
On the Security of HB# Against a
Man-in-the-Middle Attack

Khaled Ouafi?, Raphael Overbeck?? and Serge Vaudenay

Ecole Polytechnique Fédérale de Lausanne (EPFL),
CH-1015 Lausanne, Switzerland

Abstract. At EuroCrypt ’08, Gilbert, Robshaw and Seurin proposed
HB# to improve on HB+ in terms of transmission cost and security
against man-in-the-middle attacks. Although the security of HB# is for-
mally proven against a certain class of man-in-the-middle adversaries, it
is only conjectured for the general case. In this paper, we present a gen-
eral man-in-the-middle attack against HB# and Random-HB#, which
can also be applied to all anterior HB-like protocols, that recovers the
shared secret in 225 or 220 authentication rounds for HB# and 234 or 228

for Random-HB#, depending on the parameter set. We further show
that the asymptotic complexity of our attack is polynomial under some
conditions on the parameter set which are met on one of those proposed
in [8].

Key words: HB, authentication protocols, RFID

1 Introduction

Designing secure cryptographic protocols using lightweight components is one
of the main challenges of cryptography. Indeed, the emergence of new technol-
ogy such as radio-frequency identification (RFIDs) with low computation and
memory capabilities has stressed the need of such protocols.

These devices require protection from many threats. For example, for a com-
pany using RFIDs in inventories and supply-chain management, a RFID tag
should be protected from cloning. Biometric passports also have a tight relation
with RFIDs since they use contactless chips to communicate and authenticate
the passport holder to some authorized authority. Using RFID tags as a replace-
ment of barcodes by many merchant have also raised the issue of traceability
and privacy protection. Thus, the need of authentication protocols providing ef-
ficiency, security and privacy protection has become a key factor for the future
development of this technology. One of the most popular attempts to fulfill this
need are the HB family of authentication protocol.

? Supported by a grant of the Swiss National Science Foundation, 200021-119847/1.
?? Funded by DFG grant OV 102/1-1.

The HB Family. Originally introduced by Hopper and Blum [11], the HB
protocol aims at authenticating RFID tags to a reader using very lightweight
operations while reducing its security to a well-known NP-hard problem: the
learning parity with noise (LPN) problem [1]. In fact, this protocol only requires
a matrix multiplication and some basic XOR operations. But Juels and Weis [12]
showed later that HB is insecure against adversaries able to interact with tags
by impersonating readers and then proposed a new variant immune against this
type of attacks: HB+. As these two protocols were initially studied in a scenario
of a sequential executions, Katz and Shin [13] extended both security proofs of
HB and HB+ to a more general concurrent and parallel setting. However, as
Gilbert, Robshaw and Sibert noted in [6], the security of HB+ is compromised
if the adversary is given the ability to modify messages going from the reader to
the tag. This model was later known as the GRS security model.

Since then, many HB-like protocols aiming security in the GRS model were
proposed. Most notably, we mention the works of Bringer, Chabanne and Dottax
on HB++ [3], Munilla and Peinado on HB-MP [15] and Duc and Kim on HB? [4].
But all these protocols were proven to be insecure in the GRS model, as all of
them were successfully cryptanalyzed by Gilbert, Robshaw and Seurin in [7].

Tag (secret X,Y) Reader (secret X,Y)

Choose b ∈R {0, 1}ky b−−−−−−−→
a←−−−−−−− Choose a ∈R {0, 1}kx

Choose ν ∈R {0, 1}m s.t. Pr[vi = 1] = η

Compute z = aX ⊕ bY ⊕ ν z−−−−−−−→ Accept iff:
wt(aX ⊕ bY ⊕ z) ≤ t

Fig. 1. The Random-HB# and HB# protocols. In Random-HB#, X ∈ Fkx×m
2 and

Y ∈ Fky×m
2 are random matrices, in HB# they are Toeplitz matrices. wt denotes the

Hamming weight.

At EuroCrypt ’08, Gilbert, Robshaw and Seurin [8,9], proposed a new variant
of HB+ named Random-HB# and its optimized version HB#. In these proto-
cols, the tag and the reader share some secret matrices X and Y . During an
authentication instance, both issue challenges of ky-bit and kx-bit length respec-
tively and the final response of the tag is a m-bit message disturbed by a noise
vector in which every bit has a probability η of being 1.

The details of the Random-HB# and HB# protocols are outlined in Figure
1 and the proposed parameters (inspired from the results of [14]) in Table 1. The
difference between these two versions lies in the structure of the secret matrices
X and Y : while in Random-HB# these two are completely random, thus needing
(kx + ky)m bits of storage, HB# reduces this amount to kx + ky + 2m − 2 by
using Toeplitz matrices for X and Y .

Besides generating two random vectors ν and b, the operations performed
by the tag to authenticate itself are very cheap: it only needs two matrix multi-
plications to compute aX and bY which can be implemented using basic AND
and XOR operations along with two bitwise XOR operations between two m-bit
vectors. In some variant, the tag generates a random error vector ν until it has
weight no larger than t requiring the tag to be able to compute a Hamming
weight wt.

Random-HB# is also accompanied with a proof of security in the GRS
security model if the parameters satisfy the condition mη ≤ t ≤ m/2. Under
the conjecture that the Toeplitz-MHB puzzle is hard, HB# is also secure in the
same model. However, both protocols only provide “strong arguments” in favor
of their resistance against man-in-the middle adversaries and formally proving
their security in such a model was left as an open problem.

Table 1. HB# Parameter sets proposed in [8,9]. PFR and PFA denote the false rejection
and false acceptance rates respectively. In the set III, the Hamming weight of the error
vector ν generated by the tag is smaller than t.

Parameter set kx ky m η t PFR PFA

I 80 512 1164 0.25 405 2−45 2−83

II 80 512 441 0.125 113 2−45 2−83

III 80 512 256 0.125 48 0 2−81

Our Contribution. In this paper, we present an attack against Random-HB#

and HB# in a general man-in-the-middle attack where the adversary is given the
ability to modify all messages. The idea of our attack is to modify the messages of
a session according to values obtained from a passive attack where the adversary
eavesdrops on a protocol session between a reader and the tag.

Through this paper, we will denote b and z (resp. a) the values sent by the tag
(resp. the reader) and b̂ and ẑ (resp. â) the value received by the reader (resp. the
tag) after corruption by the adversary. Thus the tag computes z = âX ⊕ bY ⊕ ν
while the reader checks that wt(aX ⊕ b̂Y ⊕ ẑ) ≤ t.

Outline. Our paper is organized as follows. First, we show how it is possible to
mount a man-in-the-middle attack against HB# by proposing an algorithm able
to compute the Hamming weight of the errors introduced by the tag in a session
(ā, b̄, z̄). Then, we provide a complexity analysis of this initial attack needed
by the man-in-the-middle to fully recover the secret matrices of Random-HB#

and HB#. Afterwards, we present our optimized attack in Section 4 and give the
complexity results applied to parameter sets I and II of HB# of Table 1. After

that, we investigate some open proposals to limit the Hamming weight of the
error vector in HB-like protocols and present an attack against the parameter
set III of HB# shown in Table 1. At last, we show the lower bounds on the
parameters for which our attack does not work.

2 Basic Attack

In this section, we show that, contrarily to what was conjectured in [8,9], both
Random-HB# and HB# are vulnerable against man-in-the-middle attacks by
presenting a (non-optimized) attack.

2.1 Principle

The core of our attack is Algorithm 1 in which Φ denotes the cumulative distri-
bution function of the normal distribution. It shows how an adversary able to
modify messages going in both directions can compute the Hamming weight of
the error vector ν̄ = āX ⊕ b̄Y ⊕ z̄ denoted w̄ = wt(ν̄) introduced in a triplet
(ā, b̄, z̄). The crucial observation is that since z = âX⊕bY ⊕ν, at in each for-loop
of Algorithm 1, the reader computes the Hamming weight wt(ν ⊕ ν̄) of

aX⊕ b̂Y ⊕ ẑ = aX⊕ (b̄⊕ b)Y ⊕ (z̄⊕z) = (âX⊕ bY ⊕z)⊕ (āX⊕ b̄Y ⊕ z̄) = ν⊕ ν̄

and accepts iff wt(ν ⊕ ν̄) ≤ t.

Algorithm 1 Approximating w̄
Input: ā, b̄, z̄, n
Output: P−1

`
c
n

´
, an approximation of w̄ = wt(āX ⊕ b̄Y ⊕ z̄)

where P (w̄) = Pr[wt(ν ⊕ ν̄) ≤ t] = Φ(t−(m−w̄)η−w̄(1−η)√
mη(1−η)

)

Processing:
1: Initialize c← 0
2: for i = 1 . . . n do
3: During a protocol, set â← a⊕ ā, b̂← b⊕ b̄ and ẑ ← z ⊕ z̄
4: if reader accepts then
5: c← c+ 1
6: end if
7: end for

Correctness. We show, that the output of Algorithm 1 is indeed an estimation
of wt(ν ⊕ ν̄). The probability p that a bit of (ν ⊕ ν̄) is 1 is given by:

p = Pr[(ν ⊕ ν̄)i = 1] =
{
η if ν̄i = 0
1− η if ν̄i = 1.

Hence, m−w̄ bits of (ν⊕ν̄) follow a Bernoulli distribution of parameter η and the
other w̄ bits follow a Bernoulli distribution of parameter 1 − η, thus wt(ν ⊕ ν̄)
follows a binomial distribution. Because of the independence of all bits, the
expected value and variance of wt(ν ⊕ ν̄) are given by µ = (m− w̄)η + w̄(1− η)
and σ2 = mη(1− η) respectively.

We now define the function P as P (w̄) = Pr[wt(ν⊕ ν̄) ≤ t]. By the definition
of the standard normal cumulative distribution function Φ and the central limit
theorem, we have that

P (w̄) ≈ Φ(u), with u =
t− µ
σ

. (1)

The random variable c
n thus follows a normal distribution with expected value

P (w̄) and variance 1
nP (w̄)(1− P (w̄)). To decide whether wt(ν̄) = w̄ or not, the

estimate c
n for P (wt(ν̄)) has to be good enough. The difference of the probabil-

ities is at least P (w̄ + 1)− P (w̄) ≈ P ′(w̄) which we can compute as

P ′(w̄) ≈ − 1− 2η√
mη(1− η)

Φ′(u) = − 1− 2η√
mη(1− η)

× 1√
2π
e−

u2
2 .

By taking

n =
θ2

r2
R(w̄) with R(w̄) = 2

P (w̄)(1− P (w̄))
(P ′(w̄))2

, (2)

the probability that | cn − P (w̄)| > r|P ′(w̄)| is 2Φ(−θ
√

2) = erfc(θ). With θ high
enough, c

n yields a estimate of P (w̄) with precision ±rP ′(w̄). Thus, Algorithm
1 is correct if n is chosen large enough.

Choice of Input. To determine a reasonable choice for the input n, we have to
fix values for r and θ. If we can assume that w̄ = wt(ν̄) is an integer close to some
value w0, we can call Algorithm 1 and r = 1

2 to infer w̄ = dP−1(cn)c with error
probability erfc(θ) (here, d·c refers to normal rounding). On the other hand, if
we know that w̄ ∈ {w0−1, w0 +1}, we can choose r = 1 to infer w̄ by the closest
value to P−1(cn). The error probability is 1

2erfc(θ). In both cases, Algorithm 1
is an oracle of complexity n = θ2

r2R(w0) that can be used to compute w̄ given
ā, b̄, z̄ and succeeding with an probability of error smaller than erfc(θ).

Since we have to recover ` secret bits by Algorithm 1, erfc(θ) should be
less than the inverse of the number of secret bits `. Using the approximation
Φ(−x) ≈ ϕ(x)/x when x is large (so Φ(−x) is small) we obtain

θ =
√

ln ` =⇒ erfc(θ) = 2Φ(−θ
√

2) ≈ 2
ϕ(θ
√

2)
θ
√

2
=
e−θ

2

θ
√
π
<

1
`
,

and thereby a reasonable choice for θ.

Algorithm 2 Getting linear equations for X and Y

Input: ā, b̄, z̄ and w̄est the expected weight of ν̄ = āX ⊕ b̄Y ⊕ z̄
Output: A linear equation āX ⊕ b̄Y = c̄
Processing:
1: Initialize m-bit vector c̄← z̄
2: Call Algorithm 1 on input (ā, b̄, z̄, n = 4θ2R(w̄est)) to get w̄
3: for i = 1 . . .m do
4: Flip bit i of z̄ to get z̄′

5: Call Algorithm 1 on input (ā, b̄, z̄′, n = θ2R(w̄)) to get w̄′

6: if w̄′ = w̄ − 1 then
7: c̄i ← c̄i ⊕ 1
8: end if
9: end for

Recovering the whole secret key. Algorithm 2 shows how to recover the
secret key by building a system of linear equations with the help of Algorithm
1. Clearly the complexity of Algorithm 2 is θ2(4R(w̄) +mR(w̄)) and we have to
call it `/m times on independent (ā, b̄) pairs to fully recover X and Y , where `
is the length of the secret key (Note that ` = (kx + ky)m in Random-HB# and
` = kx + ky + 2m− 2 in HB#). The expected number of errors in the equation
system defining X and Y is ` ·erfc(θ). The probability that a passive attack gives
an (ā, b̄) linearly dependent from the i previous ones is 2i−1

2kx+ky
. The number of

passive attacks to get the inputs for Algorithm 2 is thus

C =
d`/me∑
i=1

1
1− 2i−1

2kx+ky

< 2 +
`

m
(3)

and can be neglected in comparison to the `/m calls of Algorithm 2.

Computational complexity. The computational complexity of the given at-
tack is quite low in comparison to the number of authentications needed: For
each call of Algorithm 1 we have at most n incrementation of a counter and
one evaluation of P−1. For Random-HB#, after running Algorithm 2 we have
m linear binary equation systems in kx + ky variables (one for each row of the
matrix [X>|Y >]), which can thus be solved in O(m(kx + ky)3) operations. This
number is negligible in comparison to the number of authentications needed to
perform Algorithm 2 and is even lower for HB#. Throughout the paper we thus
measure the complexity of our attack in terms of (intercepted) authentications
between the tag and the reader.

2.2 Asymptotic Complexity Analysis

The complexity of the attack is related to the complexity of Algorithm 2 which is
in its turn related to the complexity of Algorithm 1. Thus, the main component
of the attack affecting the overall complexity is the input n in Algorithm 1.

Equation (2) yields that n = O((θ2e
u2
2)/(1 − 2η)2) so the complexity of our

attack is exponential in u2 as we can use a θ logarithmic in `.

Parameters with optimal complexity. The minimal value of n is reached
when u = 0 which happens when the estimated value w̄est of wt(ν̄) is

w̄est = w̄opt =
t−mη
1− 2η

.

In this case we obtain

P (w̄opt) =
1
2
,

P ′(w̄opt) = − 1− 2η√
2πmη(1− η)

,

R(w̄opt) =
πm

4

(
1

(1− 2η)2
− 1
)
.

Obviously, our attack has optimal complexity if we can call Algorithm 2
on input of valid triplets (ā, b̄, z̄) with wt(ν̄) = w̄opt, only. As clearly, for most
parameter sets the latter is not true for random triplets obtained by passive
attacks, we would like to manipulate errors in z̄ to reach an expected value of
w̄opt. Unfortunately, due to the hardness of the LPN problem, we cannot remove
errors from z̄ if w̄ > w̄opt. However, if w̄ ≤ w̄opt then we can inject errors in z̄ so
that the resulting vector has an expected weight of w̄opt and the attack remains
polynomial. This case happens when:

mη ≤ t−mη
1− 2η

⇐⇒ t ≥ 2mη(1− η) ,

using the approximation w̄est ≈ mη when a valid triplet (ā, b̄, z̄) is obtained by
a passive attack and the false rejection rate of the HB# protocol is negligible.
Thus in this case, our attack remains optimal.

Categorization of parameter sets. We have seen, that for u = 0, our attack
has subquadratic running time. However, even if u = O(

√
ln `)), we obtain a

polynomial time attack. Thus, from Formula (2) we distinguish three cases:

1. Subquadratic complexity: If t ≥ 2mη(1 − η) the attack has a complexity of
O(` ln `

(1−2η)2) since Algorithm 1 is called O(`) times.
2. Polynomial complexity: t = 2mη(1− η)− c

√
mη(1− η), c = O(

√
ln `)): the

above complexity is multiplied by an ec
2

factor. Thus, Algorithm 1 is still
polynomial.

3. Exponential complexity: All other cases.

Depending on the category of the parameter set, there are different strate-
gies to find the triplets (ā, b̄, z̄) which serve as input for Algorithm 2 (and thus
Algorithm 1). We present those strategies in the following and give numbers for
the according parameter sets.

2.3 Strategy for the case t ≥ 2mη(1 − η)

Thanks to the hypothesis t ≥ 2mη(1 − η), we have that w̄opt ≥ w̄ = mη. Thus,
the best strategy is to optimize the complexity of Algorithm 1 by having a triplet
(ā, b̄, z̄) with an error vector of expected Hamming weight w̄opt. Using a triplet
(ā, b̄, z̄) obtained from a passive attack, we can flip the last (w̄opt−mη)/(1− 2η)
bits of z̄ to get ν̄ of expected Hamming weight w̄opt and then use the attack
described previously.

Application to parameter vector II. As these parameters are in the case
t ≥ 2mη(1−η), we can use Algorithm 2 in its optimum complexity to attack both
Random-HB# and HB#. After computing w̄opt = 77.167, P ′(w̄opt) = 0.0431,
R(w̄opt) = 269.39 and the expected value of w̄ = mη = 55, we have to flip f = 29
bits to get an expected value close to w̄opt. For Random-HB# the number of
bits to retrieve is ` = (kx + ky)m = 261 072 for which we can use θ = 3.164. The
total complexity is `θ2R(w̄opt) = 229.4. In the case of HB# the number of secret
bits is ` = kx + ky + 2m− 2 = 1 472 for which we use θ = 2.265 and end up with
complexity of `θ2R(w̄opt) = 221.

2.4 Strategy for t close to 2mη(1 − η)

The case t < 2mη(1 − η) is trickier to address since the expected value of w̄
becomes greater than wopt. To achieve the same complexity as the previous
case we would have to reduce the Hamming weight of ν̄ which is infeasible in
polynomial time due to the hardness of the LPN problem.

However, if t is a only a little less than 2mη(1− η) then the expected value
of w̄ is not far from wopt. So, we can use Algorithm 2 without flipping any bit of
z̄ and the complexity is still polynomial. To further speed up the attack, we can
remove errors from z̄ in step 9 of Algorithm 2 until we reach w̄ = wopt which we

can expect to happen at iteration i =
⌈
w̄est−w̄opt

w̄est

⌉
.

Application to parameter set I. For parameter set I we have t < 2mη(1−η).
We first compute w̄est = mη = 291, w̄opt = 228, P ′(w̄opt) = 0.0135, R(w̄est) =
15 532 and R(w̄opt) = 2742.6. For Random-HB#, the number of key bits is ` =
(kx+ky)m = 689 088 and θ = 3.308 is enough to guarantee that erfc(θ) ≤ 1

689 088 .
We obtain a total complexity of `θ2(w̄0−w̄opt

w̄est
R(w̄est) + w̄opt

w̄est
R(w̄opt)) = 235.4. For

HB#, we have ` = kx + ky + 2m− 2 = 2 918 secret bits to retrieve, so θ2 = 2.401
is enough and we get a total complexity of `θ2(w̄0−w̄opt

w̄est
R(w̄est) + w̄opt

w̄est
R(w̄opt)) =

226.6.

2.5 Strategy for lower t

The case of lower t, the false acceptance rate will be very low but the false
rejection rate of HB# becomes high (e.g. 0.5 for t = mη; Please remember that

for t < mη, HB# is no longer provable secure in the GRS security model.) so
that it would require more than one authentication in average for the tag to
authenticate itself. The main advantage of this approach is that the complexity
of Algorithm 1 becomes exponential. Here, we present a better strategy than
calling Algorithm 2 with an triplet (ā, b̄, z̄) obtained by a simple passive attack.

Our goal is to call Algorithm 2 with a w̄est as low as possible. During the pro-
tocol, we can set (â, b̂, ẑ) to (a, b, z⊕ν̄) with ν̄ of weight w̄ until the reader accepts
ẑ. Then, we launch our attack with (ā, b̄, z̄) = (a, b, z). A detailed description is
shown in Algorithm 3.

Algorithm 3 Getting (a, b, z) with low Hamming weight
Input: w̄
Output: (a, b, z) such that (aX ⊕ bY ⊕ z) has low weight.
Processing:
1: Pick random vector ν̄ of Hamming weight w̄
2: repeat
3: During a protocol with messages (a, b, z), set ẑ = z ⊕ ν̄
4: until reader accepts

The probability that ẑ gets accepted by the verifier is P (w̄) which can be
written in an equivalent way to Equation (1) as:

P (w̄) =
t∑

j=0

((
m− w̄
j

)
ηj(1− η)m−w̄−j ·

t−j∑
i=0

(
w̄

i

)
ηw̄−i(1− η)i

)
(4)

For an accepted ẑ, the m − w̄ positions not in the support of ν̄ are erroneous
with probability

ηw̄ =

∑t
j=0

(
j
(
m−w̄
j

)
ηj(1− η)m−w̄−j

∑t−j
i=0

(
w̄
i

)
ηw̄−i(1− η)i

)
(m− w̄)P (w̄)

. (5)

On the other hand, the other positions of ẑ in the support of ν̄ are non-zero with
probability

η◦w̄ =

∑t
j=0

((
m−w̄
j

)
ηj(1− η)m−w̄−j ·

∑t−j
i=0 i

(
w̄
i

)
ηw̄−i(1− η)i

)
w̄P (w̄)

. (6)

Thus, because of the high false rejection rate, if ẑ gets accepted in our MIM-
Attack with (ā, b̄, z̄) = (0, 0, ν̄), we can expect that the error vector ν, introduced
in (a, b, z) the output of Algorithm 3, has weight w̄est = (m− w̄)ηw̄ + w̄(1− η◦w̄).

Application to parameter set II with t = 55 Assume that for the param-
eter set II we set t = mη ≈ 55. Then, an accepted vector obtained by a passive

attack will most likely have weight w̄est = (m − w̄)η0 + w̄(1 − η◦0) ≈ 50 and it
will take 4θ2R(w̄est) = 230 operations to determine its correct weight. Calling
Algorithm 3, e.g., with w̄ = 41, we get (a, b, z) with error vector ν of weight
w̄est = (m − w̄)η41 + w̄(1 − η◦41) ≈ 33 in 1

P (w̄) = 220 authentications and can
recover the weight of ν in another 4θ2R(33) = 220 operations with Algorithm 1.
We determined the optimal input w̄ by exhaustive search minimizing the sum of
the complexity of the consecutive execution of Algorithms 3 and Algorithm 1.

The following table we consider parameter sets I and II with modified t.
It shows the costs to learn one bit about the secret key, i.e. calling Algorithm
1 with a random vector obtained by a passive attack in comparison to calling
Algorithm 3 first and then Algorithm 1 with its output. Note, that recovering
successive bits is always cheaper.

Table 2. Attack cost for the initial bit of the shared key for HB# applied to t = dηmc

Parameter set Algorithm 1 Algorithms 3 + 1

I 278 258.5

II 230 221

3 Optimizing the Attack

In this Section, we present our best attack on Random-HB# and HB#. First,
we optimize Algorithm 2. Using an adaptive solution to the weighing problem
[5] we show how to efficiently recover the error vector. Then, we present our full
attack.

3.1 Optimizing Algorithm 2

The problem we are solving in Algorithm 2 can be formulated as follows: given a
m-bit vector ν of Hamming weight w and an oracle measuring the sum of some
selected bits (Algorithm 1), what is the minimal number of measurements to
fully recover ν?

The näıve solution to this problem employed in Algorithm 2 takes m mea-
surements. A more sophisticated solution to to fully recover a vector ν of arbitary
weight was already given by Erdős and Rényi in [5]. They show that the mini-
mal number of measurements required is upper-bounded by (m log2 9)/ log2m.
To recover ν in the given complexity, they define a fixed series of measurements
for each m. However, in our case, the vector ν is known to be of small weight
(≤ mη), which allows us to improve on the solution by Erdős and Rényi. Our

Algorithm 4 Finding errors in |J |-bit windows
Input: ā, b̄, z̄, w̄ = wt(āX ⊕ b̄Y ⊕ z̄), a set J ⊆ {0, 1, · · ·m} and wJ the number of

non-zero (āX ⊕ b̄Y ⊕ z̄)j , j ∈ J
Output: I ⊆ J containing the j with non-zero (āX ⊕ b̄Y ⊕ z̄)j , j ∈ J .
Processing:
1: if wJ = 0 then
2: I ← ∅
3: else if wJ = |J | then
4: I ← J
5: else
6: Choose J1 ⊆ J such that |J1| = d|J |/2e.
7: Set ν′ the m-vector with ν′j = 1 iff j ∈ J1

8: Call Algorithm 1 on input (ā, b̄, z̄ ⊕ ν′, n = 4θ2R(w̄)) to get w′.
9: Call Algorithm 4 with (ā, b̄, z̄, w̄, J1, wJ1 = (w̄ + |J1| − w′)/2) to get I1

10: Call Algorithm 4 with (ā, b̄, z̄, w̄, J \ J1, wJ − wJ1) to get I2
11: I ← I1 ∪ I2
12: end if

proposal, Algorithm 4, does not use a fixed series of measurements but takes
into account the partial information obtained by all previous measurements.

To determine the error positions in a k-bit window by measuring the weight,
Algorithm 4 uses a divide-and-conquer strategy: it splits the vector into two
windows of the same length then measures each of them. For those parts which
do not have full or zero weight it then applies this strategy recursively leading
to a lower number of measurements comparing to measuring a k-bit window bit
by bit as Algorithm 2 does.

The number of invocations of Algorithm 1, Cw(k), to fully recover a k-bit
window with known Hamming weight w by Algorithm 4 is

Cw(k) =

0 if w = 0 or w = k

1 +
∑k/2
i=0

(bk/2c
i)(dk/2e

w−i)
(k

w) (Ci(bk/2c) + Cw−i(dk/2e)) otherwise

Let C(k) be the average number of invocations of Algorithm 1 to first determine
the number of errors in a k-bit window and then recover their positions using
Algorithm 4:

C(k) = 1 +
k∑

w=0

Cw(k)
(
k

w

)
ηw(1− η)k−w

We note that C(k)/k is minimal when k is a power of 2. Although, it is clear
from Table 3 that the number of measurements decreases when k increases, the
cost of measuring the weight of a k-bit window also increases faster with k, so a
good tradeoff is to use k = 8.

Now that we have an efficient algorithm to find error positions in fixed size
windows, we introduce Algorithm 5 which takes benefit from Algorithm 4 to

Table 3. Complexity of measuring a 16-bit window for parameter set II.

Parameter Set I Parameter Set II

k C(k) 16
k

Cost measurement C(k) 16
k

Cost measurement

2 11 215.95 9.75 212.43

4 9.72 215.96 7.404 212.49

8 9.51 215.99 6.71 212.75

16 9.51 216.11 6.69 213.90

optimize the number of measurements needed to localize the introduced errors
and output m linear equations. Algorithm 5 splits the error vector introduced in
a triplet (ā, b̄, z̄) to m/k k-bit windows, each one of these is then recovered using
Algorithm 4. Additionally, using the learned bits, it adjusts z̄ so that the next
measurements cost less. The number of calls to Algorithm 4 we need before we
reach w̄ = w̄opt, is then

i =

{
w̄opt−w̄est

k(m−w̄est)
m if w̄opt ≥ w̄est

w̄est−w̄opt

k·w̄est
m if w̄opt ≤ w̄est

So the full complexity of Algorithm 5 is given by

N = θ2
(
iR(w̄est) +

⌈m
k
− i
⌉
R(w̄opt)

)
C(k) .

3.2 Final Algorithm

The final attack is described in Algorithm 6. The idea is to get a vector with
low expected weight using Algorithm 3 and then find all the erroneous posi-
tions inserted by the tag to obtain m linear equations and iterate this until we
get enough equations to solve and find the secrets X and Y . To get the lower
complexity, we can flip the last bits of z̄ so that we end up with an expected
weight of w̄opt. We note that introducing errors in a full segment as defined by
Step 4 of Algorithm 5 does not increase the needed number of measurements as
Cw(k) = Ck−w(k). Using Formula (3), we deduce the full complexity in terms
of intercepted authentications as⌈

`

m

⌉
θ2
(
iR(w̄est) +

⌈m
k
− i
⌉
R(w̄opt)

)
C(k) + (2 +

`

m
)

1
P (w)

. (7)

Application to parameter set I. With input k = 8 and w = 300 we
obtain P (w) = 2−7, w̄est = 273 and w̄opt = 228, i = 24, R(w̄opt) = 2742.6,
R(w̄est) = 7 026.4. So the full complexity of the attack is then given by Equation
(7) with θ and ` as in Section 2.4. This is 225 sessions for HB# and 233.8 for
Random-HB#.

Algorithm 5 Optimizing Algorithm 2
Input: ā, b̄, z̄ and w̄est the expected value of ν̄ = āX ⊕ b̄Y ⊕ z̄, k
Output: A linear equation āX ⊕ b̄Y = c̄
Processing:
1: Initialize m-bit vector c̄← z̄
2: Initialize M ← ∅
3: Call Algorithm 1 on input (ā, b̄, z̄, n = 4θ2R(w̄est)) to get w̄
4: Define a set S of Ji = {ik + 1, . . . ,min((i+ 1)k,m)}, i = 1 . . . dm

k
e

5: repeat
6: Choose J ∈ S
7: Call Algorithm 1 on input (ā, b̄, z̄ ⊕ J, n = θ2R(w̄)) to get w̄′ = wt(ν̄ AND J)
8: Call Algorithm 4 with (ā, b̄, z̄, w̄, J, wJ = (w̄ + |J | − w̄′)/2) to get I
9: Set c̄i ← c̄i ⊕ 1 for all i ∈ I

10: M ←M ∪ I
11: Remove J from S
12: if w̄ > w̄opt then
13: Flip min(|I|, w̄ − w̄opt) bits z̄i for which i ∈ I
14: w̄ ← w̄ −min(|I|, w̄ − w̄opt)
15: else if w̄ < w̄opt then
16: Flip min(|J \ I|, w̄opt − w̄) bits z̄i for which i ∈ J \ I
17: w̄ ← w̄ + min(|J \ I|, w̄opt − w̄)
18: end if
19: until S∅

Application to parameter set II. In this case, we have k = 8, w = 0 and
w̄est = 55. We flip 29 bits to obtain an error vector of expected weight w̄opt = 77,
which yields R(w̄opt) = 269.39 and i = 0. The complexity is 219.7 sessions for
HB# and 228.1 for Random-HB#.

4 Attacking parameter vectors without false rejections

To thwart the previous attacks without taking parameter sets with huge m
or high false rejection rate, we could change the protocol so that the prover
generates a vector ν of constant or bounded Hamming weight like it was proposed
for parameter set III. In this section we will show that this leads to different
attacks.

Assume that the prover accepts (a, b, z) iff w = wt(aX ⊕ bY ⊕ z) = t, then
from this triplet the attacker learns

m⊕
i=1

(aX ⊕ bY)i =
m⊕
i=1

zi ⊕
{

1 if t odd
0 if t even

It is possible to recover the matrices X and Y by sending z ⊕ ν̄ instead of the
Tag’s response z to the Reader, where ν̄ is a m-bit vector of Hamming weight

Algorithm 6 Final attack on Random-HB# and HB#

Input: k, w
Output: X, Y the secrets of the tag
Processing:
1: Initialize S ← ∅
2: for i = 1 . . . 2 +

˚
`
m

ˇ
do

3: Call algorithm 3 on input w to get ā, b̄, z̄ with an error vector of expected weight
w̄est = (m− w)ηw + w(1− η◦w)

4: if w̄opt > w̄est then
5: Flip the last (w̄opt −mη)/(1− 2η) bits of z̄
6: Set w̄est ← w̄opt

7: end if
8: Call Algorithm 5 on input (ā, b̄, z̄, w̄est, k) to get m linear equations
9: Insert linear equations in S

10: end for
11: Solve S

2. Doing so, the attacker learns

(aX ⊕ bY)ν̄> = zν̄> ⊕
{

1 if ẑ accepted
0 if ẑ rejected

since the verifier accepts ẑ on challenges a, b if there was exactly one error in the
flipped positions, which is the case with probability

(
m−w

1

) (
w
1

)
/
(
m
2

)
.

The above approach may be generalized to the case where the Hamming
weight of ν is bounded in the original protocol, i.e. if the verifier accepts if w ≤ t
and the prover discards error vectors which are going to be rejected. This was
suggested for the parameter vector III. Again, the attacker can replace the Tag’s
answer z by z⊕ ν̄ where ν̄ is of weight 2. Now, the attackers response z⊕ ν̄ gets
rejected iff w ∈ {t− 1, t} and the attacker flipped two non-erroneous positions.
Thus, in the case of a rejection, the attacker learns

(aX ⊕ bY)i = zi, ν̄i 6= 0

which happens with probability

q =

∑1
i=0

(
m
t−i
)
ηt−i(1− η)m−t+i (

m−t+i
2)

(m
2)∑t

i=0

(
m
i

)
ηi(1− η)m−i

Application to parameter set III. For the parameter vector III, the attacker
learns two bits about the secret key every 1/q = 29.02 ≈ 512 iterations. This is
16 times faster than an attack by Algorithm 1 and needs only ` · 2/q = 226

authentications to recover a Random-HB# secret key (219 for HB#).

5 Lower Bounds on Secure Parameters

In this section, we investigate the lower bounds on the parameter sets for which
our attack is not effective. We say that HB# is secure if recovering one bit of
information about the secret key requires an attack with complexity (in terms of
protocol sessions) within an order of magnitude of at least 2s and time complexity
“reasonably comparable”.

Let us assume that Algorithm 3 succeeds with a total error weight of t =
wt(ν ⊕ ν̄) when the added error vector has weight w̄. To obtain this vector, the
attacker limited to 280 operations can choose the input w̄ in any way, such that
1/P (w̄) = 1/Φ(t−µσ) ≤ 280. Since Φ(−10.2) ≈ 2−80 we can be sure, that the w̄
chosen by the attacker satisfies that

t−µ
σ = t−(m−w̄)η−w̄(1−η)√

mη(1−η)
≥ −10.2

⇔ (m− w̄)η + w̄(1− η) ≤ 10.2
√
mη(1− η) + t

⇔ −w̄η + w̄(1− η) ≤ 10.2
√
mη(1− η) + t−mη

⇔ w̄(1− 2η) ≤ −mη + t+ 10.2
√
mη(1− η)

⇔ w̄ ≤ 1
1−2η (10.2

√
mη(1− η) + t−mη) .

(8)

Fixing t = bmηe for which our attack has the maximal complexity, we get the

lowest value for a secure m, thus w̄ = 10.2
√
mη(1−η)

1−2η .

400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 5200

25

50

75

100

125

150

η=1/8η=1/4

Fig. 2. Security level in logarithmic scale in comparison to m when t = mη.

We can now calculate the value w̄est by using equations (4), (5) and (6)
and then by using Formula (2) with r = 1/2 and θ = 1/2 (which leads to
erfc(θ) = 0.4795) we can estimate the total cost of the attack. By using an
exhaustive search on m we obtain that m = 1 697 for η = 1/4 and m = 2 903
for η = 1/8 is the lowest choice achieving 280-security and 50% of false rejection
rate. The full results with the intermediates values are summarized in Table 4.

Table 4. Lowest values of m and t = bmηe for which our attack is not effective.

η m t w̄ w̄est ηw̄ η◦w̄ 1/P (w̄) n

0.25 1697 424 364 340 2−2.73 2−0.7 280 280

0.125 2903 363 242 229 2−3.93 2−0.36 280 280

Following this method we obtain the graphs of Fig. 2 showing how the secu-
rity scales with growing m. To reach this security with a more acceptable false
rejection rate (ideally negligible), it requires m to be higher.

6 Conclusion

In this article, we proved that the conjecture about the security of Random-
HB# and HB# is wrong. We presented a basic attack against these protocols
that allows to retrieve the shared secret between a reader and a tag. We showed
a lower bound on the parameter set for which our attack is not effective but such
parameters are unpractical to use in RFID tags.

Although it may not be the most effective for all versions, our attack is valid
against all anterior protocols of the HB family.

Table 5. Summary of the complexity of our attacks.

Parameter Set kX kY m η t Random-HB# HB#

I 80 512 1164 0.25 405 234 225

II 80 512 441 0.125 113 228 220

III(w bounded) 80 512 256 0.125 48 226 219

There are still new versions in the HB family. PUF-HB, proposed by Ham-
mouri and Sunar [10] uses a physical unclonable function but does not carry any
proof of security against man-in-the-middle attacks within. Indeed, a closer look
reveals several possible points of attack for a man in the middle like flipping the

last bit in the challenge vector a. On the other side, Trusted-HB, proposed by
Bringer and Chabanne [2], is proved secure against general man-in-the-middle
attacks. However, this comes at the cost of adding a check on the integrity of the
error vector using a secure cryptographic hash function which on its own would
be sufficient to allow authentication by shared secrets.

Acknowledgment

We would like to thank Henri Gilbert, Matt Robshaw and Yannick Seurin for
fruitful discussions.

References

1. Elwyn R. Berlekamp, Robert McEliece, and Henk C.A. van Tilborg. On the in-
herent intractability of certain coding problems (corresp.). IEEE Transactions on
Information Theory, 24(3):384–386, 1978.

2. Julien Bringer and Hervé Chabanne. Trusted-HB: a low-cost version of HB+ secure
against man-in-the-middle attacks. CoRR, abs/0802.0603, 2008.

3. Julien Bringer, Hervé Chabanne, and Emmanuelle Dottax. HB++: a lightweight
authentication protocol secure against some attacks. In Second International
Workshop on Security, Privacy and Trust in Pervasive and Ubiquitous Comput-
ing (SecPerU 2006), 29 June 2006, Lyon, France, pages 28–33. IEEE Computer
Society, 2006.

4. Dang Nguyen Duc and Kwangjo Kim. Securing HB+ against GRS man-in-the-
middle attack. In Institute of Electronics, Information and Communication Engi-
neers, Symposium on Cryptography and Information Security, Jan. 23-26, 2007,
Sasebo, Japan, page 123, 2007.

5. Paul Erdős and Alfrèd Rényi. On two problems of information theory. Publ. Math.
Inst. Hung. Acad. Sci., 8(21):229–243, 1963.

6. H. Gilbert, M. Robshaw, and H. Sibert. Active attack against HB+: a provably
secure lightweight authentication protocol. IEEE Electronics Letters, 41(21):1169–
1170, 2005.

7. Henri Gilbert, Matthew J. B. Robshaw, and Yannick Seurin. Good variants of
HB+ are hard to find. In Gene Tsudik, editor, Financial Cryptography and Data
Security, 12th International Conference, FC 2008, Cozumel, Mexico, January 28-
31, 2008, Revised Selected Papers, volume 5143 of Lecture Notes in Computer
Science, pages 156–170. Springer, 2008.

8. Henri Gilbert, Matthew J. B. Robshaw, and Yannick Seurin. HB#: Increasing the
security and efficiency of HB+. In Nigel P. Smart, editor, Advances in Cryptology
- EUROCRYPT 2008, 27th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008.
Proceedings, volume 4965 of Lecture Notes in Computer Science, pages 361–378.
Springer, 2008.

9. Henri Gilbert, Matthew J.B. Robshaw, and Yannick Seurin. HB#: Increasing the
security and efficiency of HB+, full version. Cryptology ePrint Archive, Report
2008/028, 2008.

10. Ghaith Hammouri and Berk Sunar. PUF-HB: A tamper-resilient HB based authen-
tication protocol. In Steven M. Bellovin, Rosario Gennaro, Angelos D. Keromytis,
and Moti Yung, editors, Applied Cryptography and Network Security, 6th Interna-
tional Conference, ACNS 2008, New York, NY, USA, June 3-6, 2008. Proceedings,
volume 5037 of Lecture Notes in Computer Science, pages 346–365, 2008.

11. Nicholas J. Hopper and Manuel Blum. Secure human identification protocols. In
Colin Boyd, editor, Advances in Cryptology - ASIACRYPT 2001, 7th International
Conference on the Theory and Application of Cryptology and Information Security,
Gold Coast, Australia, December 9-13, 2001, Proceedings, volume 2248 of Lecture
Notes in Computer Science, pages 52–66. Springer, 2001.

12. Ari Juels and Stephen A. Weis. Authenticating pervasive devices with human
protocols. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005: 25th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 14-18, 2005, Proceedings, volume 3621 of Lecture Notes in Computer Science,
pages 293–308. Springer, 2005.

13. Jonathan Katz and Ji Sun Shin. Parallel and concurrent security of the HB
and HB+ protocols. In Serge Vaudenay, editor, Advances in Cryptology - EU-
ROCRYPT 2006, 25th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1,
2006, Proceedings, volume 4004 of Lecture Notes in Computer Science, pages 73–87.
Springer, 2006.

14. Éric Levieil and Pierre-Alain Fouque. An improved LPN algorithm. In Roberto De
Prisco and Moti Yung, editors, Security and Cryptography for Networks, 5th Inter-
national Conference, SCN 2006, Maiori, Italy, September 6-8, 2006, Proceedings,
volume 4116 of Lecture Notes in Computer Science, pages 348–359. Springer, 2006.

15. J. Munilla and A. Peinado. HB-MP: A further step in the HB-family of lightweight
authentication protocols. Computer Networks, 51(9):2262–2267, 2007.

