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Abstract. Key-dependent message security, short KDM security, was intro-
duced by Black, Rogaway and Shrimpton to address the case where key cycles
occur among encryptions, e.g., a key is encrypted with itself. We extend this
definition to include the cases of adaptive corruptions and arbitrary active
attacks, called adKDM security incorporating several novel design choices
and substantially differing from prior definitions for public-key security. We
also show that the OAEP encryption scheme (using a partial-domain one-
way function) satisfies the strong notion of adKDM security in the random
oracle model. The OAEP construction thus constitutes a suitable candidate
for implementating symbolic abstractions of encryption schemes in a compu-
tationally sound manner under active adversaries.
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1 Introduction

Encryption schemes constitute the oldest and arguably the most important cryp-
tographic primitive. Their security was rigorously studied very early, starting with
Shannon’s work for the information-theoretic case [31]. Computational definitions for
public-key encryption were developed over time, in particular in [23,32,30,19]. For
symmetric encryption, the first real definitions were, to the best of our knowledge,
given in [19,28,8], using the same basic ideas as in public-key encryption. While these
definitions seemed to take care of standard usage of encryption schemes, it was soon
recognized that larger protocols might pose additional requirements on the encryp-
tion schemes, e.g., in multi-party computations with dynamic corruptions as in [7]. It
was also recognized that in some cases, symmetric encryption initially seemed to be
the appropriate method to use, but upon study other primitives such pseudorandom
permutations [10,8] or authenticated encryption [12,9] proved to be better.

A specific additional requirement some larger protocols pose on encryption
schemes is the ability to securely encrypt key-dependent messages. One speaks of
key-dependent messages if a key K is used to encrypt a message m where m contains
or depends on the key K (or the corresponding secret key in the case of public-key
encryption). The first concrete use of this case seems to have been in [15], where
multiple private keys were used to encrypt one another in order to implement an
all-or-nothing property in a credential system to discourage people from transfer-
ring individual credentials. Such key cycles also occur in implementations of disk



encryption in, e.g., Windows Vista, that can store an encryption of its own secret
keys to the disk in some situations. Key cycles also occur in some naively designed
key exchange protocols of session keys given master keys shared among the two par-
ties or with a key distribution center, where at the end of the protocol the newly
exchanged key is “confirmed” by using it to encrypt or authenticate something that
might include the master keys.

Another area that has brought additional requirements on cryptographic prim-
itives, and in particular that of encryption with key cycles, is the use of formal
methods or “symbolic cryptography”. Here the question is whether simple abstrac-
tions of cryptographic primitives exist that can be used by automated proof tools
(model checkers or theorem provers) to prove or disprove a wide range of security
protocols that use cryptography in a blackbox manner. The original abstractions
used by this automation community are term algebras constructed from certain
base types and cryptographic operators such as E and D for encryption and decryp-
tion. They are often called Dolev-Yao models after the first such abstraction [20].
As soon as one has a multi-user variant of such a model, the keys are terms, and
from the term algebra side it is natural that keys can also be encrypted, i.e., most
models simply assume that key cycles are allowed. Once cryptographic justification
of such models was started in [2], it was recognized that key cycles had to be ex-
cluded from the original models to get cryptographic results. The same holds for
later results [1,26,6,27,29,4,18,17].

Motivated primarily by symbolic cryptography, a definition of key-dependent
message security (KDM security) was introduced in [13]. It generalizes the definition
from [15] by allowing arbitrary functions of the keys (and not just individual keys)
as plaintexts, and by considering symmetric encryption schemes. [13] also presents
a definition and a construction (without proof) for the asymmetric case against
passive attackers. In [5] it was shown that, in the case of symmetric encryption, an
extension of the KDM definition that additionally allows for a limited revelation of
secret keys of honest users, called DKDM security, is suitable for extending results
about the justification of Dolev-Yao models to include protocols with key cycles. Full
security in the presence of key-dependent messages has so far only been achieved
in the random oracle model. In [24] and [25], the problem of implementing KDM
secure symmetric encryption schemes without random oracles is investigated. There,
solutions are given for relaxed variants of KDM security, e.g., security against a
bounded number of queries or security with respect to a single key dependency
function. No scheme is known, however, that fulfills any form of full-fledged KDM
security (passive or active) without the use of random oracles. In [14], a scheme is
presented that is secure if the key dependency functions are guaranteed to be affine.
Extensions of KDM security for public-key encryption to active adversaries have not
been proposed yet, and establishing meaningful definitions for this case indeed raises
non-trivial problems.

Our Contributions. We first propose a new definition of security under key-
dependent messages, called adKDM security, that captures security against active
attackers and adaptive corruptions in the case of public-key encryption. This defi-
nition incorporates several novel design choices and substantially differs from prior
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definitions for public-key security; in particular, it allows the adversary to iteratively
construct nested encryptions without necessarily revealing inner encryptions, and it
is required to keep track of the knowledge that the adversary maintains in an ideal
setting.

We then investigate the OAEP encryption scheme and prove that it satisfies
adKDM security in the random oracle model, assuming the partial-domain one-
wayness of the underlying trapdoor-permutation. This in particular shows the OAEP
construction to constitute a suitable candidate for soundly implementing symbolic
abstractions of cryptography (so-called computational soundness). We leave it as an
open problem for future work to prove that our definition of adKDM security is
sufficient for a computational soundness result.

The need to incorporate key dependencies and the adaptive nature of adKDM se-
curity require substantial changes to the CCA2-security proof of OAEP. In particular,
adKDM security does not allow for determining in advance which encryptions will
be used as challenge encryptions. At the point of construction of these bitstrings,
the adversary might not even know the challenge encryptions. Consequently, per-
forming the reduction to the underlying assumption requires us to lazily construct
them in order to decide as late as possible which encryption constitutes a challenge
encryption.

2 Preliminaries

In this section, we present some definitions and conventions that will be used later
on in the paper.

Notation. Let ⊕ denote the XOR operation, and let ‖ denote concatenation. For a
probabilistic algorithm B, let y ← B(x) denote assigning the output of B(x) to y.
Let Pr[π : X ] denote the probability that π holds after executing the instructions in
X (which are of the form y ← B(x)). A function in n is negligible if it is in n−ω(1).
A function is non-negligible if it is not negligible. We formulate all our results for
uniform adversaries, but they hold for nonuniform adversaries as well.

Definition 1 (Circuit). A circuit is a Boolean circuit with n1 + · · ·+ nt input bits
(t ≥ 0) and m output bits. The circuit may have arbitrary fan-in and fan-out, AND-,
OR- and NOT-gates, and—in the case of an encryption scheme in the random-oracle
model—gates for querying the random oracle(s). We assume that a circuit is always
encoded by explicitly specifying all its gates and the numbers n1, . . . , nt, m. The eval-
uation f(x1, . . . , xt) of a circuit f on bitstrings x1, . . . , xt is defined as follows: Let x′

i

be the result of truncating or padding xi with 0∗ to the length ni. Then f(x1, . . . , xt)
is the result of evaluating f with input x′

1‖ . . . ‖x′
t.

1

Convention: Encryption is length-regular. For any encryption scheme, we im-
pose the following assumption on the output of the encryption function Enc and
the decryption function Dec: The length of the output of Enc depends only on the

1 Not granting a circuit access to the length of its arguments is not a restriction in our
case, since this length will always be known in advance.
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public key and the length of the message. The length of the output of Dec depends
only on the public key and the length of the ciphertext. This can easily be achieved
by suitable padding and encoding.

The OAEP scheme. The optimal asymmetric encryption padding (OAEP) scheme
[11] constitutes a widely employed encryption scheme in the random oracle model
based on a trapdoor 1-1 function.

Definition 2 (OAEP). Let k denote the security parameter and let k0 and k1 be
functions such that k0, k1, k − k0 − k1 are superlogarithmic. Assume a 1-1 trapdoor
function f with domain {0, 1}k = {0, 1}k−k0×{0, 1}k0. Let G : {0, 1}k0 → {0, 1}k−k0

and H : {0, 1}k−k0 → {0, 1}k0 denote random oracles. The public and secret key for
the OAEP encryption scheme (Enc, Dec) consists of a public key and a trapdoor
for f . An encryption c = Enc(pk , m) with |m| = k − k0 − k1 is computed as r ←
{0, 1}k0, s := (m‖0k1)⊕G(r), t := r ⊕H(s), c := fpk (s‖t).

A decryption Dec(sk , c) is computed as s‖t := f−1
sk (c), r := t ⊕ H(s), m‖z :=

s⊕G(r) with |s| = k − k0, |t| = k0, |m| = k − k0 − k1 and |z| = k1. If z = 0k1 , the
plaintext m is returned, otherwise the decryption fails with output ⊥.

It has been shown in [21] that the OAEP scheme is IND-CCA2 secure in the ran-
dom oracle model under the assumption that f fulfills the following Definition 3 of
partial-domain one-wayness. They further showed that the RSA-trapdoor permuta-
tion, which is most commonly used for the OAEP scheme, is partial-domain one-way.

Definition 3 (Partial-Domain One-Wayness). A 1-1 function f : S × T →
rangef with key generation KeyGenf is partial-domain one-way if for any
polynomial-time adversary A we have that

Pr
[

s = s′ : pk ← KeyGenf , (s, t)
$
← S × T, s′ ← A(pk , fpk (s ‖ t))

]

is negligible in k, where A, KeyGenf , f, S, T depend on the the security parameter k.
We sometimes call this probability the advantage of A.

3 The Definition of adKDM

We now present our definition of adKDM security. Since this definition incorporates
several novel design choices and substantially differs from prior security definitions
for public key security, we do not immediately present the definition. Instead, we
start with a direct adaption of an existing definition and show using an example
why this adaption is not sufficient. We proceed with several plausible approaches for
extending this adaption and explain why they fail. We finally present our definition of
adKDM security and explain why it solves the problems observed with the tentative
definitions discussed before.

Extending DKDM security. In [5] the security notion DKDM was proposed for
the case of symmetric key-dependent encryptions. It is the strongest notion of KDM
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security considered so far; restating it one-to-one in the public-key setting would
yield the following definition:2

Definition 4 (DKDM, public key setting – sketch). The DKDM oracle main-
tains a sequence of key pairs pk i, sk i and a random challenge bit b. It answers to the
following queries:
– pk (j): Return pk j.
– reveal(j) where j has not been used in an enc(j, ·) query: Return sk j.
– enc(j, f) where f is a circuit and j has not been used in a reveal (j) query:

Compute m0 := f(sk1, sk2, . . . ), m1 := 0|m0| and encrypt c := Enc(pk j , mb).
Return c.

– dec(j, c) where c has not been returned by an enc(j, ·) query with the same key
index j: Return Dec(sk j , c).

A public key encryption scheme (Enc, Dec) is DKDM secure if no polynomial time
adversary interacting with the DKDM-oracle guesses b with probability non-negligibly
greater than 1

2 .

This definition is an almost immediate generalization of the IND-CCA definition to
the multi-session setting (i.e., with several key pairs instead of only one). DKDM
extends IND-CCA in two ways: First, the messages that are contained an enc(·, ·)
encryption query may depend on all secret keys in the system. Second, one can
reveal secret keys as long as the corresponding public keys have not been used for
encrypting (otherwise one could decrypt a challenge ciphertext so that the definition
cannot be met).

Although the notion of DKDM has been shown to be useful for soundness results
for a specific class of protocols, it has obvious restrictions on the class of protocols
considered. In particular, it is not allowed to reveal a key that has been used for
encryption. The following simple protocol illustrates that this indeed constitutes a
restriction: Alice holds two secret keys sk1, sk2 and a secret message m and sends
the following messages to Bob:

c1 := Enc(pk1, Enc(pk2, m‖sk1‖sk2)), c2 := Enc(pk2, Enc(pk1, m‖sk1‖sk2))

Then Bob chooses a value i = 1, 2 and Alice sends sk i to Bob. We would intuitively
expect the message m to stay secret since Bob learns at most one of the keys sk1, sk2.
However, a direct reduction against DKDM security fails. Namely, we have basically
four possibilities to construct the messages c1, c2 by querying the DKDM oracle
(note that enc denotes the query to the adKDM oracle while Enc is the encryption
algorithm):

(i) c1 := enc(1, g1), c2 := enc(2, g2) where g1 and g2 are circuits comput-
ing Enc(pk2, m‖sk1‖sk2) and Enc(pk1, m‖sk1‖sk2), respectively (given input
(sk1, sk2)).

(ii) c1 := Enc(pk1, enc(2, g)), c2 := Enc(pk2, enc(1, g)) where g computes
m‖sk1‖sk2.

2 We have omitted one condition of their definition, namely that it should not be possible
to generate a valid ciphertext without the knowledge of the secret key. This condition is
not applicable to the public-key setting.
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(iii) c1 := Enc(pk1, enc(2, g)), c2 := enc(2, g2) where g and g2 are as before.
(iv) c1 := enc(1, g1), c2 := Enc(pk2, enc(1, g)), where g and g1 are as before.
Then, depending on the value of i chosen by Bob, we have to issue reveal(i). In
cases (i) and (ii), no reveal query is allowed since queries of the forms enc(1, ·) and
enc(2, ·) have been performed which excludes reveal queries reveal(1) and reveal(2)
by Definition 4. Similarly, in case (iii) we are not allowed to query reveal (2), and in
case (iv) we are not allowed to query reveal(1). Thus in order to perform the first
step, we have to know in advance what the value of i will be and to construct c1, c2

as in case (iii) or (iv), respectively. Of course, in the present example it is possible to
save the reduction proof by guessing i; however, it is easy to thwart this possibility
by performing many such games in parallel.3 A natural approach to extend the
definition of DKDM to this case would be to allow to even reveal keys sk j that are
used in encryption queries enc(j, ·). However, a query enc(j, ·) returns an encryption
c of the message mb. So given the secret key sk j , we could easily determine mb from
c and therefore the challenge bit b. Therefore, we will have to distinguish between
two types of encryption queries: A normal encryption query enc(j, f) will return the
encryption of m0 := f(sk1, . . . ) irrespective of the value of b. A challenge encryption
query challenge(j, f) returns mb where m0 is as for enc(j, f) and m1 := 0|m0|. This
leads to the following tentative definition:

Definition 5 (KDM security – tentative). The oracle T chooses a random bit
b and accepts the following queries.
– pk (j) and reveal(j): Return pk j and sk j, respectively. dec(j, c): Return

Dec(sk j , c).
– enc(j, f(i1, . . . , it)) where f is a circuit: Compute m0 := f(sk i1 , . . . , sk it

) and
return Enc(pk j , m0).

– challenge(j, f(i1, . . . , it)): Compute m0 as before, m1 := 0|m0| and return
Enc(pk j, mb).

The oracle aborts in the following cases: reveal(j) is queried but challenge(j, ·) has
been queried before. challenge(j, ·) is queried but reveal(j) has been queried. dec(j, c)
is queried but c was produced by challenge(j, ·). A scheme is KDM secure if no
polynomial-time adversary guesses b with probability noticeably larger than 1

2 .

This definition might look appealing, but it cannot be met: For example, one could
encrypt a challenge plaintext under pk1 via the query challenge(1, m), then encrypt
the key sk1 under pk2 via c := enc(2, sk1), and finally reveal sk2 via reveal(2).4 This
sequence of queries is not forbidden by Definition 5. Now we can compute sk1 from
c using sk2 and then decrypt the challenge encryption using sk1. This allows us to
determine the bit b. Hence no encryption scheme can fulfill Definition 5. We hence
have to relax the definition by excluding queries that would trivially allow to decrypt

3 E.g., Alice sends m
(1)
1 , m

(1)
2 , . . . , m

(n)
1 , m

(n)
2 with m

(µ)
1 := Enc(pk

(µ)
1 , Enc(pk

(µ)
2 , m‖keys)),

m
(µ)
2 := Enc(pk

(µ)
2 , Enc(pk

(µ)
1 , m‖keys)) and keys := sk

(1)
1 ‖sk

(1)
2 ‖ . . . ‖sk

(n)
1 ‖sk

(n)
2 . Then

Bob chooses i1, . . . , in ∈ {1, 2} and Alice sends sk
(1)
i1

, . . . , sk
(n)
in

. The fact that all keys
are contained in each encryption also disables hybrid arguments. To the best of our
knowledge, the security of this protocol cannot be reduced to DKDM security.

4 We use the shorthand m and sk1 for the circuits outputting m and sk1, respectively.
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a challenge ciphertext. For this, we have to reject queries to the oracle that would
allow the adversary to decrypt the challenge even in an ideal setting. For this, we
keep track of the keys that the adversary can deduce from the queries made so far.
We call this set know (the knowledge of the adversary) because it represents what
the adversary knows ideally. The set know is inductively defined as follows: (a) If
reveal(j) has been queried, then j ∈ know . (b) If j ∈ know , and a enc(j, f(i1, . . . , it))
has been queried, then i1, . . . , in ∈ know . (c) If enc(j, f(i1, . . . , it)) has been queried
and returned the ciphertext c, and dec(j, c) has subsequently been queried, then
i1, . . . , it ∈ know . Roughly, we say that the adversary knows all keys that either
were revealed or are contained in ciphertexts it could decrypt using keys it knows.
We can now relax Definition 5 by disallowing queries that would allow the adversary
to know a secret key for a challenge encryption.

Definition 6 (KDM security – tentative). KDM security is defined as in
Definition 5 except that the oracle T additionally aborts if a query would lead to the
following situation: For some j ∈ know, a query challenge(j, ·) has been performed
(or is being performed).

Introducing hidden encryptions. Definition 6, however, is still too weak to allow
to adaptively choose which keys to reveal. In particular, the example protocol given
above can still not be proven secure: When producing c1, c2 in a reduction proof,
we have to decide which of the ciphertexts will be created by challenge encryptions
(challenge(·, ·) queries) and which will be created by normal encryptions (enc(·, ·)).
Since we might have to invoke reveal(1) later, we may not use challenge(1, ·) queries,
and since we might have to invoke reveal(2), we may not use challenge(2, ·) queries.
But if no challenge(·, ·) query is issued, the oracle T never uses the bit b and thus
the adversary cannot guess b.5

Handling adaptive revelations of keys hence requires to further extend our ap-
proach. A closer inspection reveals why we failed to prove the security of the ex-
ample protocol: We had two possible ways to construct the ciphertext c1. Either
(a) we could ask the oracle to produce c′1 := Enc(pk2, m‖sk1‖sk2) and encrypt it
ourselves using pk1 to produce c1. Or (b) we could request the ciphertext c1 directly
by sending to the oracle a circuit f that computes c′1 from sk1, sk2. In case (a), we
are not allowed to reveal sk2 since this would allow to decrypt c′1 and thus reveal m.
In case (b), if we were to reveal sk1 this would allow to decrypt c1. As the plaintext
c′1 for c1 has been produced using a circuit f from sk1, sk2 and m, the oracle has no
way of knowing that c′1 is actually an encryption of these values (this would require
an analysis of the circuit to determine what it does) and thus has to consider the
values sk1, sk2 and m to be leaked when c1 is decrypted. Thus in case (b), we have
to disallow the revelation of sk1. This analysis shows that we need a way to send the
following instructions to the oracle:“First produce the ciphertext c′1 as an encryption
of m‖sk1‖sk2 (where m‖sk1‖sk2 is described by a suitable circuit). Do not return
the value c′1 (as otherwise we would be in case (a)). Then produce the ciphertext c1

by encrypting c′1. Return c1.”

5 Again, this problem might be remedied by guessing in advance whether sk1 or sk2 will
be needed, but see footnote 3 for an example where guessing does not work.
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Given these instructions, the oracle has enough information to deduce that when
revealing sk1, the message m is still protected by the encryption c′1 using pk2 (the
details of this deduction process are discussed below). And if only sk2 is revealed
instead, c1 cannot be a decryption and m is protected. Analogous reasoning applies
to the construction of c2.

Hence we have to define an oracle T that allows us to construct ciphertexts with-
out revealing them. Instead, for each ciphertext we can adaptively decide whether
to reveal it or whether we only use it inside other ciphertexts (that again may or
may not be revealed). More concretely, whenever a query is issued to T , instead of
directly returning the result of that query, it is stored in some register bitsh inside the
oracle where h is a handle identifying the register. Only upon a special reveal query,
the value bitsh is returned to the adversary. A challenge encryption (i.e., one whose
content depends on the challenge bit b) is then produced as follows: First produce a
plaintext m (possibly using a circuit and depending on other hidden strings) and as-
sign it to register bitsh1

. Then, depending on b, assign bitsh1
or 0|bitsh1

|, respectively,
to register bitsh2

(using a special challenge query h2 ← C(h1)). Encrypt bitsh2
using

some key and assign the result to bitsh3
. Finally (optionally) reveal bitsh3

.6

These considerations lead to the following definition of the adKDM oracle (how-
ever, for the definition of adKDM security we will additionally define which sequences
of queries are allowed):

Definition 7 (adKDM Oracle). The adKDM oracle T maintains two partial
functions cmd and bits (to increase readability we write bitsh for bits(h) and cmdh

for cmd(h)), a set Φ, a sequence of secret/public key pairs sk i, pk i (i ∈ N) (which are
generated when first accessed), and a bit b (the challenge bit). The function cmd will
store the structure of previous queries, the function bits will store the corresponding
bitstrings, and Φ will keep track of query results that are revealed to the adversary.
We will refer to the elements in the domain of cmd and bits as handles in the follow-
ing. Upon the first activation, b is chosen uniformly from {0, 1}, bits and cmd are
initially undefined, and Φ is empty. The oracle responds to the following commands:
– Encryption: h′ ← E(j, h) where cmdh′ has not been assigned, cmdh has been as-

signed, and j is a key index: Set bitsh′ := Enc(pk j , bitsh) and cmdh′ := E(j, h).
– Decryption: h′ ← D(j, h) where cmdh′ has not been assigned, cmdh has been

assigned, and j is a key index: Set bitsh′ := Dec(pk j , bitsh), and cmdh′ :=
D(j, h).

– Circuit evaluation: h′ ← F (f, h1, . . . , ht) where cmdh′ has not been assigned,
cmdhi

has been assigned for all i, and f is a circuit with t arguments: Set
bitsh′ := f(bitsh1

, . . . , bitsht
) and set cmdh′ := F (f, h1, . . . , ht).

– Key request: h′ ← K(j) where cmdh′ has not been assigned and j is a key index:
Set cmdh′ := K(j) and bitsh′ := sk j.

6 This is, of course, not the only possible way to model challenge encryptions. One could,
e.g., use a special command for producing a challenge encryption. However, we believe
that the approach of being able to make challenge values out of arbitrary messages allows
for more direct reductions in proofs. E.g., in our example protocol we could directly model
the fact that m is the value that should remain hidden by using oracle call h′ ← C(h)
when bitsh contains m and then using bitsh′ instead of bitsh in subsequent encryptions.

8



– Challenge: h′ ← C(h) where cmdh′ has not been assigned and cmdh has been
assigned: Set cmdh′ := C(h). If b = 1, set bitsh′ := bitsh, otherwise set bitsh′ :=
0|bitsh|.

– Reveal: reveal(h) where cmdh has been assigned: Add h to Φ and return bitsh.
– Public key request: pk(j) where j is a key index: Return pk j.

The above commands in particular allow to assign a constant c to a handle h′ by
issuing h′ ← F (f) where f is a nullary circuit that returns c. We abbreviate this as
h′ ← F (c). Note that the length of every bitstring is always known to the adversary,
because Enc, Dec, and all f are length-regular.

The knowledge of the adversary. If T can be accessed in arbitrary ways, it is easy
to determine b, e.g., querying h1 ← F (1), h2 ← C(h1), reveal(h2) will return b. Thus
we have to restrict the adversary to queries that will not trivially allow to deduce
b. The necessary criteria are given below. In analogy to Definition 6 we do this by
deriving a set know that characterizes what the adversary would ideally be able to
know after the queries it performed. In contrast to Definition 6 the set know does
not only contain keys, but the handles of all values produced by the oracle that the
adversary would be able to know in an ideal setting. Intuitively, the knowledge know
is defined by the following rules: All handles that the adversary requested (the set Φ)
are considered known. If the decryption of a message is known, then that message is
considered known.7 If a circuit evaluation is known, all its arguments are considered
known. If a challenge is known, the underlying message is considered known. If a key
is known and an encryption of some message under that key is known, the message
is considered known. And finally, if a decryption of some handle h1 is known, and
some handle h2 evaluates to the same bitstring as h1, and that handle h2 resulted
from an encryption of some message m, then that message m is considered known.

The last rule merits some additional explanation: The adversary may, e.g., con-
struct and reveal an encryption c (assigned to some handle h2) of some m. Then
it constructs a circuit f that evaluates to c (by hard-coding c into f) and assigns
h1 ← F (f). Now h1 and h2 refer to the same bitstring. By revealing the decryption
of h1, the adversary will then learn m. So after this sequence of queries, we have to
ensure that m is considered known to the adversary. This is ensured by the last of the
above rules. The following definition formally states the definition of the knowledge
of the adversary.

Definition 8 (Knowledge). For partial functions cmd , bits and a set Φ, we define
the knowledge know = know cmd,bits,Φ of the adversary to be inductively defined as
follows:
– Φ ⊆ know.
– If h′ ∈ know and cmdh′ = D(j, h) then h ∈ know.
– If h′ ∈ know and cmdh′ = F (f, h1, . . . , ht) then h1, . . . , ht ∈ know.
– If h′ ∈ know and cmdh′ = C(h) then h ∈ know.

7 It may seem surprising that by learning the result of a decryption we may learn something
about the ciphertext. However, in fact we can get a single bit about the ciphertext,
namely whether it is valid or not. Combining this with the application of circuits, we can
in principle retrieve the full ciphertext.
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– If h′ ∈ know and cmdh′ = D(j, h1), bitsh1
= bitsh2

and cmdh2
= E(j, h3) then

h3 ∈ know.
– If h′

1, h
′
2 ∈ know and cmdh′

1
= K(j) and cmdh′

2
= E(j, h) then h ∈ know.

Note that know can be efficiently computed given Φ, cmd , and bits by adding handles
to know according to the rules in Definition 8 until know does not grow any more.
We are now ready to state the final definition of adKDM security. Intuitively, an
encryption scheme is adKDM secure if the probability that the adversary guesses b
correctly without performing a query that would even ideally allow it to retrieve a
bitstring constructed using a C(·) query.

Definition 9 (Adaptive KDM Security (adKDM)). An encryption scheme
(Enc, Dec) is adKDM secure if for any polynomial-time adversary A there is a neg-
ligible function µ such that the following holds:

Pr[Guess ∧ ¬Invalid] ≤ 1
2 + µ(k)

where the events refer to an execution of A with input 1k and oracle access to
T(Enc,Dec) and the events are defined as follows:

By Guess we denote the event that the adversary outputs b where b is the challenge
bit.

By Invalid we denote the event that h ∈ knowcmd,bits,Φ with cmdh being of the
form C(·).

We will show that this definition can be met (at least in the random oracle model)
in the next section. Clearly adKDM security implies DKDM security, since if we can
only reveal keys that are not used for decrypting, the plaintexts of the challenge
encryptions will never be in know .

Adaptive KDM security in the random oracle model. As the OAEP construc-
tion is formulated in the random oracle model, we need to know how Definition 9
needs to be adapted when used in the random oracle model. In this case, the adver-
sary A is given access to the random oracle, and the circuits f passed to the adKDM
oracle are allowed to contain invocations of the random oracle. Furthermore, the key
generation, encryption, and decryption algorithms may contain invocations of the
random oracle.

On simulation-based notions. We often motivated our design choices above by
comparison with an ideal setting in which the adversary knows exactly the bitstrings
associated with handles in know . This leads to the question whether it is possible
to instead directly define security under key-dependent message attacks using a
simulation-based definition, i.e., to define an ideal functionality that handles encryp-
tion and decryption queries in an ideal fashion. This approach has been successfully
used to formulate IND-CCA security in the UC framework [16]. Their approach,
however, strongly depends on the fact that the functionality only needs to output
public keys and (fake) encryptions (secret keys are only implicitly present due to the
ability to use the functionality to decrypt messages).8 It is currently unclear how

8 Technically, the reason is that a simulator has to be constructed that chooses the out-
puts of the functionality. As long as only public keys and ciphertexts are output, fake

10



this approach could be extended to a functionality that can output secret keys. (It
is of course possible to define a functionality that outputs secret keys as long as no
encryption queries have been performed for that key, but this lead to a definition
that is too weak to handle, e.g., our example protocol and that would roughly corre-
spond to Definition 4.) This difficulty persists if we do not use the strong UC model
[16] but instead the weaker stand-alone model as in [22, Chapter 7]. Consequently,
although a simulation-based definition of KDM security might be very useful, it is
currently unknown how to come up with such a definition.

4 OAEP is adKDM-Secure

We now prove the adKDM security of the OAEP scheme for a partial-domain one-
way function. In particular, since the RSA permutation is partial-domain one-way
under the RSA assumption [21], the adKDM security of RSA-OAEP follows.

Theorem 10 (OAEP is adKDM secure). If f is a partial-domain one-way trap-
door 1-1 function, then the OAEP scheme (Enc, Dec) based on f is adKDM secure
in the random oracle model.

To show this theorem, we first define an alternative characterization of partial-
domain one-wayness.

Definition 11 (PD-Oracle). The PD-oracle Pf for a trapdoor 1-1 function f :
S ×T → range f (that may depend on a security parameter) maintains sequences of
public/secret key pairs sk i, pk i (generated on first use). It understands the following
queries:
– pk (j) and sk(j): Return pk j or sk j, respectively.
– challenge(h, j): If h has already been used, ignore this query. Let jh := j. Choose

(sh, th) uniformly from S × T . Set ch := fpkjh
(sh, th). Return ch.

– decrypt(h): Return (sh, th).
– xdecrypt(c, j) where (c, j) 6= (ch, jh) for all h. Check whether f−1

skj
(c) = (sh, th)

for some h. If so, return (sh, th). Otherwise return ⊥.
– check (s): Return the first h with sh = s. If no such h exists, return ⊥.

By PDBreak we denote the event that a query check (s) is performed such that
– The query returns h 6= ⊥.
– No query sk(jh) and no query decrypt(h) has been performed before the current

query.

Lemma 12. If f is partial-domain oneway, then for any polynomial-time adversary
A querying Pf we have that Pr[PDBreak] is negligible in the security parameter.

The proof is given in Appendix A. We additionally define a variant of the notion of
knowledge as defined in Definition 8. We call this variant lazy knowledge.

ciphertexts can be used since they cannot be decrypted. If the simulator had to generate
secret keys, the fake ciphertexts could be decrypted and recognized.
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Definition 13 (Lazy knowledge). For partial functions cmd , bits and a set Φ, we
define the lazy knowledge lknow = lknowcmd,bits,Φ of the adversary to be inductively
defined as follows:
– Φ ⊆ lknow.
– If h′ ∈ lknow and cmdh′ = D(j, h) then h ∈ lknow.
– If h′ ∈ lknow and cmdh′ = F (f, h1, . . . , ht) then h1, . . . , ht ∈ lknow.
– If h′ ∈ lknow and cmdh′ = C(h) then h ∈ lknow.
– If h′, h1, h2∈ lknow, cmdh′ = D(j, h1), bitsh1

=bitsh2
and cmdh2

=E(j, h3) then
h3 ∈ lknow.

– If h′
1, h

′
2 ∈ lknow and cmdh′

1
= K(j) and cmdh′

2
= E(j, h) then h ∈ lknow.

The only change with respect to Definition 8 is that in the fifth rule we require
that h1, h2 ∈ lknow . In Definition 13 all rules depend only on values bitsh for which
h ∈ lknow ; thus one can efficiently compute lknow without accessing bitsh for values
h /∈ lknow by adding handles to lknow according to these rules until lknow does not
grow any further. We call this algorithm the lazy knowledge algorithm. Note that
lknow ⊆ know .

Proof sketch (of Theorem 10). To prove Theorem 10 we give a sequence of games
that transforms an attack against the adKDM security of the OAEP scheme into
an attack against the PD-oracle. This proof sketch only contains the proof structure
and highlights selected steps. The full proof is given in the full version [3].

GAME1. The adversary A runs with access to the unmodified adKDM oracle T . We
assume that T invokes an encryption oracle E for encrypting and a decryption oracle
D for decrypting. In particular, the encryption oracle E performs the following actions
in the i-th query:

r
$
← {0, 1}k0, g := G(r), s := (m‖0k1)⊕ g, h := H(s), t := r ⊕ h, c := fpk(s, t).

The decryption oracle D acts as follows, assuming key index j and ciphertext c:

– (s, t) := f−1
pkj

(c), r := t ⊕H(s), (m, z) := s ⊕ G(r) with |m| = k − k1 − k0 and

|z| = k1.
– If z = 0k1 , return m, otherwise return ⊥.

GAME2. We change the encryption oracle to first choose the ciphertext c and then com-
pute the values s, t, r, h, t, g from it, i.e., upon the i-th query the encryption oracle
does the following:

(s, t)
$
← {0, 1}k−k0 × {0, 1}k0, c

$
← fpk(s, t), r

$
← {0, 1}k0, h := r ⊕ t, g := (m‖0k1)⊕s

In particular, the values h and g are not retrieved from the oracles G and H any
more. In order to keep the distribution of the values c, s, t, r, h, t, g consistent with
the answers of the oracles G and H , the oracles G and H are additionally modified
to return the values g and h chosen by the encryption oracle. We show that the
probability of a successful attack is modified only by a negligible amount with respect
to GAME1.
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GAME3. We now change the definition of what constitutes a successful attack. In GAME1–
GAME2, we considered it a successful attack if the adversary guessed the bit b chosen
by the adKDM oracle T without performing queries such that the knowledge in the
sense of Definition 8 would contain a handle corresponding to a query of the form
C(·); see Definition 9.
Now, in GAME3, we consider it to be a successful attack if the adversary guessed b
without performing queries such that the lazy knowledge in the sense of Definition 13
does not contain a handle corresponding to a query C(·). Since the lazy knowledge
is a subset of the knowledge, this represents a weakening of the restrictions put on
the adversary. Thus the probability of an attack in GAME3 is upper-bound by the
probability of an attack in GAME2.

GAME4. This step is arguably the most important step in the proof. In GAME3, bitstrings
bitsh associated to handles h are often computed but never used. For example, the
adversary might perform a query h ← E(. . . ) and never use the handle h again.
More importantly, however, even if the adversary performs a query h′ ← E(j, h) for
that handle h, the value bitsh does not need to be computed due to the following
observation: The encryption oracle as introduced in GAME2 chooses the ciphertext c
at random. The value g (which is the only value depending on the plaintext m) is
only needed for suitably reprogramming the oracles G (namely such that G(r) = g).
Thus we can delay the computation of g until G is queried at position r. Thus in
case of a query h′ ← E(j, h), the value m = bitsh is not needed for computing bitsh′ .
We use this fact to rewrite the whole game GAME3 such that it only computes a value
bitsh when it is actually needed for computing some output sent to the adversary or
for computing the lazy knowledge.
The bit b is only used in this game if a value bitsh is computed that corresponds to
a query h← C(·). If this is not the case, the communication between the adversary
and T is independent of b. Hence, for proving that the probability of attack in the
sense of GAME3 is only negligibly larger than 1

2 (which then shows Theorem 10), it
is sufficient to show that only with negligible probability, a value bitsh is computed
such that h is not in the lazy knowledge. Namely, as long as no such value bitsh

is computed, the adversary cannot have a higher probability in guessing b than 1
2

unless h ∈ lknow .
GAME5. Now we replace the decryption oracle by a plaintext extractor. More concretely,

the decryption oracle performs the following steps when given a ciphertext c:
(a) First, it checks whether c = fpk (s, t) for some pair (s, t) generated by the en-

cryption oracle.9 Then values (s, t) are known such that fpk (s, t) = c, and the
oracle can decrypt c without accessing the secret key sk .

(b) Otherwise, it checks whether for some s that has been computed by the encryp-
tion oracle, there exists a value t such that fpk (s, t) = c. (Doing this efficiently
requires the secret key; otherwise we had to iterate over all possible values t.) If
so, reject the ciphertext.

(c) Otherwise, for all values s, r that have been generated so far, compute t :=
r ⊕H(s) and (m, z) = s⊕G(r). Then check whether fpk (s, t) = c and z = 0k1 .
If so, return m. Otherwise reject the ciphertext.

9 This does not imply that c has been generated by the encryption oracle since the encryp-
tion oracle might have used a different public key pk at that time.

13



We can show that this plaintext extractor is a good simulation of the original decryp-
tion oracle (in particular, the adversary is able to produce an s triggering rejection
in (b) only if the decryption would fail anyway). Thus the probability that a value
bitsh is computed such that h is not in the lazy knowledge does not increase by a
non-negligible amount.

GAME6. In this final step, we modify GAME5 not to generate the public/secret key pairs
on its own, but to use the PD-oracle P defined in Definition 11. In particular, we
make the following changes:
– When the secret key sk j is needed (for computing bitsh for a h← K(j) query),

query sk(j) from P .
– When producing a ciphertext bitsh′ (that are produced just to be random images

of fpk), use challenge(h′, j) where j is the corresponding key index.
– In the decryption oracle, for checking the condition (a) in GAME5, we distinguish

two cases. If c was produced by the encryption oracle the decryption oracle sends
a decrypt(h) to P where h is the query where c was produced. Otherwise it sends
an xdecrypt(c, j) query to P where j is the index of the key used in the decryption
query. In both cases, if the check in (a) would have succeeded, P will send back
a preimage (s, t) of c.

– The check (b) is performed by sending check(s) to P .
A case analysis reveals that if a value bitsh is computed such that h is not in the lazy
knowledge, then the event PDBreak (as in Definition 11) occurs. By Lemma 12 this
can only happen with negligible probability. Thus no value bitsh is computed such
that h is not in the lazy knowledge, and therefore the advantage of the adversary is
negligible (as discussed in GAME4). ut

A Proof of Lemma 12

Proof. Given an adversary A against the PD-Oracle P we construct an adversary B
against partial-domain one-wayness of the underlying function f as follows.

The machine B that implements the PD-oracle with slight changes: Let q be an
upper bound on the number of queries performed by A. Then B gets as input a key
pair pk∗, sk∗, values (s∗, t∗) ∈ S × T and a value c∗. Let j∗ be the i1-th key index
that is used in A’s queries, and let h∗ the i2-th handle that is used in a query of the
form challenge(h, j∗). Then B answers to A’s queries as follows (for simplicity, if we
write f−1

pk we mean an application of the secret key sk):

– pk (j): If j = j∗, return pk∗, otherwise return pk j .
– sk(j): If j = j∗, return sk∗, otherwise return sk j.
– challenge(h, j): If h has already been used, ignore this query.
• If h = h∗ (and thus also j = j∗) then set ch := c∗ and return ch.
• If h 6= h∗ then choose (sh, th) uniformly from S × T . Set ch := fpkjh

(sh, th).
Return ch.

– decrypt(h): If h = h∗, return (s∗, t∗). Otherwise return (sh, th).
– xdecrypt(c, j) where (c, j) 6= (ch, jh) for all h. This is equivalent to the following:
• If j 6= j∗ then check whether f−1

pkj
(c) = (sh, th) for some h 6= h∗ or

fpkj∗
(f−1

pkj
(c)) = ch∗ . If so, return f−1

pkj
(c). Otherwise, return ⊥.
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• If j = j∗ then test if fpkj
(sh, th) = c for any h 6= h∗. If such an h exists,

output (sh, th). Otherwise, return ⊥.
– check (s): If s = sh for some h, return the first h with sh = s. If sk(j∗) or

decrypt(h∗) has been queried, check whether s = s∗. If so, return h∗.
We claim that this machine B behaves identically to the PD-oracle P until the

event PDBreak occurs and that A’s view is independent of i1, i2 until the event PDBreak

occurs (assuming that the inputs sk∗, pk∗ are an honestly generated key pair, (s∗, t∗)
is uniformly distributed on S × T and c∗ = fpk∗(s∗, t∗)). For the queries pk , sk ,
challenge , and decrypt this is straightforward. In the case of xdecrypt we distin-
guish two cases: For j 6= j∗, the check performed is equivalent to checking whether
f−1
pkj

(c) = (sh, th) for some h 6= h∗ or f−1
pkj

(c) = (s∗, t∗) and then returning h or h∗,

respectively. Thus in this case the answer to the query xdecrypt is the same as that
the PD-oracle P would give. For j = j∗, in comparison to P , the check whether
fpkj

(s∗, t∗) = c is missing. However, if this check held true, we would have that
(c, j) = (c∗, j∗) which is excluded. To see that the query check (s) gives the same an-
swers in B and P until PDBreak occurs, note that the only case where check (s) would
give another answer in P is when s = s∗ but neither sk(j∗) nor decrypt(h∗) have been
queried. However, in this case h∗ would be returned in P , thus PDBreak occurs.10 So
altogether, we have that B behaves identically to P and A’s view is independent of
i1, i2 until the event PDBreak occurs. By PDBreaki′

1
,i′

2
, denote the event that check (s)

is queried with s = sh where h is the i′2-th handle used by A, and no query sk (jh)
or decrypt(h) has been performed where jh is the i′1-th key index used by A. Obvi-
ously, if PDBreak occurs, then PDBreaki′

1
,i′

2
occurs for some i′1, i

′
2 ∈ {1, . . . , q}. Since

the view of A is independent of i1, i2, we have that Pr[PDBreaki1,i2 ] ≥
1
q2 Pr[PDBreak].

So it is enough to show that Pr[PDBreaki1,i2 ] =: ε is negligible. Observe that in the
description of B, in case of the event PDBreaki1,i2 the inputs sk∗, s∗, h∗ are never
accessed. So if we run B with the inputs sk∗, s∗, h∗ set to ⊥, PDBreaki1,i2 still occurs
with probability at least ε. Further, PDBreaki1,i2 implies that check (s) is called an
s satisfying f−1(c∗) = ⊥. So if let B output one of the values s used in check (s)
queries (randomly chosen), we break the partial-domain one-wayness of f with prob-
ability at least ε/q. Thus by contradiction, ε must be negligible. Thus Pr[PDBreak]
is negligible in an execution of B and thus also in one of P . ut
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