
Limits of Constructive Security Proofs

Michael Backes1,2 and Dominique Unruh1

1 Saarland University, Saarbrücken, Germany, {b c e , n ua k s u r h}@ s u i s . ec . n - b d
2 Max-Planck-Institute for Software Systems, Saarbrücken, Germany,

b c e @ p - w . p . ea k s m i s s m g d

Abstract. The collision-resistance of hash functions is an impor-
tant foundation of many cryptographic protocols. Formally, collision-
resistance can only be expected if the hash function in fact constitutes a
parametrized family of functions, since for a single function, the adversary
could simply know a single hard-coded collision. In practical applications,
however, unkeyed hash functions are a common choice, creating a gap
between the practical application and the formal proof, and, even more
importantly, the concise mathematical definitions.
A pragmatic way out of this dilemma was recently formalized by Rog-
away: instead of requiring that no adversary exists that breaks the pro-
tocol (existential security), one requires that given an adversary that
breaks the protocol, we can efficiently construct a collision of the hash
function using an explicitly given reduction (constructive security).
In this paper, we show the limits of this approach: We give a protocol
that is existentially secure, but that provably cannot be proven secure
using a constructive security proof.
Consequently, constructive security—albeit constituting a useful im-
provement over the state of the art—is not comprehensive enough to
encompass all protocols that can be dealt with using existential security
proofs.

1 Introduction

The collision-resistance of hash functions is an important ingredient of many
cryptographic protocols. Formally, collision-resistance can only be expected if
the hash function in fact constitutes a parametrized family of functions, since
for a single function, the adversary could simply have a collision hard-coded into
its program. In practical applications, however, such unkeyed hash functions are
often used (e.g., SHA-1), creating a gap between the practical application and the
formal proof, and, even more importantly, the concise mathematical definitions.

A pragmatic way out of this dilemma was discussed by Stinson [10] and re-
cently formalized by Rogaway [9]: instead of requiring that no adversary exists
that breaks the protocol (existential security), one requires that given an adver-
sary that breaks the protocol, one can efficiently construct a collision of the hash
function using an explicitly given reduction (constructive security).

Slightly more formally, the dilemma can be described as follows: An exis-
tential security proof for a protocol π shows the following: If there exists a

polynomial-time adversary A that has a non-negligible advantage in breaking
the protocol, then there exists a polynomial-time adversary B that has a non-
negligible advantage in breaking at least one of the assumptions of the protocol.
Here, the exact meaning of the word advantage depends on the security notion
under consideration; in a proof system for example, the advantage would be
the probability to convince the verifier of a wrong fact. For collision-resistant
hash functions, it would be the probability of finding a collision. Considering
a protocol π whose security is based on the collision-resistance of an unkeyed
hash function H , an existential security proof would show the following: If an
adversary A has non-negligible advantage in breaking π, there is an adversary
B that outputs a collision of H with non-negligible probability. However, this
is vacuously true: There always exists an adversary that has a collision of H

hard-coded into its program and outputs this collision with probability one. We,
that is the totality of all human beings, might not know this adversary, but it
exists nonetheless. To circumvent this problem, mathematical definitions and
proofs usually make use of keyed hash functions. In this case, for every key K

the collision might be different so that the assumption that no polynomial-time
adversary can compute collisions for more than a small fraction of the keys is
sensible.

But what if we are forced to use unkeyed hash functions, e.g., because of
efficiency considerations or simply because industrial applications often rely on
unkeyed hash functions? Do we lose all possibility to prove security, since we
cannot expect an existential security proof in this case? Fortunately, this is not
necessarily the case: we may ground security on the observation that although
there always exists an adversary finding a collision of an unkeyed hash func-
tion, this adversary might not be explicitly known. This leads to the following
approach that was recently formalized by Rogaway [9]: A constructive security
proof for a protocol π that uses a hash function H is an efficient transformation
C (that must be explicitly given) that, upon input an adversary A and the hash
function H , outputs a collision of H . If someone finds a successful adversary A,
he hence also knows a collision, thereby breaking the collision-resistance of the
hash function.

Rogaway [9] stresses that most existential security proofs already constitute
constructive security proofs and that all that must be done for concisely handling
unkeyed hash functions is to rephrase those proofs in a constructive setting. In-
deed, folklore has always believed that protocols with existential security proofs
can be transformed into constructive ones. In some cases it may be as easy as
rephrasing the theorem statement, in other cases it may be as hard as finding
a different proof. E.g., [9] writes: “In general, it is well understood that one can
rephrase provable-security results as assertions about explicitly given reductions”.
Although this folklore statement may hold true in many cases of practical inter-
est, we show that it does not hold true in general. We construct a protocol (more
exactly, a zero-knowledge argument of knowledge) that we show secure with an
existential security proof, but for which we further show that there provably does
not exist any constructive security proof.

2

Hence although constructive security proofs may constitute a useful improve-
ment over the state of the art, there are applications where the use of unkeyed
hash functions cannot be justified even with this technique.

1.1 Our Contribution

We show how hash functions can be used to construct protocols that can be
shown secure using an existential security proof, but that cannot be proven
secure using a constructive security proof.

The main idea underlying this separating example is to construct a protocol
whose security is based on a non-uniform security reduction. Then, this reduc-
tion will only lead to a non-uniform collision-finding algorithm. Since an unkeyed
hash function can only be secure against uniform adversaries, such a reduction
does not lead to a contradiction when basing the protocol on an unkeyed hash
function. Thus, in particular, a non-uniform reduction does not give rise to a
constructive security proof. The main technical difficulty lies in actually prov-
ing that the security of the protocol can only be shown using a non-uniform
reduction.

More specifically, we investigate argument systems (computationally sound
proof systems) as our security notion of interest. The approach can be adapted
to other notions as well, e.g., by constructing a protocol for another task that
uses and depends on the argument system presented in this paper.

In more detail, we construct, depending on a hash function H , a proof system
(PH , V H) of which we can show the following properties:

– Under two nonstandard but reasonable assumptions (discussed below in
the paragraph on complexity assumptions and formalized in Assumption 1
in the body of the paper) and the assumption that H is a non-uniform
collision-resistant hash function, we can give an existential security proof for
(PH , V H).

– Using Assumption 1, we can prove that one cannot give a constructive secu-
rity proof that reduces the security of (PH , V H) to the collision-resistance
of H . This even holds independent of any additional assumptions we might
use for the constructive security proof (as long as these assumptions are not
false).

At a first glance, this separation may seem confusing because of the different
layers of assumptions (in the proofs themselves and in the proofs about proofs).
Thus the following view might help to improve the intuition underlying our result:
In a world where Assumption 1 has been proven to hold, it will be possible
to show existentially that (PH , V H) is secure if H is collision-resistant, but a
constructive security proof for (PH , V H) reducing to the collision resistance of H

will be impossible.

At this point, we consider it important to stress that our assumptions and
in particular our proofs strongly rely on the careful distinction of non-uniform
and uniform complexity. In particular, we use non-uniform techniques to prove
results about uniform algorithms.

3

Basic Idea of the Construction. In order to construct a zero-knowledge argument
of knowledge that has an existential proof of security but no constructive security
proof, we use the following general approach. We take an existing zero-knowledge
proof of knowledge (P †, V †) and modify it as follows: Instead of directly showing
that a given statement σ holds, the prover PH shows (using P †) that one of the
following two statements holds:

– he knows a witness for the statement σ, or
– he knows a ciphertext c that is the encryption of a collision of H .

The basic idea is that given an adversary that knows such a ciphertext c, one can
break the argument. However, given an adversary with a hard-coded ciphertext,
a constructive security proof should not be able to extract the collision contained
in the ciphertext. We have to achieve the following two goals:

– If H is a collision-resistant keyed hash function, it is hard to find a ciphertext
c that is the encryption of a collision of H . Otherwise the argument can
be easily broken even if the hash function is secure, thus even defying the
existential security proof.

– Given c, it is hard to extract a collision from c; in particular, the decryp-
tion key should be secret. Otherwise a constructive security proof can use a
knowledge extractor to extract c from a successful prover and then extract
a collision from c. Further, the decryption of c should not be part of the
witness used for the proof system (P †, V †) since this witness could then be
extracted from the adversary.

We achieve the first goal as follows: To ensure that it is hard to find a ciphertext
given a collision-resistant keyed hash function, we use an encryption scheme that
can be broken by non-uniform adversaries, but that is secure against uniform
adversaries. An adversary that breaks (PH , V H) entails an adversary that finds
a ciphertext c that is the encryption of a collision of H . This again entails
the existence of a non-uniform adversary decrypting these ciphertexts and thus
finding collisions. Consequently, if we require H to be a keyed hash function that
is collision-resistant against non-uniform adversaries, we obtain a contradiction.
On the other hand, a constructive security proof cannot obtain the collisions in
this way, since in such a proof the reduction would have to be explicitly given
and thus in particular be a uniform algorithm.

The second goal is achieved as follows: We do not directly show (using P †)
that c is the encryption of a collision of H , since this would necessitate to use the
plaintext, i.e., the collision, as a witness, which in turn would allow to extract
this witness. Instead, we introduce another proof system (P ∗, V ∗). This proof
system is non-interactive (in the strong sense that it does not even use a common
reference string), statistically sound (otherwise the overall scheme could be bro-
ken by non-uniform adversaries that know a single wrong proof) and it should
hide the plaintext of the encryption c. The last condition roughly means that if
some adversary can extract the plaintext of c given a proof N , then it could also
extract the plaintext without knowledge of N with non-negligible probability.
We call such a proof system a content-hiding proof of content. Given a content-
hiding proof of content, we do not directly prove that c is an encryption of a

4

collision, but that we know a non-interactive proof N that c is an encryption of a
collision. Then in the constructive security proof, c and N might be extractable
from an adversary, but this would not be of help: If one could extract a collision
from c and N , one could extract one from c alone as well (since (P ∗, V ∗) is
content-hiding). If the encryption scheme is IND-CPA secure, the encryption c

alone is indistinguishable from a random encryption. Thus one could also find
the collision without using c at all. A constructive security proof would hence
imply the existence of an algorithm to find collisions.

Summary of the Construction. We now summarize our construction in a more
detailed and a more concise manner. Let f be a one-way permutation that is se-
cure against uniform adversaries, but can be inverted by non-uniform adversaries
(Definition 2). From f we construct an encryption scheme Ef such that for each
security parameter, there is a fixed public key, and such that the corresponding
secret key can be found by a non-uniform adversary (Definition 3). The scheme
Ef is shown to be IND-CPA secure (Lemma 2).

Let then (P ∗, V ∗) be a content-hiding proof of content for the encryption
scheme Ef (Definitions 4 and 5). That is, using P ∗ we can show non-interactively
that a given ciphertext c is the encryption of a cleartext m that fulfills a given
property π. Since P ∗ is content-hiding, we know that if we can extract the
plaintext from c given the non-interactive proof, we can also do so without access
to the proof. Let (P †, V †) be a computational zero-knowledge proof of knowledge.
Let H be a hash function (keyed or unkeyed). Then we construct the argument
system (PH , V H) as follows (Definition 6):

– The prover PH takes as input a SAT-instance σ and a corresponding witness
w. The verifier V H expects a SAT-instance σ.

– To show his knowledge of w, the prover PH invokes the prover P † to show
that either
• he knows a witness w for σ, or
• he knows a ciphertext c and a non-interactive proof N such that the

proof N convinces the verifier V ∗ that the ciphertext c is an encryption
of a collision of H .

The prover can easily perform this proof since he knows the witness w.
– The verifier V H uses V † to verify the above proof.

Note that the prover P ∗ is never used in the above construction. The existence
of P ∗ will however be used in the proofs.

On our Complexity Assumptions. Our proof is based on the existence of content-
hiding proofs of content as well as on the existence of one-way permutations with
non-uniform trapdoors, which constitute nonstandard complexity assumptions.
To motivate these assumptions, we prove that relative to a random oracle these
assumptions follow from standard ones.

At a first glance, it may seem that a result that needs such strong assump-
tions and involved constructions will not be of relevance for the provability of
natural protocol constructions, i.e., construction which do not have the creation

5

of a counterexample in mind. We would like to point out the following counter-
arguments: First, one reason why we need such strong assumptions is that we do
not only want a protocol that cannot be proven secure using constructive proofs,
but that provably cannot be proven secure using constructive proofs. The reason
for the complexity of our example may hence not follow from the fact that all
natural protocols have constructive proofs, but rather from the fact that proving
unprovability is in general a difficult task. Secondly, somewhat similar techniques
have already been used in the literature: Barak [3] presents an argument system
in which the prover proves that the statement under consideration is true or that
he knows a short circuit describing (the data sent by) the verifier. This seemingly
contrived construction then was shown to allow for argument systems that enjoy
properties that where shown to be impossible for zero-knowledge argument sys-
tems that do not use the circuit of the adversary (i.e., black-box zero-knowledge
argument systems). In that light it may well be possible that some useful proto-
col will have to use constructions similar to the ones presented in this work and
therefore will have no constructive security proof.

1.2 Related Work

Hash functions where first formalised in [4]. In [9] the notion of a constructive
security proof was made explicit, although the concept was already discussed or
implicitly used in many other papers.

The idea of considering problems relative to oracles to analyze complexity
assumptions was introduced by [2]. See also [6] for a survey and a discussion of
such relativisation techniques.

An example of a non-constructive security proof can be found in [5, Section 8].
They give a resettable zero-knowledge proof in the timing-model, and the proof
of soundness uses a non-constructive reduction. However, it is not shown that
their protocol does not have a constructive proof. In contrast, the complexity of
our constructions result from the necessity of creating a scheme where we can
prove that no constructive security proof exists. We believe that the result of [5]
and our result complement each other: [5] show that there are natural protocols
where we do not know constructive security proofs, while we show that there
are contrived protocols where constructive security proofs do not exist (under
certain complexity assumptions).

2 Preliminaries and Notation

By x ← A we mean assigning the output of the probabilistic algorithm A to x,

and by x
$
← M assigning a uniformly randomly chosen element of M to x. By

〈A, B〉 we mean the output of B after an interaction of the interactive machines
A and B. The variable k will always denote the security parameter.

An unkeyed hash function H is a function from {0, 1}∗ to {0, 1}n for some
n that can be computed in deterministic polynomial time. A keyed (family of)
hash functions consists of a family {HK} of functions together with an efficient

6

key generation algorithm GH such that the following holds: Given K and x, the
image HK(x) can be computed in deterministic polynomial time. Further, for
K ← GH(1k), the function HK maps {0, 1}∗ to {0, 1}`(k) for some polynomially
bounded function `.

Of central interest to this paper is the notion of a constructive security proof.
In principle, a constructive security proof consists of two parts: an explicitly
given reduction C from adversaries to collisions, and a proof that C is indeed
such a reduction. Since we are only interested in negative results in this paper, it
will be sufficient to show that no such reduction C exists. We therefore slightly
abuse notation and define a constructive security proof to solely consist of this
reduction C. That is, we do not even require that the reduction is proven to be
correct.

Furthermore, we will confine ourselves to constructive security proofs that a
given protocol is an argument system. This results in a less abstract definition,
which is sufficient for our application. Examples of constructive security proofs
for other properties are given in [9].

Let (PH , V H) be a proof system parametrized by an unkeyed hash function
H that is assumed to be given as a circuit. For an adversary A (given as a circuit)
and an unsatisfiable SAT-formula σ, we define

Advarg
V H ,k

(A, σ) := Pr[〈A, V H(1k, σ)〉 = 1].

Further, for an algorithm C, let

Advcol
H,k(C, A, σ) := Pr[(x, x′)← C(1k, H, A, σ) : x 6= x′ and H(x) = H(x′)].

Definition 1 (Constructive Security Proof). Let (PH , V H) be a proof sys-
tem parametrised by an unkeyed hash function H. We call an algorithm C a
constructive security proof that (PH , V H) is an argument if C runs in uniform
probabilistic polynomial-time and there exist some c > 0 and some negligible
function µ such that for all circuits A, all unsatisfiable boolean formulas σ and
all k ∈ N we have

Advcol
H,k(C, A, σ) ≥

(

Advarg
V H ,k

(A, σ)

k + |A|+ |H |+ |σ|

)c

− µ(k).

Our notion of a constructive security proof slightly deviates from the notion
put forward in [9]. The most obvious difference is that [9] does not contain
any asymptotic definition of a constructive security proof. Instead, all results
are given in terms of concrete security, i.e., the relation between the advantage
to break the protocol and the advantage to find collisions is given explicitly. A
negative statement, i.e., a claim that a given protocol has no constructive security
proof, cannot rely on concrete security since one does not aim to show that a
given relation between the two advantages does not hold, but that no (useful)
lower bound for Advcol in terms of Advarg exists. To characterize such useful
lower bounds we have introduced the above asymptotic formulation. Since we

7

are interested in a negative result, we have made the lower bound as weak as
possible.

A notion of black-box constructive proofs has also been formalized in [9].
Since black-box is the stricter kind of reduction, our negative result encompasses
this notion as well.

3 Assumptions Underlying our Negative Result

In this section, we will present two cryptographic assumptions that are needed
in our proof.

3.1 One-Way Permutations with Non-Uniform Trapdoors

The first assumption roughly states that there are one-way permutations that
are secure against uniform adversaries but that can be inverted by non-uniform
ones.

Definition 2 (One-Way Permutations with Non-Uniform Trapdoors).
A function f : {0, 1}∗ → {0, 1}∗ is a one-way permutation with non-uniform
trapdoors, if

– The function f is a length-preserving permutation that is computable in de-
terministic polynomial time.

– The function f is one-way against uniform adversaries.
– There exists a sequence tk of polynomial-sized circuits, such that tk(f(x)) = x

for all k ∈ N and all x ∈ {0, 1}k.

The existence of one-way permutations with non-uniform trapdoors constitutes
a nonstandard complexity assumption in cryptography. Although we did not
succeed in reducing the existence of one-way permutations with non-uniform
trapdoors to more common assumptions in general, we show that there is an
oracle relative to which this is possible.

Lemma 1. Assume that trapdoor one-way permutations with dense public keys3

exist that are one-way against uniform probabilistic polynomial-time adversaries.
Then there exists an oracle O relative to which one-way permutations with non-
uniform trapdoors exist.

The proof of this lemma is given in the full version [1].
The proof of Lemma 1 in fact shows a stronger statement: choosing a random

oracle entails one-way permutations with non-uniform trapdoors with probability
one. If we accept the random oracle heuristic, the following conjecture is thus
made realistic by the proof of Lemma 1:

3 We say a family of trapdoor permutations has dense public keys if the distribution
of the public keys is near the uniform distribution on the set of strings of a given
length. Intuitively, this means that we can choose the public key using only public
coins.

8

Conjecture 1. Let R be a sufficiently unstructured, efficiently computable func-
tion. Then using R in the construction of the proof of Lemma 1 yields one-way
permutations with non-uniform trapdoors.

Using one-way permutations with non-uniform trapdoors, we can use the
standard construction for creating IND-CPA secure encryption schemes from one-
way permutations. The result is an encryption scheme where for each security
parameter there is a single public key, and where the corresponding secret keys
can be recovered by non-uniform adversaries (but not by uniform ones).

Definition 3 (Singleton Encryption). Let f be a one-way permutation with
non-uniform trapdoors. We define the singleton encryption scheme Ef ,Df for
f as follows: Let pkk := 1k and skk := tk, where tk denotes the trapdoors of
the function f . For x ∈ {0, 1}, we have Ef (pk , x) := (f(r1), r2, (r1 · r2) ⊕ x)
where r1, r2 are uniformly random from {0, 1}|pk|. For x ∈ {0, 1}∗, we have
Ef (pk , x) := (Ef (pk , x1), . . . , Ef(pk , x|x|)).

The corresponding (deterministic) decryption algorithm Df proceeds as fol-
lows: Upon input (pk , sk , (c1, r2, c2)) where sk is a circuit and (c1, r2, c2) the en-
cryption of a single bit, the decryption algorithm first verifies that f(sk(c1)) = c1

and that |c1| = |pk |. If so, it outputs (sk (c1) · r2) ⊕ c2. Otherwise, it outputs
⊥. The encryption of multiple bits is handled by decrypting each bit individually
(with output ⊥ if one of the decryptions fails).

The set of valid public keys of Ef for security parameter k is hence {pkk}; conse-
quentely the public key generation algorithm is trivial. The corresponding secret-
keys skk, i.e., the trapdoors of f , are guaranteed to exist, but they are not effi-
ciently computable by a uniform adversary. We have Df (pkk, skk, Ef (pkk, m)) =
m for all m by construction; moreover, Df (pkk, sk , c) = m 6= ⊥ for some (possi-
bly invalid) secret key sk implies Df (pkk, skk, c) = m since the checks performed
by Df guarantee sk (c1) = skk(c1).

The following lemma states that the construction given above indeed results
in an IND-CPA secure encryption scheme, at least against uniform adversaries:

Lemma 2. Let f be a one-way permutation with non-uniform trapdoors and
let Ef be the singleton encryption scheme for f . Then Ef is IND-CPA secure
against uniform adversaries in the following sense: For all uniform probabilistic
polynomial-time algorithms A1, A2, we have that

Pr
[

(m0, m1, z)← A1(1
k), b

$
← {0, 1}, c← Ef (pkk, mb) :

A2(1
k, c, z) = b ∧ |m0| = |m1|

]

is negligible in k.

A proof of Lemma 2 can be found in [8, Section 5.3.4.1]. Although this proof
applies to a slightly different definition of public-key encryption where the public
and secret keys are chosen by an explicit key generation algorithm, the proof
carries over, mainly because the secret keys are not used in the definition of
IND-CPA security.

9

3.2 Proofs of Content

We now introduce the novel notion of a non-interactive proof of content. In-
tuitively, a proof of content is a non-interactive proof system that proves that
a given ciphertext c is the encryption of some plaintext m that fulfills some
predicate π.

We first introduce some additional notation: Given an encryption scheme
(E ,D) with deterministic decryption, a Boolean circuit π, a ciphertext c, a public
key pk and a private key sk , let πpk ,sk [c] := true if and only if m := D(pk , sk , c) 6=
⊥ and π(m) = 1, and let πpk [c] = true if there exists a secret key sk such that
πpk ,sk [c] = true.

Definition 4 (Non-Interactive Proofs of Content). A non-interactive
proof of content for an encryption scheme (E ,D) (where D is deterministic)
consists of a polynomial-time prover P and a polynomial-time verifier V such
that the following holds:

– Polynomial length. There exists a polynomial p such that for every π, c, pk,
sk, and k, we have |P (1k, π, c, pk , sk)| ≤ p(|(1k, π, c, pk , sk)|).

– Completeness. There is a negligible function µ such that for every π, c, pk
and sk satisfying πpk ,sk [c] = true and for every k, we have

Pr
[

V (1k, pk , π, c, P (1k, π, c, pk , sk)) = 0
]

≤ µ(k).

– Soundness. There is a negligible function µ such that for every π, c, and pk

satisfying πpk[c] = false and for every k and every string N , we have

Pr
[

V (1k, pk , π, c, N) = 1
]

≤ µ(k).

So far, a proof of content can be quite easily realized by revealing the secret
key of the encryption scheme. This of course is not satisfying; hence we need
an additional secrecy property. We cannot expect the proof system to be zero-
knowledge (since it is non-interactive without a common reference string), but
we can require that a proof will not help us to extract the plaintext from the
ciphertext m (which would be clearly violated if we learned the secret key). We
will call this property content-hiding.

We now define content-hiding proofs of content. This notion will crucially
depend on the notion of a valid public key of a given encryption scheme, and of
the notion of the corresponding secret key. The notion of a valid public key and
corresponding secret key has a natural meaning for most public-key cryptosys-
tems, but it may not be well-defined in general. However, in the remainder of
the paper we will only consider the encryption scheme from Definition 3 where
a public key is valid if and only if it has the form 1k, and where the secret key
corresponding to a given public key is uniquely determined as tk. So for the sake
of readability we abstain from formally specifying what a valid public key and
the corresponding secret key are.

Definition 5 (Content-Hiding Proofs of Content). A non-interactive proof
of content (P, V) for an encryption scheme (E ,D) is called content-hiding if the
following holds:

10

Let G be any polynomial-time algorithm that upon input 1k outputs a valid
public key pk for E, a message m ∈ {0, 1}∗, a circuit π and some auxiliary
information z ∈ {0, 1}∗. Let A be any polynomial-time algorithm such that

Pr
[

(pk , m, π, z)← G(1k), c← E(pk , m), N ← P (1k, π, c, pk , sk),

m′ ← A(1k, pk , c, π, z, N) : m = m′
]

is not negligible in k, where sk denotes the secret key corresponding to pk .
Then there exists a polynomial-time algorithm S outputting a list of strings,

such that

Pr
[

(pk , m, π, z)← G(1k), c← E(pk , m), M ′ ← S(1k, pk , c, π, z) : m ∈M ′
]

.

is not negligible in k.

While the definition of content-hiding proof is similar to that of witness-
hiding proofs, there is an important difference: Witness-hiding proofs guarantee
that the witness cannot be guessed if the statement is chosen according to some
fixed distribution, while we require that the content-hiding property holds for any
efficiently sampleable distribution on the messages m. Furthermore, a witness-
hiding proof only guarantees that the witness is not disclosed as a whole, while
we only require that the message m is not disclosed as a whole; the latter re-
quirement is weaker since a witness would consist of m and the randomness used
for encryption.

The existence of content-hiding proofs of content constitutes a novel crypto-
graphic assumption. We did not succeed in reducing it to existing assumptions,
but we show that at least there is an oracle relative to which this is possible.

Lemma 3. Assume that trapdoor one-way permutations with dense public keys
exist that are secure against non-uniform probabilistic polynomial-time adver-
saries. Then there exists an oracle O relative to which content-hiding proofs of
content with deterministic verifiers exist for any encryption scheme (E ,D).

The proof of Lemma 3 (which is given in the full version [1]) establishes the
following slightly stronger statement: choosing a random oracle entails content-
hiding proofs of content with probability one. Hence the following conjecture is
again justified by the random oracle heuristic:

Conjecture 2. Let R be a sufficiently unstructured efficiently computable func-
tion. Then using R in the construction of the proof of Lemma 3 yields content-
hiding proofs of content with deterministic verifiers.

In the next section we will need both the existence of one-way permutations
with non-uniform trapdoors as well as of content-hiding proofs of content. We
additionally use some standard complexity assumptions. All assumptions used
are summarized in the following statement:

11

Assumption 1 There exist a one-way function with non-uniform trapdoors f

(Definition 2) and a content-hiding proof of content with a deterministic verifier4

for the singleton encryption scheme Ef for f (Definition 3).

Further, we assume the existence of one-way functions secure against non-
uniform adversaries and the existence of a keyed family of hash functions that
is collision-resistant against non-uniform adversaries.

4 Limits of Constructive Security Proofs

Based on the definitions and assumptions from the preceding sections, we are
now ready to show the existence of an existentially secure argument system that
does not have a constructive security proof.

In the following, let f be a length-regular one-way function with non-uniform
trapdoors, let Ef be the singleton encryption scheme for f , and let (P ∗, V ∗) de-
note a content-hiding proof of content for Ef . Let (P †, V †) be a computational
zero-knowledge proof of knowledge, which can be constructed from one-way func-
tions secure against non-uniform polynomial-time adversaries (see e.g., [7, Sec-
tion 4.7.3]). When passing an algorithm A as argument to a function or algorithm,
we assume that A is encoded as a circuit in some canonical way. Let H be the
description of a function from {0, 1}∗ to {0, 1}∗. When considering H as a cir-
cuit, we will always mean the circuit describing the function H restricted to the
domain {0, 1}k.

Stating the construction in a concise manner necessitates a few auxiliary
definitions:

– Let πH(x1, x2) := true if and only if x1, x2 ∈ {0, 1}k, x1 6= x2 and H(x1) =
H(x2).

– Let γ(H, c, N) := true if and only if V ∗(1k, pkk, πH , c, N) = 1.
– Let η(H, σ, c, N, w) := true if and only if σ(w) = 1 or γ(H, c, N) = true.
– Let lc(k) := |Ef (1k, 12k)| denote the length of an encryption of a 2k-bit

plaintext.
– Let lP be a polynomial such that for all k ∈ N and c ∈ {0, 1}lc(k), the value

lP (k+|H |) is an upper bound on |P ∗(1k, πH , c, tk)| where |H | denotes the size
of the circuit H and tk is the non-uniform trapdoor for f (cf. Definition 2).
Such a polynomial lP exists, since there are polynomial upper bounds on
all arguments of P ∗, and P ∗ satisfies the polynomial length property from
Definition 4.

– Let Lη be the language consisting of all (H, σ) such that there exist a
triple (c, N, w) with |c| ≤ lc(k) and |N | ≤ lP (k + |H |) that satisfies
η(H, σ, c, N, w) = true. Obviously, Lη ∈ NP. Note that if σ(w) = 1, then w

is a witness for (H, σ) ∈ Lη.

4 We could also weaken the assumption slightly by allowing a probabilistic verifier.
While our results hold as well for probabilistic verifiers, we have chosen to use this
slightly stronger formulation since it makes the separating example and the proof
easier.

12

Using this notation, we can now describe the protocol that will have an existential
security proof, but that will provably not have a constructive proof:

Definition 6 (The Separating Argument System). The proof system
(PH , V H) where H may be a keyed or unkeyed hash function, is defined as fol-
lows:

– The prover PH is invoked with input (1k, σ, w) where σ is a Boolean circuit
and w is an assignment such that σ(w) = 1. The verifier is invoked with
input (1k, σ).

– The prover PH invokes P † on security parameter 1k, Lη-instance (H, σ) and
witness w; here H is treated as a circuit mapping {0, 1}k to {0, 1}∗.

– The verifier V H invokes V †(1k, σ) to verify the proof given by the prover
PH .

The notation introduced in front of Definitions 4 and 6 (e.g., πpk [c], γ, P †,
etc.) will be used in the following proofs without explicit reference.

We have assumed in Assumption 1 that V ∗ is deterministic. If V ∗ was prob-
abilistic, we would have to change the above proof system as follows: First, the
prover commits to a witness (c, N, w). The prover and the verifier then perform
a coin-toss to choose a random tape R for V ∗. Finally the prover proves that
σ(w) = 1 or that the verifier V ∗ accepts with random tape R. We have opted to
consider the case of a deterministic verifier V ∗ to make the presentation more
readable.

Theorem 1. Under Assumption 1, if HK is a keyed hash-function that is se-
cure against non-uniform adversaries then the proof system (PH , V H) is a (non-
uniformly secure) computational zero-knowledge argument of knowledge for SAT.
(We assume the key K to be chosen by some key generation algorithm K(1k).)

Proof. Since (P †, V †) is a computational zero-knowledge proof, the computa-
tional zero-knowledge property and the completeness of (PH , V H) follow from
the construction.

We show that (PH , V H) is an argument of knowledge, i.e., we construct a
knowledge extractor E such that there exists a polynomial q such that for any
non-uniform polynomial-time prover P̃ and any sequence σ of SAT-instances of
polynomial length, there is a negligible function µ such that the following holds
for each k ∈ N:

Pr[K ← K(1k) : EP̃ (1k,K)(1k, HK , σk) is a SAT-witness for σk]

≥
1

q(k)
Pr[K ← K(1k) : 〈P̃ (1k, K), V HK (1k, σk)〉 = 1]− µ(k). (1)

Here EP̃ (1k,K)(1k, HK , σk) denotes the extractor E with black-box access to
P̃ (1k, K) and that is given a description of HK .

Let E† be the knowledge-extractor of (P †, V †). Then there is a polynomial q

such that for every non-uniform polynomial-time prover P̂ and every sequence of

13

polynomial-sized Lη-instances (Hk, σk) there exists a negligible function ν such
that for all k the following holds:

Pr[E
P̂ (1k)
† (1k, Hk, σk) is an Lη-witness for (Hk, σk)]

≥
1

q(k)
Pr[〈P̂ (1k), V †(1k, Hk, σk)〉 = 1]− ν(k). (2)

Here EP̂ (1k) denotes the extractor E† with black-box access to HK and P̂ (1k, K).
We construct the knowledge-extractor E as follows: When invoked with black-

box access to P̃ and with input (1k, H, σ), it invokes (c, N, w) ← EP̃
† (1k, H, σ)

and then returns w.
It is left to show that E satisfies (1). Let P̃ be a non-uniform polynomial-time

prover as in (1) and σ a sequence of SAT-instances of polynomial length. Let K

be a sequence of keys for the hash-function H . By (2) and by definition of Lη,
there exists a negligible function ν such that

Pr[(c, N, w)← E
P̃ (1k,Kk)
† (1k, Hk, σk) : η(HKk

, σk, c, N, w) = true]

≥
1

q(k)
Pr[〈P̃ (1k, Kk), V †(1k, HKk

, σk)〉 = 1]− ν(k) (3)

Since this holds for every sequence K of keys, we have for some negligible ν and
all k ∈ N:

Pr[K ← K(1k), (c, N, w)← E
P̃ (1k,K)
† (1k, HK , σk) :

η(HK , σk, c, N, w) = true]

≥
1

q(k)
Pr[K ← K(1k) : 〈P̃ (1k, K), V †(1k, HK , σk)〉 = 1]− ν(k). (4)

(Otherwise we could simply use the worst-case sequence of keys to contradict
(3).)

Let µ1 be defined as follows:

µ1(k) := Pr[K ← K(1k), (c, N, w)← E
P̃ (1k,K)
† (1k, HK , σk) : γ(HK , c, N) = true].

By definition, γ(HK , c, N) = true is equivalent to V ∗(1k, pkk, πHK
, c, N) = 1

which in turn implies π
pkk

HK
[c] = true. Hence there exists a secret key sk such that

Df (pkk, sk , c) =: m 6= ⊥ and πHK
(m) = true. Since Df (pkk, sk , c) = m 6= ⊥ im-

plies Df (pkk, skk, c) = m by construction, it follows that πHK
(Df (pkk, skk, c)) =

true. We therefore have

µ1(k) ≤ Pr[K ← K(1k), (c, N, w)← E
P̃ (1k,K)
† (1k, HK , σk),

m← Df (pkk, skk, c) : πHK
(m) = true].

Since (c, N, w) ← E
P̃ (1k,K)
† (1k, HK , σk), m ← Df (pkk, skk, c) can be com-

puted by a non-uniform polynomial-time algorithm (given 1k and K), and since

14

πHK
(m) = true implies that m encodes a collision of HK , we have constructed a

non-uniform polynomial-time algorithm that finds collisions of HK with probabil-
ity at least µ1. Since by assumption, HK is collision-resistant against non-uniform
polynomial-time adversaries, this implies that µ1 is negligible.

By definition, we have η(HK , σk, c, N, w) = true if and only if σk(w) = 1 or
γ(HK , c, N) = true. So using the definition of E and V H we get

Pr[K ← K(1k), w← EP̃ (1k,K)(1k, HK , σk) : σk(w) = 1]

= Pr[K ← K(1k), (c, N, w)← E
P̃ (1k,K)
† (1k, HK , σk) : σk(w) = 1]

≥ Pr[K ← K(1k), (c, N, w)← E
P̃ (1k,K)
† (1k, HK , σk) :

η(HK , σk, c, N, w) = true]− µ1(k)
(4)

≥
1

q(k)
Pr[K ← K(1k) : 〈P̃ (1k, K), V †(1k, HK , σk)〉 = 1]− ν(k)− µ1(k).

=
1

q(k)
Pr[K ← K(1k) : 〈P̃ (1k, K), V HK (1k, σk)〉 = 1]− ν(k)− µ1(k). (5)

Setting µ := ν + µ1, this gives us (1) and thus shows that (PH , V H) is a (non-
uniformly secure) computational zero-knowledge argument of knowledge. ut

Theorem 2. Under Assumption 1, there exists no constructive security proof C

that (PH , V H) is an argument.

In particular, the theorem implies that no constructive security proof exists
that (PH , V H) is a computational zero-knowledge argument of knowledge.

Proof. Assume for contradiction that a constructive security proof C exists that
(PH , V H) is an argument.

Let f be a one-way permutation with non-uniform trapdoors and let
{H̃K}K∈K be a keyed family of hash functions that is one-way against non-
uniform adversaries. Let GH̃ be the key generation algorithm for H̃K , and assume

w.l.o.g. that for K ← GH̃(1k) the function H̃K maps from {0, 1}∗ to {0, 1}k.
We first construct a keyed family {Ha,b,K}(a,b,K)∈Y ×K of hash functions

Ha,b,K : {0, 1}∗ → {0, 1}k+1 with Y :=
⋃

Yk and Yk := {(a, b) : a, b ∈
{0, 1}k, a 6= b} as follows:

Ha,b,K(x) :=

0‖H̃K(x), |x| 6= k,

1‖f(x), |x| = k, f(x) 6= a,

1‖b, |x| = k, f(x) = a.

for a, b, x ∈ {0, 1}k.

It is easy to see that the only collision (x, x′) of Ha,b,K that satisfies |x| = |x′| = k

is (f−1(a), f−1(b)). Hence finding such a collision of Ha,b,K for random (a, b)
implies inverting f at a. Finding collisions (x, x′) with |x| 6= k or |x′| 6= k breaks
the collision-resistance of H̃K . So Ha,b,K is collision-resistant against uniform
polynomial-time adversaries.

15

In the following, we write k-collision to denote a collision (x, x′) with |x| =
|x′| = k. Then there exists only a single k-collision (x, x′) of Ha,b,K (where
k = |a| = |b|).

Let σfalse denote some fixed unsatisfiable circuit. Let P̃ be a prover that upon
input (1k, H, c, N) invokes P † on security parameter 1k, Lη-instance (H, σfalse)
and witness (c, N, w).

By construction of (PH , V H) and since (P †, V †) is complete, there exists
a negligible function µ1 such that for all c, N with |c| ≤ lc(k) and |N | ≤

lP (k + |H |) such that N is a valid proof for π
pkk

H [c] = true (i.e., such that
V ∗(1k, pkk, πH , c, N) = 1), we have

Pr
[

〈P̃ (1k, H, c, N), V H(1k, σfalse)〉 = 1
]

≥ 1− µ1(k). (6)

Consider the following game G0:

(ã, b̃)
$
← Yk, a := f(ã), b := f(b̃), K ← GH̃(1k), H := Ha,b,K , (7)

c← Ef (pkk, (ã, b̃)), N ← P ∗(1k, πH , c, pkk, skk), (8)

(â, b̂)← C(1k, H, P̃ (1k, H, c, N), σfalse). (9)

That is, first, in (7) we construct a hash-function H such that we know the (only)
k-collision (ã, b̃). Then in (8) we construct an encryption c of that k-collision and

a proof that c indeed contains a k-collision (i.e., that π
pkk

H [c] = true). Finally,
in (9) we invoke the generic security proof C with a description of the hash-
function H , with a description of P̃ (instantiated with input (1k, H, c, N)) and
with the SAT-instance σfalse .

By the completeness of (P ∗, V ∗), there is a negligible function µ2 such that
in G0 the following holds: Pr[V ∗(1k, pkk, πH , c, N) = 1] ≥ 1−µ2(k). Further, by
definition of lc and lP it is |c| ≤ lc(k) and |N | ≤ lP (k + |H |). Then using (6) we
get

Advarg
k := Pr

[

〈P̃ (1k, H, c, N), V H(1k, σfalse)〉 = 1
]

≥ 1− µ1(k)− µ2(k)

when H , c and N are chosen as in game G0.
Since σfalse is not satisfiable, this violates the soundness of the argument

system (PH , V H). So by the definition of constructive security proofs, C

should be able to extract a collision given 1k, H , P̃ (1k, H, c, N) and σfalse .
More exactly, let p be a polynomial such that p(k) bounds the length of
(1k, H, P̃ (1k, H, c, N), σfalse). Such a polynomial exists, since H is constructed

by a polynomial-time algorithm and P̃ runs in polynomial time. Then there is a
c > 0 and a negligible function µ5 such that

Pr
[

(â, b̂) is a collision of H
]

≥

(

Advarg
k

p(k)

)c

− µ5(k)

≥

(

1− µ1(k)− µ2(k)

p(k)

)c

− µ5(k) =: ν(k).

16

Then ν is not negligible. On the other hand, since H̃K is collision-resistant against
non-uniform adversaries, and (â, b̂) is computed by non-uniform polynomial-time
algorithms in (7–9),5 there is a negligible function µ4 bounding the probability

that (â, b̂) is a collision of H̃K . Since by construction of H := Ha,b,K , the only

collision of H that is not a collision of H̃K is the k-collision (f−1(a), f−1(b)) =

(â, b̂), it follows that

Pr
[

(â, b̂) = (ã, b̃)] ≥ ν(k)− µ4(k). (10)

Let now A(1k, pk , c, π, H, N) := C(1k, H, P̃ (1k, H, c, N), σfalse). Since C and P̃

are polynomial-time algorithms, so is A. Further let G(1k) be an algorithm that
chooses m := (ã, b̃) and H as in game G0 and then outputs (pkk, m, πH , H).
Then G runs in polynomial-time, too. Then the following game G1 is just a
rewriting of game G0:

(pk , m, π, H)← G(1k), c← Ef (pk , m),

N ← P ∗(1k, π, c, pk , sk), m′ ← A(1k, pk , c, π, H, N)

with (â, b̂) := m′ and with sk being the secret key corresponding to pk . So by (10)
it follows that Pr[m = m′] ≥ ν(k)−µ4(k) in game G0. This is not negligible. Since
(P ∗, V ∗) is content-hiding, it follows that there is a polynomial-time simulator
S such that

ν2(k) := Pr
[

(pk , m, π, H)← G(1k), c← Ef (pk , m),

M ′ ← S(1k, pk , c, π, H) : m ∈M ′
]

(11)

is not negligible. Since Ef is IND-CPA by Lemma 2, and the algorithms in
(11) are all uniform polynomial-time algorithms, we can replace Ef (pk , m) by
Ef (pk , 02k) (since |m| = 2k). (For this, note that G chooses pk := pkk.) Then,
for some negligible function µ3, we have

Pr[(pk , m, π)← G(1k), c← Ef (pk , 02k),

M ′ ← S(1k, pk , c, π, H) : m ∈M ′] ≥ ν2(k)− µ3(k)

Since given a description of Ha,b,K with a = f(ã) and b = f(b̃), we can efficiently

verify whether for some m′ we have m′ = (ã, b̃), we can modify S so that it
directly outputs m = (ã, b̃) if that m is in M ′. Call the resulting algorithm S′.
By substituting the definition of G we get

Pr[(ã, b̃)
$
← Yk, a := f(ã), b := f(b̃), K ← GH̃(1k),

(â, b̂)← S′(1k, pkk, Ef (pkk, 02k), πHa,b,K
, Ha,b,K) :

(â, b̂) = (ã, b̃)] ≥ ν2(k)− µ3(k).

5 The non-uniformity stems from the appearance of skk in game G0.

17

Let the algorithm T (1k, a) perform as follows: First, it chooses b uni-

formly from {0, 1}k \ {a} and K using GH̃(1k). Then it executes (â, b̂) ←
S′(1k, pkk, Ef (pkk, 02k), πHa,b,K

, Ha,b,K) and outputs â. Then the previous prob-
ability can be rewritten as

Pr[ã
$
← {0, 1}k, â := T (1k, f(ã)) : ã = â] ≥ ν2(k)− µ3(k).

Since ν2 − µ3 is not negligible and T is a uniform polynomial-time algorithm,
this is a contradiction to f being one-way against uniform polynomial-time adver-
saries. Hence our assumption that C is a constructive security proof was wrong.

ut

References

1. Michael Backes and Dominique Unruh. Limits of constructive security proofs. http:
//www.infsec.cs.uni-sb.de/~unruh/publications/backes08limits.html,
2008. Full version of this paper.

2. T. Baker, J. Gill, and R. Solovay. Relativizations of the p
?
= NP question. SIAM

Journal on Computing, 4:431–442, 1975.
3. Boaz Barak. How to go beyond the black-box simulation barrier. In 42th Annual

Symposium on Foundations of Computer Science, Proceedings of FOCS 2001, pages
106–115. IEEE Computer Society, 2001. Extended abstract, full version online
available at http://www.wisdom.weizmann.ac.il/~boaz/Papers/nonbb.ps.

4. Ivan Damg̊ard. Collision free hash functions and public key signature schemes. In
Advances in Cryptology, Proceedings of EUROCRYPT ’87, volume 304 of Lecture
Notes in Computer Science, pages 203–216. Springer-Verlag, 1987.

5. Cynthia Dwork and Moni Naor. Zaps and their applications. ECCC TR02-
001, 2002. Online available at http://eccc.hpi-web.de/eccc-reports/2002/

TR02-001/index.html.
6. Lance Fortnow. The role of relativization in complexity theory. In Bulletin of the

EATCS 52, February 1994. Online available at http://people.cs.uchicago.edu/
~fortnow/papers/relative.ps.

7. Oded Goldreich. Foundations of Cryptography – Volume 1 (Basic Tools). Cam-
bridge University Press, August 2001. Previous version online available at http:

//www.wisdom.weizmann.ac.il/~oded/frag.html.
8. Oded Goldreich. Foundations of Cryptography – Volume 2 (Basic Applications).

Cambridge University Press, May 2004. Previous version online available at http:
//www.wisdom.weizmann.ac.il/~oded/frag.html.

9. Phillip Rogaway. Formalizing human ignorance: Collision-resistant hashing without
the keys. In Vietcrypt 2006, volume 4341 of Lecture Notes in Computer Science,
pages 221–228. Springer-Verlag, 2006. Online available at http://eprint.iacr.

org/2006/281.
10. Douglas R. Stinson. Some observations on the theory of cryptographic hash func-

tions. IACR ePrint Archive, March 2001. Online available at http://eprint.iacr.
org/2001/020.

18

http://www.infsec.cs.uni-sb.de/~unruh/publications/backes08limits.html
http://www.wisdom.weizmann.ac.il/~boaz/Papers/nonbb.ps
http://eccc.hpi-web.de/eccc-reports/2002/TR02-001/index.html
http://people.cs.uchicago.edu/~fortnow/papers/relative.ps
http://www.wisdom.weizmann.ac.il/~oded/frag.html
http://www.wisdom.weizmann.ac.il/~oded/frag.html
http://eprint.iacr.org/2006/281
http://eprint.iacr.org/2001/020

	Introduction
	Our Contribution
	Related Work

	Preliminaries and Notation
	Assumptions Underlying our Negative Result
	One-Way Permutations with Non-Uniform Trapdoors
	Proofs of Content

	Limits of Constructive Security Proofs

