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Abstract. We consider the following problem: Given a commitment to
a value σ, prove in zero-knowledge that σ belongs to some discrete set
Φ. The set Φ can perhaps be a list of cities or clubs; often Φ can be a
numerical range such as [1, 220]. This problem arises in e-cash systems,
anonymous credential systems, and various other practical uses of zero-
knowledge protocols.

When using commitment schemes relying on RSA-like assumptions, there
are solutions to this problem which require only a constant number of
RSA-group elements to be exchanged between the prover and verifier [5,
16, 15]. However, for many commitment schemes based on bilinear group
assumptions, these techniques do not work, and the best known proto-
cols require O(k) group elements to be exchanged where k is a security
parameter.

In this paper, we present two new approaches to building set-membership
proofs. The first is based on bilinear group assumptions. When ap-
plied to the case where Φ is a range of integers, our protocols require
O( k

log k−log log k
) group elements to be exchanged. Not only is this result

asymptotically better, but the constants are small enough to provide
significant improvements even for small ranges. Indeed, for a discrete
logarithm based setting, our new protocol is an order of magnitude more
efficient than previously known ones.

We also discuss alternative implementations of our membership proof
based on the strong RSA assumption. Depending on the application,
e.g., when Φ is a published set of values such a frequent flyer clubs,
cities, or other ad hoc collections, these alternative also outperform prior
solutions.

Keywords. Range proofs, set membership proofs, proofs of knowledge,
bi-linear maps.

1 Introduction

In this paper we consider zero-knowledge protocols which allow a prover to
convince a verifier that a digitally committed value is a member of a given
public set. A special case of this problem is when to show that the committed
value lies in a specified integer range.
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The first problem, which we denote the set membership proof, occurs for
instance in the context of anonymous credentials. Consider a user who is issued
a credential containing a number of attributes such as address. Further assume
the user needs to prove that she lives in a European capital. Thus, we are given
a list of all such cities and the user has to show that she possesses a credential
containing one of those cities as address (without of course, leaking the city the
user lives in). Or, consider a user who has a subscription to a journal (e.g., the
news and the sports section). Further assume that some general sections are
to all subscribers of a list of sections. Thus, using our protocol, the user can
efficiently show that she is a subscriber to one of the required kinds.

The second problem, which we denote the range proof, also occurs often in
anonymous credential and e-cash scenarios. For example, a user with passport
credential might wish to prove that her age is within some range, e.g. greater
than 18, or say between 13 and 18 in the case of a teen-community website. This
problem is a special case of the set membership proof. Since the elements of the
set occur in consecutive order, special techniques can be applied.

1.1 Our Results

Given a set Φ = {φ1, φ2, . . . , φn} and a commitment4 C, a typical approach to
the set membership problem is to use a zero-knowledge proof of the form

“C is a commitment to the element φ1 OR it is a commitment to φ2 OR
it is a commitment to φ3 · · · OR it is a commitment to φn.”

Even though there exist efficient algebraic Σ (Sigma) protocols for handling a
single such OR clause, such a proof still has length which is proportional to n.
One might argue that such proofs necessarily have length proportional to n since
the task of describing the set Φ itself requires space n.

However, in many practical situations, the set Φ is often specified in advance
by the verifying party. In other words, Φ can be considered a common input to
both Prover and Verifier, and thus we might ask whether it is possible to prove
a commitment is a commitment to an element of Φ without having to explicitly
list Φ in the proof.

To the best of our knowledge, we are the first to propose such a scheme
for general, unstructured sets. Our approach is incredibly simple. We provide
a way to “encode” the set Φ in a way that allows for O(1)-sized proofs that a
committed element belongs to Φ. Specifically, we let the verifier specify Φ by
providing “digital signatures” on the elements of Φ under a new verification key

4 One might wonder what it means to say “the element committed to in C” when the
commitment scheme is not a perfectly-binding one. In such a case, technically, the
proof is only computationally sound—often called an argument instead of a proof. In
other words, we assume that a computationally-bounded prover knows only one way
to open the commitment C and cannot deduce other ways. Indeed, such protocols
are technically called arguments instead of proofs. Since prior work refers to the
problem as a “proof,” we continue to use that term.
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vk. Now if we consider this set of digital signatures as a common input, the proof
becomes a statement of the form:

“The prover knows a signature under vk for the element committed to
in C.”

We provide two types of protocols that are instantiations of this idea. The first
one is based on a bilinear-group signature scheme which enables an efficient way
to make this proof. The second way is based on the Strong RSA assumption
and uses the idea of cryptographic accumulators. In both cases, the actual proof
of the statement requires O(1) group elements to be exchanged between prover
and verifier.

The special case of Range proofs. A popular special case of the set membership
problem occurs when the set Φ consists of a range [a, a + 1, a + 2, . . . , b]—which
we denote [a, b]. This problem has been well-studied because it occurs so often
in practice. Indeed, under the Strong RSA assumption, there are very efficient
proofs for this problem as we discuss in the prior work section below. However,
in cases when the range is small or the same range is used in many protocol
instantiations, our protocol will be more efficient (by a factor of about 8-10,
depending on the group employed).

If one is not willing to rely on the Strong RSA assumption, the folklore
method to the problem of range proofs is to have the Prover commit to all k
bits of his secret, prove that these commitments all encode either a 0 or a 1
and prove that the commitments indeed commit to all the bits of s. The verifier
is then convinced that the secret lies in [0, 2k+1 − 1] since there were only k
commitments. The method can be generalized to any range. The size of such a
proof is thus O(k) group elements.

Using the simple idea of the set membership proof, we are able to reduce
this size both asymptotically and in practice for many often-occurring ranges.
Our simple idea is as follows: Instead of committing to the individual bits of the
committed value, we write the secret value in base-u (for some optimally chosen
u) and commit to these u-ary digits. If we only provide ℓ such commitments
and prove that the secret can be written in u-ary notation, then we implicitly
prove that the secret is in the range [0, uℓ]. A generalization of this technique
can be used to prove that the secret is in [a, b] for arbitrary integers a and b. The
key technique is to use the set-membership protocol in order to prove that each
committed digit is indeed a digit in base-u. Writing the secret in base-u (instead
of base 2) is indeed an obvious step. However, with prior methods, doing so does
not reduce the proof size. With prior methods, proving that a committed digit
is a u-ary digit requires a u-wise OR proof of size O(u); since this u-wise OR
proof must be done ℓ times independently, prior methods require communication
O(u · ℓ).

The key insight in our scheme is to design a scheme which can reuse part
of one u-ary digit proof in all ℓ proof instances. Specifically, the verifier can
send one list of u signatures representing u-ary digits, and the prover can use
this same list to prove that all ℓ digits are indeed u-ary digits. Thus, the total
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communication complexity of our approach is O(u+ℓ). With well-selected values
for u and ℓ, we show that this approach yields a proof of size O( k

log k−log log k )
which is both asymptotically and practically better than the only other known
method.

Note that if the range is small or the same range is used for many protocols,
then it is more efficient to employ the set membership protocol directly.

1.2 Prior and Related Work

Assume for concreteness the Pedersen commitment scheme over a prime order
group. Let g, h be elements of a group G of prime order q. Let C = gshr be
the commitment that the prover has sent to the verifier, where s is the secret of
which the prover want to show that it lies in a specific range and r is a randomly
chosen element from Zq.

There are a number of known ways that a prover can convince a verifier that
the secret committed in C lies in a given range assuming the hardness of the
Strong (or sometimes called flexible) RSA problem. Let us review them here.

The most frequent method used in practice is the following. First, the verifier
picks a safe prime product n = (2p+1)(2q+1) and two random quadratic residues
g, h modulo n, and proves to the prover that g ∈ 〈h〉 is true. Next, the verifier
computes c = gshr′

mod n, sends this value to the prover and then runs the
following protocol with him:

PK {(s, r, r′) : c = gshr′

(mod n) ∧ C = gshr ∧ s ∈ [−A, A]}

The protocol is basically a generalized Schnorr proof (in a group of unknown
order), where the verifier in addition to accepting the basic proof also verifies
whether the answer corresponding to the secret s lies in [−A/2, A/2]. If it does so,
then the verifier can conclude that the secret must lie in the range [−A, A] (this
becomes apparent when one considers the knowledge extractor for the protocol).
The drawback of this proof is that it in fact works only if the secret lies in the
smaller range [−A2−(k′+k′′), A2−(k′+k′′)], with k′ being the number of bits of the
challenge sent by the verifier and k′′ determining the statistical zero-knowledge
property, i.e., the secret must be k′ + k′′ bits smaller. Therefore the protocol
cannot be used for situations where one has to show that a secret lies exactly in
a given range.

Boudot [5] provided an efficient proof that did not have this drawback. He
used the observation that any positive number can be composed as the sum
of four squares. Thus, to show that a secret s lies in [A, B], one just needs to
show that the values s1 = s − A and s2 = B − s are positive. So basically,
what the prover has to do is to give commitments to s1 and s2 and to the
numbers s(1,1), . . . , s(1,4) and s(2,1), . . . , s(2,4), the sum of whose squares are equal
to s1 and s2 respectively. Of course, if these commitments were, e.g., Pedersen
commitments in a group of prime order q, them all we could conclude is that s1

and s2 are the sum of four square modulo q, which is not very helpful. Luckily,
Okamoto and Fujisaki [13] have shown that when the commitments and the
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proof is done in a group where the order is not known to the prover, then these
relations hold over the integers and thus one can really assert that s1 and s2 are
positive.

Thus, we get the following protocol: First the prover computes the following
commitments c(i,j) = gs(i,j)hr(i,j) mod n for some randomly chosen r(i,j), sends
these to the verifier and then engages in the following proof with him :

PK{(s, r, r′, s
(1)
1 , . . . , s

(4)
1 , s

(1)
2 , . . . , s

(4)
2 , r′′, r∗) :

c(1,1) = gs(1,1)hr(1,1) ∧ . . . ∧ c(1,4) = gs(1,4)hr(1,4)∧

c(2,1) = gs(2,1)hr(2,1) ∧ . . . ∧ c(2,4) = gs(2,4)hr(2,4)∧

c/gA = c(1,1)
s(1,1) · · · c(1,4)

s(1,4)hr′′

∧ gB/c = c(2,1)
s(2,1) · · · c(2,4)

s(2,4)hr∗

∧

c = gshr′

(mod n) ∧ C = gshr}

We see that this protocol requires the prover to compute 22 modular expo-
nentiations (including the computations of the commitments) and the verifier
to compute 12 modular exponentiations. The communication complexity is in
about 35 group elements. Groth [15] optimizes this protocol by exploiting the
fact that special integers can be written as the sum of 3 squares instead of 4
squares. The major drawback of these approaches is that the Rabin and Shal-
lit algorithm typically used to find the 4 (or 3) squares which sum to the secret
takes time O(k4) where k is the size of the interval. Lipmaa [16] provides another
algorithm to find this squares that improves somewhat on the Rabin-Shallit one.
However, in practice, these algorithms running times quickly make this approach
preventive.

Independently to our work, Teranishi and Sako [20] presented a k-Times
Anonymous Authentication in which they present a range proof using Boneh-
Boyen signature scheme [4], that can be obtained from our generalized set mem-
bership. However their range proof does not compete with ours as our verifier
publishes significantly less signatures.

Schoenmakers [18, 19] studied and discussed several recursive relations which
can be used to reduce the number of basic Schnorr proofs when committing to
the individual bits of the secret. In particular, he writes the upper bound L of the
positive range [0, L) as either the product or the sum of two numbers. By doing
this scheme recursively he decreased the amount of work needed. However the
overall communication load in his protocols is still O(k), where 2k−1 < L 6 2k.
We note that some of his techniques for reducing certain ranges to other more
convenient ranges can be used with any range proof technique.

Micali, Kilian, and Rabin [17] considered a more general problem in which
a polynomial-time prover wants to commit to a finite set Φ of strings so that,
later on, he can, for any string x, reveal with a proof whether x ∈ Φ or x 6∈ Φ
without leaking any knowledge beyond the membership assertions. In particular,
the proofs do not even reveal the size of Φ—much less the actual elements. Thus,
these protocols are not directly comparable to ours.
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1.3 Organization

In section 2, we recall zero-knowledge proofs, Σ-protocols and define proofs of
set membership and range proofs. In section 3, we describe our new signature-
based set membership together with its corresponding proof. In section 4, we
explain how to apply our new signature-based set membership for efficient range
proof. We also emphasis on the communication complexity and show how our
new range proof is asymptotically better. To have a better insight of our state
of the art, we provide a concrete example together with some comparison of
previous work. In section 5, we recall cryptographic accumulators together with
their proofs, and we describe our new accumulator-based set membership.

2 Definitions

Zero-knowledge proofs and Σ-protocols. We use definitions from [2, 11]. A
pair of interacting algorithms (P, V) is a proof of knowledge (PK) for a relation
R = {(α, β)} ⊆ {0, 1}∗ × {0, 1}∗ with knowledge error κ ∈ [0, 1] if (1) for
all (α, β) ∈ R, V(α) accepts a conversation with P(β) with probability 1; and
(2) there exists an expected polynomial-time algorithm E, called the knowledge
extractor, such that if a cheating prover P∗ has probability ǫ of convincing V

to accept α, then E, when given rewindable black-box access to P∗, outputs a
witness β for α with probability ǫ− κ.

A proof system (P, V) is honest-verifier zero-knowledge if there exists a p.p.t.
algorithm Sim, called the simulator, such that for any (α, β) ∈ R, the outputs
of V (α) after interacting with P(β) and that of Sim(α) are computationally
indistinguishable.

Note that standard techniques can be used to transform an honest-verifier
zero-knowledge proof system into a general zero-knowledge one [11]. This is
especially true of special Σ-protocols that will be presented later in the paper.
Thus, for the remainder of the paper, our proofs will be honest-verifier zero-
knowledge. (This also allows us to make more accurate comparisons with the
other proof techniques since they are usually also presented as honest-verifier
protocols.)

A Σ-protocol is a proof system (P, V) where the conversation is of the form
(a, c, z), where a and z are computed by P, and c is a challenge chosen at ran-
dom by V. The verifier accepts if φ(α, a, c, z) = 1 for some efficiently computable
predicate φ. Given two accepting conversations (a, c, z) and (a, c′, z′) for c 6= c′,
one can efficiently compute a witness β. Moreover, there exists a polynomial-
time simulator Sim that on input α and a random string c outputs an accepting
conversation (a, c, z) for α that is perfectly indistinguishable from a real conver-
sation between P(β) and V(α).

We use notation introduced by Camenisch and Stadler [9] for the various
zero-knowledge proofs of knowledge of discrete logarithms and proofs of the
validity of statements about discrete logarithms. For instance,

PK{(α, β, γ) : y = gαhβ ∧ y = gαhγ ∧ (u ≤ α ≤ v)}
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denotes a “zero-knowledge Proof of Knowledge of integers α, β, and γ such that
y = gαhβ and y = gαhγ holds, where v ≤ α ≤ u,” where y, g, h, y, g, and h are
elements of some groups G = 〈g〉 = 〈h〉 and G = 〈g〉 = 〈h〉. The convention is
Greek letters denote quantities the knowledge of which is being proved, while all
other parameters are known to the verifier. Using this notation, a proof-protocol
can be described by just pointing out its aim while hiding all details. We note
that all of the protocols we present in this notation can be easily instantiated as
Σ-protocols.

Definition 1 (Proof of Set Membership).
Let C = (Gen, Com, Open) be the generation, the commit and the open algorithm
of a string commitment scheme. For an instance c, a proof of set membership
with respect to commitment scheme C and set Φ is a proof of knowledge for the
following statement:

PK{(σ, ρ) : c← Com(σ; ρ) ∧ σ ∈ Φ}

Remark: The proof system is defined with respect to any commitment scheme.
Thus, in particular, if Com is a perfectly-hiding scheme, then the language ΓS

consists of all commitments (assuming that S is non-empty). Thus for soundness,
it is important that the protocol is a proof of knowledge.

Definition 2 (Range Proof). A range proof with respect to a commitment
scheme C is a special case of a proof of set membership in which the set Φ is a
continuous sequence of integers Φ = [a, b] for a, b ∈ N.

3 Signature-Based Set Membership

Here we present a new set membership protocol that is inspired by the oblivious
transfer protocol presented by Camenisch, Neven, and shelat [8]. The basic idea
is that the verifier first sends the prover a signature of every element in the
set Φ. Thus, the prover receives a signature on the particular element σ to
which C is a commitment. The prover then “blinds” this received signature and
performs a proof of knowledge that she possesses a signature on the committed
element. Notice that the communication complexity of this proof depends on
the cardinality of Φ—in particular because the verifier’s first message contains a
signature of every element in Φ. The rest of the protocol, however, requires only
a constant number of group elements to be sent. The novelty of this approach
is that the first verifier message can be re-used in other proofs of membership;
indeed, we use this property to achieve our results for range proofs.

Computational assumptions. Our protocols in this section require bilinear
groups and associated hardness assumptions. Let PG be a pairing group genera-
tor that on input 1k outputs descriptions of multiplicative groups G1 and GT of
prime order p where |p| = k. Let G∗

1 = G1 \ {1} and let g ∈ G∗

1. The generated



8 Jan Camenisch, Rafik Chaabouni, and abhi shelat

groups are such that there exists an admissible bilinear map e : G1 ×G1 → GT,
meaning that (1) for all a, b ∈ Zp it holds that e(ga, gb) = e(g, g)ab; (2) e(g, g) 6=
1; and (3) the bilinear map is efficiently computable.

Definition 3 (Strong Diffie-Hellman Assumption [4]). We say that the
q-SDH assumption associated to a pairing generator PG holds if for all p.p.t.
adversaries A, the probability that A(g, gx, . . . , gxq

) where (G1, GT) ← PG(1k),
g ← G∗

1 and x← Zp, outputs a pair (c, g1/(x+c)) where c ∈ Zp is negligible in k.

A recent work by Cheon [10] shows a “weakness” in the q-SDH assumption.
However, this “weakness” is not so relevant when q is a very small number like
50 as it is in our paper.

Boneh-Boyen signatures. Our scheme relies on the elegant Boneh-Boyen
short signature scheme [4] which we briefly summarize. The signer’s secret key is
x← Zp, the corresponding public key is y = gx. The signature on a message m
is σ ← g1/(x+m); verification is done by checking that e(σ, y · gm) = e(g, g). This
scheme is similar to the Dodis and Yampolskiy verifiable random function [12].

Security under weak chosen-message attack is defined through the following
game. The adversary begins by outputting ℓ messages m1, . . . , mℓ. The challenger
generates a fresh key pair and gives the public key to the adversary, together
with signatures σ1, . . . , σℓ on m1, . . . , mℓ. The adversary wins if it succeeds in
outputting a valid signature σ on a message m 6∈ {m1, . . . , mℓ}. The scheme is
said to be unforgeable under a chosen-message attack if no p.p.t. adversary A
has non-negligible probability of winning this game. Our scheme relies on the
following property of the Boneh-Boyen short signature [4] which we paraphrase
below:

Lemma 1 ([4](Lemma 3.2)). Suppose the q-Strong Diffie Hellman assump-
tion holds in (G1, GT). Then the basic Boneh-Boyen signature scheme is q-secure
against an existential forgery under a weak chosen message attack.

A Note on Protocol Clarity. In order to make our protocols more readable in this
version, we do not specifically mention standard checks such as verifying that a
received number is a prime, verifying that an element is a proper generator and
in the correct group, and, specifically related to our protocols, whether all of the
received verifier values are signatures, etc. Again, many of these checks only apply
when compiling from honest-verifier zero-knowledge to full zero-knowledge; as
we mentioned above, we only consider the honest case.

Theorem 1. If the |Φ|-Strong Diffie-Hellman assumption associated with a pair-
ing generator PG holds, then protocol in Fig. 1 is a zero-knowledge argument of
set membership for a set Φ.

Proof. The completeness of the protocol follows by inspection. The soundness
follows from the extraction property of the proof of knowledge and the unforge-
ability of the random function. In particular, the extraction property implies that
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Common Input: g, h, a commitment C, and a set Φ

Prover Input: σ, r such that C = gσhr and σ ∈ Φ.

P y,{Ai}
� V Verifier picks x ∈R Zp and

sends y ← gx and Ai ← g
1

x+i for every i ∈ Φ.

P V
- V Prover picks v ∈R Zp and sends V ← Av

σ.

Prover and Verifier run PK{(σ, r, v) : C = gσhr ∧ V = g
v

x+σ }

P a,D
- V Prover picks s, t,m ∈R Zp and

sends a← e(V, g)−se(g, g)t and D← gshm.

P c
� V Verifier sends a random challenge c ∈R Zp.

P zσ ,zv,zr
- V Prover sends zσ ← s− σc, zv ← t− vc, and zr ← m− rc.

Verifier checks that D
?
= Cchzr gzσ and

that a
?
= e(V, y)c · e(V, g)−zσ · e(g, g)zv

Fig. 1. Set membership protocol for set Φ

for any prover P ∗ that convinces V with probability ǫ, there exists an extractor
which interacts with P ∗ and outputs a witness (σ, r, v) with probability poly(ǫ).
Moreover, if we assume that the extractor input consists of two transcripts, i.e.,

{y, {Ai}, V, a, D, c, c′, zσ, z′σ, zv, z
′

v, zr, z
′

r},

the witness can be obtained by computing:

σ =
zσ − z′σ
c′ − c

; r =
zr − z′r
c′ − c

; v =
zv − z′v
c′ − c

The extractor succeeds when (c′ − c) is invertible in Zp. If σ 6∈ Φ, then P ∗ can
be (almost) directly be used to mount a weak chosen-message attack against the
Boneh-Boyen signature scheme with probability poly(ǫ) of succeeding. Thus, ǫ
must be negligible.

Finally, to prove honest-verifier zero-knowledge, we construct a simulator
Sim that will simulate all interactions with any honest verifier V ∗, see Fig. 2.

Since G1 is a prime-order group, then the blinding is perfect in the first
two steps; thus the zero-knowledge property follows from the zero-knowledge
property of the Σ-protocol (Steps 3 to 5).

4 Range Proofs

We now turn our attention to the range proofs.
First note that the protocol for set membership can be directly applied to the

problem of range proofs. This will not be efficient for ranges spanning more than
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1. Sim retrieves y, {Ai} from V ∗.
2. Sim chooses σ ∈R Φ, v ∈R Zp and sends V ← Av

σ to V ∗.
3. Sim chooses s, t, m ∈R Zp and sends a← e(V, g)−se(g, g)t and D ← gshm to V ∗.
4. Sim receives c from V ∗

5. Finally Sim computes and sends zσ ← s − σc, zv ← t − vc, and zr ← m − rc to
V ∗.

Fig. 2. Simulator for the set membership protocol

a few hundred elements. However, if the particular range is fixed over many
protocols as it might often be (as is for instance the case when one needs to
prove that one is between 13 and 18 years old), then the verifier can publish the
signatures once and for all. Thus, the proofs become just the second phase which
amounts to one pairing and two exponentiation for the prover and the verifier.
This will be about a factor of 8-10 times more efficient than employing Boudot’s
method.

For the remainder assume, however, that the range is large or that the cost
of publishing/sending the signatures on the set elements cannot be amortized.

Instead, our approach is to write the secret σ in u-ary notation, i.e., σ =
∑ℓ

j σj · u
j. We may now easily prove that σ ∈ [0, uℓ) by simply providing (and

proving) commitments to the u-ary digits of σ. This problem, however, can be
solved by repeating the basic set-membership protocol from above on the set
[0, u− 1]. Moreover, the first verifier message, which requires the most commu-
nication, can be re-used for each of the ℓ digits. Assuming that σ ∈ [0, B), the
goal is thus to minimize the communication load under the constraint uℓ > B.

4.1 Range Proofs From our Signature-Based Set-Membership
Protocol

We first present how to prove that our secret σ lies in [0, uℓ) (see Figure 3).
Write σ in the base u to obtain ℓ elements as such: σ =

∑

j

(

σju
j
)

.

Lemma 2. If the (log k)-Strong Diffie Hellman assumption associated to a pair-
ing generator PG(1k) holds, there exists a zero-knowledge range argument for the
range [0, uℓ) where uℓ < {0, 1}k−1.

Proof. (Sketch)

Completeness follows from inspection. As before, the soundness follows from
the unforgeability of the Boneh-Boyen signature and the extraction property of
the proof of knowledge protocol. The honest-verifier zero-knowledge property
follows from the perfect blinding of the signatures in the first phase, and the
corresponding honest-verifier zero-knowledge property of the Σ-protocol.

Remark: The prover will have to compute 5ℓ exponentiations.
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Common Input: g, h, u, ℓ, and a commitment C

Prover Input: σ, r such that C = gσhr and σ ∈ [0, uℓ).

P y,{Ai}
� V Verifier picks x ∈R Zp and

sends y ← gx and Ai ← g
1

x+i for every i ∈ Zu.

P {Vj}
- V Prover picks vj ∈R Zp and

sends Vj ← A
vj
σj

for every j ∈ Zl, s.t. σ =
P

j

`

σju
j
´

Prover and Verifier run PK{(σj , r, vj) : C = hr Q

j(g
uj

)σj ∧ Vj = g

vj
x+σj }

P {aj},D
- V Prover picks sj , tj , mj ∈R Zp for every j ∈ Zl and

sends aj ← e(Vj , g)−sje(g, g)tj and D ←
Q

j

“

gujsj

”

hmj .

P c
� V Verifier sends a random challenge c ∈R Zp.

P
{zσj

},{zvj
},zr

- V Prover sends zσj
← sj − σjc, zvj

← tj − vjc for every j ∈ Zℓ,

and zr = m− rc.

Verifier checks that D
?
= Cchzr

Q

j

“

g
ujzσj

”

and

that aj
?
= e(Vj , y)c · e(Vj, g)

−zσj · e(g, g)
zvj for every j ∈ Zl

Fig. 3. Range proof protocol for range [0, uℓ)

4.2 Communication Complexity

The first message consisting of u signatures and a verification key sent by the
verifier to the prover, is not counted as part of the protocol ((u + 1) · |G1|).
The prover then sends ℓ blinded values back. Thus, the first phase requires
Initl(u, ℓ) = ℓ · |G1| communication. The second phase of the protocol involves
a proof of knowledge. The prover sends ℓ+1 first-messages of a Σ-protocol. The
verifier sends a single challenge, and the prover responds with 2ℓ + 1 elements.
Thus the overall communication load according to the parameters u and ℓ is:

Com(u, ℓ) = ℓ · (|G1|+ |GT |+ 2 · |Zp|) + (|G1|+ 2 · |Zp|) (1)

Finding the optimal u and ℓ thus involves solving

min c1u + c2ℓ + c3 s.t. uℓ
> B

Notice that the bit-committing protocol corresponds to a setting where u = 2
and ℓ = k which leads to a total communication complexity O(k). Since our
protocol allows us to choose more suitable u, we first show that the asymptotic
complexity of our approach is smaller than the prior protocols.

Asymptotic Analysis For the asymptotic analysis, we may ignore the con-
stants c1, c2 and c3. Moreover, we can take B ≈ p/2 as this is sufficient for
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showing that a committed value is “positive,” i.e., in the range [0, (p − 1/2)].
Since p/2 ≈ 2k, the constraint becomes uℓ > 2k−1.

By taking logs and dividing, we have that ℓ ≈ k
log u . Setting u = k

log k then
we get that

u = O

(

k

log k

)

, ℓ = O

(

k

log k − log log k

)

resulting in a total communication complexity of

Com(u, ℓ) = O

(

k

log k − log log k

)

which is asymptotically smaller than O(k).

Concrete Optimization Not only is our solution asymptotically better, but
it also performs well for realistic concrete parameters. In order to perform the
optimization for concrete parameters we substitute the constraint that uℓ ≈ B
into the equation u + ℓ above. To minimize, we set the derivative with respect
to u to 0 and attempt to solve the equation:

c1 −
c2 log B

u log2 u
= 0

which simplifies to

u log2 u =
c2 log B

c1
. (2)

where c2

c1
≈ 10 when standard bilinear groups are used [14]. This equation can-

not be solved analytically. However, given B, c1 and c2, we can use numerical
methods to find a good u as described in [3].

4.3 Handling Arbitrary Ranges [a, b]

The above protocol works for the range [0, uℓ). In order to handle an arbitrary
range [a, b], we use an improvement of a folklore reduction described by Schoen-
makers in [18] and [19]. Suppose that uℓ−1 < b < uℓ. To show the σ ∈ [a, b], it
suffices to show that

σ ∈ [a, a + uℓ] and σ ∈ [b− uℓ, b]

Proving that our secret lies in both subsets can be derived from our general



Efficient Protocols for Set Membership and Range Proofs 13

proof that σ ∈ [0, uℓ) as illustrated in the figure:

σ ∈ [b− uℓ, b)⇐⇒ σ − b + uℓ ∈ [0, uℓ)

σ ∈ [a, a + uℓ)⇐⇒ σ − a ∈ [0, uℓ).

Note that the u signatures and the verification key need to be sent only once for
both subsets. Since both a, b are public, the only modification necessary is the
verifier’s check, which should now be:

D
?
= Ccg−B+uℓ

hzr

∏

j

(gzσj ) , D
?
= Ccg−Ahzr

∏

j

(gzσj ) .

Thus, essentially 3ℓ extra elements are sent in the protocol, and the prover will
have to compute in overall 7ℓ exponentiations.

This scheme can be further optimized when A + uℓ−1 < B with an OR-
composition. Indeed, the decomposition becomes:

[A, B) = [B − uℓ−1, B) ∪ [A, A + uℓ−1).

The needed modifications are similar to the previous case; the efficiency arises
from the fact that we are now working with Zℓ−1. The length of the range set
can also be optimized. Indeed if B − A = uℓ then the proof reduces to proving
that σ −A ∈ [0, uℓ).

Combining this analysis with Lemma 2 yields the following theorem.

Theorem 2. If the log k-Strong Diffie Hellman assumption associated to a pair-
ing generator PG(1k) holds, there exists a zero-knowledge range argument for
the range [a, b] where 0 < a < b < {0, 1}k−1 whose communication complexity is
O( k

log k−log log k ).

4.4 Concrete Example and Discussion

Let us discuss our protocol and compare it with other available solutions. The
bottom line is the performance of the different methods depend on the applica-
tion at hand as well as for the assumptions one is willing to make. Assume for a
while, all assumptions are fine. Then, for very small intervals (a couple of bits),
the standard bit-by-bit method and Schoenmaker’s method will probably be the
most efficient one. For very large intervals, the method by Boudot will probably
be the one of choice as it is mostly independent of the size of the interval. More
precisely, it is independent for the verifier but not for the prover as the prover
needs to run the Rabin-Shallit algorithm to represent numbers as the sum of
four squares and this algorithm has complexity O(n4) where n is the bit-length
of the number to be decomposed.

Having said that, our methods will typically be the most efficient one when
the signatures can be made part of the system parameters, which is probably
the case in many scenarios. Of course, at some point it will no longer possible
to publish signature of all elements in the range and thats where one will have
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to restrict these signatures and employ the protocol in this section. When this
becomes necessary, one will in practice to make a choice whether it is more
efficient to use our algorithm or Boudot’s one, the other two will definitely be
less efficient.

If one is not restricted by the assumptions one is willing to make, the case
is not so clear cut. Let us give a concrete example to shed some light on this.
If we pick B = 599644800 (which will represent people born before 1989, with
their birth date encoded using the Unix Epoch system), we can find the optimal
values of u and ℓ by either computing them numerically or by following [3].
Both methods will lead us to u = 57 and ℓ = 5, which minimize the overall
communication load:

Coml(57, 5) = 6 · |G1|+ 5 · |GT |+ 12 · |Zp| (3)

Let us illustrate this optimization case with a concrete example. We will
assume that an airline company wants to provide special offers to its young
clients from a third party. However the exact age of clients should not be divulged
to the third party. This offer targets those who are born between 1981 and 1989
(not included). Following the previous example, the birth date will be a secret
number between [347184000, 599644800). Here the best option will be to use the
OR-composition as A + uℓ−1 < B (we know from the previous example that
u = 57 and ℓ = 5). Using parameters from Galbraith, Paterson, and Smart [14],
we estimate that the size of G1 is 256 bits, the size of GT is 3072 bits and the
size of Zp is upper-bounded by 256 bits. This leads to an overall communication
load of:

Coml(u = 57, ℓ = 5) = ℓ · |G1|+ (2ℓ− 2) · |GT |+ 4ℓ · |Zp| = 30976 bits (4)

In order to have a better appreciation of this result, let us compare it to previous
protocols:

Scheme Communication Complexity

Our new range proof 30976 bits

Boudot’s method 48946 bits

Standard bit-by-bit method 96768 bits

Schoenmaker’s method 50176 bits

Fig. 4. Communication load comparison for range proof [347184000, 599644800)

Let us also discuss the computational complexities. For the verifier, the figure
are about similar to the communication complexities as basically the verifier
needs to do some computation with the elements received. For the prover it is
about the same with the exception that for Boudot’s method where the prover
needs to run the Rabin-Shallit algorithms. Experiments show that the later
algorithm dominates by far the other operations the prover needs to do.
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Now, when one does not want to resort to the (strong) RSA assumption, our
methods is the only one that provides an efficient proof except when the interval
is only a couple of bits.

5 Alternative Set Membership Proofs

The protocol in the previous section employed a set-membership proof as a
building block. The set-membership proof protocol we presented in Section 3 has
the verifier to produce signatures on the set elements, send them to the prover
and then has the prover to show that he knows a signature (by the verifier) and
the element he holds. Concretely, we employed the weak signature scheme by
Boneh and Boyen in that section. We now discuss alternative solutions to the set
membership protocol, i.e., essentially so that the whole protocol could be based
on different assumptions. Due to space restriction we do not give all the details
here but only in the full version of this paper. However, the solution presented
previously is the most efficient one, the alternatives discussed in this section are
of similar efficiency.

5.1 Using Alternative Signature Schemes

The protocol that we presented in Section 3 required the prover to be able to
prove the knowledge of a signature on a value that he has committed to, where we
used Pedersen commitment scheme. Apart for the weak Boneh-Boyen signature
scheme, there are other signature schemes that could be employed. In terms
of assumptions, one notable alternative would be the one by Camenisch and
Lysyanskaya [7] that is based on the strong RSA assumption. It is not hard to
adapt the protocol given in Section 3 to that signature scheme, in particular, as
Camenisch and Lysyanskaya give protocols to prove knowledge of a committed
value in their paper [7].

5.2 Alternative Protocol using Cryptographic Accumulators

The reasons why we employed a signature scheme in our set-membership pro-
tocol is that the prover needed to show that he committed to a value for which
he knows an authenticator without revealing that value or authenticator. Now
it turns out that one can achieve exactly the same goal with cryptographic ac-
cumulators with similar complexities.

Recall cryptographic accumulators. A cryptographic accumulator is an algo-
rithm that allows one to compress a list of elements into a single accumulator
value. For each element there exists a witness attesting to the fact that the
element is indeed contained in the accumulator value. For some cryptographic
accumulator, there exists efficient proof protocols that allow a prover holding
the element and the witness to prove to a verifier in zero knowledge that he
indeed is privy to an element that is contained in the accumulator. Camenisch
and Lysyanskaya have given an implementation of such an accumulator and a
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protocol that a committed value is indeed contained in the accumulator based
on the strong RSA assumption[6].

Now the idea to build an efficient set-membership proof with dynamic accu-
mulator is very similar to the signature based one: The verifier add each element
in the set into the accumulator and sends the accumulator value to the prover
together with the witness for each element. The prover then proves to the veri-
fier that the value he has committed to is indeed contained in the accumulator
produced by the verifier using the witness obtained for the verifier. This protocol
is depicted in Appendix A for the SRSA-based accumulator.
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A Accumulator Based Membership Proof

A.1 Cryptographic Accumulators and Proofs for Them

Definition 4. [6] A secure accumulator for a family of inputs {Xk} is a family
of families of functions G = {Fk} with the following properties:

Efficient generation: There is an efficient probabilistic algorithm G that on input
1k produces a random element f of Fk. Moreover, along with f , G also
outputs some auxiliary information about f , denoted tf .

Efficient evaluation: f ∈ Fk is a polynomial-size circuit that, on input (u, x) ∈
Uf × Xk, outputs a value v ∈ Uf , where Uf is an efficiently-samplable in-
put domain for the function f ; and Xk is the intended input domain whose
elements are to be accumulated.

Quasi-commutative: For all k, for all f ∈ Fk, for all u ∈ Uf , for all x1, x2 ∈ Xk,
f(f(u, x1), x2) = f(f(u, x2), x1). If X = {x1, . . . , xm} ⊂ Xk, then by f(u, X)
we denote f(f(. . . (u, x1), . . .), xm).

Witnesses: Let v ∈ Uf and x ∈ Xk. A value w ∈ Uf is called a witness for x in
v under f if v = f(w, x).
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Security: Let U ′

f ×X
′

k denote the domains for which the computational procedure
for function f ∈ Fk is defined (thus Uf ⊆ U

′

f , Xk ⊆ X
′

k). For all probabilistic
polynomial-time adversaries Ak,

Pr[f ← G(1k); u← Uf ; (x, w, X)← Ak(f, Uf , u) :

X ⊂ Xk; w ∈ U ′

f ; x ∈ X ′

k; x /∈ X ; f(w, x) = f(u, X)] = neg(k)

Note that only the legitimate accumulated values, (x1, . . . , xm), must belong
to Xk; the forged value x can belong to a possibly larger set X ′

k.

Implementation based on the Strong RSA Assumption Here we recall
the Camenisch-Lysyanskaya accumulator [6].

– Fk is the family of functions that correspond to exponentiating modulo
safe-prime products drawn from the integers of length k. Choosing f ∈ Fk

amounts to choosing a random modulus n = pq of length k, where p = 2p′+1,
q = 2q′ + 1, and p,p′,q,q′ are all prime. We will denote f corresponding to
modulus n and domain XA,B by fn,A,B. We denote fn,A,B by fn or by f
when it does not cause confusion.

– XA,B is the {e ∈ primes : e 6= p′, q′ ∧ A ≤ e ≤ B}, where A and B can be
chosen with arbitrary polynomial dependence on the security parameter k,
as long as 2 < A and B < A2. X ′

A,B is (any subset of) of the set of integer

from [2, A2 − 1] such that XA,B ⊆ X
′

A,B.
– For f = fn, the auxiliary information tf is the factorization of n.
– For f = fn, Uf = {u ∈ QRn : u 6= 1} and U ′

f = Z∗

n .
– For f = fn, f(u, x) = ux mod n.

Note that f(f(u, x1), x2) = f(u, {x1, x2}) = ux1x2 mod n

A.2 Membership Proof with Cryptographic Accumulators

We are now ready to employ the accumulator for the membership proof which
can be used as an alternative building block for our range proof presented in
Section 4.

One complication that we have to deal with here is that the accumulator
allows one to accumulator prime number only whereas our set is arbitrary bits
strings. We thus need to encode a mapping. This can be done as follows. Let
{s1, . . . , sn} be our set, where we assume that the si are integers. We let ei =
si2

k + ui where ui < 2k′

< 2k is selected so that ei is prime as k and k′ are
security parameters (we discuss them below). With this encoding, the verifier
can accumulate all the ei’s and send the accumulator value, the ei, and the
corresponding witnesses to the prover. Now the prover has to prove that ei that
corresponds to the si in his commitment is contained in the accumulators. The
resulting protocol is given in Figure A.2, where we adapt the accumulator proof
given by Camenisch and Lysyanskaya [6] to our setting. That is, we have to
additionally prove that the correspondence between the ei and the committed
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si holds. For this to work, the prover need that show he knows some ui such
that ei = si2

k + ui holds. Here it is of course important that this ui be at most
2k−1 bits. This can be enforced efficiently provided that in reality ui is a couple
of bits smaller, i.e., k′ bits, where in practice the difference should be about 300
bits for this to work. More precisely, we employ the first range proof discussed
in Section 1.2.

Common Input: g, h, a commitment C, and a set §

Prover Input: sj , r such that C = gsjhr and sj ∈ §.

P n,§ew
� V Verifier picks a safe prime product n = (2p + 1)(2q + 1) and

a random quadratic residues u, g, h modulo n,

picks random ui ∈ {0, 1}k
′

such that ei = si2
k + ui are prime.

computes v← u2
Q

ei mod n; wi ← v1/ei mod n,

sends n, u, v, g, h, and §ew ← {(s1, e1, w1).....(sn, en, wn)}

convinces the prover that g ∈ 〈h〉

(we will discuss the details separately below).

P W,R,C
- V Prover picks r1, r2, r3 ∈ {0, . . . , n2ℓ},

where ℓ is a security parameter and

sends W← wju
r1 mod n, R← gr1hr2 mod n

and C← gej hr3 mod n

Prover and Verifier run

PK{(α, β, γ, δ, ǫ, ρ, ρ1, ρ2, ρ3, φ, ξ, ν) : C = gσhρ ∧

C = (g2k

)σgµhρ3 (mod n) ∧ R = gρ1hρ2 (mod n) ∧

v = Wǫ( 1
u
)δ (mod n) ∧ 1 = Rǫgδhφ (mod n)

∧ µ ∈ [−2k−1, 2k−1]}

Fig. 5. Set membership protocol for set §

Remarks : 1) We need to discuss how the verifier can convince the prover that
g ∈ 〈h〉 holds. One way to achieve this, is that the prover runs with the verifier
the protocol PK{(α) : g = hα (mod n)} using binary challenges. Another, more
efficient, way is described by Bangerter et al.[1].

2) We note also, that for many applications, the parameters n, u, v, g, h, and
§ew ← {(s1, e1, w1).....(sn, en, wn)} can be computed and published once and for
all (possibly a trusted third party). In this case the computational complexity
of our protocols becomes independent of the number of members in the set.


