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Abstract. We study the problem of finding solutions to linear equations
modulo an unknown divisor p of a known composite integer N . An im-
portant application of this problem is factorization of N with given bits
of p. It is well-known that this problem is polynomial-time solvable if at
most half of the bits of p are unknown and if the unknown bits are lo-
cated in one consecutive block. We introduce an heuristic algorithm that
extends factoring with known bits to an arbitrary number n of blocks.
Surprisingly, we are able to show that ln(2) ≈ 70% of the bits are suffi-
cient for any n in order to find the factorization. The algorithm’s running
time is however exponential in the parameter n. Thus, our algorithm is
polynomial time only for n = O(log log N) blocks.
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1 Introduction

Finding solutions to polynomial modular equations is a central mathematical
problem and lies at the heart of almost any cryptanalytic approach. For in-
stance, most symmetric encryption functions can be interpreted as polynomial
transformations from plaintexts to ciphertexts. Solving the corresponding poly-
nomial equations yields the secret key.

Among all polynomial equations the linear equations f(x1, . . . , xn) = a1x1 +
a2x2 + · · ·+ anxn play a special role, since they are often easier to solve. Many
problems already admit a linear structure. For instance, the subset sum problem
for finding a subset of s1, . . . , sn that sums to t asks for a 0,1-solution (y1, . . . , yn)
of the linear equation s1x1 + · · ·+snxn− t = 0. Special instances of this problem
can be solved by lattice techniques [CJL+92].

Although many problems are inherently of non-linear type, solution strategies
for these problems commonly involve some linearization step. In this work, we ad-
dress the problem of solving modular linear equations f(x1, . . . , xn) = 0 mod N
for some N with unknown factorization. Note that modular equations usually
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have many solutions (y1, . . . , yn) ∈ Zn
N . An easy counting argument however

shows that one can expect a unique solution whenever the product of the un-
knowns is smaller than the modulus - provided the coefficients ai are uniformly
distributed in ZN . More precisely, let Xi be upper bounds such that |yi| ≤ Xi

for i = 1 . . . n. Then one can roughly expect a unique solution whenever the
condition

∏
i Xi ≤ N holds.

It is folklore knowledge that under the same condition
∏

i Xi ≤ N the unique
solution (y1, . . . , yn) can heuristically be recovered by computing a shortest vec-
tor in an n-dimensional lattice. In fact, this approach lies at the heart of many
cryptanalytic results (see e.g. [GM97,NS01,Ngu04,BM06]). If in turn we have∏

i Xi ≥ N1+ε then the linear equation usually has N ε many solutions, which is
exponential in the bit-size of N . So there is no hope to find efficient algorithms
that in general improve on this bound, since one cannot even output all roots in
polynomial time.

In the late 80’s, Hastad [Has88] and Toffin, Girault, Vallée [GTV88] ex-
tended the lattice-based approach for linear equations to modular univariate
monic polynomials f(x) = a0 + a1x + · · · + aδ−1x

δ−1 + xδ. In 1996, Copper-
smith [Cop96b] further improved the bounds of [Has88,GTV88] to |x0| ≤ N

1
δ

for lattice-based solutions that find small roots of f(x). For modular univariate
polynomials f(x) there are again counting arguments that show that this bound
cannot be improved in general. Even more astonishing than the improved bound
is the fact that Coppersmith’s method does neither rely on a heuristic nor on the
computation of a shortest vector, but provably provides all roots smaller than
this bound and runs in polynomial time using the L3 algorithm [LLL82].

In the same year, Coppersmith [Cop96a] formulated another rigorous method
for bivariate polynomials f(x, y), see also [Cor07]. This method has several nice
applications, most notably the problem of factoring with high bits known and
also an algorithm that shows the deterministic polynomial time equivalence of
factoring and computing the RSA secret key [May04,CM07]. In the factoring
with high bits known problem, one is given an RSA modulus N = pq and an
approximation p̃ of p. This enables to compute an approximation q̃ of q, which
leads to the bivariate polynomial equation f(x, y) = (p̃+x)(q̃ + y)−N . Finding
the unique solution in turn enables to factor. Coppersmith showed that this can
be done in polynomial time given 50% of the bits of p and thereby improved
upon a result from Rivest and Shamir [RS85], who required 60% of the bits of
p. Using an oracle that answers arbitrary questions instead of returning bits of
the prime factor, Maurer [Mau95] presented a probabilistic algorithm based on
elliptic curves, that factors an integer N in polynomial time making at most
ε log N oracle queries for any ε > 0.

In 2001, Howgrave-Graham [HG01] gave a reformulation of the factoring with
high bits known problem, showing that the remaining bits of p can be recovered
if gcd(p̃ + x,N) is sufficiently large. This can also be stated as finding the root
of the linear monic polynomial f(x) = p̃ + x mod p where p ≥ Nβ for some
0 < β ≤ 1. Later, this was generalized by May [May03] to arbitrary monic



modular polynomials of degree δ which results in the bound |x0| ≤ N
β2

δ . The
result for factoring with high bits known follows for the choice β = 1

2 , δ = 1.
Notice that in the factoring with high bits known problem, the unknown bits

have to be in one consecutive block of bits. This variant of the factorization
problem is strongly motivated by side-channel attacks that in most cases enable
an attacker to recover some of the bits of the secret key. The attacker is then left
with the problem of reconstructing the whole secret out of the obtained partial
information. Unfortunately, the unknown part is in general not located in one
consecutive bit block but widely spread over the whole bit string. This raises the
question whether we can sharpen our tools to this general scenario.

Our contribution: We study the problem of finding small roots of linear mod-
ular polynomials f(x1, . . . , xn) = a1x1 + a2x2 + · · · + anxn + an+1 mod p for
some unknown p ≥ Nβ that divides the known modulus N . This enables us
to model the problem of factoring with high bits known to an arbitrary number
n of unknown blocks. Namely, if the k-th unknown block starts in the `-th bit
position we choose ak = 2`.

We are able to show an explicit bound for the product
∏

i Xi = Nγ , where
γ is a function in β and n. For the special case in which p = N , i.e. β = 1
and the modulus p is in fact known, we obtain the previously mentioned folklore
bound

∏
i Xi ≤ N . Naturally, the larger the number n of blocks, the smaller

is the bound for
∏

i Xi and the larger is the running time of our algorithm. In
other words, the larger the number of blocks, the more bits of p we do have to
know in the factoring with known bits problem. What is really surprising about
our lattice-based method is that even for an arbitrary number n of blocks, our
algorithm still requires only a constant fraction of the bits of p. More precisely,
a fraction of ln(2) ≈ 70% of p is always sufficient to recover p.

Unfortunately, the running time for our algorithm heavily depends on n.
Namely, the dimension of the lattice basis that we have to L3-reduce grows ex-
ponentially in n. Thus, our algorithm is polynomial time only if n = O(log log N).
For larger values of n, our algorithm gets super-polynomial. To the best of
our knowledge state-of-the-art general purpose factorization algorithms like the
GNFS cannot take advantage of extra information like given bits of one of the
prime factors. Thus, our algorithm still outperforms the GNFS for the factoring
with known bits problem provided that n = o(log

1
3 N log log

2
3 N).

We would like to notice that our analysis for arbitrary n yields a bound∏
i Xi ≤ Nγ that holds no matter how the size of the unknowns are distributed

among the Xi. In case the Xi are of strongly different sizes, one might even
improve on the bound Nγ . For our starting point n = 2, we sketch such a general
analysis for arbitrary sizes of X1, X2. The analysis shows that the bound for the
product X1X2 is minimal when X1 = X2 and that it converges to the known
Coppersmith result N

1
4 in the extreme case, where one of the Xi is set to Xi = 1.

Notice that if one of the upper bounds is set to Xi = 1 then the bivariate
linear equation essentially collapses to a univariate equation. In this case, we



also obtain the bound N
1
4 for the factoring with known bits problem. Thus, our

algorithm does not only include the folklore bound as a special case but also the
Coppersmith bound for univariate linear modular equations.

As our lattice-based algorithm eventually outputs multivariate polynomials
over the integers, we are using a well-established heuristic [Cop97,BD00] for
extracting the roots. We show experimentally that this heuristic works well in
practice and always yielded the desired factorization. In addition to previous
papers that proposed to use resultant or Gröbner basis computations, we use
the multidimensional Newton method from numerical mathematics to efficiently
extract the roots.

The paper is organized as follows. Section 2 recalls basic lattice theory. In
Section 3 we give the analysis of bivariate linear equations modulo an unknown
divisor. As noticed before, we prove a general bound that holds for all distribu-
tions of X1, X2 as well as sketch an optimized analysis for strongly unbalanced
X1, X2. Section 4 generalizes the analysis to an arbitrary number n of variables.
Here, we also establish the ln(2) ≈ 70% result for factoring with known bits. We
experimentally verify the underlying heuristic in Section 5.

2 Preliminaries

Let b1, . . . , bk be linearly independent vectors in Rn. Then the lattice spanned
by b1, . . . , bk is the set of all integer linear combinations of b1, . . . , bk. We call
b1, . . . , bk a basis of L. The integer k is called the dimension or rank of the lattice
and we say that the lattice has full rank if k = n.

Every nontrivial lattice in Rn has infinitely many bases, therefore we seek
for good ones. The most important quality measure is the length of the basis
vectors which corresponds to the basis vectors’ orthogonality. A famous theorem
of Minkowski [Min10] relates the length of the shortest vector in a lattice to the
determinant:

Theorem 1 (Minkowski) In an ω-dimensional lattice, there exists a non-zero
vector v with

‖v‖ ≤
√

ω det(L)
1
ω . (1)

In lattices with fixed dimension we can efficiently find a shortest vector, but
for arbitrary dimensions, the problem of computing a shortest vector is known to
be NP-hard under randomized reductions [Ajt98]. The L3 algorithm, however,
computes in polynomial time an approximation of the shortest vector, which is
sufficient for many applications. The basis vectors of an L3-reduced basis fulfill
the following property (for a proof see e.g. [May03]).

Theorem 2 (L3) Let L be an integer lattice of dimension ω. The L3 algorithm
outputs a reduced basis spanned by {v1 . . . , vω} with

‖v1‖ ≤ ‖v2‖ ≤ . . . ≤ ‖vi‖ ≤ 2
ω(ω−i)

4(ω+1−i) det(L)
1

ω+1−i , i = 1, . . . , ω (2)

in polynomial time.



The underlying idea of Coppersmith’s method for finding small roots of poly-
nomial equations is to reduce the problem of finding roots of f(x1, . . . , xn) mod p
to finding roots over the integers. Therefore, one constructs a collection of poly-
nomials that share a common root modulo pm for some well-chosen integer m.
Then one finds an integer linear combination which has a sufficiently small norm.
The search for such a small norm linear combination is done by defining a lattice
basis via the polynomials’ coefficient vectors. An application of L3 yields a small
norm coefficient vector that corresponds to a small norm polynomial.

The following lemma due to Howgrave-Graham [HG97] gives a sufficient con-
dition under which modular roots are also roots over Z and quantifies the term
sufficiently small.

Lemma 1 Let g(x1, . . . , xn) ∈ Z[x1, . . . , xn] be an integer polynomial with at
most ω monomials. Suppose that

1. g(y1, . . . , yn) = 0 mod pm for |y1| ≤ X1, . . . , |yn| ≤ Xn and
2. ‖g(x1X1, . . . , xnXn)‖ < pm

√
ω

Then g(y1, . . . , yn) = 0 holds over the integers.

Our approach relies on heuristic assumptions for computations with multivariate
polynomials.

Assumption 1 Our lattice-based construction yields algebraically independent
polynomials. The common roots of these polynomials can be efficiently computed
using numerical methods.

The first part of Assumption 1 assures that the constructed polynomials
allow for extracting the common roots, while the second part assures that we
are able to compute these common roots efficiently. We would like to point
out that our subsequent complexity considerations solely refer to our lattice-
based construction, that turns a linear polynomial f(x1, . . . , xn) mod p into n
polynomials over the integers. We assume that the running time for extracting
the desired root out of these n polynomials is negligible compared to the time
complexity of the lattice construction. We verify this experimentally in Section 5.
Usually, our method yields more than n polynomials, so one can make use of
additional polynomials as well.

3 Bivariate Linear Equations

The starting point of our analysis are bivariate linear modular equations
f(x1, x2) = a1x1 + a2x2 + a3 mod p. The parameter p is unknown, we only
know a multiple N of p, and the parameter β that quantifies the size relation
p ≥ Nβ . Let X1, X2 be upper bounds on the desired solution y1, y2, respectively.
Moreover, we require that our linear polynomial is monic with respect to one of
the variables, i.e. either a1 = 1 or a2 = 1. This is usually not a restriction, since
we could e.g. multiply f(x1, x2) by a−1

1 mod N . If this inverse does not exist, we
can factorize N .



In the following theorem, we give an explicit bound on X1X2 under which
we can find two polynomials g1(x1, x2) and g2(x1, x2) that evaluate to zero at
all small points (y1, y2) with |y1y2| ≤ X1X2. Under the heuristic that g1 and g2

are algebraically independent, all roots smaller than X1X2 can be recovered by
standard methods over the integers.

Theorem 3 Let ε > 0 and let N be a sufficiently large composite integer with
a divisor p ≥ Nβ. Furthermore, let f(x1, x2) ∈ Z[x1, x2] be a linear polynomial
in two variables. Under Assumption 1, we can find all solutions (y1, y2) of the
equation f(x1, x2) = 0 mod p with |y1| ≤ Nγ and |y2| ≤ N δ if

γ + δ ≤ 3β − 2 + 2(1− β)
3
2 − ε (3)

The algorithm’s time and space complexity is polynomial in log N and ε−1.

Before we provide a proof for Theorem 3, we would like to interpret its
implications. Notice that Theorem 3 yields in the special case β = 1 the bound
X1X2 ≤ N1−ε that corresponds to the folklore bound for linear equations. Since
we are unaware of a good reference for the folklore method in the cryptographic
literature, we briefly sketch the derivation of this bound in Appendix A. Thus,
our result generalizes the folklore method to more general moduli.

On the other hand, we would like to compare our result with the one of
Coppersmith for factoring with high bits known when p, q are of equal bit-size,
i.e. β = 1

2 . Coppersmith’s result allows a maximal size of N0.25 for one unknown
block. Our result states a bound of N0.207 for the product of two blocks. The
best that we could hope for was to obtain a total of N0.25 for two blocks as well.
However, it seems quite natural that the bound decreases with the number n of
blocks. On the other hand, we are able to show that if the unknown blocks are
significantly unbalanced in size, then one can improve on the bound N0.207. It
turns out that the more unbalanced X1, X2 are, the better. In the extreme case,
we obtain X1 = N0.25, X2 = 1. Notice that in this case, the variable x2 vanishes
and we indeed obtain the univariate result N0.25 of Coppersmith. Hence, our
method contains the Coppersmith-bound as a special case as well. We give more
details after the following proof of Theorem 3.

Proof. Define X1X2 := N3β−2+2(1−β)
3
2−ε and fix m =

⌈
3β(1+√1−β)

ε

⌉
.

We define a collection of polynomials which share a common root modulo pt

by
gk,i(x1, x2) := xi

2f
k(x1, x2)Nmax{t−k,0} (4)

for k = 0, ...,m; i = 0, ...,m− k and some t = τm, that will be optimized later.
We can define the following polynomial ordering for our collection. Let gk,i, gl,j

be two polynomials. If k < l then gk,i < gl,j , if k = l then gk,i < gl,j ⇔ i < j. If
we sort the polynomials according to that ordering, every subsequent polynomial
in the ordering introduces exactly one new monomial. Thus, the corresponding
coefficient vectors define a lower triangular lattice basis, like in Figure 1.
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Fig. 1. Basis Matrix in Triangular Form

From the basis matrix we can easily compute the determinant as the product
of the entries on the diagonal as det(L) = XsxY syNsN , where

sx = sy =
1
6
(m3 + 3m2 + 2m), sN =

τm∑
i=0

(m + 1− i)(τm− i) (5)

Now we apply L3 basis reduction to the lattice basis. Our goal is to find two
coefficient vectors whose corresponding polynomials contain all small roots over
the integer. Theorem 2 gives us an upper bound on the norm of a second-to-
shortest vector in the L3-reduced basis. If this bound is in turn smaller than
the bound in Howgrave-Graham’s lemma (Lemma 1), we obtain the desired two
polynomials. I.e., we have to satisfy the condition

2
d(d−1)
4(d−1) det(L)

1
d−1 < d−

1
2 Nβτm, (6)

where d is the dimension of the lattice L, which in our case is d = 1
2 (m2+3m+2).

If we plug in the value for the determinant and use the fact that sx = md
3 , we

obtain the condition

X1X2 < 2−
3(d−1)

4m d−
3(d−1)
2md N

3βτm(d−1)
md − 3sN

md . (7)

Setting τ = 1−
√

1− β, the exponent of N can be lower bounded by

3β − 2 + 2(1− β)
3
2 −

3β
(
1 +

√
1− β

)
m

. (8)

[Details can be found in Appendix B.]
Comparing this with the value of X1X2, which we defined in the beginning,

we can express how m depends on the error term ε:

m ≥
3β

(
1 +

√
1− β

)
ε

. (9)



which holds for our choice of m. Therefore, the required condition is fulfilled.
It remains to show that the algorithm’s complexity is polynomial in log(N)

and ε−1. The running time is dominated by L3 reduction, which is polynomial
in the dimension of the lattice and in the bitsize of the entries. Recall that our
lattice’s dimension is O(m2) and therefore polynomial in ε−1. For the matrix
entries we notice that the power fk in the gk,i’s can be reduced modulo Nk, since
we are looking for roots modulo Nk. Thus, the coefficients of fkNmax(τm−k,0)

have bitsize O(m log(N)). Powers of X2 appear only with exponents up to m
and therefore their bitsize can also be upper bounded by O(m log(N)). Thus,
the coefficients’ bitsize is O(ε−1 log(N)).

Remark: We also analyzed the bivariate modular instance as a trivariate equa-
tion over the integers, which is modelled by

(a1x1 + a2x2 + a3)y −N = 0, (10)

where y stands for N
p . It turns out that we obtain the same bounds as in the

modular case.

Theorem 3 holds for any bounds X1, X2 within the proven bound for the
product X1X2. As pointed out before, the analysis can be improved if one of
the bounds is significantly smaller than the other one, say X1 � X2. Then one
should employ additional extra shifts in the smaller variable, which intuitively
means that the smaller variable gets stronger weight since it causes smaller costs.

We do not give the exact formulas for this optimization process. Instead, we
show in Figure 2 the resulting graph that demonstrates how the result converges
to the known bound N0.25 for unbalanced block-sizes.
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Γ
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0.25

∆

Fig. 2. Optimized Result

Notice that the result from Theorem 3 is in-
deed optimal not only for equal block-sizes X1 =
X2 but for most of the possible splittings of block-
sizes. Only in extreme cases a better result can
be achieved. In the subsequent chapter, we gen-
eralize Theorem 3 to an arbitrary number n of
blocks. In the generalization however, we will not
consider the improvement that can be achieved
for strongly unbalanced block-sizes.

Naturally, the bounds N0.25 for n = 1 and
N0.207 for n = 2 get worse for arbitrary n. But
surprisingly, we will show that for n → ∞ the
bound does not converge to N0 as one might expect, but instead to N0.153.
To illustrate this result: If N is a 1000-bit modulus and p, q are 500 bit each.
Then 153 bit can be recovered given the remaining 347 bits, or 69.4% of p, in
any known positions. However as we will see in the next section, the complexity
heavily depends on the number of unknown blocks.



4 Extension to More Variables

In this section, we generalize the result of Section 3 from bivariate linear equa-
tions with n = 2 to an arbitrary number n of variables x1, . . . , xn.

Let X1, X2, . . . , Xn be upper bounds for the variables x1, x2, . . . , xn. As in
Theorem 3, we will focus on proving a general upper bound for the product
X1X2 . . . Xn that is valid for any X1, X2, . . . , Xn. Similar to the reasoning in Sec-
tion 3 it is possible to achieve better results for strongly unbalanced Xi by giving
more weight to variables xi with small upper bounds. Although we did not ana-
lyze it, we strongly expect that in the case X1 = N0.25, X2 = · · · = Xn = 1 ev-
erything boils down to the univariate case analyzed by Coppersmith/Howgrave-
Graham – except that we obtain an unnecessarily large lattice dimension.

Naturally, we achieve an inferior bound than N0.25. But in contrast, our
bound holds no matter how the sizes of the unknowns are distributed among the
upper bounds Xi. Let us state our main theorem.

Theorem 4 Let ε > 0 and let N be a sufficiently large composite integer with
a divisor p ≥ Nβ. Furthermore, let f(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a monic
linear polynomial in n variables. Under Assumption 1, we can find all solutions
(y1, . . . , yn) of the equation f(x1, . . . , xn) = 0 mod p with |y1| ≤ Nγ1 , . . . , |yn| ≤
Nγn if

n∑
i

γi ≤ 1− (1− β)
n+1

n − (n + 1)(1− n
√

1− β)(1− β)− ε (11)

The time and space complexity of the algorithm is polynomial in log N and ( e
ε )n,

where e is Euler’s constant.

We will prove Theorem 4 at the end of this section. Let us first discuss the
implications of the result and the consequences for the factoring with known bits
problem. First of all, the algorithm’s running time is exponential in the number
n of blocks. Thus in order to obtain a polynomial complexity one has to restrict

n = O
(

log log N

1 + log( 1
ε )

)
.

This implies that for any constant error term ε, our algorithm is polynomial time
whenever n = O(log log N).

The proof of the following theorem shows that the bound for X1 . . . Xn in
Theorem 4 converges for n → ∞ to Nβ+(1−β) ln(1−β). For the factoring with
known bits problem with β = 1

2 this yields the bound N
1
2 (1−ln(2)) ≈ N0.153. This

means that we can recover a (1 − ln(2)) ≈ 0.306-fraction of the bits of p, or in
other words an ln(2) ≈ 0.694-fraction of the bits of p has to be known.

Theorem 5 Let ε > 0. Suppose N is a sufficiently large composite integer with
a divisor p ≥ Nβ. Further, suppose we are given an(

1− 1
β

)
· ln(1− β) + ε fraction (12)



of the bits of p. Then, under Assumption 1, we can compute the unknown bits
of p in time polynomial in log N and ( e

ε )n, where e is Euler’s constant.

Proof. From Theorem 4 we know, that we can compute a solution to the equation

a1x1 + a2x2 + . . . + anxn + an+1 = 0 mod p

as long as the product of the unknowns is smaller than Nγ , where γ =
∑n

i γi

is upper-bounded as in Inequality (11). As noticed already, the bound for γ
actually converges for n →∞ to a value different from zero. Namely,

lim
n→∞

(
1− (1− β)

n+1
n − (n + 1)(1− n

√
1− β)(1− β)

)
= β + (1− β) ln(1− β)

(13)
Hence, this is the portion of p we can at least compute, no matter how many
unknowns we have.

Conversely, once we have ((β−1) ln(1−β)+ε) log(N) bits of p given together
with their positions, we are able to compute the missing ones. Since log N ≤ log p

β ,
we need at most an ((1− 1

β ) ln(1− β) + ε)-fraction of the bits of p.

Theorem 5 implies a polynomial-time algorithm for the factoring with known
bits problem whenever the number of unknown bit-blocks is n = O(log log N).
However, the algorithm can be applied for larger n as well. As long as n is sub-
polynomial in the bit-size of N , the resulting complexity will be sub-exponential
in the bit-size of N .
It remains to prove our main theorem.

Proof of Theorem 4:
Define

∏n
i=1 Xi := N1−(1−β)

n+1
n −(n+1)(1− n

√
1−β)(1−β)−ε. Let us fix

m =
⌈

n( 1
π (1− β)−0.278465 − β ln(1− β))

ε

⌉
(14)

We define the following collection of polynomials which share a common root
modulo pt

gi2,...,in,k = xi2
2 . . . xin

n fkNmax{t−k,0} (15)

where ij ∈ {0, . . . ,m} such that
∑n

j=2 ij ≤ m − k. The parameter t = τm
has to be optimized. Notice that the set of monomials of gi2,...,in,k defines an
n-dimensional simplex.

It is not hard to see that there is an ordering of the polynomials in such a
way that each new polynomial introduces exactly one new monomial. Therefore
the lattice basis constructed from the coefficient vectors of the gi2,...,in,k’s has
triangular form, if they are sorted according to the order. The determinant det(L)
of the corresponding lattice L is then simply the product of the entries on the
diagonal:

det(L) =
n∏

i=1

X
sxi
i NsN , (16)



with sxi =
(
m+n
m−1

)
and sN = mdτ −

(
m+n
m−1

)
+

(
m(1−τ)+n
m(1−τ)−1

)
, where d =

(
m+n

m

)
is the

dimension of the lattice.
Now we ensure that the vectors from L3 are sufficiently small, so that we can

apply the Lemma of Howgrave-Graham (Lemma 1) to obtain a solution over Z.
We have to satisfy the condition

2
d(d−1)

4(d−n+1) det(L)
1

d−n+1 < d−
1
2 Nβτm

Using the value of the determinant in (16) and the fact that sxi = md
n+1 we obtain

n∏
i=1

Xi ≤ 2−
(d−1)(n+1)

4m d−
(n+1)(d−n+1)

2md N (βmτ(d−n+1)−dmτ+(m+n
m−1)−(m(1−τ)+n

m(1−τ)−1)) n+1
md .

In Appendix C we show how to derive a lower bound on the right-hand side
for the optimal value τ = 1 − (1 − β)

1
n . Using Xi = Nγi the condition reduces

to
nX

i=1

γi ≤ 1−(1−β)
n+1

n −(n+1)(1− n
p

1− β)(1−β)−
n 1

π
(1− β)−0.278465

m
+β ln(1−β)

n

m
.

Comparing this to the initial definition of
∏n

i=1 Xi, we obtain for the error term ε

−
n 1

π (1− β)−0.278465

m
+ β ln(1− β)

n

m
≥ −ε

⇔ m ≥
n( 1

π (1− β)−0.278465 − β ln(1− β))
ε

= O(
n

ε
)

which holds for our choice of m.
To conclude the proof, we notice that the dimension of the lattice is d =

O(mn

n! ) = O(nnen

εnnn ) = O( en

εn ). For the bitsize of the entries in the basis matrix
we observe that we can reduce the coefficients of f i in g modulo N i. Thus the
product fkNmax{τm−k,0} is upper bounded by B = m log(N). Further notice
that the bitsize of Xi2

2 . . . Xi2
n is also upper bounded by m log(N) since

∑n
i=2 ij ≤

m and Xi ≤ N .
The running time is dominated by the time to run L3-lattice reduction on a

basis matrix of dimension d and bit-size B. Thus, the time and space complexity
of our algorithm is polynomial in log N and ( e

ε )n. �

5 Experimental Results

We implemented our lattice-based algorithm using the L2-algorithm from
Nguyen, Stehlé [NS05]. We tested the algorithm for instances of the factoring
with known bits problem with n = 2, 3 and 4 blocks of unknown bits. Table 5
shows the experimental results for an 512-bit RSA modulus N with divisor p of
size p ≥ N

1
2 .

For given parameters m, t we computed the number of bits that one should
theoretically be able to recover from p (column pred of Table 5). For each bound



we made two experiments (column exp). The first experiment splits the bound
into n equally sized pieces, whereas the second experiment unbalancedly splits
the bound in one large piece and n − 1 small ones. In the unbalanced case, we
were able to recover a larger number of bits than theoretically predicted. This
is consistent with the reasoning in Section 3 and 4.

n m t dim(L) pred (bit) exp (bit) time (min)

2 15 4 136 90 45/45 25
2 15 4 136 90 87/5 15

3 7 1 120 56 19/19/19 0.3
3 7 1 120 56 52/5/5 0.3
3 10 2 286 69 23/23/23 450
3 10 2 286 69 57/6/6 580

4 5 1 126 22 7/6/6/6 3
4 5 1 126 22 22/2/2/2 4.5

Table 1. Experimental Results

In all of our experiments, we successfully recovered the desired small root,
thereby deriving the factorization of N . We were able to extract the root both
by Gröbner basis reduction as well as by numerical methods in a fraction of a
second.

For Gröbner basis computations, it turns out to be useful that our algorithm
actually outputs more sufficiently small norm polynomials than predicted by the
L3-bounds. This in turn helps to speed up the computation a lot.

As a numerical method, we used multidimensional Newton iteration on the
starting point 1

2 (X1, . . . , Xn). Usually this did already work. If not, we were
successful with the vector of upper-bounds (X1, . . . , Xn) as a starting point. Al-
though this approach worked well and highly efficient in practice, we are unaware
of a starting point that provably lets the Newton method converge to the desired
root.

Though Assumption 1 worked perfectly for the described experiments, we
also considered two pathological cases, where one has to take special care.

First, a problem arises when we have a prediction of k bits that can be
recovered, but we use a much smaller sum of bits in our n blocks. In this case,
the smallest vector lies in a sublattice of small dimension. As a consequence,
we discovered that then usually all of our small norm polynomials shared f(x)
as a common divisor. When we removed the gcd, the polynomials were again
algebraically independent and we were able to retrieve the root. Notice that
removing f(x) does not eliminate the desired root, since f(x) does not contain
the root over the integers (but mod p).

A second problem may arise in the case of two closely adjacent unknown
blocks, e.g. two blocks that are separated by one known bit only. Since in com-
parison with the n-block case the case of n − 1 blocks gives a superior bound,



it turns out to be better in some cases to merge two closely adjacent blocks
into one variable. That is what implicitly seems to happen in our approach. The
computations then yield the desired root only in those variables which are suffi-
ciently separated. The others have to be merged before re-running the algorithm
in order to obtain all the unknown bits. Alternatively, we confirmed experimen-
tally that merging the nearby blocks from the beginning immediately yields the
desired root.

Both pathological cases are no failure of Assumption 1, since one can still
easily extract the desired root. All that one has to do is to either remove a gcd
or to merge variables.

6 Conclusion and Open Problems

We proposed a heuristic lattice-based algorithm for finding small solutions of
linear equations a1x1 + · · · + anxn + an+1 = 0 mod p, where p is an unknown
divisor of some known N . Our algorithm gives a solution for the factoring with
known bits problem given ln(2) ≈ 70% of the bits of p in any locations.

Since the time and space complexity of our algorithm is polynomial in log N
but exponential in the number n of variables, we obtain a polynomial time al-
gorithm for n = O(log log N) and a subexponential time algorithm for n =
o(log N). This naturally raises the question whether there exists some algorithm
with the same bound having complexity polynomial in n. This would immedi-
ately yield a polynomial time algorithm for factoring with 70% bits given, inde-
pendently of the given bit locations and the number of consecutive bit blocks.
We do not know whether such an algorithm can be achieved for polynomial
equations with unknown divisor. On the other hand, we feel that the complexity
gap between the folklore method for known divisors with complexity linear in n
and our method is quite large, even though the folklore method relies on much
stronger assumptions.

Notice that in the factoring with known bits problem, an attacker is given the
location of the given bits of p and he has to fill in the missing bits. Let us give
a crude analogy for this from coding theory, where one is given the codeword p
with erasures in some locations. Notice that our algorithm is able to correct the
erasures with the help of the redundancy given by N . Now a challenging question
is whether there exist similar algorithms for error-correction of codewords p. I.e.,
one is given p with a certain percentage of the bits flipped. Having an algorithm
for this problem would be highly interesting in situations with error-prone side-
channels.

We would like to thank the anonymous reviewers and especially Robert Israel
for helpful comments and ideas.
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EUROCRYPT, pages 215–233, 2005.

[RS85] Ronald L. Rivest and Adi Shamir. Efficient Factoring Based on Partial In-
formation. In EUROCRYPT, pages 31–34, 1985.



A Linear Equations with Known Modulus

We briefly sketch the folklore method for finding small roots of linear modular
equations a1x1 + · · · + anxn = 0 mod N with known modulus N . Further, we
assume that gcd(ai, N) = 1 for some i, wlog gcd(an, N) = 1. Let Xi be upper
bounds on |yi|. We can handle inhomogeneous modular equations by introducing
a term an+1xn+1, where |yn+1| ≤ Xn+1 = 1.

We would like to point out that the heuristic for the folklore method is quite
different compared to the one taken in our approach. First of all, the method
requires to solve a shortest vector problem in a certain lattice. This problem is
known to be NP-hard for general lattices. Second, one assumes that there is only
one linear independent vector that fulfills the Minkowski bound (Theorem 1) for
the shortest vector.

We will show under this heuristic assumption that the shortest vector yields
the unique solution (y1, . . . , yn) whenever

n∏
i=1

Xi ≤ N.

We multiply our linear equation with −a−1
n and obtain

b1x1 + b2x2 + . . . + bn−1xn−1 = xn mod N ,where bi = a−1
n ai (17)

For a solution (y1, . . . , yn) of (17) we know
∑n−1

i=1 biyi = yn−yN for some y ∈ Z.
Consider the lattice L generated by the row vectors of the following matrix

B =



Y1 0 0 . . . 0 Ynb1

0 Y2 0 0 Ynb2

...
. . .

...
...

... Yn−1 Ynbn−1

0 0 0 . . . 0 YnN


with Yi = N

Xi
. By construction,

v = (y1, . . . , yn−1, y) ·B = (Y1y1, . . . , Ynyn)

is a vector of L. We show, that this is a short vector which fulfills the Minkowski
bound from Theorem 1. If we assume that v is actually the shortest vector, then
we can solve an SVP instance.

Since Yiyi = yi

Xi
N ≤ N we have ‖v‖ ≤

√
nN . Further, the determinant of

the lattice L is

det(L) = N

n∏
i=1

Yi = N

n∏
i=1

N

Xi
= Nn+1

n∏
i=1

1
Xi

.

The vector v thus fulfills the Minkowski bound, if

√
nN ≤

√
n det(L)

1
n ⇔

n∏
i=1

Xi ≤ N.



B Lower Bound in Theorem 2

Starting with
X1X2 < 2−

3(d−1)
4m d−

3(d−1)
2md N

3βτm(d−1)
md − 3sN

md

we wish to derive a lower bound of the right-hand side. First we notice that
for sufficiently large N the powers of 2 and d are negligible. Thus, we only
examine the exponent of N . We use the values d = 1

2 (m2 + 3m + 2) and sN =∑τm
i=0(m + 1− i)(τm− i) and get

τ
`
3β − 3τ + τ2´+

−τ − 6βτ + τ3

1 + m
−

2
`
τ − 3βτ − 3τ2 + 2τ3

´
2 + m

.

For τ we choose 1−
√

(1− β), resulting in

− 2 + 2
p

1− β + 3β − 2β
p

1− β

− 3
√

1− β

1 + m
+

6
√

1− β

2 + m
+

7β
√

1− β

1 + m
− 10β

√
1− β

2 + m
+

6(−1 + 2β)

2 + m
− 3(−1 + 3β)

1 + m
.

Now we combine the terms that change their sign in the possible β-range, such
that we obtain a term which is either positive or negative for all β ∈ (0, 1)

−3
√

1− β

1 + m
− 3(−1 + 3β)

1 + m
+

7β
√

1− β

1 + m
=

3− 3
√

1− β − 9β + 7β
√

1− β

1 + m
< 0

6(−1 + 2β)

2 + m
+

6
√

1− β

2 + m
=

6
`
−1 +

√
1− β + 2β

´
2 + m

> 0 for all β ∈ (0, 1).

Finally, we approximate the positive terms by ∗
2m and the negative ones by ∗

m
and obtain

2−
3(d−1)

4m d−
3(d−1)
2md N

3βτm(d−1)
md − 3sN

md ≥ N−2+2
√

1−β+3β−2β
√

1−β− 3β(1+
√

1−β)
m . (18)

C Lower Bound in Theorem 3

We derive a lower bound of

2−
(d−1)(n+1)

4m d−
(n+1)(d−n+1)

2md N (βmτ(d−n+1)−dmτ+(m+n
m−1)−(m(1−τ)+n

m(1−τ)−1)) n+1
md .

For sufficiently large N , the powers of 2 and d are negligible and thus we consider
in the following only the exponent of N 

βmτ(d− n + 1)− dmτ +

 
m + n

m− 1

!
−

 
m(1− τ) + n

m(1− τ)− 1

!!
n + 1

md

= βτ(n + 1)− βτ(n− 1)(n + 1)

d
− τ(n + 1) + 1−

Qn
k=0(m(1− τ) + k)

n!md
.

With d =
(
m+n

m

)
= (m+n)!

m!n! =
Qn

k=1(m+k)

n! we have

βτ(n + 1)− τ(n + 1) + 1− βτ(n− 1)(n + 1)!Qn
k=1(m + k)

−
Qn

k=0(m(1− τ) + k)Qn
k=0(m + k)

.



We now analyze the last two terms separately. For the first one, if we choose
τ = 1− n

√
(1− β) we obtain

βτ(n− 1)(n + 1)!Qn
k=1(m + k)

≤ β(1− n
√

1− β)(n− 1)(n + 1)!

(m + 1)
Qn

k=2 k
≤ β(1− n

√
1− β)n2

m
.

Fact 1
n(1− n

√
1− β) ≤ − ln(1− β) (19)

Using this approximation, we obtain

βτ(n− 1)(n + 1)!Qn
k=1(m + k)

≤ − ln(1− β)β
n

m
.

The analysis of the second term
Qn

k=0(m(1−τ)+k)Qn
k=0(m+k) is a bit more involved. We use

its partial fraction expansion to show an upper bound.

Lemma 2 For τ = 1− (1− β)
1
n we have∏n

k=0(m(1− τ) + k)∏n
k=0(m + k)

≤ (1− β)
n+1

n +
1
π

(1− β)−0.278465 n

m
. (20)

Proof. First notice thatQn
k=0(m(1− τ) + k)Qn

k=0(m + k)
= (1− τ)n+1 +

Qn
k=0(m(1− τ) + k)− (1− τ)n+1Qn

k=0(m + k)Qn
k=0(m + k)

.

We analyze the second part of this sum. Its partial fraction expansion isQn
k=0(m(1− τ) + k)− (1− τ)n+1Qn

k=0(m + k)Qn
k=0(m + k)

=
c0

m
+

c1

m + 1
+ . . . +

cn

m + n
. (21)

Our goal is to determine the values ci. Start by multiplying with
∏n

k=0(m + k):

nY
k=0

(m(1− τ) + k)− (1− τ)n+1
nY

k=0

(m + k) =

nX
i=0

ci

nY
k=0
k 6=i

(m + k).

Now we successively set m equal to the roots of the denominator and solve for
ci. For the i-th root m = −i we obtain

nY
k=0

(−i(1− τ) + k) = ci

nY
k=0
k 6=i

(k − i)

ci =

Qn
k=0(−i(1− τ) + k)Qn

k=0
k 6=i

(k − i)
.

We can rewrite this in terms of the Gamma function as

ci = (−1)i Γ (−i(1− τ) + n + 1)

Γ (i + 1)Γ (n− i + 1)Γ (−i(1− τ))
.



Using the identity Γ (−z) = − π
sin(πz)Γ (z+1) , we obtain

ci = (−1)i+1 Γ (−i(1− τ) + n + 1)Γ (i(1− τ) + 1)

Γ (i + 1)Γ (n− i + 1)

sin(πi(1− τ))

π
.

In the following we use Q := Γ (−i(1−τ)+n+1)Γ (i(1−τ)+1)
Γ (i+1)Γ (n−i+1) .

We now give an upper bound on the absolute value of ci. Start by using the
value τ = 1− n

√
1− β and let 1− β = e−c for some c > 0. Consider

ln
Γ (ie−

c
n + 1)

Γ (i + 1)
= ln(Γ (ie−

c
n + 1))− ln(Γ (i + 1)) = −

Z i−ie
− c

n

0

Ψ(1 + i− t)dt and

ln
Γ (−ie−

c
n + n + 1)

Γ (n− i + 1)
= ln(Γ (−ie−

c
n +n+1))−ln(Γ (n−i+1)) =

Z i−ie
− c

n

0

Ψ(n−i+1+t)dt.

Therefore

ln Q =

Z i−ie
− c

n

0

Ψ(n− i + 1 + t)− Ψ(1 + i− t)dt.

The Digamma function Ψ is increasing and thus the integrand is increasing and
we get the approximation

ln Q ≤ (i− ie−
c
n )(Ψ(n + 1− ie−

c
n )− Ψ(1 + ie−

c
n )).

Let i = tn. Then for fixed t the expression on the right-hand side converges for
n →∞ to

lim
n→∞

(i− ie−
c
n )(Ψ(n + 1− ie−

c
n )− Ψ(1 + ie−

c
n )) = ct ln(

1

t
− 1).

By numeric computation, the maximum of t ln( 1
t − 1) in the range 0 < t < 1 is

0.278465. Thus,

ln Q ≤ 0.278465c

Q ≤ (1− β)−0.278465.

Putting things together, we have

ci ≤ (−1)i+1(1− β)−0.278465 sin(πi(1− τ))

π
≤ 1

π
(1− β)−0.278465.

The initial problem of estimating the partial fraction expansion from equa-
tion (21) now statesQn

k=0(m(1− τ) + k)− (1− τ)n+1Qn
k=0(m + k)Qn

k=0(m + k)
=

c0

m
+

c1

m + 1
+ . . . +

cn

m + n

≤
P

ci

m

≤
n 1

π
(1− β)−0.278465

m
.

Now that we have bounds on the individual terms, we can give a bound on
the complete expression

2−
(d−1)(n+1)

4m d−
(n+1)(d−n+1)

2md N (βmτ(d−n+1)−dmτ+(m+n
m−1)−(m(1−τ)+n

m(1−τ)−1)) n+1
md

≥ Nβτ(n+1)−τ(n+1)+1−(1−τ)n+1−
n 1

π
(1−β)−0.278465

m +ln(1−β)β n
m .


