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Abstract. Every public-key encryption scheme has to incorporate a
certain amount of randomness into its ciphertexts to provide semantic
security against chosen ciphertext attacks (IND-CCA). The difference
between the length of a ciphertext and the embedded message is called
the ciphertext overhead. While a generic brute-force adversary running in
2t steps gives a theoretical lower bound of t bits on the ciphertext over-
head for IND-CPA security, the best known IND-CCA secure schemes
demand roughly 2t bits even in the random oracle model. Is the t-bit gap
essential for achieving IND-CCA security?

We close the gap by proposing an IND-CCA secure scheme whose ci-
phertext overhead matches the generic lower bound up to a small con-
stant. Our scheme uses a variation of a four-round Feistel network in
the random oracle model and hence belongs to the family of OAEP-
based schemes. Maybe of independent interest is a new efficient method
to encrypt long messages exceeding the length of the permutation while
retaining the minimal overhead.

1 Introduction

1.1 Background

Motivation. Ever since Goldwasser and Micali introduced the concept
of “probabilistic encryption” [16] it is well understood that every public-
key encryption scheme has to incorporate a certain amount of random-
ness into their ciphertexts in order to achieve semantic security. Thus
a ciphertext c must be longer than the embedded message m and the
difference `oh := |c| − |m| is called the ciphertext overhead. In order to
achieve stronger security properties, the ciphertext overhead tends to be
even larger due to the use of extended randomness or extra integrity
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checking mechanisms. In this paper we are asking for the minimal pos-
sible ciphertext overhead to protect against adaptive chosen ciphertext
attacks (IND-CCA security).

A Generic Lower Bound. A ciphertext overhead of `oh bits means that
at most `oh bits of randomness can be incorporated into a ciphertext. A
brute-force adversary in the IND-CPA experiment can exhaustively search
for the randomness used for the challenge ciphertext. After encrypting
one of the challenge messages up to 2t times, it has an advantage of
Ω(2t/2`oh). Requiring the advantage to be smaller than 2−ε (and ignoring
small additive constants), it must hold that

`oh ≥ t + ε .

Accordingly, t+ ε bits are a lower bound on the ciphertext overhead with
respect to adversaries running in 2t steps and having a success probability
of at most 2−ε, by counting encryption as one step. (We refer to Section 2
for a more formal treatment.) We say that the ciphertext overhead is
optimal if it matches the lower bound up to a (small) constant term, i.e.,
if `oh ≤ t + ε + O(1). Since every IND-CPA adversary is also an IND-
CCA adversary, the above lower bound also applies to IND-CCA secure
schemes.

For a number of schemes the ciphertext overhead primarily depends on
the size of the underlying number-theoretic primitive, which often suffers
from more sophisticated attacks. For example, ciphertexts of ElGamal-
type schemes contain at least one group element of overhead which must
be longer than 2t + ε bits due to the generic square-root bounds on
the discrete-logarithm problem. Hence, the ciphertext overhead of such
schemes can never match the generic lower bound.

Upper Bounds from Existing Schemes. Among the cryptosystems
based on trapdoor permutations, there are ones whose ciphertext over-
head is essentially independent of the size of the underlying permutation.
We focus on such schemes for the rest of the paper. An example with op-
timal ciphertext overhead is the basic version of OAEP [4], which omits
the zero padding and therefore only offers IND-CPA security. Considering
IND-CCA security, however, OAEP loses its optimal ciphertext overhead
as exemplified in Section 2.2. On the other hand, concrete security proofs
for existing schemes provide upper bounds on the ciphertext overhead
with which the desired level of security is attained. Table 1 summarizes
the ciphertext overhead of existing schemes. Its content is discussed in
the rest of this section.



Scheme Ciphertext Assumption #Feistel
Overhead on TDP rounds

OAEP [4, 15] `oh ≤ 3t + 2ε SPD-OW 2
OAEP+ [25] `oh ≤ 3t + 2ε OW 2
PSS-E [10] `oh ≤ 2t + 2ε SPD-OW 2
PSP2 S-Pad [14] `oh ≤ 2t + 2ε OW 4
OAEP-3R [23] `oh ≤ 2t + ε OW 3
OAEP-4X (ours) `oh = t + ε OW 4

Table 1. Upper bounds on the ciphertext overhead (up to small additive constants)
in OAEP variants for (2ε, 2−t)-adversaries. The lower bound is `oh ≥ t + ε. OW: one-
wayness. SPD-OW: set partial domain one-wayness.

IND-CCA Security via Validity Checking. As in OAEP, a common
approach [25, 19, 21, 10, 20, 14] to achieve IND-CCA security is to attach
a deterministic validity string (such as zero-padding or a hash of the
message, etc) to the message (or the ciphertext) so that decryption can
verify and reject almost all invalid ciphertexts. The ciphertext overhead
is thus determined by the size of the randomness and the validity string.
OAEP and the schemes in [25, 19] require randomness of 2t+ε bits plus a
validity string of t+ε bits. (See Section 2.2 for details on how to compute
these values.) Their ciphertext overhead is thus `oh = 3t+2ε. The schemes
in [10, 14] have a better security reduction and achieve `oh = 2t + 2ε,
which seems the best one can expect as long as encryption incorporates
a validity string into the ciphertexts.

Validity-free Encryption. A considerable step towards minimizing
the ciphertext overhead was the validity-free approach introduced by
Phan and Pointcheval [22, 23]. In their scheme (called 3-round OAEP) de-
cryption never rejects but returns a randomly looking message if a given
ciphertext was not properly created with the encryption algorithm. Since
no validity string is needed, the ciphertext overhead only depends on the
randomness. As we shall discuss later, their security reduction however
forces the ciphertext overhead to be `oh = kr = 2t + ε bits because of a
“quadratic term” qhqd/2kr that appears in the success probability of their
reduction. A more recent scheme in [13] suffers from the same problem.
In summary, these schemes successfully eliminate the validity string but
instead demand an extended randomness to prove IND-CCA security.

Encrypting long messages. The problem of getting optimal overhead
becomes even more difficult when considering longer messages. Notice
that all above schemes limit the messages to the size of the permutation
minus the overhead. To encrypt long inputs, [4, 17] suggest to stretch



the width of the Feistel network to cover the entire message and apply
the permutation only to a part of the output. But no general and formal
treatment has been given to this methodology and it is unclear if and
how it affects the ciphertext overhead. Furthermore, for schemes that
use several Feistel rounds, this approach is expensive in computation as
every internal hash function has to deal with a long input or output.
A number of methods for constructing hybrid encryption are available
(e.g., [12, 8, 9, 1, 6]), but they all increase the ciphertext overhead mainly
because a one-time session-key is being encrypted.

1.2 Our Contribution

Our main contribution is an IND-CCA-secure public-key encryption scheme
with optimal ciphertext overhead based on arbitrary family of trapdoor
one-way permutation in the random oracle model. We follow the validity-
free approach of 3-round OAEP [22] but instead use a 4-round Feistel
network. (See Figure 1 in Section 3 for a diagram.) We stress that the
essential difference is not the increased number of rounds; it is rather the
way we bind the message to the randomness in the first round of the Feis-
tel network while most of OAEP variants separately input the message
and the randomness. (See Section 1.3 for more intuition.)

Our contribution is mostly theoretical; Our scheme demonstrates that
lower and upper bounds on the ciphertext overhead with respect to IND-
CCA security can match up to a small additive constant in the random
oracle model. The design approach that binds the message to the random-
ness and the security proof may be of technical interest, too. In practice,
when implemented with an 1024-bit RSA permutation (80-bit security),
our scheme encrypts 943-bit and longer messages while it is 863 bits for
a known best scheme, which is at most 9% increase of the message space.
Though such a t-bit saving may have limited practical impact in general,
the scheme could find applications with edgy requirements in bandwidth.

We also introduce a novel method to securely combine simple pas-
sively secure symmetric encryption with the Feistel network to encrypt
long messages while retaining the optimal ciphertext overhead. While the
construction is interesting in that it suggests a new variant of a KEM that
allows partial message recovery, it is interesting also in a theoretical sense
as it illustrates the difference in the properties of the round functions in
a 4-round Feistel network as it will be discussed later.



1.3 Technical Overview

Achieving Optimal Overhead. We explain the technical details in
3-round OAEP that seem to make it difficult to prove an optimal cipher-
text overhead. The extended randomness of size kr ≥ 2t + ε stems from
a quadratic term qh qd/2kr in the success probability of the security re-
duction. Since an adversary running in time 2t can make at most qh ≤ 2t

hash oracle queries and qd ≤ 2t decryption queries, we must assume that
qh qd ≈ (2t)2. Requiring qh qd/2kr ≤ 2−ε results in kr ≥ 2t + ε.

Where does this quadratic loss in the reduction actually come from?
In the security proof, every time the simulated decryption oracle receives
a ciphertext that was not legitimately generated by asking the random
oracles, it returns a random plaintext. Later, it patches the hash table for
the simulated randomness so that the hash output looks consistent. The
patching fails if the randomness has already been asked to the random
oracle. This happens with probability at most qh/2kr since there are at
most qh hash queries. Throughout the attack, there are at most qd decryp-
tion queries and hence the error probability of the patching is bounded
by qh qd/2kr .

Our main technical contribution is to provide a security analysis for
our scheme where only linear terms of the form qh/2kr or qd/2kr appear.
We overcome the problem observed in 3-round OAEP by feeding the ran-
domness together with a part of the input message (say m1) into the hash
function, i.e., by computing H1(r ‖m1). This link between the random-
ness and the message allows the reduction to partition hash queries by m1

and therefore reducing the error probability in patching the hash table to
qh,m1/2kr , where qh,m1 is the number of hash queries with respect to m1.
By summing up the probabilities for all m1 returned from the decryp-
tion oracle, the error probability is bounded by

∑
m1

qh,m1/2kr ≤ qh/2kr .
The quadratic term is thus eliminated. The fourth round of the Feistel
network is then needed to cover m1.

Encrypting Long Messages. In order to encrypt long messages ex-
ceeding the size of the permutation (while retaining the optimal over-
head), we incorporate the idea of the Tag-KEM/DEM framework [1] that
allows to use a simple passively secure length-preserving symmetric ci-
pher. The exceeding part of the message is encrypted with the symmetric
cipher whose key is derived from the randomness used in the asymmetric
part of encryption. The symmetric part is then tied to the asymmetric
part of the ciphertext by feeding it back into one of the hash function
used in the Feistel network. Conceptually, our approach is similar to Tag-



KEMs with partial ciphertext recovery [6] but in our case the message
can be directly recovered. Namely, the main part of our construction can
be used as a Tag-KEM with partial message recovery.

A concrete technical difficulty is how and where to include the feed-
back from the symmetric part. Including it in the F-function (random
oracle) in every round of the 4-round Feistel network should work but
may be redundant. Is it then secure if the feedback is given only to one
of the F-functions? Which one? [24] showed that the inner two rounds
have different properties than the outer two ones. Does that also apply
to our case? Our result shows that it is sufficient to give the feedback to
one of the inner two hash functions. We remark that when including the
feedback only in the outer hash functions then either our security proof
does no longer hold or there is a concrete attack. We refer to Section 3.3
for further details.

1.4 Related Work

In Other Models. [22] constructed a simple scheme with optimal ci-
phertext overhead in the ideal full-domain permutation model. Looking
at the construction and the security proof, however, one can see that the
model is very strong and has little difference from idealizing the encryp-
tion function itself. Recently it is shown that ideal full-domain permuta-
tion can be constructed using random oracles [11] but the reduction is
very costly and a tight reduction needed to retain the optimal overhead is
highly unlikely. Note that [22] could only present a non-optimal scheme
in the random oracle model, which shows the difficulty of achieving the
optimality.

For Short Messages. Schemes based on general one-way permutations
can never offer the optimal overhead for messages shorter than the size
of the permutation. For the state of art in this issue, we refer to [2] which
presents a scheme that offers non-optimal but `oh ≥ 2t+ε that is currently
the shortest overhead for messages of arbitrary (small) length. It is left as
another open problem to construct a scheme with optimal overhead for
arbitrary message size.

2 Lower Bound of Ciphertext Overhead

We follow the standard definition of public-key encryption PKE = (G, E ,D)
and indistinguishability against chosen plaintext attacks (IND-CPA) and



adaptive chosen ciphertext attacks (IND-CCA). For formal definitions,
we refer to the full version [3].

2.1 General Argument

Let PKE = (G, E ,D) be a public-key encryption scheme and let M and R
be the message and randomness space associated to a public-key pk . For
(pk , sk) ← G(1k) and M ∈ M, let C(M) denote the set of ciphertexts
that recover message M . The ciphertext overhead `k

oh with respect to k is
defined by `k

oh = |Epk (M ; r)| − |M |. To obtain a simple form of the lower
bound, we restrict ourselves to PKE where `k

oh is a fixed positive constant
for any pk ∈ G(1k), M ∈M and r ∈ R.

Let A be an adversary that runs in 2t steps and breaks the semantic
(IND-CPA) security of PKE with advantage at most 2−ε. To study the
relation between the adversary’s ability and the ciphertext overhead, we
treat t, ε independently from k and represent the bounds of the ciphertext
overhead as a function `k

oh(t, ε). In the following argument, we count every
encryption as one step. A launches the following attack.
1. Given pk generated by (pk , sk) ← G(1k), pick arbitrary M0 and M1 of

the same length from M. Send (M0,M1) to the challenger and receive
c∗ = Epk (Mb) where b ← {0, 1}.

2. Repeat the following up to 2t times.
– r ← R, c = Epk (M0; r).
– If c = c∗, output b̃ = 0 and stop.

3. Output b̃ = 1.
For a string c, let p(c) denote the probability that c = Epk (M0; r) hap-

pens for uniformly chosen r. Similarly, let p′(pk) denote the probability
that pk is selected by G(1k). The advantage of adversary A in breaking
the semantic security with respect to pk is

AdvA,pk = |Pr[b̃ = 0 | b = 0]− Pr[b̃ = 0 | b = 1]|
= Pr[b̃ = 0 | b = 0]− 0

=
∑

c∈C(M0)

p(c)(1− (1− p(c))2
t
). (1)

Let η be the min-entropy with respect to the ciphertexts in C(M0) in
bits. Since p(c) ≥ 1

2η for any c ∈ C(M0),

AdvA,pk ≥
∑

c∈C(M0)

p(c)(1− (1− 1
2η

)2
t
) ≥ 2t

2η
− 2t − 1

22η
. (2)



Since η ≤ `k
oh, we have

AdvA(k) =
∑

pk∈G(k)

p′(pk) ·AdvA,pk

≥
∑

pk∈G(k)

p′(pk) ·
(

2t

2`k
oh

− 2t − 1

22`k
oh

)

≥ 1
2
· 2t

2`k
oh

. (3)

Since we require AdvA(k) ≤ 2−ε, it holds that 2−ε ≥ 1
2 · 2t

2
`k
oh

for t, ε ≥ 1.

Thus we have the lower bound:

`k
oh(t, ε) ≥ t + ε− 1 . (4)

If c ← Epk (M ; r) is bijective with respect to c and r, the adversary can
search r one by one without duplication and the advantage for this case
is AdvA,pk = 2t

2η , which results in `k
oh(t, ε) ≥ t + ε.

In the above discussion we used the simplified argument to count
one encryption as one single time unit. More generally, one should count
each fundamental cryptographic operation (such as hashing, group op-
eration, etc.) as one step. Hence the value 2t is understood as the total
number of times the adversary performs the fundamental cryptographic
operations. A precise assessment is possible by incorporating an adequate
scaling factor that represent the exact number of steps (depending on the
computational model).

2.2 Example : Ciphertext Overhead of OAEP

OAEP includes randomness of size kr and zero-padding of size kv. These
parameters define the ciphertext overhead as `oh = kr +kv. Together with
the size of permutation, n, they are provided as a security parameter
k = (n, kr, kv). According to [15, Th. 1], the advantage of an adversary A
against the IND-CCA security of OAEP, making up to q decryption and
hash queries is upper bounded by

Advcca
A (k) ≤ εspd(n) +

c q2

2kr
+

c′q
2kv

, (5)

where εspd(n) is the probability of breaking set partial one-wayness of the
underlying trapdoor permutation of size n, and c, c′ ≥ 1 are two (small)
constants.



Consider an (2t, 2−ε) adversary that can make at most q ≤ 2t oracle
queries. Since parameter n can be chosen essentially independently from
kr and kv, we can safely assume that εspd(n) is small enough. Assuming
εspd(n) ≤ c′′ 2−ε with a constant 0 < c′′ ≤ 1

2 for concreteness, each of
the remaining two terms in (5) must be smaller than 2−ε − εspd(n) ≥
(1− c′′) 2−ε. Namely,

c 22t

2kr
≤ (1− c′′) 2−ε and

c′2t

2kv
≤ (1− c′′) 2−ε (6)

must hold. Accordingly, in order to attain the desired security level, it is
sufficient to choose

kr = 2t + ε and kv = t + ε (7)

plus some small positive constants. As a result, the ciphertext overhead
of OAEP is upper bounded by

kr + kv = 3t + 2ε + O(1). (8)

3 Proposed Scheme

3.1 Description

Our construction requires a symmetric-key encryption scheme SEke =
(E, D) and a trapdoor permutation family Pn as building blocks. The
symmetric encryption scheme SE must be length-preserving and passively
secure (indistinguishable against passive attacks), and the trapdoor per-
mutation family must be one-way. For formal definitions, we refer to the
full version [3].

Let (n, ke, kr) be a set of security parameters where n represents
the bit-length of the trapdoor permutation, ke is the key size of the
symmetric-key encryption, and kr is the size of randomness incorporated
into the ciphertext. The proposed scheme PKE = (G, E ,D) is the follow-
ing. See also Figure 1 for a diagram of encryption.

Key Generation G: Given a security parameter k = (n, ke, kr) for n ≥
6kr, set parameters km1 and km2 so that

km1 ≥ 2kr, km2 ≥ 3kr, n = kr + km1 + km2 (9)

are fulfilled. Then select (f, f−1) ← Pn (the trapdoor permutation
generator) and hash functions G and Hi for i = 1, 2, 3, 4 such that

G : {0, 1}kr+km1 → {0, 1}ke , H1 : {0, 1}kr+km1 → {0, 1}km2 ,
H2 : {0, 1}km2 → {0, 1}kr+km1 , H3 : {0, 1}∗ → {0, 1}km2 ,
H4 : {0, 1}km2 → {0, 1}kr+km1 .
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Fig. 1. The diagram of (a part of) encryption. Input message is m =
m1 ‖m2 ‖me ∈ {0, 1}km1 × {0, 1}km2 × {0, 1}∗ and the randomness is
r ∈ {0, 1}kr . The actual ciphertext is (u, c) where u = f(t ‖ s).

The private-key is f−1. The public-key includes f , SEke , and the hash
functions with associated parameters.

Encryption E: Given a plaintext m ∈ {0, 1}∗, first chop it into three
blocks, m1, m2, and me such that

m = m1 ‖m2 ‖me ∈ {0, 1}km1 × {0, 1}km2 × {0, 1}∗.
Then choose random r ← {0, 1}kr and compute

z = r ‖m1, w = G(z), c = Ew(me),
h1 = H1(z), v = h1 ⊕m2, h2 = H2(v), d = h2 ⊕ z,
h3 = H3(d ‖ c), s = h3 ⊕ v, h4 = H4(s), t = h4 ⊕ d,

and u = f(t ‖ s). The ciphertext is (u, c) ∈ {0, 1}n × {0, 1}∗.

Decryption D: Given a ciphertext (u, c) ∈ {0, 1}n × {0, 1}ke , compute
y = f−1(u) and parse y as y = t ‖ s ∈ {0, 1}kr+km1 × {0, 1}km2 . Then
compute the following values:

h4 = H4(s), d = h4 ⊕ t, h3 = H3(d ‖ c), v = h3 ⊕ s,
h2 = H2(v), z = h2 ⊕ d, h1 = H1(z), m2 = h1 ⊕ v,
w = G(z), me = Dw(c),

and parse z = r ‖m1 ∈ {0, 1}kr×{0, 1}km1 . The output is m1 ‖m2 ‖me.



3.2 Security and Optimality

The following theorems hold for PKE described in the previous section.
A proof sketch is in Section 4 and the complete proof is in [3].

Theorem 1 (Chosen Ciphertext Security). Suppose A is an adver-
sary that runs in time τ with at most qh hash queries and qd decryption
queries. Then there exist an adversaries B that runs in time at most
τ + O(q2

h) and an adversary C that runs in time at most τ + O(1) with

Advcca
A (k) ≤ Advind-pa

C,SE (ke) + 2Advowp
B,P (n) + O(

qh + qd

2kr
) .

Note that the number of hash queries includes the ones made through
the decryption queries. In an asymptotic sense, Theorem 1 states that
the above scheme is semantically secure against adaptive chosen message
attacks in the random oracle model if the trapdoor permutation P is
one-way and SE is passively secure.

As it is the case for most OAEP variants, our security reduction in-
cludes a quadratic factor q2

h in the running time of the adversary against
the one-way permutation. It results in demanding larger n which increases
the minimal length of the message the scheme can encrypt attaining the
optimal overhead. The approach from [19, 14] helps achieving a linear
running time if desired.

Theorem 2 (Optimality in Ciphertext Overhead). If Advind-pa
C,SE (ke)+

2Advowp
B,P (n) ≤ 2−(ε+1) holds for all adversaries C and B running in time

2t, then kr = `oh = t + ε + 4 is sufficient for messages of size equal or
larger than n− kr bits.

Note that parameters ke and n are independent of the overhead and can
be set arbitrary to fulfill the condition.

3.3 Notes on Variations

Why not 3 rounds? Consider the 3-round version of our scheme ob-
tained by removing H4 and simply letting t = d. We show that the 3-round
version is not simulatable, at least with the technique that constructs a
plaintext extractor from the queries to the random oracles. Since the fol-
lowing argument holds regardless of the presence of the extended part c,
let us ignore it.

Suppose that the adversary creates two ciphertexts u and u′ by ran-
domly choosing t, s, t′ and computing s′ = H3(t)⊕s⊕H3(t′), u = f(t ‖ s),



and u′ = f(t′ ‖ s′). Since H3(t)⊕s = H3(t′)⊕s′, decrypting u and u′ yield
the same v. However, such a relation between u and u′ can not be detected
by the simulator since H2(v) is not asked. Accordingly the decryption or-
acle must return random m1 ‖m2 and m1

′ ‖m2
′ to answer to the queries

on u and u′, respectively. Then the adversary asks H2(v) and obtains
h2. For consistency, it must hold that h2 = (r ‖m1)⊕ t = (r′ ‖m1

′)⊕ t′.
However, since m1 and m1

′ are randomly chosen before the simulator sees
t and t′, such a relation can be fulfilled only by chance. The adversary
can notice the inconsistency by checking the relation and the simulation
should fail.

Including c into a hash other than H3. We discuss on the variants
that includes c into one of the hash functions rather than H3. In summary,
only the inner two hash functions, H2 and H3, are the right choice.

– Case of H1(z ‖ c). This is clearly a wrong choice since (u∗, c∗) and
(u∗, c) yield the same m1.

– Case of H2(v ‖ c). It is possible to modify the proof of Theorem 1 to
show that this variant is also secure.

– Case of H4(s ‖ c). For this case, we can show that a (powerful) ad-
versary can distinguish the simulation from the reality. The underly-
ing idea is that, given a challenge ciphertext (u∗, c∗), the adversary
builds a ciphertext (u, c) that yields the same plaintext without mak-
ing queries to H3. Suppose that the adversary finds (t∗, s∗). It obtains
h∗4 = H4(s∗ ‖ c∗) and d∗ = h∗4⊕ t∗. It then selects arbitrary c and asks
h4 = H4(s∗ ‖ c). Note that c must be different from c∗. It further com-
putes t = d∗⊕h4 and u = f(t ‖ s∗). Observe that (u, c) recovers d∗ and
v∗ since d = t⊕H4(s∗ ‖ c) = d∗ ⊕ h4 ⊕H4(s∗ ‖ c) = d∗ ⊕ h4 ⊕ h4 = d∗

and v = s∗ ⊕ H3(d) = s∗ ⊕ H3(d∗) = v∗. Therefore, the selected
challenge message is returned if (u, c) is asked to the real decryption
oracle. However, since H3(d∗) has only been defined implicitly and
was never directly asked by the adversary, the simulated decryption
oracle cannot detect such a case and returns a random message which
is noticed by the adversary.

4 Proofs

4.1 Proof of Theorem 1 (sketch)

We proceed in games. Let Xi denote the event that adversary A outputs
b̃ = b in Game i.



Game 0. The original CCA game. By definition, we have

Pr[X0] =
1
2
·Advcca

A (k) +
1
2
. (10)

Game 1. Modify the challenge oracle so that it returns random u∗ that
is independent from the challenge messages as follows.

Challenge Oracle (M0, M1).
C.1 Choose u∗ ← {0, 1}n.
C.2 Choose b ← {0, 1} and split Mb into m1

∗, m2
∗ and me

∗, accordingly.
Then choose w∗ ← {0, 1}ke and compute c∗ = Ew∗(me

∗).
C.3 Return (u∗, c∗).

For u∗, c∗ and w∗, let (t∗, s∗, d∗, v∗, z∗, h∗4, h
∗
3, h

∗
2, h

∗
1) be a consistent

internal state. Let AskH+
3 denote an event such that (d∗ ‖ c∗) is asked to

H3 after s∗ is asked to H4. The following bound can be shown.

|Pr[X0]− Pr[X1]| ≤ qg

2kr
+

qh1

2kr
+

qh2

2km2
+

qh3

2kr+km1
+ Pr[AskH+

3 ] (11)

It is straightforward to see that distinguishing b breaks the passive
security of the symmetric encryption since only the symmetric part is
related to b in Game 1. We thus have

Pr[X1] ≤ 1
2

+
1
2
·Advind-pa

C,SE (ke) , (12)

for some suitable adversary C that has similar running time as A.
To bound Pr[AskH+

3 ], we initiate a new series of sub-games starting
from Game 1. In the following games, each random oracle X is simulated
with an independent list LX that is initially empty. When X is first
asked on fresh input a, output b is uniformly selected and (a, b) is stored
in LX . If a has been asked before, the corresponding b is read from LX

and returned. By (a, [b]) ∈ LX , we mean that table LX includes an entry
whose first element is a. If such entry exists, the second element is denoted
by b. List LX is consistent for oracle X if every input a is unique in LX .
By F1.i we denote the same event in the following sub-games Game 1.i.

Game 1.0 This game is the same as Game 1. Since this is just a change
of notation, we have

Pr[AskH+
3 ] = Pr[F1.0] . (13)



Game 1.1 The game is modified so that it immediately stops at the mo-
ment AskH+

3 happens. To capture event AskH+
3 , hash oracle H3 is modi-

fied so that it checks whether the query d ‖ c equals the value d∗ ‖ c∗ by
searching LH4 for corresponding s∗.

Hash Oracle H3(d ‖ c).
A.1 If (d ‖ c, [h3]) ∈ LH3, return h3.
A.2 Choose h3 ← {0, 1}km2 and add (d ‖ c, h3) to LH3.
A.3 Repeat the following for every entry (h4, s) in LH4.

(a) Compute t = d⊕ h4, u = f(t ‖ s).
(b) If u = u∗, abort the game. (event: F1.1).

A.4 Return h3.

Since this modification does not change the view of the adversary unless
AskH+

3 happens, we have

Pr[F1.0] = Pr[F1.1] . (14)

Game 1.2 Modify the decryption oracle so that it returns a random mes-
sage when a decryption query is made on a ciphertext whose associated
d ‖ c was not yet asked to H3. Modify H3 for consistency, too.

Decryption Oracle D(u, c).
D.1 Compute t ‖ s = f−1(u).
D.2 h4 ← H4(s).
D.3 Let d = t ⊕ h4. If (d ‖ c, [h3]) 6∈ LH3, go to the next step. Otherwise,

return m1 ‖m2 ‖me computed normally by using t, s, d, and h3.
D.4 Return m1 ‖m2 ‖me computed as follows.

(a) Select m1, m2, and w uniformly and compute me = Dw(c).
(b) Add (u, c, w, m1, m2) to Lwatch.

Hash Oracle H3(d ‖ c).
A.1 If (d ‖ c, [h3]) ∈ LH3, return h3.
A.2 Choose h3 ← {0, 1}km2 and put (d ‖ c, h3) to LH3.
A.3 Repeat the following for every entry (h4, s) in LH4.

(a) Compute t = d⊕ h4, u = f(t ‖ s), v = h3 ⊕ s.
(b) If u = u∗, abort the game. (event: F1.2).
(c) If (u, c, [w], [m1], [m2]) ∈ Lwatch, do as follows.

– Select r ← {0, 1}kr and compute z = r ‖m1, h2 = d ⊕ z, h1 =
m2 ⊕ v.

– Add (z, w), (z, h1), and (v, h2) to LG, LH1, and LH2, respectively.
– Remove entry (u, c, w, m1, m2) from Lwatch.

A.4 Return h3.

The following bound can be shown.

|Pr[F1.1]− Pr[F1.2]| ≤ q2
d

2km1
+

qh1 + qg

2kr
+

qh2 qd

2km2
. (15)



Game 1.3 Modify the decryption oracle so that it also returns a ran-
dom message when a decryption query is made on a ciphertext whose
associated s was not yet asked to H4.

Decryption Oracle D(u, c).
D.1 Compute t ‖ s = f−1(u).
D.2 If (s, [h4]) ∈ LH4 and (d ‖ c, [h3]) ∈ LH3 for d = t ⊕ h4, then return

m1 ‖m2 ‖me computed normally by using t, s, d, and h3.
D.3 Otherwise, return m1 ‖m2 ‖me computed as follows.

(a) Select m1, m2, and w uniformly and compute me = Dw(c).
(b) Add (u, c, w, m1, m2) to Lwatch.

The following bound can be shown.

|Pr[F1.2]− Pr[F1.3]| ≤ qd qh3

2kr+km1
. (16)

Game 1.4 Modify the decryption oracle so that it uses a lookup table
instead of computing t ‖ s = f−1(u).

Decryption Oracle D(u, c).
D.1 If (u, c, [t], [s]) ∈ LX , then continue the normal decryption procedure by

using t and s and return the obtained message.
D.2 Otherwise, return random m1 ‖m2 ‖me computed as follows.

(a) Select m1, m2, and w uniformly and compute me = Dw(c).
(b) Add (u, c, w, m1, m2) to Lwatch and return m1 ‖m2 ‖me.

Hash Oracle H3(d ‖ c).
A.1 If (d ‖ c, [h3]) ∈ LH3, return h3.
A.2 Choose h3 ← {0, 1}km2 and put (d ‖ c, h3) to LH3.
A.3 Repeat the following for every entry (h4, s) in LH4.

(a) Compute t = d⊕ h4, u = f(t ‖ s), v = h3 ⊕ s.
(b) If u = u∗, abort the game with status 1 (event: F1.4).
(c) If (u, c, [w], [m1], [m2]) ∈ Lwatch, do as follows

– Select r ← {0, 1}kr and compute z = r ‖m1, h2 = d ⊕ z, h1 =
m2 ⊕ v.

– Add (z, w), (z, h1), and (v, h2) to LG, LH1, and LH2, respectively.
– Remove entry (u, c, w, m1, m2) from Lwatch.

(d) Put (u, c, t, s) to LX .
A.4 Return h3.

Hash Oracle H4(s).
B.1 If (s, [h4]) ∈ LH4, return h4.
B.2 Choose h4 ← {0, 1}kr+km1 and put (s, h4) to LH4.
B.3 Repeat the following for every entry ([d], [c], [h3]) in LH3.

(a) Let t = d⊕ h4, v = s⊕ h3, and u = f(t ‖ s).
(b) Put (u, c, t, s) to LX .

B.4 Return h4.



Since the adversary’s view is not influenced by this modification, we have

Pr[F1.3] = Pr[F1.4]. (17)

Game 1.4 does not use f−1 and any ∗-marked internal values at
all. Challenge u∗ is a random element in {0, 1}n, and s∗ ‖ t∗ such that
f(s∗ ‖ t∗) = u∗ can be extracted if F1.4 happens. It is thus straightfor-
ward to construct adversary B that computes f−1 using adversary A that
causes F1.4. We thus have

Pr[F1.4] ≤ Advowp
B,f (k) . (18)

The running time of B is bounded by that of A plus O(q2
h).

From (11), (14), (16), (17), and (18), we have

Advcca
A (k) ≤ Advind-pa

C,SE (ke) + 2 ·Advowp
B,P (n)

+
4(qh1 + qg)

2kr
+

2q2
d

2km1
+

2qh2(qd + 1)
2km2

+
2qh3(qd + 1)

2kr+km1
.

Finally, using km1 ≥ 2kr, km2 ≥ 3kr and setting qh = qh1 + qh2 + qh3 +
qh4 + qg, this simplifies to the claimed form in the theorem as follows.

Advcca
A (k) ≤Advind-pa

C,SE (ke) + 2 ·Advowp
B,P (n) +

4qh

2kr
+

2q2
d

22kr
+

2qh(qd + 1)
23kr

≤Advind-pa
C,SE (ke) + 2 ·Advowp

B,P (n) + O(
qh + qd

2kr
) (19)

4.2 Proof of Theorem 2

Fix ε and t. We require Advcca
A (k) ≤ 1/2ε for adversaries A running time

in 2t. Using the explicit bound (19) from the proof of Theorem 1, it is
sufficient to set kr so that

Advind-pa
C,SE (ke) + 2 ·Advowp

B,P (n) +
4qh

2kr
+

2q2
d

22kr
+

2qh(qd + 1)
23kr

=
1
2ε

(20)

is fulfilled. By assuming that ke and n are set to satisfy

Advind-pa
C,SE (ke) + 2 ·Advowp

B,P (n) ≤ 1/2ε+1,

it is sufficient to choose kr such that

4qh

2kr
+

2q2
d

22kr
+

2qh(qd + 1)
23kr

≤ 1
2ε+1

. (21)



To achieve semantic security, qh/2kr ≤ 1 and qd/2kr ≤ 1 must hold. Since
2t upper bounds the running time, qh ≤ 2t and qd ≤ 2t must hold, too.
By using these bounds, the left side of (21) simplifies to

1
2kr

(4qh + 2qd + qh + 1) ≤ 8 · 2t

2kr
. (22)

Thus we have
8 · 2t

2kr
≤ 1

2ε+1
,

which results in t + ε + 4 ≤ kr. Since `oh = kr holds for all messages of
size equal or larger than n− kr bits, `oh = kr = t + ε + 4 is sufficient. It
matches the lower bound up to the constant term.

5 Conclusion and Open Problems

We propose a variant of OAEP that attains an optimal overhead in the
random oracle model and thereby proved that the lower bound of ci-
phertext overhead is tight even with respect to IND-CCA security. Open
problems include:

– Show the bound without random oracles. In the standard model, the
schemes in [7, 18] have the shortest known ciphertext overhead con-
sisting of two group elements that results in `oh ≥ 4t + 2ε bits. It
remains as a very interesting open question whether or not the opti-
mality can be achieved without random oracles.

– Optimal ciphertext overhead for shorter messages. We refer to [2]
whose (DH-based) schemes offer `oh ≥ 2t + ε for short messages.

– Show that 4-round is necessary (or not) in our construction.

References

[1] M. Abe, R. Gennaro, and K. Kurosawa. Tag-KEM/DEM: A new framework for
hybrid encryption. Journal of Cryptology, 21(1):97–130, 2008.

[2] M. Abe, E. Kiltz, and T. Okamoto. Compact CCA-secure encryption for arbitrary
messages. Unpublished Manuscript. Available from the authors. 2007.

[3] M. Abe, E. Kiltz, and T. Okamoto. Chosen ciphertext security with optimal
overhead. IACR ePrint Archive 2008/374, September 2, 2008.

[4] M. Bellare and P. Rogaway. Optimal asymmetric encryption. EUROCRYPT ’94,
LNCS 950, pages 92–111. Springer-Verlag, 1995.

[5] M. Bellare and P. Rogaway. Code-based game-playing proofs and the security
of triple encryption. Eurocrypt ’06, LNCS 4004, pages 409–426. Springer-Verlag,
2006. Full version available from IACR ePrint Archive 2004/331.



[6] B. Bjørstad, A. Dent, and N. Smart. Efficient KEMs with partial message recov-
ery. Cryptography and Coding 2007, LNCS 4887, pages 233–256. Springer-Verlag,
2007.

[7] X. Boyen, Q. Mei, and B. Waters. Direct chosen ciphertext security from identity-
based techniques. In ACM Conference on Computer and Communications Secu-
rity, pages 320–329. ACM, 2005. Also available at IACR e-print 2005/288.

[8] J. Coron, H. Handschuh, M. Joye, P. Paillier, D. Pointcheval, and C. Tymen.
GEM: A generic chosen-ciphertext secure encryption method. In CT-RSA 2001,
LNCS 2271, pages 263–276. Springer-Verlag, 2002.

[9] J. Coron, H. Handschuh, M. Joye, P. Paillier, D. Pointcheval, and C. Tymen.
Optimal chosen-ciphertext secure encryption of arbitrary-length messages. In
PKC 2002,LNCS 2274, pages 17–33. Springer-Verlag, 2002.

[10] J. S. Coron, M. Joye, D. Naccache, and P. Paillier. Universal padding schemes
for RSA. In CRYPTO ’02, LNCS 2422, pages 226–241. Springer-Verlag, 2002.

[11] J. S. Coron, J. Patarin, and Y. Seurin. The random oracle model and the ideal
cipher model are equivalent. In CRYPTO ’08, LNCS 5157, pages 1–20. Springer-
Verlag, 2008.

[12] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167–226, 2003.

[13] Y. Cui, K. Kobara, and H. Imai. A generic conversion with optimal redundancy.
In CT-RSA 2005, LNCS 3376, pages 104–117. Springer-Verlag, 2005.

[14] Y. Dodis, M. Freedman, S. Jarecki, and S. Walfish. Versatile padding schemes
for joint signature and encryption. In ACM CCS’04. ACM, 2004.

[15] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure
under the RSA assumption. In CRYPTO 2001, LNCS 2139, pages 260–274.
Springer-Verlag, 2001.

[16] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28:270–299, 1984.

[17] J. Jonsson. An OAEP variant with a tight security proof. IACR e-print Archive
2002/034, 2002.

[18] E. Kiltz. Chosen-ciphertext security from tag-based encryption. In TCC’06,
LNCS 3876, pages 581–600. Springer-Verlag, 2006.

[19] K. Kobara and H. Imai. OAEP++: A very simple way to apply OAEP to deter-
ministic OW-CPA primitives. IACR ePrint archive, 2002/130, 2002.

[20] Y. Komano and K. Ohta. Efficient universal padding schemes for multiplicative
trapdoor one-way permutation. In CRYPTO ’03, of LNCS 2729, pages 366–382.
Springer-Verlag, 2003.

[21] T. Okamoto and D. Pointcheval. REACT: Rapid enhanced-security asymmetric
cryptosystem transform. In CT-RSA ’2001, LNCS 2020, pages 159–174. Springer-
Verlag, 2001.

[22] D. H. Phan and D. Pointcheval. Chosen-ciphertext security without redundancy.
In Asiacrypt ’03, LNCS 2894, pages 1–18. Springer-Verlag, 2003.

[23] D. H. Phan and D. Pointcheval. OAEP 3-round: A generic and secure asymmetric
encryption padding. In Asiacrypt ’04, LNCS 3329, pages 63–78. Springer-Verlag,
2004.

[24] Z. Ramzan and L. Reyzin. On the round security of symmetric-key cryptographic
primitives. In CRYPTO 2000, LNCS 1880, pages 376–393. Springer-Verlag, 2000.

[25] V. Shoup. OAEP reconsidered. In CRYPTO 2001, LNCS 2139, pages 239–259.
Springer-Verlag, 2001.


