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1 Introduction

Many researchers have so far developed cryptographic schemes based on combinato-
rial problems related to knapsacks, codes, and lattices, due to the intractability of the
underlying problems, the efficiency of primitive operations, and the threat of quantum
computers to number-theoretic schemes.

The cryptographic schemes based on combinatorial problems usually assume the
average-casehardness of the underlying problem because they have to deal with ran-
domly generated cryptographic instances such as keys, plaintexts, and ciphertexts. This
implies security risk in such schemes since it is generally hard to show their average-
case hardness. In fact, several attacks against such schemes, e.g., [25], were found in
practical settings. The cryptographic schemes based only on the average-case hardness
are more likely to be at risk of these kinds of attacks.

It is therefore significant to guarantee the security under the worst-case hardness.
Ajtai [1] showed that the average-case hardness of some lattice problem is equivalent
to its worst-case hardness. His seminal result opened the way to cryptographic schemes
based on the worst-case hardness of lattice problems. Several lattice-based schemes
were proposed such as public-key encryption schemes, e.g., by Ajtai and Dwork [2],
and hash functions [1, 11, 19].

Among varieties of lattice-based cryptographic schemes, there are very few results
on the identification (ID) schemes based on the worst-case hardness of lattice problems.
For example, Micciancio and Vadhan proposed ID schemes based on the worst-case
hardness of lattice problems, such as the gap versions of the Shortest Vector Problem.
These schemes are obtained from their statistical zero-knowledge protocol with efficient
provers [20]. Recently, Lyubashevsky also constructed lattice-based ID schemes secure



against active attack [14]. Unfortunately, the approximation factors of the underlying
problems in their schemes are large for practical use as noted in [14, Sec. 5] since secu-
rity parameters for ID schemes should be large in order to achieve the required hardness.
Therefore, it is necessary to construct the schemes based on weaker assumptions, i.e.,
the assumptions on lattice problems with smaller approximation factors.

1.1 Our Contributions

In this paper, we propose two variants, which we call S+
GL and S+C/IL , of Stern’s ID

scheme [26]. These variants are secure againstconcurrentattack1 under the assump-
tions on theworst-casehardness of lattice problems, while Stern’s original scheme as-
sumes theaverage-casehardness of certain decoding problem in coding theory and the
existence of a collision-resistant hash function, and its security is only againstpassive
attack. The underlying problems of S+GL and S+C/IL are the gap version of the Shortest

Vector Problem with approximation factor̃O(n) (GapSVP2
Õ(n)

) and the Shortest Vector

Problem for ideal lattices with approximation factorÕ(n) (Λ( f )-SVP∞
Õ(n)

), respectively,

whereÕ(g(n)) = O(g(n) poly logg(n)) for a functiong in n, The assumptions are weaker
than those for the previous lattice-based ID schemes [20, 14]. We stress that such weaker
assumptions will take a step for practical use of lattice-based ID schemes.

Moreover, we show that our variants yield efficient ad hoc anonymous identification
schemes (AID schemes). In an AID scheme, which introduced by Dodis, Kiayias, Ni-
colosi, and Shoup [7], the protocol is done by two parties, a prover and verifier, but we
implicitly suppose an ad hoc group. Given public keys of all members of the group to
the verifier (and the prover), the goal is to convince the verifier that the prover belongs
to the group, without being specified who the prover is of the group, if and only if the
prover is an actual member of the group. We formally define a concurrent version of
the security notion, the security against impersonation under concurrent chosen-group
attack, and prove that our AID schemes satisfy this security notion. Our schemes are
based on the worst-case hardness of GapSVP2

Õ(n)
andΛ( f )-SVP∞

Õ(n)
. To authors’ best

knowledge, this is the first non-trivial construction under the assumption of the worst-
case hardness of lattice problems.

1.2 Main Ideas

In this section, we only discuss the ID scheme S+
GL based on GapSVP. We first construct

a string commitment scheme based on the lattice problem which will be used in ID
schemes. Then we will describe the idea of the proof on concurrent security of the
variant. Finally, we give a sketch of our construction method of an AID scheme.

Before giving the overview, we review the underlying problem GapSVPγ and the
fundamental problem, the Small Integer Solution Problem (SISq,m,β), on which our vari-

1 In active attack, an adversary could interact with the prover prior to impersonation. Inconcur-
rent attack, an adversary could interact with many different prover “clones” concurrently prior
to impersonation. Each clone has the same secret key, but has independent random coins and
maintains its own state. After interacting with many clones, the adversary tries impersonation.
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ants are directly based. The informal definitions and the relationship of two problems
are given as follows:

– SISq,m,β: Given a randomn-by-m matrix A whose elements are inZq, the problem
is finding anm-dimensional integral non-zero vectorz such thatAz ≡ 0 (mod q)
and∥z∥2 ≤ β.

– GapSVP2γ: Given ann-dimensional latticeL and a rational numberd, the problem
is outputting YES if there exists a non-zero vectorv ∈ L such that∥v∥2 ≤ d, or NO
if for any non-zero vectorv ∈ L ∥v∥2 > γd.

– ([19]) For suitableq andm, if there exists a probabilistic polynomial-time algorithm
which solves SISq,m,β on the average then there exists a probabilistic polynomial-
time algorithm which solves GapSVP2

Õ(βn1/2)
in the worst case.

As in Lyubashevsky’s result [14], we use the above relationship for our security reduc-
tion. Hence we mainly deals with SIS instead of GapSVP.

We simply obtain the lattice-based hash functions as in [11]: Choose a random
matrix A ∈ Zn×m

q . For anyx ∈ {0,1}m, a hash value isfA(x) := Ax modq. A collision
(x, x′) of the hash functionfA implies a solutionz = x − x′ of SISq,m,

√
m. Thus, the

security of the hash functions is based on the worst-case hardness of GapSVP2
Õ(
√

nm)
.

String commitment schemes:We construct a string commitment scheme from lattice-
based hash functions. General constructions of string commitment schemes from collision-
resistant hash functions were shown by Damgård, Pedersen, and Pfizmann [4] and
Halevi and Micali [12]. Stern also constructed a string commitment scheme from collision-
resistant hash functions in [26, Sec. III-A]: Leth be a hash function. Given a strings
and a random stringρ, a commitment ish(ρ◦(ρ⊕s)), where◦ and⊕ denote the concate-
nation and XOR operators, respectively. However, its hiding property was not shown.
We construct a string commitment scheme by a more direct and simpler way than the
general one and Stern’s one: Givensandρ, a commitment ish(ρ◦s), whereh is a lattice-
based hash function. The binding property simply follows from the collision-resistance
property ofh. We derive its hiding property fromϵ-regularity ofh for some negligible
function ϵ (see, e.g., [16, Sec. 4.1]). As mentioned in the above, we have collision-
resistant lattice-based hash functions based on the worst-case hardness of GapSVP,
while Stern assumed the existence of collision-resistant hash functions.

Our ID scheme and its concurrent security:In Stern’s scheme and our variant, a prover
has a binary vectorx with fixed Hamming weight as his/her secret key. We also feed to
the prover and the verifier a matrixA as a system parameter and a vectory as the public
key corresponding tox. The task of the prover is to convince the verifier that he/she
knows a correct secret keyx satisfying a relationAx = y andx has a valid weight.

In Stern’s protocol [26], the prover computes three commitments and sends them to
the verifier. The verifier sends a random challenge to the prover. The prover reveals two
of three commitments corresponding to the challenge. He constructed the knowledge
extractor which computes a collision of a hash function in a string commitment scheme
or a secret key corresponding to the target public key if a passive adversary responds
correctly to any challenges after sending commitments.
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One of standard strategies to achieve concurrent security is to prove that a public key
corresponds to multiple secret keys and that the protocol is witness indistinguishable
(WI) [8] and proof-of-knowledge: The reduction algorithm generatesskandpkand runs
the adversary onpk by simulating the prover withsk. Using the knowledge extractor of
the protocol, the algorithm obtains anothersk′ corresponding topk with probability at
least 1/2 since the protocol is WI. The algorithm then solves the underlying problem
by usingpk, sk, andsk′.

In our reduction, when the algorithm is givenA, it generates a secret keyx and a
public key y = Ax, and feedsA and y to the adversary. Note that the algorithm can
simulate the prover withA and x that the adversary concurrently accesses. Using the
knowledge extractor for the adversary in Stern’s proof, the algorithm obtains a collision
of a string commitment scheme or a secret keyx′ such thatx′ , x andAx′ = y, differ-
ently from the general strategy. In the former case, the algorithm outputs the collision
(s, s′) of a hash functionhA in the string commitment scheme. Thus, the solution for
SIS is obtained byz = s− s′. In the latter case, the conditionx , x′ will be satisfied
with probability at least 1/2 by witness indistinguishability of Stern’s protocol. Thus,
the algorithm has the solutionz = x − x′ for SIS. Theℓ2 norm of both solutions is at
most

√
m = Õ(n1/2). From the relationship between SIS and GapSVP the assumption

is the worst-case hardness of GapSVP2
Õ(n)

.

AID schemes:Our construction for AID schemes also has the following structure: Each
of l members in the ad hoc group has a vectorxi (i = 1, . . . , l). Then, the common inputs
of the scheme are a system parameterA and a set of public keysy1, . . . , yl of the mem-
bers, which satisfyyi = Axi (i = 1, . . . , l). We can show that, by Stern’s protocol, the
prover can anonymously convince the verifier that the prover knowsxi corresponding
to one ofy1, . . . , yl , since he/she knows a new vectorx′ such that [A y1 . . . yl ]x′ = 0.
(This idea is due to Wu, Chen, Wang, and Wang [27], who presented an AID scheme
from certain combinatorial problem.) Additionally, we force the prover to prove that the
positions of+1 and−1 in x′ are proper by modifying Stern’s protocol. We succeed to
give security proof for the scheme, while Wu et al. gave no formal proof on the security
of their scheme.

1.3 Comparison with Other Lattice-based Schemes

ID schemes: In [20], Micciancio and Vadhan proposed a statistical zero-knowledge
and proof-of-knowledge protocol for GapSVP. Combining it with lattice-based hash
functions, we obtain an ID scheme which is secure againstpassive attackbased on
SISq,m,Õ(n), which can be reduced from GapSVP2

Õ(n1.5)
.

In the scheme, the prover and the verifier are given a matrixA as a common input,
and the prover has a binary vectorx as secret information. The task of the prover is to
convince the verifier that he/she knowsx satisfying the relations thatAx = 0 andx is
relatively short. It seems difficult to directly simulate the prover since a simulator has
to prepare a dummy short vectorx′ satisfyingAx′ = 0, which is the task of SIS itself.
Thus, we cannot straightforwardly prove the concurrent security for their ID scheme.

By a simple modification, we can construct a concurrently secure ID scheme (MV+
GL

for short) based on the worst-case hardness of lattice problems by Micciancio and Vad-

4



ID schemes (A0,A1,A ∈ Zn×m
q )

Param. Public key Relation γ in GapSVP2γ Comm. cost Errors

MV+GL [20] – A0,A1 A0x = 0 or A1x = 0 Õ(n1.5) t · Õ(n) 1-sided

LGL [14] (A) A, y Ax = y Õ(n2) t · Õ(n) 2-sided

S+GL A y Ax = y andwH(x) = m/2 Õ(n) t · Õ(n) 1-sided

AID schemes (A i,0,A i,1,A ∈ Zn×m
q )

Base Param. Set of pks Relation γ in GapSVP2γ Comm. cost Errors

MV+GL [20] – {A i,0,A i,1}i=1,...,l A i,0x = 0 or A i,1x = 0 Õ(n1.5) tl · Õ(n) 1-sided

LGL [14] A y1, . . . , yl Ax = yi Õ(n2) tl · Õ(n) 2-sided

S+GL A y1, . . . , yl Ax = yi andwH(x) = m/2 Õ(n) t · Õ(l + n) 1-sided

Table 1.Comparisons among ID schemes and AID schemes. A secret keysk is x ∈ {0, 1}m. The
factorn denotes the security parameter. We denote the Hamming weight ofx by wH(x). Assume
that the protocols are repeatedt times in parallel for reducing errors. In the table for AID schemes,
l denotes the number of the members in the group. Note that the parameters in ideal-lattice-based
versions are almost same as those in general-lattice-based versions.

han’s ID scheme as noted in [20, Sec. 5]. In particular, applying techniques of De Santis,
Di Crescenzo, Persiano, and Yung [6] and of Feige and Shamir [8], a modification of
the ID scheme can be proven to have concurrent security2 based on the same problem
as that in the original scheme.

Recently, Lyubashevsky proposed new concurrently secure ID schemes based on
lattice problems [14]; we call it LGL for short. In his protocol, the prover proves, given
A and y, he/she hasx ∈ {0,1}m such thatAx = y. Using an active adversary, his
knowledge extractor obtains another vectorx′ such thatAx′ = y and the length of
x′ is at mostO(m1.5) = Õ(n1.5). Thus, in the LGL scheme, the underlying problem is
SISq,m,Õ(n1.5), which can be reduced from GapSVP2

Õ(n2)
.

As mentioned in the previous section, the assumption of S+
GL is the worst-case hard-

ness of GapSVP2
Õ(n)

, which is weaker than those of MV+GL and LGL. This improvement
is obtained by the condition that the knowledge extractor outputs another secret keyx′

whose length is at most
√

m = Õ(
√

n). Our schemes has 1-sided error (perfect com-
pleteness and soundness error), while LGL has 2-sided error (completeness and sound-
ness errors). As a summary, see Table 1.

AID schemes: By taking OR of l statements [6], we can straightforwardly obtain
MV+GL-based and LGL-based AID schemes, whose security are based on the worst-case
hardness of lattice problems. We feed onlypk1, . . . , pkl as the common inputs to the
prover and the verifier. In this case, the prover convinces the verifier that he/she has a
secret key corresponding to one of public keys,pki .

2 Combining ORing technique by De Santis et al. [6] and discarding technique by Feige and
Shamir [8], we derive a construction technique for ID schemes secure against active attack.
Moreover, we can construct concurrently secure ID schemes by the same technique as a folk-
lore says.
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However, each of these simple modifications requires a large overhead cost involv-
ing the size of the ad hoc group. Letl be the number of the members of the group and
n the security parameter. The protocol is run int times in parallel to reduce the errors.
The communication costs of the MV+GL-based and LGL-based schemes aretl · Õ(n). The
size of a set of the public keys isl · Õ(n2) andÕ(n2) + l · Õ(n) in the modified versions
of MV+GL and LGL, respectively.

On AID schemes, the LGL-based and our schemes require manyvectorspropor-
tional to the size of the group, while the MV+GL-based scheme requires manymatrices
proportional to the size of the group (see Table 1). Additionally, the communication cost
of our schemes ist · Õ(n+ l), while those in the MV+GL-based and LGL-based schemes
aretl · Õ(n). This shows the advantage of our scheme on the efficiency.

1.4 Organization

The rest of this paper is organized as follows. In Section 2, we review basic notations
and notions, and the cryptographic schemes we consider. In Section 3, we review lattice-
based hash functions and give a commitment scheme based on the lattice-based hash
functions for our ID and AID schemes. In Section 4, we construct the ID scheme by
combining the framework of Stern’s scheme with our string commitment scheme. We
present the AID scheme in Section 5.

In this paper, due to lack of space, we only describe the schemes based on GapSVP
since the construction onΛ( f )-SVP follows from a similar strategy to that on GapSVP.
We discuss the constructions onΛ( f )-SVP in the full paper.

2 Preliminaries

Basic notions and notations:We denote byn the security parameter of cryptographic
schemes throughout this paper, which corresponds to the rank of the underlying lattice
problems. We say that a problem is hard in the worst case if there exists no probabilistic
polynomial-time algorithm solves the problem in the worst case with non-negligible
probability. We sometimes usẽO(g(n)) for any functiong in n asO(g(n)·polylog(g(n))).
We assume that all random variables are independent and uniform. For a positive integer
n, let [n] denote a set{1,2, . . . , n}.

For anyp ≥ 1, theℓp norm of a vectorx = t(x1, . . . , xn) ∈ Rn, denoted by∥x∥p, is
(
∑

i∈[n] xp
i )1/p. For ease of notation, we define∥x∥ := ∥x∥2. Theℓ∞ norm is defined as

∥x∥∞ = limp→∞ ∥x∥p = maxi∈[n] |xi |. Let wH(x) denote the Hamming weight ofx, i.e.,
the number of non-zero elements inx. Let B(m,w) denote the set of binary vectors in
{0,1}m whose Hamming weights are exactly equal tow, i.e., B(m,w) := {x ∈ {0, 1}m |
wH(x) = w}. We denote the concatenation of two vectors or stringsv1 andv2 by v1 ◦ v2.

We omit the definitions of zero-knowledge arguments and witness-indistinguishable
protocols. For formal definitions, see textbooks, e.g., by Goldreich [10].

Hash functions: We briefly review the definition of collision-resistant hash function
families. LetHn = {hk : Mn → Dn | k ∈ Kn} be a family of hash functions, where
Mn, Dn, andKn denote a space of messages, digests, and indices, respectively. LetH =
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{Hn}n∈N. Roughly speaking, ifH is collision resistant, any polynomial-time adversary
cannot, on input a random indexk, output a collision of the hash function indexed byk.
For a formal definition, see, e.g., the textbook by Katz and Lindell [13, Sec. 4.6.1].

String commitment schemes:We consider a string commitment scheme in the trusted
setup model. The trusted setup model is often required to construct practically effi-
cient cryptographic schemes such as non-interactive string commitment schemes. In
this model, we assume that a trusted partyT honestly sets up a system parameter for
the sender and the receiver.

First T distributes the indexk of a commitment function to the sender and the
receiver. Both parties then share a common function Comk by a givenk. The scheme
runs in two phase, called committing and revealing phases. In the committing phase, the
sender commits his/her decision, say a strings, to a commitment stringc = Comk(s; ρ)
with a random stringρ and sendsc to the receiver. In the revealing phase, the sender
gives the receiver the decisions and the random stringρ. The receiver verifies the
validity of c by computing Comk(s; ρ).

We require two security notions of the string commitment schemes, statistically-
hiding and computationally-binding properties. Intuitively, we say that the commitment
scheme is statistically hiding, if any computationally unbounded adversarial receiver
cannot distinguish two commitment strings generated from two distinct strings. Also,
it is computationally binding, if any polynomial-time adversarial sender cannot change
the committed string after sending the commitment. See, e.g., [12] for the formal defi-
nition.

Canonical identification schemes:Let SI = (SetUp,KG,P,V) be an identification
scheme, whereSetUp is the setup algorithm which on input 1n outputsparam, KG is
the key-generation algorithm which on inputparamoutputs (pk, sk), P is the prover
algorithm taking inputsk, V is the verifier algorithm taking inputsparamandpk. We
saySI is a canonical identification scheme if it is a public-coin 3-move protocol.

We are interested in concurrent attack, which is stronger than active and passive
attack. We employ the definition of concurrent security in [3]. In concurrent attack, the
adversary will play the role of a cheating verifier prior to impersonation and can interact
many different prover clones concurrently. Each clone has the same secret key, but has
independent random coins and maintains its own state. We saySI is secure against
impersonation under concurrent attack, if any polynomial-time adversary cannot, given
a random public key of a legitimate prover, impersonate the legitimate prover. For the
formal definition, see [3].

Ad hoc anonymous identification schemes:An AID scheme allows a user to anony-
mously prove his/her membership in a group if and only if the user is an actual member
of the group, where the group is formed in an ad hoc fashion without help of the group
manager. We then assume that every user registers his/her public key to the public key
infrastructure.

We define the algorithms in AID schemes. An AID scheme is four tupleAID =
(SetUp,Reg,P,V), whereSetUp is the setup algorithm which on input 1n outputs
param, Reg is the key generation and registration algorithm which on inputparam
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outputs (pk, sk), P is the prover algorithm taking inputsparam, a set of public keys
R= (pk1, . . . , pkl), and one of the secret keysski such thatpki ∈ R, andV is the verifier
algorithm taking inputsparamandR. For more formal definition, see [7].

There are two goals for security of AID schemes: security against impersonation and
anonymity. Dodis et al. formally defined security against impersonation under passive
attack. They mentioned the definition of security against impersonation under concur-
rent attack. However, they did not give the formal definition (see [7, Sec. 3.2]). Thus,
we define the security notion with respect to concurrent attack. In the setting of chosen-
group attack, the adversary could force the prover to prove the membership in an ar-
bitrary group if the prover is indeed a member of the group. Additionally, concurrent
attack allows the cheating verifier to interact with the clones of any provers. Also, they
allow the cheating prover to interact with the clones of provers, but prohibit it from
interacting with the target provers. We sayAID is secure against impersonation under
concurrent chosen-group attack, if any polynomial-time adversary cannot impersonate
the legitimate prover in the above settings.

The security notion, anonymity against full key exposure, captures the property that
an adversary cannot distinguish two transcripts even if the adversary has the secret
keys of all the members. We sayAID is anonymous against full key exposure if any
polynomial-time adversary cannot distinguish two provers with a common set of public
keys even though the adversary generates all keys of the set. The formal definitions of
two notions are in the full paper.

3 Main Tools

In this section, we review main tools, lattices, lattice problems, and lattice-based hash
functions, and construct string commitment schemes.

Lattices and lattice problems:We first review fundamental notions of lattices, well-
known lattice problems, and a related problem.

An n-dimensional lattice inRm is the setL(b1, . . . , bn) = {∑i∈[n] αi bi | αi ∈ Z} of all
integral combinations ofn linearly independent vectorsb1, . . . , bn ∈ Rm. The sequence
of vectorsb1, . . . , bn is called abasisof the latticeL and denoted byB. For more details
on lattices, see the textbook by Micciancio and Goldwasser [18].

We give the definitions of well-known lattice problems, the Shortest Vector Problem
(SVPp) and its approximation version (SVPp

γ): The problem SVPp is, given a basisB
of a latticeL, finding the shortest non-zero vectorv in L in the ℓp norm. The problem
SVPp

γ is, given a basisB of a latticeL, finding a non-zero vectorv in L such that for any
non-zero vectorx in L, ∥v∥p ≤ γ ∥x∥p.

We next give the definition of the gap version of SVPp
γ , which is the underlying

problem of lattice-based hash functions.

Definition 3.1 (GapSVPp
γ [18]). For a gap functionγ, an instance ofGapSVPp

γ is a
pair (B,d) whereB is a basis of a lattice L and d is a rational number. In YES input
there exists a vectorv ∈ L\{0} such that∥v∥p ≤ d. In NO input, for any vectorv ∈ L\{0},
∥v∥p > γd.
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We also define the Small Integer Solution problem SIS (in theℓp norm), which is
often considered in the context of average-case/worst-case connections and a source of
lattice-based hash functions as we see later.

Definition 3.2 (SISp
q,m,β [19]). For a fixed integer q and a realβ, given a matrixA ∈

Zn×m
q , the problem is finding a non-zero integer vectorz ∈ Zm such thatAz≡ 0 (mod q)

and∥z∥p ≤ β.

The relation between SIS and GapSVP is reviewed in the next paragraph.

Lattice-based hash functions:We review the lattice-based hash functions. For a prime
q = q(n) = nO(1) and an integerm = m(n) > n logq(n), we define a family of hash
functions,

H(q,m) = { fA : {0,1}m→ Zn
q | A ∈ Zn×m

q },
where fA(x) = Ax modq.

Originally, Ajtai [1] showed that the worst-case hardness of GapSVP2
γ for some

polynomialγ(n) is reduced to the average-case hardness of SIS2
q,m,n for suitableq(n)

andm(n). It is known thatH(q,m) is indeed collision resistant for suitably chosenq
andmby Goldreich, Goldwasser, and Halevi [11]. They observed that finding a collision
(x, x′) for fA ∈ H(q,m) implies finding a short non-zero vectorz = x − x′ such that
∥z∥ ≤

√
m and Az ≡ 0 (mod q), i.e., solving SIS2

q,m,
√

m
. Recently, Micciancio and

Regev showed thatH(q,m) is collision resistant under the assumption that GapSVP2
Õ(n)

is hard in the worst case [19].

Theorem 3.1 ([19]). For any polynomially bounded functionsβ = β(n), m= m(n), q =
q(n), with q≥ 4

√
mn3/2β andγ = 14π

√
nβ, there exists a probabilistic polynomial-time

reduction from solvingGapSVP2γ in the worst case to solvingSIS2
q,m,β on the average

with non-negligible probability.

There were another reductions from the gap version of the covering radius problem
GapCRPγ, the shortest independent vector problem SIVPγ, and the guaranteed distance
decoding problem GDDγ by adjusting the parameters [19]. It is worth that we note the
results following the above results: Peikert [22] showed the reductions from the same
problems in anyℓp norms forp ≥ 2. The recent paper [9, Sec. 9] by Gentry, Peikert,
and Vaikuntanathan showed that the modulusq in SIS can beÕ(n).

A string commitment scheme:General constructions of statistically-hiding and
computationally-binding string commitment schemes are known from a family of
collision-resistant hash functions [4, 12]. Their constructions used universal hash func-
tions for the statistically-hiding property.

Here, we give a more direct and simpler construction from the lattice-based hash
functions without the universal hash functions. The input of the commitment function
is anm-bit vectorx obtained by concatenating a random stringρ = (ρ1, . . . , ρm/2) and
a message strings = (s1, . . . , sm/2), i.e., x = ρ ◦ s. We then define the commitment
function on inputss andρ as

ComA(s; ρ) := Ax modq = At(ρ1, . . . , ρm/2, s1, . . . , sm/2) modq.
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Lemma 3.1. For m > 10n logq, if SISq,m,
√

m is hard on the average, thenComA is
a statistically-hiding and computationally-binding string commitment scheme in the
trusted set up model. In particular, for any polynomially bounded functions m= m(n),
q = q(n), γ = γ(n), with q ≥ 4mn3/2, γ = 14π

√
nm, and m> 10n logq, ComA is

a statistically-hiding and computationally-binding string commitment scheme in the
trusted setup model ifGapSVP2γ is hard in the worst case.

Before the proof, we review a definition of statistical distances: Given two prob-
ability density functionsϕ1 andϕ2 on a finite setS, we define the statistical distance
between them as∆(ϕ1, ϕ2) := 1

2

∑
x∈S |ϕ1(x) − ϕ2(x)|.

Proof. The computationally-binding property immediately follows from the collision-
resistant property. We now show the statistically-hiding property.

Let A = [a1 · · · am]. We then have ComA(s; ρ) =
∑m/2

i=1 ρi ai +
∑m/2

i=1 si ai+m/2. The
following claim in [24] says that a random subset sum ofai is statistically close to the
uniform distribution for almost all choices ofai .

Claim ([24]). Let G be some finite Abelian group and letl be some integer. For anyl
elementsg1, . . . , gl ∈ G, consider∆(

∑
i∈[l] aigi ,u), whereu andai is chosen uniformly at

random fromG and{0,1}, respectively. Then the expectation of this statistical distance
over a uniform choice ofg1, . . . , gl ∈ G is at most

√
|G| /2l . In particular, the probability

that this statistical distance is more than (|G| /2l)1/4 is at most (|G| /2l)1/4.

In our proof, we considerZn
q as a finite Abelian groupG. Sincem > 10n logq,

(|G| /2m/2)1/4 ≤ q−n. Thus, for all but an at mostq−n fraction ofA = [a1, . . . , am] ∈ Zn×m
q ,

we have that∆(u,
∑

i∈[m/2] ρi ai) ≤ q−n, whereu ∈ Zn
q is uniform random variable. As-

sume that we have suchA. So, we have∆(u,ComA(0m/2; ρ)) ≤ q−n. By the definition of
ComA , for anys ∈ {0,1}m/2, we have∆(u,ComA(s; ρ)) ≤ q−n. By the triangle inequality,
we obtain

∆(ComA(s1; ρ1),ComA(s2; ρ2)) ≤ ∆(u,ComA(s1; ρ2)) + ∆(u,ComA(s2; ρ2)) ≤ 2q−n,

for any messages1 ands2. This shows that, for all but negligible fraction of choice of
A, the distributions of two commitments are statistically close.

⊓⊔

Using the Merkle-Damgård technique, we obtain a string commitment scheme
whose commitment function is ComA : {0,1}∗ × {0,1}m/2 → Zn

q rather than ComA :
{0,1}m/2 × {0,1}m/2 → Zn

q as the following.
Assume thatm = 2r. Let A = [B C], whereB,C ∈ Zn×r

q . For X ∈ Zn×l
q , we define

fX : {0,1}l → Zn
q as the hash functionfX(s) = Xs modq. Let l be

⌈
n logq

⌉
and let

t : Zn
q → {0,1}l be some one-to-one function that we can computet andt−1 efficiently.

Let pad : {0,1}∗ → {0,1}∗ be a padding function for the Merkle-Damgård construction.
Applying the Merkle-Damgård construction tofC, we obtain a new hash functionhC :
{0,1}∗ → Zn

q. The precise definition ofhC is as follows:

Hash function hC:
1. On inputs, obtain a padded messageS← pad(s).

10



2. Chop it into (S0, . . . ,Sk), whereSi ∈ {0,1}r−l .
3. Let H0 = 0 (more generally, some fixedH0 can be used).
4. For i = 1 tok+ 1 doHi ← fC(t(Hi−1) ◦ Si−1).
5. OutputHk+1.

Our new commitment scheme is defined as follows: fors ∈ {0,1}∗ andρ ∈ {0,1}r ,

ComA(s; ρ) := hC(s) + fB(ρ) modq.

Lemma 3.2. If there exists a polynomial-time machine outputting a collision forComA ,
then there exists a polynomial-time machine outputting a collision for fA .

Proof. Let us assume that we obtain a collision (s, ρ), (s̃, ρ̃) ∈ {0,1}∗×{0,1}r for ComA .
By the assumption, we have

hC(s) + fB(ρ) ≡ hC(s̃) + fB(ρ̃) (mod q).

If ρ = ρ̃, we haves , s̃ andhC(s) = hC(s̃). Using the reduction for the Merkle-
Damgård construction (see e.g., [13, Thm. 4.14]), we obtainu , ũ ∈ {0,1}r such that
fC(u) = fC(ũ). Thus, we have a collisionu ◦ ρ, ũ ◦ ρ ∈ {0,1}2r for fA .

Next, we assume thatρ , ρ̃. Let S andS̃ be padded messages ofs and s̃, respec-
tively. Assume thatS and S̃ are chopped into (S0, . . . ,Sk) and (S̃0, . . . , S̃k′ ), respec-
tively. Let Hk andH̃k′ be inner hash values forsands̃ in the algorithm, respectively. By
the definition ofHk andH̃k′ , we obtain

hC(s) = fC(t(Hk) ◦ Sk),

hC(s̃) = fC(t(H̃k′ ) ◦ S̃k′ ).

Combining the above equations with the assumption, we obtain

fA(t(Hk) ◦ Sk ◦ ρ) = fA(t(H̃k′) ◦ S̃k′ ◦ ρ̃).

So, we have a collisiont(Hk) ◦ Sk ◦ ρ andt(H̃k′) ◦ S̃k′ ◦ ρ̃ ∈ {0,1}2r for fA . ⊓⊔

We use this commitment scheme in the rest of the paper. We often abuse the notation
of ComA . For example, ComA(v1, v2; ρ) denotes ComA(string(v1) ◦ string(v2); ρ), where
string(v) is a binary representation ofv.

4 An Identification Scheme

Our variant S+GL is obtained by replacing the string commitment scheme in Stern’s ID
scheme [26] with our lattice-based one. Stern’s protocol deals with the decoding prob-
lem on binary codewords called the Syndrome Decoding Problem3. He also proposed
that an analogous scheme inZq, whereq is extremely small (typically 3, 5, or 7) [26,

3 The Syndrome Decoding Problem is defined as follows: GivenA ∈ Zn×m
2 , y ∈ Zn

2, andw ∈ N,
the problem is finding a vectorx ∈ B(m,w) such thatAx ≡ y mod 2. We can consider this
problem as a restricted version of SISq,m,β.
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Sec. VI]. We adjust this parameter to connect his framework to our assumptions of the
lattice problems.

We now describe the protocol S+GL below. Obviously, it has perfect completeness,
and at most 2/3 soundness error. By parallelizing each step of this protocol int =
ω(logn) times, the soundness error becomes negligibly small. To simplify the notations,
we write Com instead of ComA and we do not write random strings in Com explicitly.

SetUp: The setup algorithm, on input 1n, outputs a random matrixA ∈ Zn×m
q .

KG: The key-generation algorithm, on inputA, chooses a random vectorx ∈
B(m,m/2) and computesy := Ax modq. It outputs (pk, sk) = (y, x).

P, V: The common inputs areA andy. The prover’s auxiliary input isx. They interact
as follows:
Step P1: Choose a random permutationπ over [m] and a random vectorr ∈ Zm

q
and send commitmentsc1, c2, andc3 computed as

– c1 = Com(π,A r),
– c2 = Com(π(r)),
– c3 = Com(π(x + r)).

Step V1 Send a random challengeCh ∈ {1,2,3} to P.
Step P2

– If Ch= 1, revealc2 andc3. So, sends= π(x) and t = π(r).
– If Ch= 2, revealc1 andc3. Sendϕ = π andu = x + r.
– If Ch= 3, revealc1 andc2. Sendψ = π andv = r.

Step V2
– If Ch= 1, check thatc2 = Com(t), c3 = Com(s+ t), ands ∈ B(m,m/2).
– If Ch= 2, check thatc1 = Com(ϕ,Au − y) andc3 = Com(ϕ(u)).
– If Ch= 3, check thatc1 = Com(ψ,Av) andc2 = Com(ψ(v)).

OutputDec= 1 if all checks are passed, otherwise outputDec= 0.

4.1 Statistical Zero-Knowledge Property

The proof of the zero-knowledge property of the original protocol is in [26, Thm. 4].
Stern left completion of the proof as the problem for reader. Thus, we give the whole
proof that Stern’s protocol is statistically zero knowledge when Com is a statistically-
hiding and computationally-binding string commitment scheme.

Theorem 4.1. The protocol is statistically zero knowledge whenCom is a statistically-
hiding and computationally-binding string commitment scheme.

Proof. Following the definition, we construct a simulatorS which on inputA and y
and given oracle access to a cheating verifierCV, outputs a simulated transcript. A real
transcript betweenP andCV on inputA andy is denoted by⟨P,CV⟩(A, y).

First,S chooses a random value ¯c from {1,2,3} which is a prediction what value the
cheating verifierCV will not choose. Next, it chooses a random tape ofCV, denoted
by r ′. We remark that, by the assumption on the commitment, the distributions of a
challenge fromCV in the real interaction and in the simulation are statistically close.

Casec̄ = 1: S computesx′ ∈ Zm
q such thatAx′ = y by using linear algebra. Next,

it chooses a random permutationπ′ over [m], a random vectorr′ ∈ Zm
q , and random

stringsρ′1, ρ′2, andρ′3. So, it computes

12



– c′1 := Com(π′,A r′; ρ′1),
– c′2 := Com(π′(r′); ρ′2),
– c′3 := Com(π′(x′ + r′); ρ′3).

It sends them toCV. Since the commitment scheme is statistically hiding, the distribu-
tion of a challenge fromCV is statistically close to the real distribution. Receiving a
challengeCh fromCV, the simulatorS computes a transcript as follows:

– If Ch= 1,S outputs⊥ and halts.
– If Ch= 2, it outputs (r ′; (c′1, c

′
2, c
′
3),2, (π′, x′ + r′, ρ′1, ρ

′
3)).

– If Ch= 3, it outputs (r ′; (c′1, c
′
2, c
′
3),3, (π′, r′, ρ′1, ρ

′
2)).

We analyze the caseCh= 2. In this case, we obtain that

⟨P,CV⟩(A, y) = (r; (c1, c2, c3), 2, (π, x + r, ρ1, ρ3),

S(A, y) = (r ′; (c′1, c
′
2, c
′
3),2, (π′, x′ + r′, ρ′1, ρ

′
3)).

Assume that (π′, r′, ρ′1, ρ
′
3) = (π, r + x − x′, ρ1, ρ3). By this equation, we have that

c′1 = c1, c′3 = c3, and the responses from the simulator equal to the responses from the
prover. Since the commitment is statistically hiding, we have the distributions ofc2 and
c′2 are statistically close. Thus, we conclude that the both distributions of the simulated
transcript and the real transcript are statistically close.

It is straightforward to show it in the caseCh = 3 by using the equation (π′, r′) =
(π, r). Thus, we omit this part from the proof.

Casec̄ = 2: S chooses a random permutationπ′ over [m], two random vectorsr′ ∈ Zm
q ,

x′ ∈ B(m,m/2), and random stringsρ′1, ρ′2, andρ′3. S computes commitments

– c′1 := Com(π′,A r′; ρ′1),
– c′2 := Com(π′(r′); ρ′2),
– c′3 := Com(π′(x′ + r′); ρ′3).

It sends them toCV. Receiving a challengeCh, the simulator computes a transcript as
follows:

– If Ch= 1, thenS outputs (r ′; (c′1, c
′
2, c
′
3),1, (π′(x′), π′(r′), ρ′2, ρ

′
3)).

– If Ch= 2, then it outputs⊥ and halts.
– If Ch= 3, then it outputs (r ′; (c′1, c

′
2, c
′
3),3, (π′, r′, ρ′1, ρ

′
2)).

We analyze the caseCh= 1. In this case, we have that

⟨P,CV⟩(A, y) = (r; (c1, c2, c3),1, (π(x), π(r), ρ2, ρ3),

S(A, y) = (r ′; (c′1, c
′
2, c
′
3),1, (π′(x′), π′(r′), ρ′2, ρ

′
3)).

Let χ be a permutation over [m] such thatχ(x′) = x. In this case, we set (π′, r′, ρ′2, ρ
′
3) =

(π◦χ−1, χ(r), ρ2, ρ3). By this equation, we have thatπ(x) = π′(x′), π(r) = π′(r′), c′2 = c2,
andc′3 = c3, that is, the responses from the simulator equal to the responses from the
prover. Since the commitment scheme is statistically hiding, the distributions of the real
transcript and the output of the simulator are statistically close.

We omit the proof of the caseCh= 3, since it is trivial.

Casec̄ = 3: S chooses a random permutationπ over [m], two random vectorsr ∈ Zm
q ,

x′ ∈ B(m,m/2), and random stringsρ1, ρ2, andρ3. S computes
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– c1 := Com(π,A(x′ + r) − y; ρ1),
– c2 := Com(π(r); ρ2),
– c3 := Com(π(x′ + r); ρ3).

It sends them toCV.

– If Ch= 1, thenS outputs (r ′; (c1, c2, c3),1, (π(x′), π(r), ρ2, ρ3).
– If Ch= 2, then it outputs (r ′; (c1, c2, c3),2, (π, x′ + r′)).
– If Ch= 3, it outputs⊥ and halts.

In the caseCh= 1, we consider the equation (π′, r′, ρ′2, ρ
′
3) = (π ◦ χ−1, χ(r), ρ2, ρ3),

whereχ denotes a permutation over [m] such thatχ(x′) = x. The remaining part of
proof is the same as that in the case ¯c = 2 andCh = 1. In the caseCh = 2, we let
(π′, r′, ρ′1, ρ

′
3) = (π, r + x− x′, ρ1, ρ3). The remaining part of proof is the same as that in

the case ¯c = 1 andCh= 2.
The probability that the simulatorS outputs⊥ is at most 1/3+ϵ(n) ≤ 1/2 whereϵ is

some negligible function. Additionally, by the above arguments, the distribution of the
output ofS conditioned on it is not⊥ is statistically close to the distribution of the real
transcript. Therefore, we have constructed the simulator and completed the proof.⊓⊔

Since the protocol is statistically zero knowledge fort = 1, it has a witness-
indistinguishable property. Witness-indistinguishable property is closed under the par-
allel composition [8]. Thus, the above protocol is witness indistinguishable fort =
ω(logn) if a statistically-hiding string commitment scheme is used.

4.2 Security of the Protocol

We show the theorem of the security on our ID protocol, which concerns impersonation
under concurrent attack.

Theorem 4.2. For any m(n) = Θ(n logn), there exist q(n) = O(n2.5 logn) andγ(n) =
O(n

√
logn) such that m≥ 10n logq and qn/ |B(m,m/2)| is negligible in n and the above

ID scheme is secure against impersonation under concurrent attack ifGapSVP2γ is hard
in the worst case.

Before the proof of security, we need to mention the following trivial lemma.

Lemma 4.1. For any fixedA, let Y := {y ∈ Zn
q | |{x ∈ B(m,m/2) | Ax = y}| = 1},

i.e., a set of vectorsy such that the preimagex of y is uniquely determined forA. If
qn/ |B(m,m/2)| is negligible in n, then the probability that, if we obtain(y, x)← KG(A),
theny ∈ Y is negligible in n.

We now prove Theorem 4.2. The part of the proof is similar to that in [26].

Proof (Proof of Theorem 4.2).Since there exists average-case/worst-case reduction
from GapSVP2γ to SIS2

q,m,
√

m
(Theorem 3.1), we only constructA solving SIS2

q,m,
√

m
on the average from an impersonatorI = (CV,CP) which succeeds impersonation
under concurrent attack with non-negligible probabilityϵ.
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For the clarity, we write the transcript of interaction by (Cmt,Ch,Rsp,Dec). Since
the protocol is parallelized, eachCmt, Ch, andRspis an ordered list which containst
elements. For example,Cmt= (Cmt1, . . . ,Cmtt).

Given A, A chooses a random secret keyx ∈ B(m,m/2) and computesy = Ax.
Using the secret key, it can simulate the prover oracle perfectly.A runsCV on input
(A, y) and obtains a state forCP. A feeds the state toCP and acts as a legitimate
verifier. Receiving commitmentsCmt, A chooses three challengesCh(1), Ch(2), and
Ch(3) from {1,2,3}t uniformly at random. Rewinding with three challenges,A obtains
three transcripts (Cmt,Ch(i),Rsp(i),Dec(i)) for i = 1,2,3 as the results of the interactions.

By the Heavy Row Lemma [21], the probability that allDec(i) are 1 is at least (ϵ/2)3.
Meanwhile, we have

Pr
[
∃ j ∈ [t] : {Ch(1)

j ,Ch(2)
j ,Ch(3)

j } = {1,2,3}
]
= 1− (7/9)t

by a simple calculation. Thus the probability thatA has three transcripts
(Cmt,Ch(i),Rsp(i),Dec(i)) for i = 1,2,3 such thatDec(i) = 1 for all i, and
{Ch(1)

j ,Ch(2)
j ,Ch(3)

j } = {1,2, 3} for some j ∈ [t] is at least (ϵ/2)3 − (7/9)t, which is
non-negligible sinceϵ is non-negligible andt = ω(logn).

We next show howA obtains a secret key or finds a collision of the hash functions in
the string commitment scheme by using three good transcripts. Assume thatA has three
transcripts (Cmt(i),Ch(i),Rsp(i),Dec(i)) for i = 1,2,3 such thatCmt(1) = Cmt(2) = Cmt(3),
Dec(i) = 1 for all i, and{Ch(1)

j ,Ch(2)
j ,Ch(3)

j } = {1,2,3} for some j ∈ [t]. Without loss of

generality, we assume thatCh(i)
j = i. We parseRsp(i)j as in Step V2. We have following

equations (We omitj for simplification):

c1 = ComA(ϕ,Au − y; ρ(2)
1 ) = ComA(ψ,Av; ρ(3)

1 ),
c2 = ComA(t; ρ(1)

2 ) = ComA(ψ(v); ρ(3)
2 ),

c3 = ComA(s+ t; ρ(1)
3 ) = ComA(ϕ(u); ρ(2)

3 ),
s ∈ B(m,m/2).

If there exists a distinct pair of arguments of ComA , A obtains a collision forA and
solves SISq,m,√m.

Next, we suppose that there exist no distinct pairs of the arguments of ComA . Let
π denote the inverse permutation ofϕ. From the first equation, we haveπ−1 = ϕ = ψ.
Thus, we obtainu = π(s + t) from the third equation. Combining it with the first
equation, we haveAv = A(π(s) + π(t)) − y. Sincev = ϕ−1(t) = π(t) from the second
equation, we obtainy = A · π(s). Sinces ∈ B(m,m/2), soπ(s) also is in B(m,m/2).
Therefore,A setsx′ := π(s).

We now have to show thatx′ , x with probability at least 1/2. By Lemma 4.1,
there must be another secret keyx′ corresponding toy with overwhelming probability.
Recall that the protocol is statistically witness indistinguishable. Hence,I’s view is
independent ofA’s choice ofx with overwhelming probability. Thus we havex′ , x
with probability at least 1/2. In this caseA outputsz= x− x′ and solves SISq,m,√m. ⊓⊔

We note that the above proof is extended into multi-user settings as in the proof of
Lyubashevsky [14].
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5 An Ad Hoc Anonymous Identification Scheme

We next construct our AID scheme based on GapSVP. First, we sketch a basic idea for
our construction: LetA be a system parameter. Each user has a secret keyxi ∈ B(m,w)
and a public keyyi = Axi . In the AID scheme, a group is specified by a set of public keys
(y1, . . . , yl) of the members. Letei,l denote anl-dimensional vectort(0, . . . , 0,1, 0, . . . , 0)
whosei-th element is 1. The prover in the group, who has a secret keyxi , wants con-
vinces the verifier that he/she knows thatx′ := xi ◦ −ei,l such that [A y1 . . . yl ]x′ = 0
and xi ∈ B(m,m/2). Changing the parameters and using Stern’s protocol, the prover
can convinces the verifier that he/she hasx′ such that [A y1 . . . yl ]x′ = 0, the numbers
of +1 in x′ is m/2, and the numbers of−1 in x′ is 1. Additionally, we force the prover
to prove thatx′ is in the formx′ = xi ◦ −ei,l . To do so, we divide a permutationπ in
Step P1 into two permutations.

Let πh be a permutation over [m] andπt be a permutation over [l]. For a permutation
π over [m+ l], we denoteπ = πh ⊙ πt if

π =

(
1 2 · · · m

πh(1) πh(2) · · · πh(m)

)
·
(

m+ 1 m+ 2 · · · m+ l
m+ πt(1) m+ πt(2) · · · m+ πt(l)

)
.

For anyπh andπt, we have (πh ⊙ πt)−1 = π−1
h ⊙ π−1

t . For anyxh ∈ Zm andxt ∈ Zl , if
π = πh ⊙ πt thenπ(xh ◦ xt) = πh(xh) ◦ πt(xt).

We here construct an AID scheme based on GapSVP. Similarly to the ID scheme in
Section 4, the protocol is repeatedt = ω(logn) times in parallel to achieve exponentially
small soundness error. As in the previous section, we hide randomness in ComA .

SetUp: Same asSetUp of the protocol in Section 4.
Reg: Same asKG of the protocol in Section 4.
P, V: The common inputs areA and (y1, . . . , yl). The prover’s auxiliary input isxi for

somei ∈ [l]. Let A′ := [A y1 . . . yl ] and x := xi ◦ −ei.l . We write Com instead of
ComA for ease of notation. They interact as follows:
Step P1: Choose random permutationsπh over [m] andπt over [l]. Let π = πh⊙πt.

Choose a random vectorr ∈ Zm+l
q . Send commitmentsc1, c2, andc3 as

– c1 = Com(πh, πt,A′ r),
– c2 = Com(π(r)),
– c3 = Com(π(x + r)).

Step V1 Send a random challengeCh ∈ {1,2,3} to P.
Step P2

– If Ch= 1, revealc2 andc3. Sends= π(x) and t = π(r).
– If Ch= 2, revealc1 andc2. Sendϕh = πh, ϕt = πt, andu = x + r.
– If Ch= 3, revealc1 andc3. Sendψh = πh, ψt = πt, andv = r.

Step V2
– If Ch = 1, check thatc2 = Com(t), c3 = Com(s+ t), ands is in the form

sh ◦ −ej,l for somej andsh ∈ B(m,m/2).
– If Ch= 2, check thatc1 = Com(ϕh, ϕt,A′u) andc3 = Com((ϕh ⊙ ϕt)(u)).
– If Ch= 3, check thatc1 = Com(ψh, ψt,A′) andc2 = Com((ψh ⊙ ψt)(v)).

OutputDec= 1 if all checks are passed, otherwise outputDec= 0.
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The security of the above protocol is stated as follows. We omit the proof, since it
is similar to the proof of Theorem 4.2.

Theorem 5.1. Let m= m(n) and q= q(n) be polynomially bounded functions satisfy-
ing the conditions that m≥ 10n logq and qn/ |B(m,m/2)| is negligible in n. Assume
that there exists an impersonatorI that succeeds impersonation under concurrent
chosen-group attack with non-negligible probability. Then there exists a probabilistic
polynomial-time algorithmA that solvesSIS2

q,m,
√

m
.

Combining Theorem 5.1 with Theorem 3.1, we obtain the following theorem.

Theorem 5.2. For any m(n) = Θ(n logn), there exist q(n) = O(n2.5 logn) andγ(n) =
O(n

√
logn) such that qn/ |B(m,m/2)| is negligible in n and the above scheme is secure

against impersonation under concurrent chosen-group attack ifGapSVP2γ is hard in the
worst case.

The statistical anonymity of the above scheme follows from witness indistinguishability
of the protocol.
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