
Speeding Up the Pollard Rho Method
on Prime Fields

Jung Hee Cheon, Jin Hong, and Minkyu Kim

ISaC and Department of Mathematical Sciences
Seoul National University, Seoul 151-747, Korea
{jhcheon,jinhong,minkyu97}@snu.ac.kr

Abstract. We propose a method to speed up the r-adding walk on mul-
tiplicative subgroups of the prime field. The r-adding walk is an iterating
function used with the Pollard rho algorithm and is known to require less
iterations than Pollard’s original iterating function in reaching a collision.
Our main idea is to follow through the r-adding walk with only partial
information about the nodes reached.
The trail traveled by the proposed method is a normal r-adding walk,
but with significantly reduced execution time for each iteration. While
a single iteration of most r-adding walks on Fp require a multiplication
of two integers of log p size, the proposed method requires an operation
of complexity only linear in log p, using a pre-computed table of size
O((log p)r+1 · log log p). In practice, our rudimentary implementation of
the proposed method increased the speed of Pollard rho with r-adding
walks by a factor of more than 10 for 1024-bit random primes p.
keywords: Pollard rho, r-adding walk, discrete logarithm problem, prime
field

1 Introduction

Let G be a finite cyclic group of order q generated by g. Given h ∈ G, the
discrete logarithm problem (DLP) over G is to find the smallest non-negative
integer x such that gx = h. The answer x is called the discrete logarithm of
h to the base g, and is denoted by logg h. Along with the integer factorization
problem, the DLP is one of two most important mathematical primitives in
public key cryptography and its hardness is the basis of various cryptosystems
such as Diffie-Hellman key agreement protocol [3], ElGamal cryptosystem [6],
and signature schemes [5, 6].

Many of these systems, including the Digital Signature Standard [5], are
implemented on a multiplicative subgroup G of prime order q of a prime field Fp.
In such a setting, the index calculus method [1] determines the size of p to be
used, but the size of q is set by the Pollard rho method [14].

In this work, we use the r-adding walk style of iterating function for the
Pollard rho method, which is known to require less iterations before collision
than Pollard’s original iterating function. In an r-adding walk, a set M of r
random elements from G is first fixed. Given the i-th element gi ∈ G of the

walk, the (i + 1)-th element gi+1 is defined to be the product of gi and an
element Ms ∈ M, whose choice is given by the index s = s(gi), a function of
gi. Our idea is to define the index function s in such a way that s(gi+1) can
be computed from gi and Ms(gi), without fully computing the product gi+1 =
giMs(gi). In the next iteration, gi+2 = gi+1 ·Ms(gi+1) is considered as a product of
gi and Ms(gi)Ms(gi+1), with the second term taken from a pre-computed table of
products amongM elements. Thus, s(gi+2) is computed without fully computing
gi+2. More generally, we prepare a tableM` := (M∪{1})` of ` products fromM
and a full product computation is done when we reach ` iterations. Our method
can be used with the distinguished points [15] collision detection method, and
hence allows efficient parallelization, as with the original Pollard rho, i.e., n times
speedup with n processors [12].

The proposed method produces a normal r-adding walk trail, and hence
should reach a collision and solve DLP in the same number of steps as with
any other r-adding walk, but the execution time of each iteration is signifi-
cantly reduced. For 1024-bit random primes p the proposed algorithm replaces
a multiplication of two 1024-bit words by 64 multiplications between a 16-bit
word and a 32-bit word, and our rudimentary implementation of the proposed
method was faster than the usual r-adding walks by a factor of more than 10.
An incremental use of this algorithm will reduce each iteration of the original
r-adding walk on G ⊂ F×p from one multiplication of integers of log p size to
an operation of complexity linear in log p, using a pre-computed table of size
O((log p)r+1 · log log p).

Previous Works The fastest algorithm for the DLP on a finite field Fp is the
index calculus method whose complexity is sub-exponential in the size of the
base field [1]. Since the performance of the method depends on the size of the
base field, this method has the same performance on any subgroup of F×p . If the
subgroup has a composite order, we can use Pohlig and Hellman [13] algorithm
to reduce the DLP in the subgroup to the DLP in its prime order subgroups.

For prime-order cyclic groups G, including multiplicative subgroups of suf-
ficiently large finite fields, the first non-trivial algorithm solving the DLP was
the Baby-Step Giant-Step method suggested by Shanks [20]. It requires O(

√
q)

operations and memory to work on an abelian group of order q. Pollard [14] pro-
posed a probabilistic algorithm, called the Pollard rho method, with the same
complexity, but requiring only small size of memory. There have been several
variants proposing different collision detection methods [2, 11, 19] and iterating
functions [17, 23]. An efficient parallelization of Pollard rho was developed by
van Oorschot and Wiener [12] using distinguished points. For (hyper-)elliptic
curves with fast endomorphisms, more efficient variants of Pollard rho methods
are known [4, 7, 25].

Organization In Section 2, we introduce the Pollard rho method, r-adding
walks, and the distinguished point collision detection method. In Section 3, we
propose Tag Tracing, a method to speed up Pollard rho. In Section 4, we apply

this to prime fields and analyze its complexity. Also, we present some imple-
mentation result for 1024-bit primes. In Section 5, we estimate the asymptotic
complexity of our algorithm when it is used incrementally. Section 6 concludes
this paper. Tag tracing on binary fields is briefly treated in Appendix B.

2 Pollard Rho Algorithm

To set the basis of our discussion and fix notation, we will quickly review variants
of the Pollard rho method in this section. Readers should consult the original
papers for any detail. Throughout this paper G = 〈g〉 will be a finite cyclic group
of prime order q, on which we wish to solve a discrete logarithm problem.

2.1 Function iteration and collision

Given any function f : G → G, we can create a sequence (gi)i≥0 by iteratively
defining

gi+1 = f(gi) (i ≥ 0),

starting from a random starting point g0 ∈ G. Because G is a finite set, this
sequence is eventually periodic. The smallest integers µ ≥ 0 and λ ≥ 1 satisfying
gλ+µ = gµ are said to be the pre-period and period of the sequence (gi)i≥0,
respectively.

When the function f is chosen uniformly at random from the set of all func-
tions sending G to G, the value λ+µ is expected to be

√
πq/2 ∼ 1.253

√
q. Each

variant of Pollard rho method provides an iterating function f and a method to
detect a collision, i.e., the happening of gi = gj with i 6= j.

Suppose we are trying to solve for logg h. Given any element y ∈ G, there are
many ways to write it in the exponent form y = gahb. Let us say that a function
f : G → G is exponent traceable, or allows exponent tracing, with respect to g
and h, if it is possible to express the function in the form

f(gahb) = gfg(a,b)hfh(a,b),

with some (simple) functions fg and fh of the exponents. For example, if f was
the squaring function on G, we could set fg(a, b) = 2a and fh(a, b) = 2b.

The iterating function of a Pollard rho algorithm variant is always chosen in
such a way that it is exponent traceable. Thus, starting from g0 = ga0hb0 , with
randomly chosen, but known, (a0, b0), we can always keep track of the exponents
(ai, bi) satisfying gi = gaihbi . Then, when a collision gi = gj is detected, setting
x = logg h, we know gai(gx)bi = gaj (gx)bj , so we can use

ai + x · bi ≡ aj + x · bj (mod q)

to solve for x.

2.2 Iterating functions

An iterating function is taken to be of good design if the number of iterations
it takes to reach a collision is close to

√
πq/2, the value expected of a random

function.

Pollard Pollard [14] originally targeted the DLP on (Z/pZ)∗, but his iterating
function, which we shall denote as fP : G → G, can be modified for use on any
cyclic group. Let G = T0 ∪ T1 ∪ T2 be a partition of G into nearly equal sized
subsets. The iterating function is defined as follows.

fP (y) =

gy, if y ∈ T0,
y2, if y ∈ T1,
hy, if y ∈ T2.

It is clear that this allows exponent tracing. For example, when gahb ∈ T0, we
have (fP)g(a, b) = a+1 and (fP)h(a, b) = b. Tests have shown that it takes more
than

√
πq/2 iterations for fP to reach a collision [23, 24], so that fP is not an

optimal choice for an iterating function.

r-adding walks Let 3 ≤ r ≤ 100 be a small positive integer and let G =
T0 ∪ · · · ∪Tr−1 be a partition of G into r-many subsets of roughly the same size.
The index function s : G → {0, 1, . . . , r − 1} is defined by setting s(y) = s for
y ∈ Ts. For each s = 0, . . . , r − 1, randomly choose integers ms, ns ∈ Z/qZ and
set the multipliers to Ms = gmshns . The iterating function is given by

fT (y) = yMs(y).

That is, one of the r-many fixed elements Ms ∈ G is multiplied, depending on
which subset Ts the input belongs to. This is clearly exponent traceable, with
the exponent functions being addition by ms and ns. The name r-adding refers
to the additions.

This method was introduced in [17] and the work [16] shows that any r ≥ 8
will suffice for cyclic groups. Testing [24] on cyclic elliptic curve groups show
that 20-adding walks perform very close to a random function.

2.3 Collision detection

The main issues with collision detection is to detect a collision with minimal
number of additional iterating function applications after collision occurs, and
with a small amount of memory. There have been several proposals on colli-
sion detection methods by Floyd [9], Brent [2], Sedgewick-Szymanski-Yao [19],
Quisquater-Delescaille [15], and Nivasch [11].

Among them, the method using distinguished points by Quisquater and De-
lescaille [15] is regarded as the most efficient one. This was originally an idea

for use with time-memory trade-off techniques. Distinguished points are those
elements of G that satisfy a certain condition, which is easy to check. For exam-
ple, with a fixed encoding for G, we may set them to be those elements with a
certain number of starting bits equal to zero.

After each application of the iterating function, the current gi is stored in a
table, if it is a distinguished point. The algorithm terminates when a collision
is found among the distinguished points. The distinguished points should be
defined so that this table is of manageable size.

Let θ be the fraction of elements in G which satisfy the distinguishing prop-
erty. The algorithm is expected to terminate with a collision after

√
πq/2 + 1/θ

applications of the iterating function.
This method has the advantage that it can lead to n-times speedup with

n-processor parallelization [12].

3 Tag Tracing

Let us recall the r-adding walk iterating function fT . Given an input gi ∈ G,
it first determines the index s = s(gi), and produces gi+1 = giMs ∈ G as the
output. Occasionally, the output giMs is placed in a table of small size.

Notice that the storing operation is not very frequent. So, one may question
whether computing the product giMs is really necessary at every iteration. Of
course, iterated applications of fT require current gi to be available, but this
is avoidable if we have a pre-computed table of suitably many products of Ms.
Then it suffices for one to compute just the index at each iteration. We shall
explore this line of reasoning in this section.

3.1 Preparation

As in the r-adding walk, we fix an index set S = {0, 1, . . . , r− 1} for some small
r and let M = {Ms = gmshns}s∈S be a multiplier set for the r-adding walk. Fix
a small positive number ` and consider the product set M` = (M∪ {1})`, i.e.,
the set of products of at most `-many Ms. Notice that we know how to write
each element of M` in the form gmhn. We shall treat the set M` as a table of
elements of G, listed together with their respective exponent forms.

For our tag tracing approach to the DLP, we want to pre-compute M` before
going into the actual r-adding walk, and the following two lemmas show the range
of r and ` one may choose, depending on the resources available.

Lemma 1. The size of M` is at most
(
`+r

r

)
.

Proof. The size of M` is bounded above by the number of combinations with
repetitions, where one chooses ` times from the set M∪ {1} of size r + 1. The
bound is reached only if all product elements produced are distinct. ut

Lemma 2. The set M` can be constructed in
(
`+r

r

)− 1 multiplications in G.

Proof. Consider the complete r-ary tree structure of depth `. Label each edge
with an index from S in such a way that from each node, the r edges extending
to its children nodes are labeled with different indices. We label the root node
with 1 ∈ G and label each node below with the element of M` which is the
product of multipliers labeled by edges on its way down.

The nodes of the complete r-ary tree will contain multiple copies of M`. It
is clear that if we collect just the nodes with paths to the root that are labeled
in non-decreasing order, then we will obtain one copy of M`. As the number
of edges leading to these nodes is one less than the number of these nodes, and
since each edge corresponds to one multiplication used in creation of node labels,
we arrive at our claim. ut

Some example values would be
(
84
20

) ∼ 263.2 for 20-adding walks with ` = 64,
and

(
72
8

) ∼ 233.4 for 8-adding walks with ` = 64. As M` can only be computed
after h, whose discrete logarithm we are looking for, is given, we do not want
these pre-computation complexities to go over our main attack complexity.

We now fix a tag set T together with three functions.

τ : G → T .

τ̄ : G×M` → T ∪ {fail}.
σ : T → S = {0, 1, . . . , r − 1}.

The first function τ is named the tag function. We define the index function
s : G → S to be s = σ ◦ τ and also consider the function s̄ = σ ◦ τ̄ : G×M` →
S ∪ {fail}. The three functions above are to be chosen so that they satisfy the
following condition.

1. The index function s = σ◦τ is surjective and roughly pre-image uniform, i.e.,
grouping G according to its image points under s partitions G into subsets
of roughly the same size.

2. When s̄(g, M) ∈ S, we have s̄(g,M) = s(g ·M). In particular, any successful
output of s̄ depends only on the product of its inputs.

So we are looking for a function τ that resembles a normal index function, but
with a larger image set, and also another way τ̄ to evaluate τ on product of
group elements.

The situation we have in mind concerning τ and τ̄ is as follows. Given a
random M ∈ M` and g ∈ G, the expected time for calculation of τ̄(g, M) is
smaller than the time needed for computation of the product M · g. The general
thought behind this is that it should take less effort to obtain some partial
information about a product than the full product itself. For example, consider
the case G ⊂ F×p and define τ(g) to be the most significant k bits of g ∈ G.
Intuitively, computing k bits out of the log p bits of product gM may take as
little as k

log p of the time for full product computation. If some of the product
bits were easier to calculate than others, the time could be even shorter.

We shall denote the expected time for s̄(g,M) evaluation by |s̄|.

3.2 Iterating function

The iterating function of our tag tracing algorithm will follow the usual r-adding
walks. We have already fixed an index set S = {0, 1, . . . , r − 1} with an appro-
priate index function s = σ ◦ τ and a multiplier set M during the preparation
phase.

We start with a random g0 ∈ G and the first index s0 = s(g0) is computed.
We set g1 = g0Ms0 , exactly as in the normal r-adding walk process, but the
product g0Ms0 is not computed. Instead, s̄(g0,Ms0) is computed in time |s̄|. If
s̄(g0,Ms0) ∈ S, we have computed

s1 = s(g1) = s(g0Ms0) = s̄(g0,Ms0).

We have not fully computed g1, but can set g2 = g1Ms1 = g0Ms0Ms1 , which is,
once again, not computed.

Now, since Ms0Ms1 ∈ M` is an element which has been pre-computed, we
can evaluate s̄(g0,Ms0Ms1) in time |s̄|. This leads us to index value s2 and we
can continue as before.

If we come across the situation s̄(g0,Ms0 · · ·Msk
) /∈ S, or arrive at ` iterations

of the above process, we do a full product computation. That is, we compute
gk+1 = g0Ms0 · · ·Msk

and let this replace the role g0 has taken up to that
iteration. Notice that this full product requires just one multiplication, since
Ms0 · · ·Msk

∈M` has been pre-computed.
Notice that since the set M` is a table of elements of G, listed together with

its respective exponent forms, the above process is fully exponent traceable.

3.3 Collision detection

To complete the description of the tag tracing method, we need to check if is
possible to detect collisions. The distinguished point method is well suited for
our tag tracing.

Usually, the distinguished points is defined to be points with a certain number
of starting bits equal to zero, under a fixed encoding. With tag tracing, we use
this usual definition, but for more efficiency, impose an additional condition to
be satisfied. This extra condition is set to depend on the tag value τ(g) in such
a way that it can only be satisfied when τ̄(g′,M ′) /∈ T for every g′ and M ′ such
that g = g′M ′. Then, whenever there is a chance of some gi being a distinguished
point, we would already have the full form for gi, and there are no additional
full product computations involved in relation to collision detection. With the
extra condition on the tag, the original condition can be relaxed to maintain the
number of distinguished points.

3.4 Complexity analysis

Let us make a rough time complexity comparison of our tag tracing with the orig-
inal r-adding walks. The storage complexity of tag tracing is given by Lemma 1.

We can assume that the various parameters for tag tracing has been chosen
so that the time taken for preparation, given by Lemma 2, is insignificant com-
pared to the main function iterations. We shall also not include efforts needed
in following through the exponents needed in final computation of the discrete
logarithm.

Consider the time taken to do a full product computation in G. This will
be almost equal to |fT |, the time taken for one iteration of the r-adding walk.
Even though this time will depend on the encoding for G, we shall assume that
computation of full product in our tag tracing also requires time |fT |.

Recalling the notation |s̄| introduced earlier, we can restate one of our re-
quirements on τ̄ as |s̄|

|fT | < 1. It is now easy to see that a single iteration of tag
tracing is expected to take time

|s̄|+ (1
`

+ Pfail

)|fT |, (1)

at the most, where Pfail is the probability of reaching s̄ value not in S.
The expected running time of tag tracing is the above value multiplied by

the number of iterations required for a normal r-adding walk style algorithm.
Hence the ratio of running time between tag tracing and a normal r-adding walk
would be

|s̄|
|fT | +

1
`

+ Pfail.

If this is less than 1, we have a reduction in discrete logarithm solving time.
As discussed earlier, it should be possible to find τ and τ̄ such that |s̄| is much
smaller than |fT |, making the above a meaningful reduction in time.

4 Application to Prime Fields and its Implementation

Throughout this section, p will be a prime and G = 〈g〉 ⊂ F×p will be a cyclic
group of order q. We will show how to apply the proposed tag tracing algorithm
to G and present some implementation results. Tag tracing on subgroups of the
binary field, which is quite similar, is dealt in Appendix B.

4.1 Parameter setup

We fix the index set size r and the multiplier product pre-computation length
` in such a way that the time and storage complexities given by Lemma 1 and
Lemma 2 are manageable. The tag set T = {0, 1, 2, . . . , T − 1} is taken to be of
size T = r · b, a multiple of r. We take a positive integer ε and set d = dlogε pe.
Then we choose integer ω′ ≥ d(ε − 1) + 1. We use the notation ω = Tω′ and
assume that ω < p

1
3 .

Optimal choice for these parameters will depend on many factor including the
size of prime p, resources available, and the speed of large integer multiplications.
The parameter set below with ` = 128 may be appropriate for use on a modern
PC when primes p is of 1024-bit size. Readers may keep these in mind to facilitate
understanding of further material.

ω = 232

T = 210 ω′ = 222

r = 4 b = 28 d = 26 ε = 216

4.2 Tag function

Our assumption ω < p
1
3 implies that we may always choose integer B > p

2
3 such

that 0 ≤ ωB − p < B
1
2 . For example, setting B = dp/ωe should always work.

We fix any such B and define the tag function τ : G → T as

τ(g) =
⌊

g mod p

ω′B

⌋
, (2)

where we are using “x mod y” to denote the unique integer between 0 and y− 1
that is congruent to x modulo y. Notice that 0 ≤ ωB − p implies p−1

ω′B < T ,
so that the above quotient indeed lies in T = {0, 1, . . . , T − 1}. We also define
σ : T → S = {0, 1, . . . , r − 1} as σ(x) = bx/bc and this fixes the index function
s = σ ◦ τ : G → S.

The following lemma shows that we can expect τ to be roughly pre-image
uniform.

Lemma 3. If variable x is uniformly distributed over Fp, then the probability
distribution of τ(x) over T is almost uniform in the sense that

∣∣Prob[τ(x) = k]− Prob[τ(x) = k′]
∣∣ <

1
p

1
2

for any k, k′ ∈ T .

Proof. We view τ as having been defined on all of Fp. Note that p̄ := Tω′B−p =
ωB − p < B

1
2 < ω′B. This implies that for each fixed k = 0, . . . , T − 2, there

are exactly ω′B elements 0 ≤ x < p with τ(x) = k and that there are ω′B − p̄
elements satisfying τ(x) = T−1. Thus the maximal difference between pre-image
sizes is p̄. Notice that the condition ωB − p < B

1
2 implies B < p. The maximal

probability difference can now be seen to be less than p̄/p < B
1
2 /p < p−

1
2 . ut

Since the condition T = r · b makes σ exactly pre-image uniform, the above
lemma holds even when τ(x) is replaced by s(x), and we can state the following.

Proposition 1. Assuming that the elements of G are uniformly distributed over
Fp, we can expect the index function s to be roughly pre-image uniform.

4.3 Auxiliary functions

We should now present the auxiliary function τ̄ : G×M` → T ∪ {fail} which is
essentially equal to τ .

Given x,y ∈ Fp, we can always write

x =
d−1∑

i=0

xiε
i (0 ≤ xi < ε)

and, for each 0 ≤ i ≤ d− 1, we can write

εiy mod p = ŷiB + y̌i (0 ≤ ŷi ≤ p− 1
B

< ω, 0 ≤ y̌i < B). (3)

Using this notation, we define

¯̄τ(x,y) =

⌊∑d−1
i=0 xiŷi mod ω

ω′

⌋
. (4)

Let us check how close ¯̄τ(x,y) is to τ(xy).

Lemma 4. Given x,y ∈ Fp, we have τ(xy) = ¯̄τ(x,y) or ¯̄τ(x,y) + 1, unless
¯̄τ(x,y) = T − 1.

Proof. Before going into the proof, for easy reference, let us recall some of the
conditions that were placed on the parameters: d(ε − 1) < ω′; ω = Tω′; ω <

p
1
3 < B

1
2 ; ωB − p < B

1
2 ;

We start by writing

d−1∑

i=0

xiŷi = a2ω + a1ω
′ + a0,

where the coefficients a0, a1, and a2 are to be obtained through usual integer
divisions. In particular, we have a2 ≤ d(ε−1)(ω−1)

ω < d(ε− 1) < ω′ < ω < B
1
2 . It

should also be noted that a1 = ¯̄τ(x,y).
In the above notation, we may write

xy =
d−1∑

i=0

xiε
iy ≡

(d−1∑

i=0

xiŷi

)
B +

d−1∑

i=0

xiy̌i (mod p)

≡ a1ω
′B + a0B + a2(ωB − p) +

d−1∑

i=0

xiy̌i (mod p).

The various conditions allow us to bound the lower terms by

a0B + a2(ωB − p) +
d−1∑

i=0

xiy̌i

< (ω′ − 1)B + B
1
2 ·B 1

2 + d(ε− 1)(B − 1)
< ω′B + (ω′ − 1)B = 2ω′B −B.

Now, if a1 = ¯̄τ(x,y) is strictly less than T − 1, then

a1ω
′B + a0B + a2(ωB − p) +

d−1∑

i=0

xiy̌i

< (T − 2)ω′B + 2ω′B −B = ωB −B < p.

So, when ¯̄τ(x,y) 6= T − 1, we know

xy mod p = a1ω
′B +

{
a0B + a2(ωB − p) +

d−1∑

i=0

xiy̌i

}
.

Finally, since the sum of terms inside the braces is non-negative and strictly
less than 2ω′B, the quotient of xy mod p divided by ω′B must be either a1 or
a1 + 1. ut

Based on this lemma, we define τ̄ : G×M` → T ∪ {fail} as follows.

τ̄(g, M) =

{
fail if ¯̄τ(g, M) mod b is either b− 1 or b− 2,

¯̄τ(g, M) if otherwise.

Recalling the definitions σ(x) = bx/bc, s = σ ◦ τ , and s̄ = σ ◦ τ̄ , it is now
easy to show the following proposition.

Proposition 2. When τ̄(g, M) ∈ T and hence s̄(g, M) ∈ S, we have s(g ·M) =
s̄(g, M) and τ(gM) mod b 6= b− 1.

Proof. We note that T − 1 mod b = b − 1, so that Lemma 4 together with
¯̄τ(g,M) mod b 6= b− 1 implies τ(gM) = ¯̄τ(g, M) or ¯̄τ(g,M) + 1.

Now, this together with the condition that ¯̄τ(g, M) mod b is neither b−1 nor
b− 2 implies τ(gM) mod b 6= b− 1.

In addition, we have τ̄(g, M) = ¯̄τ(g,M and τ̄(g, M) mod b 6= b− 1 implies

bτ̄(g,M)/bc = b(τ̄(g,M) + 1)/bc,

which must be s(g ·M). ut

4.4 Tag tracing

We are now ready to start tag tracing. Using the proof of Lemma 2 as a hint,
we compute a table containing entries (M, m,n) for M = gmhn ∈ M`. We also
append the associated vector

vε,B(M) =
(⌊

ε0M mod p

B

⌋
, . . . ,

⌊
εd−1M mod p

B

⌋)

to each entry of the table. Notice that these are the ŷi appearing in equation (3).

We can now follow the discussion of Section 3.2 to compute each iteration of
tag tracing. The elements of G are written in ε-ary representation so that we may
quickly compute s using equation (4) and Proposition 2. Whenever we reach `
iterations or an s̄ calculation failure, the complete product gi is computed using
one group multiplication. A point g ∈ G is defined to be a distinguished points
only if τ(g) mod b = b− 1 and if it satisfies some additional on g. According to
Proposition 2, g ·M can be a distinguished point only when τ̄(g,M) /∈ T .

4.5 Implementation

We have tested tag tracing with an implementation on a modern PC and com-
pared it with a normal 20-adding walk. Both the tag tracing and 20-adding walks
were set to use distinguished points for collision detection. We used the finite
field arithmetics provided by the NTL [21] library to implement the 20-adding
walk, so as not to be biased. Throughout the test, prime p was taken to be of
1024-bit size, and whenever random primes p, q and 〈g〉 ⊂ F×p of order q was
needed, they were generated in the style specified for DSA [5].

After comparing rho lengths of r-adding walks for various r, we opted to use
r = 4 for tag tracing, as we did not have much memory available. Compared to
the 20-adding walk, our tag tracing with r = 4 will have approximately 1.3 times
longer rho length. This is explained in Appendix A. Other parameters were set
to b = 28, ε = 216, T = 210, ω′ = 222, and ω = 232.

For speed comparison, we chose q to be of 160-bit size and ran both the
20-adding walk and tag tracing for 228 iterations. For tag tracing this was done
for various choices of `, with a set of randomly chosen primes p and q, group
generator g, DLP target h, adding walk multipliers Ms, and initial starting point.
Timings are listed in Table 1. The size

(
`+r

r

) · ((1 + ||ω||/||ε||)||p||+ 2||q||) of table
M` and its preparation time is also listed, where the || · || notation has been used
for bit length. The corresponding time, averaged over 10 randomly generated
starting points was 1071.4 seconds for the 20-adding walk.

` 10 20 30 40 50 60 70 80 90 100

|s̄| (sec) 156.6 91.8 75.0 70.5 70.3 70.0 70.8 71.6 72.6 73.9

|fT |/|s̄| 6.8 11.7 14.3 15.2 15.2 15.3 15.1 15.0 14.8 14.5

M` size (MB) 0.4 4.3 18.8 54.9 127.9 256.9 465.3 780.2 1233.1 1859.3

M` comp time (sec) 0.21 2.27 9.90 29.1 68.0 137 245 414 650 983

Table 1. Tag tracing timing for 228 iterations (||q|| = 160)

The table shows that the speed of tag tracing iteration can be over 15 times
faster than that of a 20-adding walk. Since the rho length of a 4-adding walk
is 1.3 times longer than that of a 20-adding walk, this translates to tag tracing
being more than 11.5 times faster than a 20-adding walk in solving DLP.

Table 1 is also interesting in that it reflects the complexity estimate given by
equation (1). Larger ` imply smaller number of full product computation and
this results in steep increased speed for ` = 10 ∼ 60. The gradual decrease in
speed after that seems to be from two factors. As we are using b = 28, we have
Pfail = 1/27, and the increasing of ` looses effect as we approach ` = 27. We
have experienced through various tweaks that table lookups to M` present a
considerable fraction of the time taken by a tag tracing iteration. This coupled
with our poor use of memory is another reason for decrease in speed at high `. In
any case, unlike our primitive testing, large scale implementation of tag tracing
will need to use advanced hash table techniques that allow constant time table
lookups.

We verified with small q that tag tracing has no problem in solving DLPs.
Except for the q size, parameters identical to the above were used with ` = 40.
The timings, averaged over 200 randomly generated starting points and multi-
plier sets, are given in Table 2. The figures do not include the approximately
29 seconds spent on creation of M`. This may seem illogical here, but as table
creation time does not change much with q, the speed ratio calculated in this
way will reflect what can be expected of the ratio at large q. The data in Table
2 roughly coincides with our prediction of 11.5 factor speedup.

||q|| = 35 ||q|| = 40 ||q|| = 45 ||q|| = 50 ||q|| = 55

Pollard rho 1.103 sec 6.272 sec 38.738 sec 203.138 sec 1185.578 sec

20-adding 0.940 sec 5.174 sec 29.653 sec 159.977 sec 959.027 sec

tag tracing 0.093 sec 0.441 sec 2.634 sec 13.481 sec 80.785 sec

Pollard rho/tag tracing 11.89 14.24 14.70 15.07 14.68

20-adding/tag tracing 10.14 11.75 11.26 11.87 11.87

Table 2. Full running time comparison of tag tracing and 20-adding walks

5 Asymptotic Complexity

In this section, we consider the asymptotic complexity of the proposed algorithm
for large p. We will use Mul(k) to denote the cost of multiplication modulo an
integer of k-bit size.

Looking at equation (4) and the definition of σ, we can check that the cost
of evaluating the auxiliary index function s̄ is d multiplications modulo ω, d− 1
additions modulo ω, and two divisions of integers less than ω. Thus, ignoring the
small fixed number of divisions and the relatively cheaper additions, we can say
that s̄ evaluation costs approximately d Mul(||ω||). Recalling (1), we can write
the average cost of a single tag tracing iteration as

dMul(||ω||) +
(1

`
+

2
b

)
Mul(||p||).

If ω is set to grow with p, this complexity would not be linear in k = ||p||. To
obtain linear complexity, we perform tag computation in an incremental way,
starting with fixed small parameters and recomputing with incrementally larger
parameters only when the previous attempt fails. Let us explain the procedure
in more detail.

We fix r ≥ 4 and b ≥ 2 to be small constants and define t = blogb kc. We
take ` = Θ(k), fix ε to a positive integer satisfying εt ≤ p

1
3 /(rk2), and let

d = dlogε pe, as before. Based on these, we prepare a parameter set for each
index i = 1, . . . , t, as follows: bi = bi, Ti = rbi, εi = εi, ω′i = dεi, ωi = Tiω

′
i,

Bt = dp/ωte, Bi =
(

ωt

ωi

)
Bt.

Note that ω′i does not involve di = dlogεi
pe, allowing each ωi to divide

ωi+1 and making each Bi an integer. It is possible to check that each set of
parameters satisfy all conditions set forth on Section 4.1 and Section 4.2. For
example, ωi ≤ ωt = rbtdεt < p

1
3 and ω′i = dεi ≥ diεi ≥ di(εi−1)+1. We can also

use p
2
3 < p/ωt ≤ Bt to show 0 ≤ ωiBi − p = ωtBt − p < ωt < p

1
3 < B

1/2
t ≤ B

1
2
i .

For each i, we can define the tag function τi and the index function si as in
Section 4, i.e.,

τi(g) =
⌊

g mod p

ω′iBi

⌋
, si(g) =

⌊
τi(g)
bi

⌋
=

⌊
g mod p

ω′iBibi

⌋
. (5)

Since biω
′
iBi = btω

′
tBt, we have si(g) = st(g), for any i. We already know that

this common index function is roughly pre-image uniform.
Let g ∈ G and M ∈ M`. For each i, we can define τ̄i(g, M) as in Section

4, which is computed in time di Mul(||ωi||), and is successful in giving si(g ·M)
with probability 1 − 2/bi. We now use an incremental approach in computing
the common index s1(g ·M). First, τ̄1(g ·M) is computed. If it returns a failure,
we compute τ̄2(g ·M), and so on. We stop whenever an output si(g ·M) for i ≤ t
is successfully obtained and move onto the next iteration of tag tracing. The full
product of g and M is computed if all t attempts fail.

Then the time complexity of this incremental approach is

d1 Mul(||ω1||) +
2d2

b
Mul(||ω2||) + · · ·+ 2dt

bt−1
Mul(||ωt||) +

(
1
`

+
2
bt

)
Mul(||p||)

≤ 2
(

b

b− 1

)2

Mul(||ω1||)dlogε pe+
(

1
`

+
2
bt

)
Mul(||p||) = O(||p||) = O(k),

where we have used the facts ωi < ωi, di ≤ bd/ic, ` = Θ(k), bt = Θ(k), and that
Mul(k) is at most quadratic in k.

The incremental approach requires t tables and since an entry in the i-th
table is of di||ωi|| < logε ω log p bits, noting that

∏r
i=1

`+i
i ≤ `r = O(kr), we can

write the storage requirement as

t

(
` + r

r

)
(logε ω · log p) = O(kr+1 · log k).

It only remains to consider collision detections. A point g ∈ G is defined to be
a distinguished point only if τt(g) mod bt = bt− 1 with possibly some additional

conditions on g. Because bτi(g)/bic = bτt(g)/btc and τi(g) = bτt(g)/bt−ic, we
have τt(g) mod bt =

(
τi(g) mod bi

)
bt−i + τt(g) mod bt−i. From this, we see that

τt(g) mod bt = bt − 1 implies τi(g) mod bi = bi − 1 for any i. Thus distinguished
point candidates can be noticed from any τ̄i(g,M).

6 Conclusion

In this paper, we proposed a method to speed up the Pollard rho algorithm
on cyclic subgroups of the prime field Fp. The proposed algorithm replaces the
multiplication needed in r-adding walks with an operation of linear complexity.
As a further work, we would like to generalize our algorithms to elliptic or
hyperellipic curves.

Acknowledgments. This work was supported by the Korea Science and En-
gineering Foundation (KOSEF) grant (No. R01-2008-000-11287-0).

References

1. L. Adleman, “A Subexponential Algorithm for the Discrete Logarithm Problem
with Applications to Cryptography,” Proc. of the IEEE 20th Annual Symposium
on Foundations of Computer Science (FOCS), pp.55-60, 1979.

2. R. Brent, “An improved Monte Carlo Factorization Algorithm,” BIT, Vol. 20, pp.
176-184, 1980.

3. W. Diffie and M. Hellman, “New Directions in Cryptology,” IEEE Trans. Inform.
Theory, Vol. 22, pp. 644-654, 1976.

4. I. Duursma, P. Gaudry, and F. Morain, “Speeding up the Discrete Log Computa-
tion on Curves with Automorphisms,” Asiacrypt ’99, LNCS 1716, Springer-Verlag,
pp. 103-121, 1999.

5. “Digital Signature Standard,” NIST. U.S. Department of Commerce. Federal In-
formation Processing Standards Publication (FIPS PUB) 186, May 1994.

6. T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme based on Dis-
crete Logarithms,” IEEE Trans. Infrom. Theory, Vol. 31, pp. 469-472, 1985.

7. R. Gallant, R. Lambert, and S. Vanstone, “Improving the Parallelized Pollard
Lambda Search on Binary Anomalous Curves,” Math. Comp., Vol. 69, pp. 1699-
1705, 2000.

8. A. Karatsuba and Y. Ofman, “Multiplication of Multidigit Numbers on Au-
tomata,” Soviet Physics-Doklady, Vol. 7, pp.595-596, 1963.

9. D. Knuth, The Art of Computer Programming, vol. II: Seminumerical Algorithms,
Addison-Wesley, 1969.

10. D. Knuth, The Art of Computer Programming, vol. III: Sorting and Searching,
Addison-Wesley, 1973.

11. G. Nivasch, “Cycle Detection using a Stack,” Information Processing Letters, Vol.
90, pp. 135-140, 2004.

12. P. van Oorschot and M. Wiener, “Parallel Collision Search with Cryptanalytic
Applications,” J. Cryptology, Vol. 12, pp. 1-28, 1999.

13. S. Pohlig and M. Hellman, “An Improved Algorithm for Computing Discrete Log-
arithms over GF (p) and its Cryptographic Significance,” IEEE Trans. Inform.
Theory, Vol. 24, pp. 106-110, 1978.

14. J. Pollard, “A Monte Carlo Method for Index Computation (modp),” Math. Comp,
Vol. 32(143), pp. 918-924, 1978.

15. J. Quisquater and J. Delescaille, “How easy is Collision Search? Application to
DES,” Proc. of Eurocrypt, Springer-Verlag, LNCS 434, pp. 429-434, 1989.

16. J. Sattler and C. Schnorr, “Generating Random Walks in Groups,” Ann.-Univ.-
Sci.-Budapest.-Sect.-Comput., Vol. 6, pp.65-79, 1985.

17. C. Schnorr and H. Lenstra, Jr., “A Monte Carlo Factoring Algorithm with Linear
Storage,” Math Comp., Vol. 43(167), pp. 289-311, 1984.

18. A. Schönhage and V. Strassen, “Schnelle Multiplikation Grobner Zahlen,” Com-
puting, Vol. 7, pp.281-292, 1971.

19. R. Sedgewick, T. Szymanski, and A. Yao, “The Complexity of Finding Cycles in
Periodic Functions,” SIAM Journal on Computing, Vol. 11, No. 2, pp. 376-390,
1982.

20. D. Shanks, “Class number, a Theory of Factorization and Genera,” Proc. Symp.
Pure Math., Vol. 20, pp. 415-440, 1971.

21. V. Shoup, NTL: A Library for doing Number Theory, Ver 5.4.1,
http://shoup.net/ntl/.

22. V. Shoup, A Computational Introduction to Number Theory and Algebra, Cam-
bridge University Press, 2005.

23. E. Teske, “Speeding up Pollard’s rho Method for Computing Discrete Logarithms,”
ANTS III, Springer, LNCS 1423, pp. 541-554, 1998.

24. E. Teske, “On Random Walks for Pollard’s rho Method,” Math. Comp., Vol. 70,
pp. 809-825, 2001.

25. M. Wiener and R. Zuccherato, “Fast Attacks on Elliptic Curve Cryptosystems,”
Selected Areas in Cryptography ’98, LNCS 1556, Springer-Verlag, pp.190-200, 1999.

A Performance of 4-adding Walks

For r ≥ 3, let us write fr to denotes the r-adding walk iterating function. We
also write fP for the Pollard’s iterating function. Where as the rho length of a
function graph on a set of size q is expected to be

√
πq/2 for a random function,

the actual rho lengths of various fr and fP are a small constant multiple of√
πq/2. We shall write Cr and CP for these constants. In this section, we show

experiment results on these values. During the test, size of p was always set to
1024 bits, but varying q sizes were used.

In order to use the iterating functions fr and fP we need to define an index
function. For each r ≥ 3, the index function sr : Fp → {0, . . . , r − 1} was
set to sr(g) = br · (A · g mod 1)c, where A is a rational approximation of the
golden ratio (

√
5−1)/2. When A is of sufficient precision, this is known to bring

about uniform looking distribution [10], even on non-uniform inputs. For our
experiment, a precision of 1044 binary places for A is sufficient.

Estimates for the constants Cr and CP were found as follows. Primes p, q
and cyclic group generator g of order q in F×p were randomly generated in the
DSA style [5], and the multiplier set was randomly selected. Then the iterating

function was iterated from a random starting point until the walk intersected
itself in a rho. The length of the rho was recorded and the process redone with a
newly generated g, h and multiplier set. This was repeated 1000 times for each
iterating function. The average rho lengths divided by

√
πq/2 are the constant

||q|| 10 15 20 25 30 35 40

CP 1.244 1.267 1.307 1.289 1.304 1.325 1.312

C3 1.628 1.830 2.051 2.201 2.408 2.568 2.742

C4 1.336 1.346 1.328 1.374 1.360 1.368 1.370

C8 1.092 1.105 1.072 1.087 1.061 1.098 1.058

C20 0.995 1.008 1.036 1.004 1.014 1.047 1.034

C4/C20 1.342 1.335 1.282 1.369 1.342 1.308 1.325

Table 3. Experimental rho length constant for various iterating functions.

15 20 25 30 35 40

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

C_4�C_20

C_20

C_4

C_P

Fig. 1. Expected rho length constants for fP , f4, and f20.

Cr and CP , and this is summarized in Table 3. We have also provided graphs
for some of these in Figure 1.

It is clear that our data is not very accurate, but it is good enough for one
to conclude that C4/C20 will not be too different from 1.3, even for large q.

B Tag Tracing on Binary Fields

Let us explain how tag tracing can be applied to cyclic subgroups of binary
fields. We shall be very brief, as much of this case is quite similar to the prime
field case.

Fix the binary field to F2m = F2[t]/p(t), where p(t) is an irreducible polyno-
mial of degree m, so that elements of the cyclic group G ⊂ F×2m may be written
in the polynomial basis. Adopting the notation used with integers, we shall write

bp1(t)/p2(t)c and p1(t) mod p2(t) to denote the quotient and remainder, respec-
tively, resulting from the polynomial division of p1(t) by p2(t).

We fix positive integers u and v, such that v < u ≤ m+1
2 , and define the

polynomial B(t) = bp(t)/tuc. The tag function τ : G → T = {f ∈ F2[t] |
deg f < u− v} is defined as

τ
(
g(t)

)
=

⌊
g(t) mod p(t)

tv ·B(t)

⌋
. (6)

Note that this map is surjective and will be roughly pre-image uniform for usual
choices of G.

Given an x(t) ∈ F2[t], we can write x(t) =
∑

i xi(t) · t(v+1)i, with deg xi(t) ≤
v. Also, given y(t) ∈ F2[t], we can write, t(v+1)i·y(t) mod p(t) = ŷi(t)·B(t)+y̌i(t)
with deg y̌i(t) < m−u, for each meaningful i. Using this notation, we define the
auxiliary tag function as

τ̄
(
x(t),y(t)

)
=

⌊∑
i xi(t) · ŷi(t) mod tu

tv

⌋
. (7)

Then, through careful counting of degrees and argument similar to the proof of
Lemma 4, one can show that

τ
(
x(t) · y(t)

)
= τ̄

(
x(t),y(t)

)
.

We emphasize that this is true for any choice of x(t),y(t) ∈ F2[t].
Finally, we view the polynomial set T as the set of non-negative integers less

than |T | = 2u−v and define σ : T → S = {0, . . . , r−1} to be division by d|T |/re.
Then, the index function s = σ ◦ τ : G → S is pre-image uniform for r that is
a power of 2. For other r, the probability of reaching each of the indices may
differ by at most 1/|T |.

In the binary field case, unlike the prime field case, the auxiliary tag function
always gives the correct tag value, so one has a better chance of running through
the full `-many tag tracing steps with the pre-computed table M`, without fully
computing any product. However, the asymptotic complexity of the binary field
case remains equal to that of the prime field case.

