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Abstract. Encryption schemes that support computation on encrypted
data are useful in constructing efficient and intuitively simple cryp-
tographic protocols. However, the approach was previously limited to
stand-alone and/or honest-but-curious security. In this work, we apply
recent results on “non-malleable homomorphic encryption” to construct
new protocols with Universally Composable security against active cor-
ruption, for certain interesting tasks. Also, we use our techniques to
develop non-malleable homomorphic encryption that can handle homo-
morphic operations involving more than one ciphertext.

1 Introduction

Computation on encrypted data is one of the most intriguing problems in cryp-
tography today. There is a long history of works investigating this problem in
various general settings [22, 12, 2, 1, 11, 23, 3, 13, 5, 17], as well as in relation to
specific computational tasks (e.g., searching on encrypted inputs [10, 24, 14, 4,
18, 15, 19, 13, 8]). As demonstrated by these works, being able to compute on en-
crypted inputs leads to simple intuitive protocols for many cryptographic tasks.

However, compared to some of the core areas in cryptography like encryption,
authentication and secure multi-party computation, the state of the art for com-
putation on encrypted inputs remains quite limited. The majority of encryption
schemes that allow computations on encrypted data are only known to achieve
security against chosen-plaintext attacks. As such, protocols that manipulate
encrypted data often have to employ complicated machinery of zero-knowledge
proofs and/or distributed key management to provide protection against mali-
cious participants. Similarly, issues like composability of protocols have hardly
been explored for this problem.

In this work we take a closer look at the composability and non-malleability
aspects of computation on encrypted data. Our goal is to construct protocols
that are secure in the demanding setting of Universally Composable (UC) secu-
rity [7]. The main challenge is in forbidding a malicious party from manipulating
encrypted data in unwanted ways. The traditional solution to this problem is
to use zero-knowledge proofs to enforce honest behavior. However, general zero-
knowledge proofs are not possible in the UC framework.
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Instead, our approach is to restrict malicious parties’ capabilities via strong
non-malleable guarantees on the encryption scheme itself. This approach has the
additional benefit that shifting some of the security burden to the encryption
scheme allows us to construct conceptually simple protocols that still achieve
strong security against malicious parties.

Requiring “non-malleability” for an encryption scheme may seem counter-
productive to the goal of computing on its encrypted data. Indeed, a scheme
must necessarily be malleable in some way for its encrypted data to be manip-
ulated. However, a security notion called Homomorphic-CCA (HCCA) security
has recently been defined in [20], meaningfully combining homomorphic com-
putational features and non-malleability. Briefly, a scheme that achieves HCCA
security is homomorphic with respect to certain operations, but explicitly forbids
all other manipulations to the underlying plaintext.

The HCCA security requirement is strong enough to be meaningful in the
UC framework, but unlike general-purpose UC zero-knowledge proofs, can be
achieved in the plain model. Indeed, such a scheme has been constructed in
[20], under a standard assumption. However, that construction only supports a
very limited class of homomorphic operations. In particular, it does not support
operations which combine multiple encrypted inputs, which are relevant in the
context of computation on encrypted data. Our contribution in this work is to
show that when used with appropriately encoded data, the relatively unexpres-
sive scheme from [20] can be used to robustly implement more sophisticated
computations on data encrypted in multiple ciphertexts.

1.1 Overview of Our Results

Background: Non-Malleable Homomorphic Encryptions. Computation on en-
crypted data necessitates having an encryption scheme that supports some ho-
momorphic operations. However, when considering security against malicious
parties, a non-malleability requirement is also generally needed.

A key component in our constructions is a public-key encryption scheme that
meaningfully combines both non-malleability and homomorphic operations. Such
schemes were introduced in [20]. We review the relevant security definitions for
these schemes in Section 2. For the purposes of this overview, the reader may
consider a “non-malleable (unary) homomorphic encryption scheme” to be one
in which the only ways to construct a valid ciphertext are: (1) encrypting a
known message, or (2) applying a homomorphic operation to some Enc(m) to
obtain Enc(T (m)), for any function T in a set of allowed transformations. The
set of allowed transformations is a fixed parameter of the encryption scheme,
and it is infeasible for an adversary to generate a ciphertext whose value de-
pends on other ciphertexts in any other way. Furthermore, ciphertexts derived
via the homomorphic operation are completely indistinguishable (even to the
recipient) from ciphertexts generated by the standard encryption operation. In
[20], a construction was given for a family of encryption schemes that support
these requirements for a range of allowed transformation operations related to



cyclic group operations. Our results do not rely on any additional properties of
that construction, but uses the primitive in a black-box manner, and as such, can
be instantiated with the construction in [20] or any future construction satisfying
the appropriate security requirements.

The common technique in our constructions is to exploit the power of this en-
cryption scheme as follows: We encode the input data with some special random-
ized “integrity” information into a vector of several ciphertexts. The integrity
information is intended to correlate the vector of ciphertexts together into one
“bundle.” The homomorphic property of the scheme ensures that the integrity
information and data can be manipulated in certain ways. For instance, in both
of our main results, the integrity information can be “re-randomized” using the
scheme’s homomorphic operations.

When using a homomorphic non-malleable encryption scheme in a protocol,
already by the non-malleability property of the encryption scheme, ciphertexts
can only be derived from others using a certain limited class of operations. By
employing an appropriate integrity encoding, we further enforce that among
the small set of allowed operations, the only ones which preserve/maintain the
integrity information are the legitimate operations prescribed by the protocol.
In other words, the integrity encoding provides a means to give and verify an
implicit zero-knowledge proof that the protocol is being honestly implemented.

Opinion Polling. Our first result is an “opinion poll” protocol that elegantly
illustrates the power of the combination of non-malleability, unlinkability and
homomorphism in a single encryption scheme. The protocol is motivated by the
following scenario: A pollster wishes to collect information from many respon-
dents. However, the respondents are concerned about the anonymity of their
responses. Indeed, it is in the interest of the pollster to set things up so that
the respondents are guaranteed anonymity, especially if the subject of the poll
is sensitive personal information.

To help collect responses anonymously, the pollster can enlist the help of an
external tabulator. The respondents require that the external tabulator too does
not see their responses, and that if the tabulator is honest, then responses are
anonymized for the pollster (i.e., so that he cannot link responses to respon-
dents). The pollster, on the other hand, does not want to trust the tabulator at
all: if the tabulator tries to modify any responses, the pollster should be able to
detect this so that the poll can be invalidated.

A relevant view of this problem is as an instance of a model that we call
crypto-computing on third-party inputs — a model that extends the “crypto-
computing” model from [23]. In this new model, the inputs to the computation
are owned by a set of parties other than the client (who receives the output —
the pollster in our case) and the server (who does the actual computation on
encrypted data — the tabulator in our case). This separation of roles introduces
new security requirements: (1) Privacy for the input parties: the client should
not learn anything other than the intended output value. The server should not
learn anything either. (The input providers are not necessarily interested in the



correctness of the computation.) (2) Robustness: a malicious server cannot make
the client accept an output that is inconsistent with the parties’ inputs.

The opinion poll scenario is similar to the classic setting for mix-nets [9],
where a group of servers accepts a list of ciphertexts and outputs a random
permutation of their decrypted values. However, in many mix-net protocols it
can be quite complicated to enforce the correctness of outputs against a malicious
(i.e., actively corrupt) server (in our case, the tabulator in particular). Often
zero-knowledge proofs [16], or distributed decryption via verifiable secret sharing
are used to enforce the integrity of operations performed on the ciphertexts. In
contrast, our use of non-malleable homomorphic encryption leads to a simple
and elegant UC-secure protocol.

The main idea in our protocol is to use an encryption scheme whose only
homomorphic operation is Enc(α, β) 7→ Enc(α, tβ), where t, α, β are elements of
some cyclic group. In other words, plaintexts consist of a pair of group elements.
Anyone can multiply (apply the group operation to) the second plaintext compo-
nent with a known value t, but the first component is completely non-malleable,
and the two components remain “tied together.” Now, to implement the opinion
poll protocol, the pollster generates a (multiplicative) secret sharing r1, . . . , rn
of a random secret group element R, then sends to the ith respondent a share
ri. Each respondent sends Enc(mi, ri) to the tabulator, where mi is his response
to the poll. Now the tabulator can blindly re-randomize the shares (multiply the
ith share by a random si, such that

∏
i si = 1), shuffle the resulting ciphertexts,

and send them to the pollster. The pollster will ensure that the shares encode
the secret R and accept the results.

Informally, security is argued as follows. The pollster only sees a random
permutation of the responses, and since the multiplicative sharing of R is re-
randomized, there is no way to link any responses to the ri shares he originally
dealt to the respondents. The tabulator sees only encrypted data, and in par-
ticular has no information about the secret R or any individual shares ri. The
only way the tabulator could successfully (with non-negligible probability) gen-
erate ciphertexts whose second components are a multiplicative share of R is
by making exactly one of his ciphertexts be derived from each respondent’s ci-
phertext. By the non-malleability of the encryption scheme, each response mi

is inextricably “tied to” the corresponding share ri and cannot be modified, so
each respondent’s response should be represented exactly once in the tabulator’s
output. Finally, observe that the responses of malicious respondents must be in-
dependent of honest parties’ responses – by “copying” an honest respondent’s
ciphertext to the tabulator, a malicious respondent also “copies” the correspond-
ing ri. The resulting shares would be inconsistent with overwhelming probability.

We also show a similar protocol where the computation performed is a
boolean-OR of the respondents’ boolean inputs (where the tabulator also pro-
vides an input). Again, the non-triviality in these constructions is not in the
complexity of the computation performed, but in ensuring (using only the prop-
erties of the encryption scheme, and in particular no zero-knowledge proofs) that
a malicious server cannot do anything unwanted without detection.



Binary Homomorphic Encryption. Our second contribution is an extension of
the non-malleable homomorphic encryption scheme of [20]. The scheme of [20] is
homomorphic in an inherently unary way; it prohibits operations that combine
multiple ciphertexts together in a homomorphic way. However, many existing
applications of (plain) homomorphic encryption schemes rely on combining mul-
tiple ciphertexts together. Unfortunately, in [20], it was shown that it is impos-
sible to achieve the natural extension of the security definitions to the setting
where the homomorphic operations act on multiple ciphertexts. The complica-
tion arose from the tension between the non-malleability requirement and the
unlinkability requirement (namely, that a ciphertext not leak whether it was
derived as a normal encryption or via one of the homomorphic operations).

In this work, we show that a meaningful relaxation of these definitions can be
achieved. Instead of settling for absolute unlinkability, we consider a relaxation
similar to that used in [23], in which ciphertexts grow in size after applying
the operations. Thus, a ciphertext will reveal no more than (an upper bound
on) the number of homomorphic operations that have been applied to derive it.
However, unlike in [23], our goal is to achieve non-malleability and robustness
against malicious adversaries.

We construct an encryption scheme that supports the binary group oper-
ation in a cyclic group; i.e., anyone can transform Enc∗(α) and Enc∗(β) into
Enc∗(αβ), but the scheme is otherwise non-malleable. Lacking a “standard” se-
curity definition for such an encryption scheme, we prove that our construction
is a UC-secure realization of a natural ideal functionality, whose details are mo-
tivated by extending the UC functionality considered in [20].

The main idea in our construction is to encode a message m as a vector
Enc(m1), . . . ,Enc(mk), where the mi’s are a random multiplicative sharing of m
in the group. and Enc is a non-malleable homomorphic encryption scheme that
supports (unary) group operations (from [20]). To “multiply” two such encrypted
encodings, we can simply concatenate the two vectors of ciphertexts together,
and rerandomize the new set of shares (multiply each component by si, where∏
i si = 1, as in the opinion poll protocol) to bind the sets together.

The above approach captures the main intuition, but our actual construction
uses a slightly different approach to ensure UC security. In the scheme described
above, anyone can split the vector Enc(m1), . . . ,Enc(mk) into two smaller vectors
that encode two (random) elements whose product is m. We interpret this as a
violation of our desired properties, since it is a way to make two encodings whose
values are related to a longer encoding. To get around this problem of “breaking
apart” these ciphertexts, we encode m as Enc(α1, β1), . . . ,Enc(αk, βk), where the
αi’s and βi’s form two independently random secret sharings of m. Rerandomiz-
ing these encodings is possible when we use a scheme that is homomorphic with
respect to the operations (α, β) 7→ (tα, sβ). Now these encodings cannot be split
up in such a way that the first components and second components are shares of
the same value. Note that it is crucial here that because of the non-malleability
properties of the scheme, the (αi, βi) pairs cannot themselves be “broken apart.”



2 Preliminaries

Homomorphic Encryption Syntax and Security. Our constructions use homo-
morphic encryption schemes that have unary homomorphic operations on the
plaintext messages. That is, we suppose there is a procedure CTrans, which
takes a ciphertext and a (description) of a function T on plaintexts, such that
DecSK(CTrans(ζ, T )) = T (DecSK(ζ)) is satisfied.

Prabhakaran and Rosulek [20] introduced security definitions for homomor-
phic encryptions that combine non-malleability as well as robust homomorphic
features. Schemes satisfying these definitions are vital for achieving UC security
in our constructions. We present a high-level overview of their security definitions
below; we refer the reader to Appendix A for the complete formal definitions.

Informally, a homomorphic encryption scheme achieves Homomorphic-CCA
(HCCA) security with respect to a set of functions T if the scheme is non-
malleable except for the possibility of changing an encryption of m into an
encryption of T (m), for T ∈ T (i.e., no other operations are possible in the
scheme). We also consider the complementary requirement: Informally, a homo-
morphic scheme is unlinkable with respect to T if it is indeed possible to change
encryptions of m into encryptions of T (m) for T ∈ T as a feature (using the
CTrans operation), in such a way that ciphertexts do not reveal whether they
were generated via Enc or via CTrans.

Formalizing the intuitive HCCA requirement in a general way is non-trivial.
It is achieved in [20] by requiring that there be an additional procedure RigEncPK
(used only in the analysis) which outputs a special “rigged” ciphertext ζ and
some auxiliary information S, such that ζ is indistinguishable from a normal ci-
phertext. The rigged ciphertext does not necessarily encode a message; however,
there is a corresponding procedure RigExtractSK which, when given another ci-
phertext ζ ′ and the auxiliary information S, determines whether ζ ′ was obtained
by applying a transformation to ζ, and if so, outputs that transformation. The
formal HCCA security experiment enforces the indistinguishability of rigged and
normal ciphertexts, as well as the correctness of RigExtract’s output. Intuitively,
if RigExtract only outputs transformations in T , then ciphertexts can only de-
pend on the values of other ciphertexts according to transformations in T .

The unlinkability requirement is formalized via a more straight-forward se-
curity experiment. At a high level, the experiment enforces that for all adver-
sarially generated ciphertexts ζ such that DecSK(ζ) 6= ⊥, the two distributions
EncPK(T (DecSK(ζ))) and CTrans(ζ, T ) are indistinguishable, even in the pres-
ence of a decryption oracle.

Concrete constructions. Prabhakaran and Rosulek [20] give a construction achiev-
ing the desired properties for various kinds of homomorphic operations, under
the Decisional Diffie-Hellman assumption.

Let G be a cyclic group, and let Gn denote the product group, where we
extend the group operation in G component-wise. For σ ∈ Gn, define the function
Tσ : Gn → Gn as the “multiplication by σ” operation: Tσ(α) = σα. Finally, for
any H ⊆ Gn, define TH = {Tσ | σ ∈ H}.



Theorem 1 ([20]). For any n ≥ 1 and any subgroup H of Gn, there is an en-
cryption scheme with message space Gn that is simultaneously HCCA-secure and
unlinkable, with TH as the set of allowed operations, provided that the Decisional
Diffie-Hellman (DDH) assumption holds in G and any subgroup of Z∗|G|.

Our two main results use instantiations of the above construction with n = 2,
and H = {1} ×G and H = G2, respectively.

3 Opinion Polling

We describe an intuitively simple yet robust protocol for the opinion polling
application described in Section 1.1, using HCCA encryption as a component.

Formally, we give a secure protocol for the UC ideal functionality Fpoll, de-
scribed in Figure 1. For the opinion polling application, we associate the pollster
with party Pclient, the tabulator with Pserver, and the respondents with the input
parties P1, . . . , Pn. Note that in Fpoll, Pclient learns only a random permutation
of the parties’ inputs, while Pserver learns nothing about their inputs (except the
knowledge of who has submitted inputs). Also, Pserver and each input party can
cause the process to abort without Pclient accepting any output.

On input [setup, Pclient, Pserver, P1, . . . , Pn] from party Pclient:

– Send [setup, Pclient, Pserver] to each party Pi.
– Send [setup, Pclient, P1, . . . , Pn] to Pserver.

On input [input, xi] from input party Pi:

– Send [inputfrom, Pi] to Pserver, and remember xi.

On input “ok” from Pserver:

– If Pserver is corrupt, expect to receive from Pserver a permutation σ on {1, . . . , n}.
If Pserver is honest, choose σ at random.

– If not all P1, . . . , Pn parties have supplied an input, or if some xi = ⊥, then
send ⊥ to Pclient.

– Otherwise, give (xσ(1), . . . , xσ(n)) to Pclient.

On input “cancel” from a corrupt Pserver, send ⊥ to Pclient.

Fig. 1. UC ideal functionality Fpoll.

The Protocol. We present our protocol for Fpoll following the high-level overview
given in Section 1.1. We then prove that the protocol is a UC-secure realization
of Fpoll, provided that at least one of {Pclient, Pserver} are honest.

Let E = (KeyGen,Enc,Dec,CTrans) be an unlinkable HCCA-secure scheme,
whose message space is G2 for a cyclic group G, and whose allowed (unary)
transformations are (α, β) 7→ (α, tβ) for all t ∈ G. We suppose the CTrans
operation accepts arguments as CTrans(C, t), where t ∈ G specifies the transfor-
mation (α, β) 7→ (α, tβ). We abbreviate the CTrans(C, t) operation as “t ∗ C”.
Thus t ∗EncPK(α, β) is indistinguishable from EncPK(α, tβ), in the sense of the
unlinkability definition.

The protocol proceeds as follows:



1. Pclient generates a key pair (SK,PK) ← KeyGen and chooses random ele-
ments r1, . . . , rn ← G, rememberingR =

∏
i ri. She then sends (PK, ri, Pserver)

to each party Pi, and sends (Pclient, P1, . . . , Pn) to Pserver.
2. Input party Pi holds input xi. He receives (PK, ri, Pserver) from Pclient, then

sends EncPK(xi, ri) to Pserver through a secure channel.
3. Pserver collects ciphertext Ci from each input party Pi, then chooses a random

permutation σ on [n] and random s1, . . . , sn ← G subject to
∏
i si = 1. He

computes C ′i = sσ(i) ∗ Cσ(i) and sends (C ′1, . . . , C
′
n) to Pclient.

4. Pclient decrypts each C ′i as (x′i, r
′
i)← DecSK(C ′i). If any decryptions fail, or if∏

i r
′
i 6= R, she aborts. Otherwise, she outputs (x′1, . . . , x

′
n) = (xσ(1), . . . , xσ(n)).

Theorem 2. If E is unlinkable and HCCA-secure with message space G2, and
allowed transformations as described above, where |G| is superpolynomial in
the security parameter, then our protocol is a secure realization (with respect
to static corruptions) of Fpoll, against adversaries who corrupt at most one of
{Pserver, Pclient}.

Proof. Given a real-world adversary A, we construct a simulator S. We break
the proof down into 3 cases according to which parties A corrupts:

Case 1: If A corrupts neither Pserver nor Pclient, then suppose by symmetry
that A corrupts some input parties P1, . . . , Pk. Then the main task for S is to
extract the inputs of each corrupt Pi and send them to Fpoll. S simply does the
following:

– On receiving [setup, Pclient, Pserver, P1, . . . , Pn] from Fpoll, generate (PK,SK)←
KeyGen. Choose random r1, . . . , rk ← G and simulate that Pclient sent (PK, ri, Pserver)
to each corrupt input party Pi.

– If not all corrupt parties Pi send a ciphertext Ci to Pserver, then abort. Oth-
erwise, set (xi, r′i)← DecSK(Ci).

– If any of the above decryption fails, or if
∏
i r
′
i 6=

∏
i ri, then send [input,⊥]

to Fpoll on behalf of each corrupt input party Pi.
– Otherwise send [input, xi] to Fpoll on behalf of each corrupt input party Pi.

It is straight-forward to see that in the cases where S sends [input,⊥], then by
the honest behavior of Pserver and Pclient, the protocol would have mandated that
Pclient refuse the output.

Case 2: If A corrupts Pclient and (without loss of generality) input parties
P1, . . . , Pk, then S does the following:

– When corrupt Pclient sends (PK, ri, Pserver) to each honest input party Pi,
send [setup, Pclient, Pserver, P1, . . . , Pn] to Fpoll on behalf of Pclient.

– When a corrupt input party Pi sends a ciphertext Ci to honest Pserver, send
[input, 1] to Fpoll on behalf of Pi.

– When Fpoll gives the final output to S, remove as many 1’s from the output
list as there are corrupt input parties. Call the remaining outputs xk+1, . . . , xn.
Honestly simulate the remainder of the protocol on behalf of the honest input
parties, using xi as the input for honest party Pi.



Since Pclient is corrupt, S can legally obtain the set of honest input parties’
inputs. The only difference therefore between the view of A in the real world
and our simulation is that the honest parties are simulated with inputs that
may be permuted. However, since Pserver is honest, Pclient’s view in the protocol
is independent of any permutation on the honest parties’ inputs.

Case 3: If A corrupts Pserver and input parties P1, . . . , Pk, then S does the
following:

– When Fpoll gives [setup, Pclient, P1, . . . , Pn] to S, generate (PK,SK) ←
KeyGen. Pick random r1, . . . , rn ← G and simulate that Pclient sent (PK, ri, Pserver)
to each corrupt Pi.

– When Fpoll gives [inputfrom, Pi] to S for an honest party (i > k), generate
(Ci, Si)← RigEncPK and simulate that Pi sent Ci to Pserver. Remember Si.

– When Pserver sends Pclient a list of ciphertexts (C ′1, . . . , C
′
n), do the following

for each i:
• If DecSK(C ′i) 6= ⊥, then set (xi, r′i)← DecSK(C ′i).
• Else, if RigExtractSK(C ′i, Sj) 6= ⊥ for some j, set r′i := ri·RigExtractSK(C ′i, Sj).
• If both these operations fail, send cancel to Fpoll on behalf of Pserver.

If
∏
i r
′
i 6=

∏
i ri or for some j > k, there is more than one i such that

RigExtractSK(C ′i, Sj) 6= ⊥, then send cancel to Fpoll on behalf of Pserver.
Otherwise, let σ be any permutation on [n] that maps each j > k to the
unique i such that RigExtractSK(C ′i, Sj) 6= ⊥. Send [input, xσ(i)] to Fpoll on
behalf of corrupt Pi (i ≤ k), and then send ok to Fpoll on behalf of Pserver,
with σ as the permutation that Fpoll expects.

In this case, the primary task of S is to determine whether the corrupt Pserver

gives a valid list of ciphertexts to Pclient. Applying the HCCA definition in a se-
quence of hybrid interactions, we see that the behavior of the real world interac-
tion versus this simulation interaction is preserved when appropriately replacing
Enc/Dec with RigEnc/RigExtract.

Note that the adversary’s view is independent of rk+1, . . . , rn. If DecSK(C ′i) 6=
⊥, then the corresponding r′i value computed by the simulator is also indepen-
dent of rk+1, . . . , rn. Thus the only way

∏
i ri =

∏
i r
′
i can be satisfied with

non-negligible probability is if for each honest party Pj , exactly one i satisfies
RigExtractSK(C ′i, Sj) 6= ⊥. In this case, there will be exactly as many xi’s as cor-
rupt players, and the simulator can legitimately send these to Fpoll as instructed
(with the appropriate permutation).

Boolean OR on Encrypted Data. Using a similar technique, we can obtain a UC-
secure protocol for a boolean-OR functionality. This functionality is identical
to Fpoll except that Pserver also gets to provide an input (say we identify Pserver

with P0), and instead of giving (xσ(0), . . . , xσ(n)), it gives
∨
i xi as the output to

Pclient.
We can achieve this new functionality with a similar protocol — this time,

using an encryption scheme that is unlinkable HCCA-secure with respect to all
group operations in G2. Pclient sends shares ri to the input parties as before. The



input parties send EncPK(xi, ri) to Pserver, where xi = 1 if Pi’s input is 0, and xi
is randomly chosen in G otherwise. Then, Pserver rerandomizes the ri shares as
before, and also randomizes the xi’s in the following way: Pserver multiplies each
xi by si such that

∏
i si = 1 if Pserver’s input is 0, and

∏
i si is random otherwise

(Pserver can randomize both sets of shares simultaneously using the homomorphic
operation). Pclient receives the processed ciphertexts and ensures that

∏
i r
′
i = 1.

Then if
∏
i x
′
i = 1, it outputs 0, else it outputs 1.

We note that this approach to evaluating a boolean OR (where the induced
distribution is a fixed element if the result is 0, and is random if the result is 1)
has previously appeared elsewhere, e.g., [5, 6].

Relation to Voting. Our opinion polling protocol falls short of a solution for the
classic election scenario in several aspects. First, in our scheme, respondents can
cause the entire protocol to abort. Second, the respondents have no stake in the
correctness of the results; if the pollster publishes the entire set of responses,
there is no way for respondents to verify its correctness. Respondents may sub-
mit their vote accompanied by a randomly chosen nonce — this would allow a
respondent to verify that his own response was included, but not that the entire
set of responses is valid. Adding a publicly published nonce also allows trivial
vote-selling. We finally note that an election protocol (in which all participants
receive guaranteed correct results) is not possible in the plain UC model, given
the impossibility results of [21].

4 Non-malleable Homomorphic Encryption for Binary
Operations

In [20], it was shown that no homomorphic encryption can be completely un-
linkable and also allow a group operation over the message space as a binary
homomorphic operation — that is, an operation that multiplies two encrypted
group elements. Still, the impossibility result left open the possibility of achiev-
ing a relaxation of these requirements. We consider a relaxation similar to [23];
namely, we allow the ciphertext to leak the number of operations applied to it
(i.e., the depth of the circuit applied), but ideally no additional information.

Informally, we associate a length parameter with each ciphertext. If a length-
` and a length-`′ ciphertext are combined, then the result is a length ` + `′

ciphertext.

Security Definition. Our formal definition is in the form of an ideal functionality
in the UC framework. It is a generalization of the “homomorphic message post-
ing” functionality presented in [20], to the case where multiple messages can be
combined. The functionality, called FG, is given in full detail in Figure 2. Below
we explain and motivate the details of the definition.

The FG functionality allows users to post messages to each other, as on a bul-
letin board. The messages are stored in the functionality’s memory, and are not
given out except to the designated recipient. Instead, messages can be referred
to using abstract handles, which reveal no information about the message.



The functionality keeps track of a database of records of the form (handle, `,m).
Let GetHandle(args) be a subroutine which sends [handle-req, args] to the ad-
versary and expects in return a string handle. If handle is previously recorded in
the database, abort; otherwise, return handle.

Setup: On receiving a command [setup] from a party P : If a previous setup
command has been processed, abort. Else, send [id-req, P ] to the adversary, and
expect in response a string id. Broadcast [id-announce, P, id] to all other parties.

Dummy handles: On receiving a command [dummy, `, handle] from a corrupt party
only, internally record (handle, `,⊥) and broadcast [handle-announce, handle] to
all parties.

Posting messages: On receiving a command [post, `,m0, handle1, . . . , handlek] from
a party sender: If any handlei is not recorded internally, or m0 6∈ G, ignore the
request. Otherwise, suppose (handlei, `i,msgi) is recorded for each i. If ` <

P
i `i,

ignore the request. Let D = {i |mi = ⊥} ⊆ [k], the indices of the dummy handles.
Set m∗ = m0 ∗

Q
i 6∈Dmi, the product of known plaintexts involved.

– If D = ∅ (no dummy handles involved): If P is corrupt, set handle∗ ←
GetHandle(sender, `,m∗); otherwise let handle∗ ← GetHandle(sender, `). Inter-
nally record (handle∗, `,m∗) and broadcast [handle-announce, handle∗] to all
parties.

– If ` >
P
i∈D `i (not entirely derived from dummy handles): If P is corrupt, set

handle′ ← GetHandle(sender, `′,m∗), else set handle′ ← GetHandle(sender, `′).
Internally record (handle′, `′,m∗).
Set handle∗ ← GetHandle(sender, `, {handle′} ∪ {handlei | i ∈ D}). Internally
record (handle∗, `,⊥) and send [handle-announce, handle∗] to all parties.

– Otherwise (dummy handles only), Set handle∗ ←
GetHandle(sender, `,m0, {handlei | i ∈ D}). Internally record (handle∗, `,⊥)
and send [handle-announce, handle∗] to all parties.

Message reading: On receiving a command [get, handle] from party P (who gave
the first setup command): If (handle, `,msg) is recorded internally, send msg to P ;
else send ⊥.

Fig. 2. UC ideal functionality FG, parametrized by a cyclic group G..

Following our desired intuition, users can only generate new messages in two
ways (for uniformity, all handled in the same part of the functionality’s code).
A user can simply post a message by supplying a group element m (this is
the case where k = 0 in the user’s post command). Alternatively, a user can
provide a list of existing handles along with a group element m. If all these
handles correspond to honestly-generated posts, then this has the same effect as
if the user posted the product of all the corresponding messages (though note
that the user does not have to know what these messages are to do this). We
model the fact that handles reveal nothing about the message by letting the
adversary choose the actual handle string, without knowledge of the message.
The designated recipient can obtain the message by providing a handle to the



functionality. Note that there is no way (even for corrupt parties) to generate a
handle derived from existing handles in a non-approved way.

However, (as in [20]) adversaries can also post dummy handles, which contain
no message. When a user posts a derived message using such a handle, the
resulting handle also contains no message. However, the adversary is also told
that the handle was used in a derived post command. The adversary also gets
access to an “intermediate” handle corresponding to all the non-dummy handles
that were combined in the post request. Still, the adversary learns nothing
about the messages corresponding to these handles. This weakness is slight and
natural, since the adversary could output a ciphertext encrypted under some
key unknown to the other participants. The ciphertext would be meaningless to
the other parties, but the adversary could also be able to detect when someone
has derived another message using it.

One may of course consider interactive protocols for FG. However, we restrict
attention to non-interactive protocols obtained via encryption schemes — where
KeyGen implements the setup command, Enc and CTrans implement the post
command, and Dec implements the get command, all in the natural ways.

The Construction. Let E = (KeyGen,Enc,Dec,CTrans) be an unlinkable HCCA-
secure scheme, whose message space is G2 for a cyclic group G, and whose allowed
(unary) transformations are all group operations in G2. We suppose the CTrans
operation accepts arguments as CTrans(C, (r, s)), where r, s ∈ G specify the
transformation (α, β) 7→ (rα, sβ). We abbreviate the CTrans(C, (r, s)) operation
as “(r, s)∗C”. Thus (r, s)∗EncPK(α, β) is indistinguishable from EncPK(rα, sβ),
in the sense of the unlinkability definition.

The new scheme E∗ is given by the following algorithms:

Key generation (KeyGen∗) Same as KeyGen.
Encryption (Enc∗) To encrypt an element m ∈ G in a length-` ciphertext,

output
C =

(
EncPK(α1, β1), . . . ,EncPK(α`, β`)

)
where αi, βi are randomly chosen in G subject to the constraint

∏
i αi =∏

i βi = m.
Decryption (Dec∗) To decrypt a ciphertext C = (C1, . . . , C`), decrypt each Ci

to get (αi, βi). If any decryption returns ⊥, or if
∏
i αi 6=

∏
i βi, output ⊥.

Else output
∏
i αi.

Transformation operation (CTrans∗) To “multiply” two given ciphertexts
C = (C1, . . . , C`) and C ′ = (C1, . . . , C`′), output a random permutation
of:(

(r1, s1) ∗ C1, . . . , (r`, s`) ∗ C`, (r`+1, s`+1) ∗ C ′1, . . . , (r`+`′ , s`+`′) ∗ C ′`′
)

where ri, si are randomly chosen in G subject to
∏
i ri =

∏
i si = 1

To “multiply” a single given ciphertext C = (C1, . . . , C`) by a given known
group element R ∈ G (without increasing the ciphertext length), output:(

(r1, s1) ∗ C1, . . . , (r`, s`) ∗ C`
)



where ri, si are randomly chosen in G subject to
∏
i ri =

∏
i si = R.

We note that the syntax of CTrans∗ can be naturally extended to support mul-
tiplying several ciphertexts and/or a known group element at once, simply by
composing the operations described above.

Theorem 3. If E is unlinkable and HCCA-secure with respect to G2, where |G|
is superpolynomial in the security parameter, then E∗ (as described above) is a
secure realization of FG, with respect to static corruptions.

Proof. Let E = (KeyGen,Enc,Dec,CTrans) be the unlinkable HCCA-secure scheme
used as the main component in our construction, and let RigEnc and RigExtract
be the procedures guaranteed by HCCA security.

We proceed by constructing an ideal-world simulator for any arbitrary real-
world adversary A. The simulator S is constructed by considering a sequence of
hybrid functionalities that culminate in FG. These hybrids differ from FG only
in how much they reveal in their handle-req requests to the adversary.

Correctness. Note that FG only makes two kinds of handle-req requests: those
containing a lone message, and those containing a list of handles.

Let F1 be the functionality that behaves exactly as FG, except that every time
it sends a handle-req to the simulator, it also includes the entire party’s input
that triggered the handle-req. Define S1 to be the simulator that internally
runs the adversary A, and does the following:

– When F1 gives (id-req, P ) to S1, it generates a key pair (PK,SK) ←
KeyGen and responds with PK. It simulates to A that party P broadcast
PK.

– When F1 gives a handle-req to S1, it generates the handle appropriately
— with either Enc∗PK or CTrans∗ on an existing handle, depending on the
party’s original command which is included in the handle-req. It simulates
to A that the appropriate party output the handle.

– When A broadcasts a length-` ciphertext C, S1 tries to decrypt it with
Dec∗SK . If it decrypts (say, to m), then S1 sends a (post, `,m) command to
F1 and later gives C as the handle; else it sends (dummy, `, C).

S1 exactly simulates the honest parties’ behavior in the real world interaction.
By the correctness properties of E∗, the outputs of the honest ideal-world parties
match that of the real world, except with negligible probability; thus, realE

∗

Z,A ≈
idealF1

Z,S1 for all environments Z.

Unlinkability. Let F2 be exactly like F1, except for the following change: For
requests of the form [handle-req, sender, `,m], F2 does not send the handles
that caused this request. That is, whereas F1 would tell the simulator that
the handle is being requested for a post command combining some non-dummy
handles, F2 would instead act like sender had sent [post, `,m] (that this is closer
to what FG does; internally behaving identically for such requests). Let S2 = S1,
since F1 is only sending one fewer type of handle-req to the simulator.



By a standard hybrid argument, we can see that idealF1
Z,S1 ≈ idealF2

Z,S2
for all environments Z. The hybrids are over the number of post requests af-
fected by this change. Consecutive hybrids differ by whether a single handle was
generated by Enc∗ or by CTrans∗. The only handles that are affected here are
non-dummy handles, and thus ciphertexts which decrypt successfully under SK.
Thus distinguishing between consecutive hybrids can be reduced to succeeding
in the unlinkability experiment (by further hybridizing over the individual Enc
ciphertext components).

HCCA. If the owner P of the functionality is corrupt, then S2 is already a
suitable simulator for FG, and we can stop at this point.

Otherwise, the difference between FG and F2 is that FG does not reveal the
message in certain handle-req requests. Namely, those in which the simulator
receives [handle-req, sender, `].

Let S3 be exactly like S2, except for the following changes: Each time S2

would generate a ciphertext component via EncPK(α, β), S3 instead generates
it with RigEncPK . It keeps track of the auxiliary information S and records
(S, α, β) internally. Also, whenever S2 would decrypt a ciphertext component
using DecSK , S3 instead decrypts it via:

D(C) =

{
(rα, sβ) if any (S, α, β) is recorded such that (r, s)← RigExtractSK(C, S)
DecSK(C) otherwise

By a straight-forward hybrid argument (where distinguishing between con-
secutive hybrids reduces to distinguishing in one execution of the HCCA exper-
iment), we have that idealF2

Z,S2 ≈ idealF2
Z,S3 for all environments Z.

Suppose the internal records (S, α, β) are labeled as (Sj , αj , βj) for j ≥ 1.
Now for each handle-req request q sent to S3, we define Jq to be the set of
indices j such that (Sj , αj , βj) was generated as a result of servicing request q.

Each α, β is chosen randomly in G, subject to a constraint on some of their
products, as prescribed by Enc∗ and CTrans∗. However, the ciphertexts given to
the adversary are generated by RigEncPK , and thus independent of these random
choices. In fact, the entire adversary’s view is (essentially) independent of the
random choices of α, β, subject to

∏
j∈Jq

αj/βj being fixed (we pessimistically
assume that A knows this fixed value for each q). Put another way,

∏
j∈J′(αj/βj)

is uniformly distributed for a multiset J ′ if and only if for all q, all elements of
Jq have the same multiplicity in J ′.

We now examine when a ciphertext given by the adversary is successfully
decrypted by the simulator (and thus given to the functionality as a post instead
of as a dummy handle).

Given a ciphertext (sequence of HCCA ciphertexts) C = (C1, . . . , C`), S3

first decrypts each Ci to obtain (αi, βi) = D(Ci). The overall decryption suc-
ceeds if

∏
i(αi/βi) = 1. Let J ′ be the multiset of indices j such that ⊥ 6=

RigExtractSK(Ci, Sj), with multiplicity for each i where this holds. The decryp-
tion constraint above is uniformly distributed (and thus equality holds only



with negligible probability) unless all elements of Jq have the same multiplic-
ity in J ′. However, when all elements of Jq have the same multiplicity in J ′,
we may cancel all the αj/βj terms in the constraint. What remains are terms
of the form αi/βi, where (αi, βi) ← DecSK(Ci), and terms of ri/si, where
(ri, si)← RigExtractSK(Ci, Sj). The ciphertext then decrypts successfully if and
only if the constraint holds with respect to these remaining terms.

Thus, we can consider a simulator S4 which behaves just like S3, except that
when A outputs a ciphertext C = (C1, . . . , C`), it processes it as follows:

– If some Ci is such that D(Ci) = ⊥, the ciphertext is invalid; send [dummy, C]
to the functionality.

– Define J ′ as above. If for some q, the elements of Jq do not all have the
same multiplicity in J ′, the ciphertext is invalid; send [dummy, C] to the
functionality.

– Let I be the set of indices such that⊥ 6= (αi, βi)← DecSK(Ci). If
∏
i∈I(αi/βi) 6=

1, then the ciphertext is invalid; send [dummy, C] to the functionality.
– Let (ri, si) ← RigExtractSK(Ci, Sj) for each i 6∈ I, If

∏
i 6∈I(ri/si) 6= 1, then

the ciphertext is invalid; send [dummy, C] to the functionality.
– Otherwise, send [post, `,m0, {handlej | j ∈ J ′}] to the functionality, where
m0 =

∏
i∈I αi

∏
i 6∈I ri.

Except with negligible probability, S4 interacts identically with the function-
ality as S3. However, note that S4 does not actually look at the αj , βj values
that are recorded for each call to RigEnc. Thus S4 can be successfully imple-
mented even if the functionality does not reveal m in messages of the form
[handle-req, sender, `,m]. Therefore S4 is a suitable simulator for FG itself,
and idealF2

Z,S3 ≈ idealFG
Z,S4 for all environments Z.
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A Security Definitions for Non-Malleable Homomorphic
Encryption

The formal definitions in this section are summarized from [20] for reference:

HCCA Security. The main security definition, called Homomorphic-CCA (HCCA)
security, formalizes the intuition that a homomorphic encryption scheme is “non-
malleable except for a certain set of operations.” The complete security experi-
ment is given in Figure 3, and we give an overview and motivation below.

Definition 1. A homomorphic encryption scheme is Homomorphic-CCA (HCCA)
secure with respect to T if there are PPT algorithms RigEnc and RigExtract,
where the range of RigExtract is T ∪{⊥}, and such that for all PPT adversaries
A, the advantage of A in the IND-HCCA experiment (Figure 3) is negligible.

When b = 0 in the experiment, the adversary simply receives an encryption of
his chosen plaintext msg∗, and gets access to an unrestricted decryption oracle.
However, when b = 1 in the experiment, instead of an encryption of msg∗, the
adversary receives a “rigged” ciphertext generated by RigEnc, without knowledge
of msg∗. Such a rigged ciphertext need not encode any actual message, so if the
adversary asks for it (or any of its derivatives via the homomorphic operations)
to be decrypted, the decryption oracle’s response must be compensated in some
way, or else it would be easy to distinguish the b = 0 from b = 1 scenarios.
For this purpose, the RigEnc procedure also produces some (secret) extra state
information, which makes it possible to identify (via the RigExtract procedure)
all ciphertexts derived from that particular rigged ciphertext, as well as how they
were derived. So in the b = 1 scenario, the decryption oracle first uses RigExtract
to check whether the given ciphertext was derived via a homomorphic operation
of the scheme, and if so, compensates in its response. For example, if the query
ciphertext was derived by applying the T transformation, then the decryption
oracle should respond with T (msg∗), to mimic the b = 0 case.

It is easily seen that if it is feasible for an adversary to modify an encryption
of Enc(msg) into a related encryption Enc(T (msg)), but RigExtract never outputs
T , then there is a way for an adversary to distinguish between b = 0 and b = 1
in the experiment. Thus by restricting the range of the RigExtract procedure in
the security definition, we limit the feasible malleability of the scheme.

Finally, because RigExtract uses the private key, as well as secret auxiliary
information from RigEnc, we should provide an oracle for these procedures. We
do so in a “guarded” way that keeps the auxiliary shared information hidden
from the adversary in the experiment.

Unlinkability. The second security definition, called unlinkability, formalizes of
the natural requirement that a ciphertext hides not only its plaintext, but also
its “history” — i.e., whether it was generated as a normal Enc, or by applying
the homomorphic operations to some other ciphertext.

We note that the definition is more than just a correctness property, as it in-
volves the behavior of the scheme’s algorithms on maliciously-crafted ciphertexts.



Setup: Pick (PK,SK)← KeyGen and give PK to A.
Phase I: A gets access to the DecSK(·) oracle and the following two “guarded”

RigEnc and RigExtract oracles:

GRigEncPK() = ζi, where (ζi, Si)← RigEncPK , when called for the ith time

GRigExtractSK(ζ, i) = RigExtractSK(ζ, Si)

Challenge: A outputs a plaintext msg∗. We privately flip a coin b ← {0, 1}. If
b = 0, we compute ζ∗ ← EncPK(msg∗). If b = 1, we compute (ζ∗, S∗) ←
RigEncPK . In both cases, we give ζ∗ to A.

Phase II: A gets access to the same GRigEnc and GRigExtract oracles as in Phase
I, as well as a “rigged” version of the decryption oracle RigDec. When b = 0,
RigDec is simply the normal decryption oracle DecSK(·). When b = 1, RigDec
is implemented as follows:

RigDecSK(ζ) =

(
T (msg∗) if ⊥ 6= T ← RigExtractSK(ζ, S∗)

DecSK(ζ) otherwise
.

Output: A outputs a bit b′. The advantage of A is Pr[b′ = b]− 1
2
.

Fig. 3. IND-HCCA security experiment, parametrized by T

The security experiment also includes a decryption oracle, making it applicable
even to adversaries with chosen-ciphertext attack capabilities.

Definition 2. A homomorphic encryption scheme is unlinkably homomorphic
with respect to T if for all PPT adversaries A, the advantage of A in the un-
linkability experiment (Figure 4) is negligible.

Setup: Pick (PK,SK)← KeyGen and give PK to A.
Phase I: A is given access to the decryption oracle DecSK(·).
Challenge: Flip a coin b← {0, 1}. A outputs a ciphertext ζ and a transformation

T ∈ T . If DecSK(ζ) = ⊥, do nothing. Else give ζ∗ to A where

ζ∗ ←

(
EncPK(T (DecSK(ζ))) if b = 0

CTrans(ζ, T ) if b = 1
.

Phase II: A is given access to the decryption oracle DecSK(·).
Output: A outputs a bit b′. The advantage of A is Pr[b′ = b]− 1

2
.

Fig. 4. Unlinkability security experiment, parametrized by T


