m1, . . . ,mn ∈ Zp for some large prime p. The erasure
code should allow decoding in the presence of adversarial erasure. Erasure codes
derived from Reed-Solomon codes have this property, but decoding and encoding
are slow for large files. In Appendix B of the full paper [16] we discuss how to
make use of more efficient codes secure only against random erasures.

The user authenticates each block as follows. She chooses a random α ∈ Zp
and PRF key k for function f . These values serve as her secret key. She calculates
an authentication value for each block i as

σi = fk(i) + αmi ∈ Zp .

The blocks {mi} and authenticators {σi} are stored on the server. The proof
of retrievability protocol is as follows. The verifier chooses a random challenge
set I of l indices along with l random coefficients in Zp.12 Let Q be the set
{(i, νi)} of challenge index–coefficient pairs. The verifier sends Q to the prover.
The prover then calculates the response, a pair (σ, µ), as

σ ←
∑

(i,νi)∈Q

νi · σi and µ←
∑

(i,νi)∈Q

νi ·mi .

Now verifier can check that the response was correctly formed by checking that

σ
?= α · µ+

∑
(i,νi)∈Q

νi · fk(i) .

It is clear that our techniques admit short responses. But it is not clear that
our new system admits a simulator that can extract files. Proving that it does is
quite challenging, as we discuss below. In fact, unlike similar, seemingly correct
schemes (see Appendix C of the full paper [16]), our scheme is provably secure
in the standard model.
12 Or, more generally, from a subset B of Zp of appropriate size; see Section 1.1.

A scheme with public verifiability. Our second scheme is publicly verifiable. It
follows the same framework as the first, but instead uses BLS signatures [5]
for authentication values that can be publicly verified. The structure of these
signatures allows for them to be aggregated into linear combinations as above.
We prove the security of this scheme under the Computational Diffie-Hellman
assumption over bilinear groups in the random oracle model.

Let e : G × G → GT be a computable bilinear map with group G’s support
being Zp. A user’s private key is x ∈ Zp, and her public key is v = gx ∈ G along
with another generator u ∈ G. The signature on block i is σi =

[
H(i)umi

]x.
On receiving query Q = {(i, νi)}, the prover computes and sends back σ ←∏

(i,νi)∈Q σ
νi
i and µ←

∑
(i,νi)∈Q νi ·mi. The verification equation is:

e(σ, g) ?= e
(∏
(i,νi)∈Q

H(i)νi · uµ, v
)
.

This scheme has public verifiability: the private key x is required for generating
the authenticators {σi} but the public key v is sufficient for the verifier in the
proof-of-retrievability protocol.

Parameter selection. Let λ be the security parameter; typically, λ = 80. For the
scheme with private verification, p should be a λ bit prime. For the scheme with
public verification, p should be a 2λ-bit prime, and the curve should be chosen so
that discrete logarithm is 2λ-secure. For values of λ up to 128, Barreto-Naehrig
curves [4] are the right choice; see the survey by Freeman, Scott, and Teske [10].

Let n be the number of blocks in the file. We assume that n � λ. Suppose
we use a rate-ρ erasure code, i.e., one in which any ρ-fraction of the blocks
suffices for decoding. (Encoding will cause the file length to grow approximately
(1/ρ)×.) Let l be the number of indices in the query Q, and B ⊆ Zp be the set
from which the challenge weights νi are drawn.

Our proofs – see Section 4.2 for the details – guarantee that extraction will
succeed from any adversary that convincingly answers an ε-fraction of queries,
provided that ε − ρl − 1/#B is non-negligible in λ. It is this requirement that
guides the choice of parameters.

A conservative choice is ρ = 1/2, l = λ, and B = {0, 1}λ; this guarantees
extraction against any adversary.13 For applications that can tolerate a larger
error rate these parameters can be reduced. For example, if a 1-in-1,000,000
error is acceptable, we can take B to be the set of 22-bit strings and l to be 22;
alternatively, the coding expansion 1/ρ can be reduced.

A tradeoff between storage and communication. As we described our schemes
above, each file block is accompanied by an authenticator of equal length. This

13 The careful analysis in our proofs allows us to show that, for 80-bit security, the
challenge coefficients νi can be 80 bits long, not 160 as proposed in [2, p. 17]. The
smaller these coefficients, the more efficient the multiplications or exponentiations
that involve them.

gives a 2× overhead beyond that imposed by the erasure code, and the server’s
response in the proof-of-retrievability protocol is 2× the length of an authenti-
cator. In the full schemes of Section 3, we introduce a parameter s that gives
a tradeoff between storage overhead and response length. Each block consists
of s elements of Zp that we call sectors. There is one authenticator per block,
reducing the overhead to (1 + 1/s)×. The server’s response is one aggregated
block and authenticator, and is (1 + s)× as long as an authenticator. The choice
s = 1 corresponds to our schemes as we described them above and to the scheme
given by Ateniese et al. [1].14

Compressing the request. A request, as we have seen, consists of an l element
subset of [1, n] together with l elements of the coefficient set B, chosen uniformly
and independently at random. In the conservative parametrization above, a re-
quest is thus λ·

(
dlg ne+λ

)
bits long. One can reduce the randomness required to

generate the request using standard techniques,15 but this will not shorten the
request itself. In the random oracle model, the verifier can send a short (2λ bit)
seed for the random oracle from which the prover will generate the full query.
Using this technique we can make the queries as well as responses compact in our
publicly verifiable scheme, which already relies on random oracles.16 Obtaining
short queries in the standard model is the major remaining open problem in
proofs of retrievability.

We note that, by techniques similar to those discussed above, a PRF can be
used to generate the per-file secret values {αj} for our privately verifiable scheme
and a random oracle seed can be used to generate the per-file public generators
{uj} in our publicly verifiable scheme. This allows file tags for both schemes to
be short: O(λ), asymptotically.

We also note that subsequent to our work Bowers, Juels, and Oprea [6] pro-
vided a framework, based on “inner and outer” error correcting codes, by which
they describe parameterizations of our approach that trade off the cost of a sin-
gle audit and the computational efficiency of extracting a file a series of audit
requests. In our work we have chosen to put emphasis on reducing single au-
dit costs. We envision an audit as a mechanism to ensure that a file is indeed
available and that a file under most circumstances will be retrieved as a sim-
ple bytestream. In a further difference, the error-correcting codes employed by
Bowers, Juels, and Oprea are optimized for the case where ε > 1/2, i.e., for

14 It would be possible to shorten the response further using knowledge-of-exponent
assumptions, as Ateniese et al. do, but such assumptions are strong and nonstandard;
more importantly, their use means that the extractor can never be implemented in
the real world.

15 For example, choose keys k′ and k′′ for PRFs with respective ranges [1, n] and B.
The query indices are the first l distinct values amongst f ′

k′(1), f ′
k′(2), . . .; the query

coefficients are f ′′
k′′(1), . . . , f ′′

k′′(l).
16 Ateniese et al. propose to eliminate random oracles here by having the prover gen-

erate the full query using PRF keys sent by the verifier [2, p. 11], but it is not clear
how to prove such a scheme secure, since the PRF security definition assumes that
keys are kept secret.

when the server answers correctly more than half the time. By contrast, our
techniques scale to any small (but nonnegligible) ε. We believe that this frees
systems implementers from having to worry about whether a substantial error
rate (for example, due to an intermitent connection between auditor and server)
invalidates the assumptions of the underlying cryptography.

1.2 Our Proofs

We provide a modular proof framework for the security of our schemes. Our
framework allows us to argue about the systems unforgeability, extractability,
and retrievability with these three parts based respectively on cryptographic,
combinatorial, and coding-theoretical techniques. Only the first part differs be-
tween the three schemes we propose. The combinatorial techniques we develop
are nontrivial and we believe they will be of independent interest.

It is interesting to compare both our security model and our proof method-
ology to those in related work.

The proof of retrievability model has two major distinctions from that used
by Naor and Rothblum [14] (in addition to the public-key setting). First, the
NR model assumes a checker can request and receive specific memory locations
from the prover. In the proof of retrievability model, the prover can consist of an
arbitrary program as opposed to a simple memory layout and this program may
answer these questions in an arbitrary manner. We believe that this realistically
represents an adversary in the type of setting we are considering. In the NR
setting the extractor needs to retrieve the file given the server’s memory; in the
POR setting the analogy is that the extractor receives the adversary’s program.

Second, in the proof of retrievability model we allow the attacker to execute
a polynomial number of proof attempts before committing to how it will store
memory. In the NR model the adversary does not get to execute the protocol
before committing its memory. This weaker model is precisely what allows for
the use of 1-bit MACs with error correcting codes in one NR variant. One might
argue that in many situations this is sufficient. If a storage server responds
incorrectly to an audit request we might assume that it is declared to be cheating
and there is no need to go further. However, this limited view overlooks several
scenarios. In particular, we want to be able to handle setups where there are
several verifiers that do not communicate or if there might be several storage
servers handling the same encoded file that are audited independently. Only our
stronger model can correctly reflect these situations. In general, we believe that
the strongest security model allows for a system to be secure in the most contexts
including those not previously considered.17

One of the distinctive and challenging parts of our work is to argue ex-
traction from homomorphically accumulated blocks. While Ateniese et al. [1]
proposed using homomorphic RSA signatures and proved what is equivalent to
our unforgeability requirement, they did not provide an argument that one could

17 We liken this argument to that for the strong definition currently accepted for chosen-
ciphertext secure encryption.

extract individual blocks from a prover. The only place where extractability is
addressed in their work is a short paragraph in Appendix A, where they provide
some intuitive arguments. Here is one concrete example: Their constructions
make multiple uses of pseudorandom functions (PRFs), yet the security prop-
erties of a PRF are never applied in a security reduction. This gives compelling
evidence that a rigorous security proof was not provided. Again, we emphasize
that extraction is needed in even the weaker proof of data possession model
claimed by the authors.

Extractability issues arise in several natural constructions. Proving extraction
from aggregated authenticator values can be challenging; in Appendix C of the
full paper [16] we show an attack on a natural but incorrect system that is
very similar to the “E-PDP” efficient alternative scheme given by Ateniese et al.
(which they use in their performance measurements). For this scheme, Ateniese
et al. claim only that the protocol establishes that a cheating prover has the
sum

∑
i∈I mi of the blocks. We show that indeed this is all it can provide.

Ateniese et al. calculate that a malicious server attacking the E-PDP scheme
et al. that a malicious server attacking the E-PDP scheme would need to store
10140 blocks in order to cheat with probability 100%. By contrast, our attack,
which allows the server to cheat with somewhat lower probability (almost 9% for
standard parameters) requires no more storage than were the server faithfully
storing the file.

Finally, we argue that the POR is the “right” model for considering practical
data storage problems, since provides a successful audit guarantees that all the
data can be extracted. Other work has advocated that a weaker Proof of Data
Possession [1] model might be acceptable. In this model, one only wants to
guarantee that a certain percentage (e.g., 90%) of data blocks are available. By
offering this weaker guarantee one might hope to avoid the overhead of applying
erasure codes. However, this weaker condition is unsatisfactory for most practical
application demands. One might consider how happy a user would be were 10% of
a file containing accounting data lost. Or if, for a compressed file, the compression
tables were lost – and with them all useful data. Instead of hoping that there
is enough redundancy left to reconstruct important data in an ad-hoc way, it is
much more desirable to have a model that inherently provides this. We also note
that Ateniese et al. [1] make an even weaker guarantee for their “E-PDP” system
that they implement and use as the basis for their measurements. According to
[1] their E-PDP system “only guarantees possession of the sum of the blocks.”
While this might be technically correct, it is even more difficult to discern what
direct use could come from retrieving a sum of a subset of data blocks.

One might still hope to make use of systems proved secure under these mod-
els. For example, we might attempt to make a PDP system usable by adding
on an erasure encoding step. In addition, if a system proved that one could be
guaranteed sums of blocks for a particular audit, then it might be the case that
by using multiple audit one could guarantee that individual file blocks could
be extracted. However, one must prove that this is the case and account for
the additional computational and communication overhead of multiple passes.

When systems use definitions that don’t model full retrievability it becomes very
difficult to make any useful security or performance comparisons.

2 Security Model

We recall the security definition of Juels and Kaliski [12]. Our version differs
from the original definition in several details:

– we rule out any state (“α”) in key generation and in verification, because
(as explained in Section 1) we believe that verifiers in proof-of-retrievability
schemes should be stateless;

– we allow the proof protocol to be arbitrary, rather than two-move, challenge-
response; and

– our key generation emits a public key as well as a private key, to allow us to
capture the notion of public verifiability.

Note that any stateless scheme secure in the original Juels-Kaliski model will be
secure in our variant, and any scheme secure in our variant whose proof protocol
can be cast as two-move, challenge-response protocol will be secure in the Juels-
Kaliski definition. In particular, our scheme with private verifiability is secure in
the original Juels-Kaliski model.18

A proof of retrievability scheme defines four algorithms, Kg, St, V, and P,
which behave thus:

Kg(). This randomized algorithm generates a public-private keypair (pk, sk).
St(sk,M). This randomized file-storing algorithm takes a secret key sk and a

file M ∈ {0, 1}∗ to store. It processes M to produce and output M∗, which
will be stored on the server, and a tag t. The tag contains information that
names the file being stored; it could also contain additional secret information
encrypted under the secret key sk.

P, V. The randomized proving and verifying algorithms define a protocol for
proving file retrievability. During protocol execution, both algorithms take as
input the public key pk and the file tag t output by St. The prover algorithm
also takes as input the processed file description M∗ that is output by St,
and the verifier algorithm takes as input the secret key. At the end of the
protocol run, V outputs 0 or 1, where 1 means that the file is being stored on
the server. We can denote a run of two machines executing the algorithms
as: {0, 1} R←

(
V(pk, sk, t)
 P(pk, t,M∗)

)
.

18 In an additional minor difference, we do not specify the extraction algorithm as part
of a scheme, because we do not expect that the extract algorithm will be deployed
in outsourced storage applications. Nevertheless, the extract algorithm used in our
proofs (cf. Section 4.2) is quite simple: undertake many random V interactions with
the cheating prover; keep track of those queries for which V accepts the cheating
prover’s reply as valid; and continue until enough information has been gathered to
recover file blocks by means of linear algebra. The adversary A could implement this
algorithm by means of its proof-of-retrievability protocol access.

We would like a proof-of-retrievability protocol to be correct and sound. Correct-
ness requires that, for all keypairs (pk, sk) output by Kg, for all files M ∈ {0, 1}∗,
and for all (M∗, t) output by St(sk,M), the verification algorithm accepts when
interacting with the valid prover:(

V(pk, sk, t)
 P(pk, t,M∗)
)

= 1 .

A proof-of-retrievability protocol is sound if any cheating prover that con-
vinces the verification algorithm that it is storing a file M is actually storing
that file, which we define in saying that it yields up the file M to an extrac-
tor algorithm that interacts with it using the proof-of-retrievability protocol.
We formalize the notion of an extractor and then give a precise definition for
soundness.

An extractor algorithm Extr(pk, sk, t,P ′) takes the public and private keys,
the file tag t, and the description of a machine implementing the prover’s role
in the proof-of-retrievability protocol: for example, the description of an interac-
tive Turing machine, or of a circuit in an appropriately augmented model. The
algorithm’s output is the file M ∈ {0, 1}∗. Note that Extr is given non–black-box
access to P ′ and can, in particular, rewind it.

Consider the following setup game between an adversary A and an environ-
ment:

1. The environment generates a keypair (pk, sk) by running Kg, and provides
pk to A.

2. The adversary can now interact with the environment. It can make queries
to a store oracle, providing, for each query, some file M . The environment
computes (M∗, t) R← St(sk,M) and returns both M∗ and t to the adversary.

3. For any M on which it previously made a store query, the adversary can un-
dertake executions of the proof-of-retrievability protocol, by specifying the
corresponding tag t. In these protocol executions, the environment plays
the part of the verifier and the adversary plays the part of the prover:
V(pk, sk, t)
 A. When a protocol execution completes, the adversary is
provided with the output of V. These protocol executions can be arbitrarily
interleaved with each other and with the store queries described above.

4. Finally, the adversary outputs a challenge tag t returned from some store
query, and the description of a prover P ′.

The cheating prover P ′ is ε-admissible if it convincingly answers an ε fraction of
verification challenges, i.e., if Pr

[(
V(pk, sk, t)
 P ′

)
= 1
]
≥ ε. Here the probabil-

ity is over the coins of the verifier and the prover. Let M be the message input to
the store query that returned the challenge tag t (along with a processed version
M∗ of M).

Definition 1. We say a proof-of-retrievability scheme is ε-sound if there exists
an extraction algorithm Extr such that, for every adversary A, whenever A,
playing the setup game, outputs an ε-admissible cheating prover P ′ for a file M ,
the extraction algorithm recovers M from P ′ – i.e., Extr(pk, sk, t,P ′) = M –
except possibly with negligible probability.

Note that it is okay for A to have engaged in the proof-of-retrievability pro-
tocol for M in its interaction with the environment. Note also that each run of
the proof-of-retrievability protocol is independent: the verifier implemented by
the environment is stateless.

Finally, note that we require that extraction succeed (with all but negligible
probability) from an adversary that causes V to accept with any nonnegligible
probability ε. An adversary that passes the verification even a very small but
nonnegligible fraction of the time – say, once in a million interactions – is fair
game. Intuitively, recovering enough blocks to reconstruct the original file from
such an adversary should take O(n/ε) interactions; our proofs achieve essentially
this bound.

Concrete or asymptotic formalization. A proof-of-retrievability scheme is secure
if no efficient algorithm wins the game above except rarely, where the precise
meaning of “efficient” and “rarely” depends on whether we employ a concrete
of asymptotic formalization.

It is possible to formalize the notation above either concretely or asymptot-
ically. In a concrete formalization, we require that each algorithm defining the
proof-of-retrievability scheme run in at most some number of steps, and that for
any algorithm A that runs in time t steps, that makes at most qS store queries,
and that undertakes at most qP proof-of-retrievability protocol executions, ex-
traction from an ε-admissible prover succeeds except with some small probabil-
ity δ. In an asymptotic formalization, every algorithm is provided with an addi-
tional parameter 1λ for security parameter λ, we require each algorithm to run
in time polynomial in λ, and we require that extraction fail from an ε-admissible
prover with only negligible probability in λ, provided ε is nonnegligible.

Public or private verification, public or private extraction. In the model above,
the verifier and extractor are provided with a secret that is not known to the
prover or other parties. This is a secret-verification, secret-extraction model
model. If the verification algorithm does not use the secret key, any third party
can check that a file is being stored, giving public verification. Similarly, if the
extract algorithm does not use the secret key, any third party can extract the
file from a server, giving public extraction.

3 Constructions

In this section we give formal descriptions for both our private and public ver-
ification systems. The systems here follow the constructions outlined in the in-
troduction with a few added generalizations. First, we allow blocks to contain
s ≥ 1 elements of Zp. This allows for a tradeoff between storage overhead and
communication overhead. Roughly the communication complexity grows as s+1
elements of Zp and the ratio of authentication overhead to data stored (post en-
coding) is 1 : s. Second, we describe our systems where the set of coefficients
sampled from B can be smaller than all of Zp. This enables us to take advantage
make more efficient systems in certain situations.

3.1 Common Notation

We will work in the group Zp. When we work in the bilinear setting, the group
Zp is the support of the bilinear group G, i.e., #G = p. In queries, coefficients
will come from a set B ⊆ Zp. For example, B could equal Zp, in which case
query coefficients will be randomly chosen out of all of Zp.

After a file undergoes preliminary processing, the processed file is split into
blocks, and each block is split into sectors. Each sector is one element of Zp,
and there are s sectors per block. If the processed file is b bits long, then there
are n = db/s lg pe blocks. We will refer to individual file sectors as {mij}, with
1 ≤ i ≤ n and 1 ≤ j ≤ s.

Queries. A query is an l-element set Q = {(i, νi)}. Each entry (i, νi) ∈ Q is such
that i is a block index in the range [1, n], and νi is a multiplier in B. The size l
of Q is a system parameter, as is the choice of the set B.

The verifier chooses a random query as follows. First, she chooses, uniformly
at random, an l-element subset I of [1, n]. Then, for each element i ∈ I she
chooses, uniformly at random, an element νi

R← B. We observe that this proce-
dure implies selection of l elements from [1, n] without replacement but a selection
of l elements from B with replacement.

Although the set notation Q = {(i, νi)} is space-efficient and convenient for
implementation, we will also make use of a vector notation in the analysis. A
query Q over indices I ⊂ [1, n] is represented by a vector q ∈ (Zp)n where
qi = νi for i ∈ I and qi = 0 for all i /∈ I. Equivalently, letting u1, . . . ,un be the
usual basis for (Zp)n, we have q =

∑
(i,νi)∈Q νiui.

19

If the set B does not contain 0 then a random query (according to the
selection procedure defined above) is a random weight-l vector in (Zp)n with
coefficients in B. If B does contain 0, then a similar argument can be made, but
care must be taken to distinguish the case “i ∈ I and νi = 0” from the case
“i /∈ I.”

Aggregation. For its response, the server responds to a query Q by computing,
for each j, 1 ≤ j ≤ s, the value

µj←
∑

(i,νi)∈Q

νimij .

That is, by combining sectorwise the blocks named in Q, each with its multi-
plier νi. Addition, of course, is modulo p. The response is (µ1, . . . , µs) ∈

(
Zp
)s.

Suppose we view the message blocks on the server as an n×s element matrix
M = (mij), then, using the vector notation for queries given above, the server’s
response is given by qM .

19 We are using subscripts to denote vector elements (for q) and to choose a particular
vector from a set (for u); but no confusion should arise.

3.2 Construction for Private Verification

Let f : {0, 1}∗ × Kprf → Zp be a PRF.20 The construction of the private verifi-
cation scheme Priv is:

Priv.Kg(). Choose a random symmetric encryption key kenc
R← Kenc and a ran-

dom MAC key kmac
R← Kmac. The secret key is sk = (kenc, kmac); there is no

public key.
Priv.St(sk,M). Given the file M , first apply the erasure code to obtain M ′; then

split M ′ into n blocks (for some n), each s sectors long: {mij}1≤i≤n
1≤j≤s

. Now

choose a PRF key kprf
R← Kprf and s random numbers α1, . . . , αs

R← Zp. Let
t0 be n‖Enckenc(kprf‖α1‖ · · · ‖αs); the file tag is t = t0‖MACkmac(t0). Now,
for each i, 1 ≤ i ≤ n, compute

σi ← fkprf(i) +
s∑
j=1

αjmij .

The processed file M∗ is {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s together with {σi},
1 ≤ i ≤ n.

Priv.V(pk, sk, t). Parse sk as (kenc, kmac). Use kmac to verify the MAC on t; if the
MAC is invalid, reject by emitting 0 and halting. Otherwise, parse t and use
kenc to decrypt the encrypted portions, recovering n, kprf, and α1, . . . , αs.
Now pick a random l-element subset I of the set [1, n], and, for each i ∈ I,
a random element νi

R← B. Let Q be the set {(i, νi)}. Send Q to the prover.
Parse the prover’s response to obtain µ1, . . . , µs and σ, all in Zp. If parsing
fails, fail by emitting 0 and halting. Otherwise, check whether

σ
?=
∑

(i,νi)∈Q

νifkprf(i) +
s∑
j=1

αjµj ;

if so, output 1; otherwise, output 0.
Priv.P(pk, t,M∗). Parse the processed file M∗ as {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s,

along with {σi}, 1 ≤ i ≤ n. Parse the message sent by the verifier as Q, an
l-element set {(i, νi)}, with the i’s distinct, each i ∈ [1, n], and each νi ∈ B.
Compute

µj ←
∑

(i,νi)∈Q

νimij for 1 ≤ j ≤ s, and σ ←
∑

(i,νi)∈Q

νiσi .

Send to the prover in response the values µ1, . . . , µs and σ.

20 In fact, the domain need only be dlgNe-bit strings, where N is a bound on the
number of blocks in a file.

3.3 Construction for Public Verification

Let e : G × G → GT be a bilinear map, let g be a generator of G, and let
H : {0, 1}∗ → G be the BLS hash, treated as a random oracle.21 The construction
of the public verification scheme Pub is:

Pub.Kg(). Generate a random signing keypair (spk, ssk) R← SKg. Choose a ran-
dom α

R← Zp and compute v ← gα. The secret key is sk = (α, ssk); the public
key is pk = (v, spk).

Pub.St(sk,M). Given the file M , first apply the erasure code to obtain M ′; then
split M ′ into n blocks (for some n), each s sectors long: {mij}1≤i≤n

1≤j≤s
. Now

parse sk as (α, ssk). Choose a random file name name from some sufficiently
large domain (e.g., Zp). Choose s random elements u1, . . . , us

R← G. Let
t0 be “name‖n‖u1‖ · · · ‖us”; the file tag t is t0 together with a signature
on t0 under private key ssk: t ← t0‖SSigssk(t0). For each i, 1 ≤ i ≤ n,
compute

σi ←
(
H(name‖i) ·

s∏
j=1

u
mij

j

)α
.

The processed file M∗ is {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s together with {σi},
1 ≤ i ≤ n.

Pub.V(pk, sk, t). Parse pk as (v, spk). Use spk to verify the signature on on t; if
the signature is invalid, reject by emitting 0 and halting. Otherwise, parse t,
recovering name, n, and u1, . . . , us. Now pick a random l-element subset I
of the set [1, n], and, for each i ∈ I, a random element νi

R← B. Let Q be the
set {(i, νi)}. Send Q to the prover.
Parse the prover’s response to obtain (µ1, . . . , µs) ∈ (Zp)s and σ ∈ G. If
parsing fails, fail by emitting 0 and halting. Otherwise, check whether

e(σ, g) ?= e
(∏
(i,νi)∈Q

H(name‖i)νi ·
s∏
j=1

u
µj

j , v
)

;

if so, output 1; otherwise, output 0.
Pub.P(pk, t,M∗). Parse the processed file M∗ as {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s,

along with {σi}, 1 ≤ i ≤ n. Parse the message sent by the verifier as Q, an
l-element set {(i, νi)}, with the i’s distinct, each i ∈ [1, n], and each νi ∈ B.
Compute

µj ←
∑

(i,νi)∈Q

νimij ∈ Zp for 1 ≤ j ≤ s, and σ ←
∏

(i,νi)∈Q

σνi
i ∈ G .

Send to the prover in response the values µ1, . . . , µs and σ.
21 For notational simplicity, we present our scheme using a symmetric bilinear map, but

efficient implementations will use an asymmetric map e : G1×G2 → GT . Translating
our scheme to this setting is simple. User public keys v will live in G2; file generators
uj will live in G1, as will the output of H; and security will be reduced to co-CDH [5].

4 Security Proofs

In this section we prove that both of our systems are secure under the model we
provided. Intutively, we break our proof into three parts. The first part shows
that the attacker can never give a forged response back to the a verifier. The
second part of the proof shows that from any adversary that passes the check a
non-negligible amount of the time we will be able to extract a constant fraction
of the encoded blocks. The second step uses the fact that (w.h.p.) all verified
responses must be legitimate. Finally, we show that if this constant fraction of
blocks is recovered we can use the erasure code to reconstruct the original file.

In this section we provide an outline of our proofs and state our main theo-
rems and lemmas. We defer the proofs of these to the full paper [16]. The proof,
for both schemes, is in three parts:

1. Prove that the verification algorithm will reject except when the prover’s
{µj} are correctly computed, i.e., are such that µj =

∑
(i,νi)∈Q νimij . This

part of the proof uses cryptographic techniques.
2. Prove that the extraction procedure can efficiently reconstruct a ρ fraction

of the file blocks when interacting with a prover that provides correctly-
computed {µj} responses for a nonnegligible fraction of the query space.
This part of the proof uses combinatorial techniques.

3. Prove that a ρ fraction of the blocks of the erasure-coded file suffice for
reconstructing the original file. This part of the proof uses coding theory
techniques.

Crucially, only the part-one proof is different for our two schemes; the other
parts are identical.

4.1 Part-One Proofs

Scheme with Private Verifiability

Theorem 1. If the MAC is unforgeable, the symmetric encryption scheme is
semantically secure, and the PRF is secure, then (except with negligible probabil-
ity) no adversary against the soundness of our private-verification scheme ever
causes V to accept in a proof-of-retrievability protocol instance, except by re-
sponding with values {µj} and σ that are computed correctly, i.e., as they would
be by Priv.P.

We prove the theorem in Appendix A.1 of the full paper [16].

Scheme with Public Verifiability

Theorem 2. If the signature scheme used for file tags is existentially unforge-
able and the computational Diffie-Hellman problem is hard in bilinear groups,
then, in the random oracle model, except with negligible probability no adversary
against the soundness of our public-verification scheme ever ever causes V to
accept in a proof-of-retrievability protocol instance, except by responding with
values {µj} and σ that are computed correctly, i.e., as they would be by Pub.P.

We prove the theorem in Appendix A.2 of the full paper [16].

4.2 Part-Two Proof

We say that a cheating prover P ′ is well-behaved if it never causes V to accept
in a proof-of-retrievability protocol instance except by responding with values
{µj} and σ that are computed correctly, i.e., as they would be by Pub.P. The
part-one proofs above guarantee that all adversaries that win the soundness game
with nonnegligible probability output cheating provers that are well-behaved,
provided that the cryptographic primitives we employ are secure. The part-two
theorem shows that extraction always succeeds against a well-behaved cheating
prover:

Theorem 3. Suppose a cheating prover P ′ on an n-block file M is well-behaved
in the sense above, and that it is ε-admissible: i.e., convincingly answers and
ε fraction of verification queries. Let ω = 1/#B+(ρn)l/(n−l+1)l. Then, provided
that ε − ω is positive and nonnegligible, it is possible to recover a ρ fraction of
the encoded file blocks in O

(
n
/

(ε − ω)
)

interactions with P ′ and in O
(
n2s +

(1 + εn2)(n)
/

(ε− ω)
)

time overall.

We first make the following definition.

Definition 2. Consider an adversary B, implemented as a probabilistic poly-
nomial-time Turing machine, that, given a query Q on its input tape, outputs
either the correct response (qM in vector notation) or a special symbol ⊥ to its
output tape. Suppose B responds with probability ε, i.e., on an ε fraction of the
query-and-randomness-tape space. We say that such an adversary is ε-polite.

The proof of our theorem depends upon the following lemma that is proved
in Appendix A.3 of the full paper [16].

Lemma 1. Suppose that B is an ε-polite adversary as defined above. Let ω equal
1/#B + (ρn)l/(n− l + 1)l. If ε > ω then it is possible to recover a ρ fraction of
the encoded file blocks in O

(
n
/

(ε−ω)
)

interactions with B and in O
(
n2s+(1+

εn2)(n)
/

(ε− ω)
)

time overall.

To apply Lemma 1, we need only show that a well-behaved ε-admissible
cheating prover P ′, as output by a setup-game adversary A, can be turned into
an ε-polite adversary B. But this is quite simple. Here is how B is implemented.
We will use the P ′ to construct the ε-adversary B. Given a query Q, interact
with P ′ according to

(
V(pk, sk, t, sk)
 P ′

)
, playing the part of the verifier. If the

output of the interaction is 1, write (µ1, . . . , µs) to the output tape; otherwise,
write ⊥. Each time B runs P ′, it provides it with a clean scratch tape and a new
randomness tape, effectively rewinding it. Since P ′ is well-behaved, a successful
response will compute (µ1, . . . , µs) as prescribed for an honest prover. Since
P ′ is ε-admissible, on an ε fraction of interactions it answers correctly. Thus
algorithm B that we have constructed is an ε-polite advesrary.

All that remains to to guarantee that ω = 1/#B + (ρn)l/(n − l + 1)l is
such that ε−ω is positive – indeed, nonnegligible. But this simply requires that
each of 1/#B and (ρn)l/(n− l+ 1)l be negligible in the security parameter; see
Section 1.1.

4.3 Part-Three Proof

Theorem 4. Given a ρ fraction of the n blocks of an encoded file M∗, it is
possible to recover the entire original file M with all but negligible probability.

Proof. For rate-ρ Reed-Solomon codes this is trivially true, since any ρ fraction
of encoded file blocks suffices for decoding; see Appendix B of the full paper [16].
For rate-ρ linear-time codes the additional measures described there guarantee
that the ρ fraction of blocks retrieved will allow decoding with overwhelming
probability.

Acknowledgements

We thank Dan Boneh, Moni Naor, and Guy Rothblum for helpful discussions
regarding this work, and Eric Rescorla for detailed comments on the manuscript.

References

1. G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and
D. Song. Provable data possession at untrusted stores. In S. De Capitani di
Vimercati and P. Syverson, editors, Proceedings of CCS 2007, pages 598–609. ACM
Press, Oct. 2007.

2. G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and
D. Song. Provable data possession at untrusted stores. Cryptology ePrint Archive,
Report 2007/202, 2007. Online: http://eprint.iacr.org/. Version of 7 Dec. 2007;
visited 10 Feb. 2008.

3. G. Ateniese, R. Di Pietro, L. Mancini, and G. Tsudik. Scalable and efficient prov-
able data possession. In P. Liu and R. Molva, editors, Proceedings of SecureComm
2008. ICST, Sept. 2008. To appear.

4. P. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In
B. Preneel and S. Tavares, editors, Proceedings of SAC 2005, volume 3897 of LNCS,
pages 319–31. Springer-Verlag, 2006.

5. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.
J. Cryptology, 17(4):297–319, Sept. 2004. Extended abstract in Proceedings of
Asiacrypt 2001.

6. K. D. Bowers, A. Juels, and A. Oprea. Proofs of retrievability: Theory and
implementation. Cryptology ePrint Archive, Report 2008/175, 2008. http:

//eprint.iacr.org/.
7. R. Cramer, G. Hanaoka, D. Hofheinz, H. Imai, E. Kiltz, R. Pass, abhi shelat, and

V. Vaikuntanathan. Bounded CCA2-secure encryption. In K. Kurosawa, editor,
Proceedings of Asiacrypt 2007, volume 4833 of LNCS, pages 502–18. Springer-
Verlag, Dec. 2007.

8. Y. Deswarte, J.-J. Quisquater, and A. Säıdane. Remote integrity checking. In
S. Jajodia and L. Strous, editors, Proceedings of IICIS 2003, volume 140 of IFIP,
pages 1–11. Kluwer Academic, Jan. 2004.

9. D. Filho and P. Barreto. Demonstrating data possession and uncheatable data
transfer. Cryptology ePrint Archive, Report 2006/150, 2006. http://eprint.

iacr.org/.

10. D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing-friendly elliptic curves.
Cryptology ePrint Archive, Report 2006/372, 2006. http://eprint.iacr.org/.

11. S.-H. Heng and K. Kurosawa. k-resilient identity-based encryption in the stan-
dard model. IEICE Trans. Fundamentals, E89-A.1(1):39–46, Jan. 2006. Originally
published at CT-RSA 2004.

12. A. Juels and B. Kaliski. PORs: Proofs of retrievability for large files. In S. De Capi-
tani di Vimercati and P. Syverson, editors, Proceedings of CCS 2007, pages 584–97.
ACM Press, Oct. 2007. Full version: http://www.rsa.com/rsalabs/staff/bios/
ajuels/publications/pdfs/POR-preprint-August07.pdf.

13. M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and M. Isard. A cooperative
Internet backup scheme. In B. Noble, editor, Proceedings of USENIX Technical
2003, pages 29–41. USENIX, June 2003.

14. M. Naor and G. Rothblum. The complexity of online memory checking. In E. Tar-
dos, editor, Proceedings of FOCS 2005, pages 573–84. IEEE Computer Society,
Oct. 2005.

15. T. Schwarz and E. Miller. Store, forget, and check: Using algebraic signatures to
check remotely administered storage. In M. Ahamad and L. Rodrigues, editors,
Proceedings of ICDCS 2006. IEEE Computer Society, July 2006.

16. H. Shacham and B. Waters. Compact proofs of retrievability. Cryptology ePrint
Archive, Report 2008/073, 2008. http://eprint.iacr.org/.

17. M. Shah, R. Swaminathan, and M. Baker. Privacy-preserving audit and extraction
of digital contents. Cryptology ePrint Archive, Report 2008/186, 2008. http:

//eprint.iacr.org/.

