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Abstract. In [6], Biryukov presented a new methodology of stream ci-
pher design, called leak extraction. The stream cipher LEX, based on this
methodology and on the AES block cipher, was selected to phase 3 of the
eSTREAM competition. The suggested methodology seemed promising,
and LEX, due to its elegance, simplicity and performance was expected
to be selected to the eSTREAM portfolio.
In this paper we present a key recovery attack on LEX. The attack
requires about 236.3 bytes of key-stream produced by the same key (pos-
sibly under many different IVs), and retrieves the secret key in time of
2112 simple operations. Following a preliminary version of our attack,
LEX was discarded from the final portfolio of eSTREAM.
Keywords: LEX, AES, stream cipher design

1 Introduction

The design of stream ciphers, and more generally, pseudo-random number gen-
erators (PRNGs), has been a subject of intensive study over the last decades.
One of the well-known methods to construct a PRNG is to base it on a keyed
pseudo-random permutation. A provably secure construction of this class is given
by Goldreich and Levin [19]. An instantiation of this approach (even though an
earlier one) is the Blum and Micali [11] construction (based on the hardness of
RSA). A more efficiency-oriented construction is the BMGL stream cipher [21]
(based on the Rijndael block cipher). However, these constructions are relatively
slow, and hence are not used in practical applications.

In [6], Biryukov presented a new methodology for constructing PRNGs of
this class, called leak extraction. In this methodology, the output key stream of
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the stream cipher is based on parts of the internal state of a block cipher at
certain rounds (possibly after passing an additional filter function). Of course,
in such a case, the “leaked” parts of the internal state have to be chosen carefully
such that the security of the resulted stream cipher will be comparable to the
security of the original block cipher.

As an example of the leak extraction methodology, Biryukov presented in [6]
the stream cipher LEX, in which the underlying block cipher is AES. The key
stream of LEX is generated by applying AES in the OFB (Output Feedback
Block) mode of operation and extracting 32 bits of the intermediate state after
the application of each full AES round.

LEX was submitted to the eSTREAM competition (see [7]). Due to its high
speed (2.5 times faster than AES), fast key initialization phase (a single AES
encryption), and expected security (based on the security of AES), LEX was
considered a very promising candidate and selected to the third (and final) phase
of evaluation.

During the eSTREAM competition, LEX attracted a great deal of attention
from cryptanalysts due to its simple structure, but nevertheless, only two attacks
on the cipher were reported: A slide attack [23] requiring 261 different IVs (each
producing 20,000 keystream bytes), and a generic attack [17] requiring 265.7 re-
synchronizations. Both attacks are applicable only against the original version
of LEX presented in [6], but not against the tweaked version submitted to the
second phase of eSTREAM [8]. In the tweaked version, the number of IVs used
with a single key is bounded by 232, and hence both attacks require too much
data and are not applicable to the tweaked version.

In this paper we present an attack on LEX. The attack requires about 236.3

bytes of key stream produced by the same key, possibly under different IVs. The
time complexity of the attack is 2112 simple operations. Following a preliminary
version of our attack, LEX was discarded from the final portfolio of eSTREAM.

Our attack is composed of three steps:

1. Identification of a special state: We focus our attention on pairs of AES
encryptions whose internal states satisfy a certain difference pattern. While
the probability of occurrence of the special pattern is 2−64, the pattern can
be observed by a 32-bit condition on the output stream. Thus, the attacker
repeats the following two steps for about 232 cases which satisfy this 32-bit
condition.

2. Extracting information on the special state: By using the special dif-
ference pattern of the pair of intermediate values, and guessing the difference
in eight more bytes, the attacker can retrieve the actual values of 16 internal
state bytes in both encryptions.

3. Guess-and-Determine attack on the remaining unknown bytes: Us-
ing the additional known byte values, the attacker can mount a guess-and-
determine attack that retrieves the key using about 2112 simple operations
in total.
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The second and the third steps of the attack use several observations on the
structure of the AES round function and key schedule algorithm. 1 One of them
is the following, probably novel, observation:

Proposition 1. Denote the 128-bit subkey used in the r-th round of AES-128
by kr, and denote the bytes of this subkey by an 4-by-4 array {kr(i, j)}

3
i,j=0. Then

for every 0 ≤ i ≤ 3 and r,

kr(i, 1) = kr+2(i, 1) ⊕ SB(kr+1(i + 1, 3)) ⊕ RCONr+2(i),

where SB denotes the SubBytes operation, RCONr+2 denotes the round constant
used in the generation of the subkey kr+2, and i + 1 is replaced by 0 for i = 3.

It is possible that the observations on the structure of AES presented in this
paper can be used not only in attacks on LEX, but also in attacks on AES itself.

This paper is organized as follows: In Section 2 we briefly describe the struc-
tures of AES and LEX, and present the observations on AES used in our attack.
In Section 3 we show that a specific difference pattern in the internal state can
be partially detected by observing the output stream, and can be used to retrieve
the actual value of 16 bytes of the internal state (in both encryptions). In Sec-
tion 4 we leverage the knowledge of these 16 bytes into a complete key recovery
attack that requires about 2112 simple operations. We give several additional
observations that may be useful for further cryptanalysis of LEX in Section 5.
We conclude the paper in Section 6.

2 Preliminaries

In this section we describe the structures of AES and LEX, and present the
observations on AES used in our attack.

2.1 Description of AES

The advanced encryption standard [14] is an SP-network that supports key sizes
of 128, 192, and 256 bits. As this paper deals with LEX which is based on AES-
128, we shall concentrate the description on this variant and refer the reader
to [22] for a complete detailed description of AES.

A 128-bit plaintext is treated as a byte matrix of size 4x4, where each byte
represents a value in GF (28). An AES round applies four operations to the state
matrix:

– SubBytes (SB) — applying the same 8-bit to 8-bit invertible S-box 16 times
in parallel on each byte of the state,

1 We note that in [6] it was remarked that the relatively simple key schedule of AES
may affect the security of LEX, and it was suggested to replace the AES subkeys
by 1280 random bits. Our attack, which relies heavily on properties of the AES
key schedule, would fail if such replacement was performed. However, some of our
observations can be used in this case as well.
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Fig. 1. An AES round

– ShiftRows (SR) — cyclic shift of each row (the i’th row is shifted by i bytes
to the left),

– MixColumns (MC) — multiplication of each column by a constant 4x4 ma-
trix over the field GF (28), and

– AddRoundKey (ARK) — XORing the state with a 128-bit subkey.

We outline an AES round in Figure 1. Throughout the paper we allow ourselves
the abuse of notation SB(x) to denote the application of the S-box to x (whether
it is one S-box when x is 8-bit value, or four times when x is 32-bit value). In
the first round, an additional AddRoundKey operation (using a whitening key)
is applied, and in the last round the MixColumns operation is omitted. We note
that in LEX these changes to the first and last round are not applied.

AES-128, i.e., AES with 128-bit keys, has 10 rounds. For this variant, 11
subkeys of 128 bits each are derived from the key. The subkey array is denoted
by W [0, . . . , 43], where each word of W [·] consists of 32 bits. The first four words
of W [·] are loaded with the user supplied key. The remaining words of W [·] are
updated according to the following rule:

– For i = 4, . . . , 43, do
• If i ≡ 0 mod 4 then W [i] = W [i−4]⊕SB(W [i−1] ≪ 8)⊕RCON [i/4],
• Otherwise W [i] = W [i − 1] ⊕ W [i − 4],

where RCON [·] is an array of predetermined constants, and ≪ denotes rotation
of the word by 8 bits to the left.

2.2 Description of LEX

For the ease of description, we describe only the tweaked version of LEX sub-
mitted to the second phase of eSTREAM [8]. The original version of LEX can
be found in [6]. We note that our attacks can be easily adopted to the original
version as well.

In the initialization step, the publicly known IV is encrypted by AES2 under
the secret key K to get S = AESK(IV ). Then, S is repeatedly encrypted in the

2 Actually, LEX uses a tweaked version of AES where the AddRoundKey before the
first round is omitted, and the MixColumns operation of the last round is present.
We allow ourselves the slight abuse of notations, for sake of clarity.
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Fig. 2. Odd and Even Rounds of LEX

OFB mode of operation under K, where during the execution of each encryption,
32 bits of the internal state are leaked each round. These state bits compose the
key stream of LEX. The state bytes used in the key stream are shown in Figure 2.
After 500 encryptions, another IV is chosen, and the process is repeated. After
232 different IVs, the secret key is replaced. 3

2.3 Notations Used in the Paper

As in [6], the bytes of each internal state during AES encryption, as well as the
bytes of the subkeys, are denoted by a 4-by-4 array {bi,j}

3
i,j=0, where bi,j is the

j-th byte in the i-th row. For example, the output bytes in the even rounds are
b0,1, b0,3, b2,1, b2,3.

2.4 Observations on AES Used in our Attack

Throughout the paper we use several observations concerning AES.

Observation 1 For every non-zero input difference to the SubBytes operation,
there are 126 possible output differences with probability 2−7 each (i.e., only a
single input pair with the given difference leads to the specified output difference),
and a single output difference with probability 2−6.

As a result, for a randomly chosen pair of input/output differences of the
SubBytes operation, with probability 126/256 there is exactly one unordered
pair of values satisfying these differences. With probability 1/256 there are two
such pairs, and with probability 129/256, there are no such pairs.

We note that while each ordered pair of input/output differences suggests
one pair of actual values on average, it actually never suggests exactly one pair.
In about half of the cases, two (or more) ordered pairs are suggested, and in
the rest of the cases, no pairs are suggested. In the cases where two (or more)
pairs are suggested, the analysis has to be repeated for each of the pairs. On
the other hand, if no pairs are suggested, then the input/output differences pair

3 We note that in the original version of LEX, the number of different IVs used with a
single key was not bounded. Following the slide attack presented in [23], the number
of IVs used with each key was restricted. This restriction also prevents the attack
suggested later in [17] which requires 265.7 re-synchronizations.
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is discarded as a wrong pair and the analysis is not performed at all. Hence,
when factoring both events, it is reasonable to assume that each input/output
differences pair suggests one pair of actual values.

Our attack uses this observation in situations where the attacker knows the
input and output differences to some SubBytes operation. In such cases, using
the observation she can deduce the actual values of the input and the output
(for both encryptions). This can be done efficiently by preparing the difference
distribution table [4] of the SubBytes operation, along with the actual values
of the input pairs satisfying each input/output difference relation (rather than
only the number of such pairs). In the actual attack, given the input and output
differences of the SubBytes operation, the attacker can retrieve the corresponding
actual values using a simple table lookup.

Observation 2 Since the MixColumns operation is linear and invertible, if the
values (or the differences) in any four out of its eight input/output bytes are
known, then the values (or the differences, respectively) in the other four bytes
are uniquely determined, and can be computed efficiently.

The following two observations are concerned with the key schedule of AES.
While the first of them is known (see [18]), it appears that the second was not
published before.

Observation 3 For each 0 ≤ i ≤ 3, the subkeys of AES satisfy the relations:

kr+2(i, 0) ⊕ kr+2(i, 2) = kr(i, 2).

kr+2(i, 1) ⊕ kr+2(i, 3) = kr(i, 3).

Proof. Recall that by the key schedule, for all 0 ≤ i ≤ 3 and for all 0 ≤ j ≤ 2,
we have kr+2(i, j) ⊕ kr+2(i, j + 1) = kr+1(i + 1, j + 1). Hence,

kr+2(i, 0) ⊕ kr+2(i, 2) = (kr+2(i, 0) ⊕ kr+2(i, 1)) ⊕ (kr+2(i, 1) ⊕ kr+2(i, 2)) =

kr+1(i, 1) ⊕ kr+1(i, 2) = kr(i, 2),

and the second claim follows similarly.

Observation 4 For each 0 ≤ i ≤ 3, the subkeys of AES satisfy the relation:

kr+2(i, 1) ⊕ SB(kr+1((i + 1) mod 4, 3)) ⊕ RCONr+2(i) = kr(i, 1),

Proof. In addition to the relation used in the proof of the previous observation,
we use the relation

kr+2(i, 0) = kr+1(i, 0) ⊕ SB(kr+1((i + 1) mod 4, 3)) ⊕ RCONr+2(i).

Thus,

kr+2(i, 1) ⊕ SB(kr+1((i + 1) mod 4, 3)) ⊕ RCONr+2(i) =

(kr+2(i, 1) ⊕ kr+2(i, 0)) ⊕ (kr+2(i, 0) ⊕ SB(kr+1((i + 1) mod 4, 3)) ⊕ RCONr+2(i)) =

kr+1(i, 1) ⊕ kr+1(i, 0) = kr(i, 1).
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Fig. 3. The Special Difference Pattern (for Odd Rounds)

These two observations allow the attacker to use the knowledge of bytes of
kr+2 (and the last column of kr+1) to get the knowledge of bytes in kr, while
“skipping” (some of) the values of kr+1.

3 Observable Difference Pattern in LEX

Our attack is applicable when the special difference pattern starts either in odd
rounds or in even rounds. For sake of simplicity of the description, we present
the results assuming the difference pattern occurs in the odd rounds, and give
in Appendix A the modified attack applicable when the difference pattern is
observed in even rounds.

3.1 Detecting the Difference Pattern

Consider two AES encryptions under the same secret key, K. The special dif-
ference pattern corresponds to the following event: The difference between the
intermediate values at the end of the (r + 1)-th round is non-zero only in bytes
b0,0, b0,2, b1,1, b1,3, b2,0, b2,2, b3,1, and b3,3. The probability of this event is 2−64.
The pattern, along with the evolution of the differences in rounds r, r + 1, r + 2,
and r + 3, is presented in Figure 3.

The difference pattern can be partially observed by a 32-bit condition on
the output key stream: If the pattern holds, then all the four output bytes in
round r + 2 (bytes b0,1, b0,3, b2,1, b2,3) have zero difference.

Therefore, it is expected that amongst 264 pairs of AES encryptions under
the same key, one of the pairs satisfies the difference pattern, and about 232 pairs
satisfy the filtering condition. Thus, the following steps of the attack have to be
repeated 232 times on average (once for each candidate pair).
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We note that if the special difference pattern is satisfied, then by the linearity
of the MixColumns operation, there are only 2552 possible values for the differ-
ence in each of the columns before the MixColumns operation of round r + 1
(denoted by β-s and ǫ-s in Figure 3), and in each of the columns after the Mix-
Columns operation of round r + 2 (denoted by t-s in Figure 3). This property
is used in the second step of the attack to retrieve the actual values of several
state bytes.

3.2 Using the Difference Pattern to Retrieve Actual Values of 16
Intermediate State Bytes

In this section we show how the attacker can use the special difference pattern,
along with a guess of the difference in eight additional bytes, in order to recover
the actual values of 16 intermediate state bytes in both encryptions. We show
in detail how the attacker can retrieve the actual value of byte b0,0 of the state
in the end of round r. The derivation of additional 15 bytes, which is performed
in a similar way, is described briefly.

The derivation of the actual value of byte b0,0 of the state at the end of round
r is composed of several steps (described also in Figure 4):

1. The attacker guesses the differences ν1, ν7 and applies the following steps for
each such guess.

2. The attacker finds the difference in Column 0 before the MixColumns op-
eration of round r + 1, i.e., (β0, β1, β2, β3). This is possible since the at-
tacker knows the difference in Column 0 at the end of round r + 1 (which
is (α0, 0, α2, 0) where α0 and α2 are known from the key stream), and since
the AddRoundKey and the MixColumns operations are linear. By perform-
ing the inverse ShiftRows operation, the attacker can compute the output
difference in byte b0,0 after the SubBytes operation of round r + 1.

3. Given the differences ν1 and ν7, there are 2552 possible differences after
the MixColumns of round r in the leftmost column. Using the output bytes
b0,0, b2,2 of round r − 1, the attacker knows the difference in two bytes of
the same column before the MixColumns operation. Hence, using Observa-
tion 2 (the linearity of the MixColumns operation), the attacker retrieves
the difference in the whole column, both before and after the MixColumns
operation, including the difference γ0.

4. At this point, the attacker knows the input difference (γ0) and the output
difference (β0) to the SubBytes operation in byte b0,0 of round r + 1. Hence,
using Observation 1 (the property of the SubBytes operation), the attacker
finds the actual values of this byte using a single table look-up. In particular,
the attacker retrieves the actual value of byte b0,0 at the end of round r.

The additional 15 bytes are retrieved in the following way:

1. The value of byte b2,2 at the end of round r is obtained in the same way
using bytes b0,2, b2,0 of the output of round r − 1 (instead of bytes b0,0, b2,2)
and examining the third column (instead of the first one).
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Fig. 4. Deducing the actual value of b0,0 in the end of round r

2. The value of bytes b0,2 and b2,0 at the end of round r is found by examining
α4, α6 (instead of α0, α2), guessing the differences ν3, ν5 (instead of ν1, ν7),
and repeating the process used in the derivation of bytes b0,0, b2,2.

3. In a similar way, by guessing the differences x1, x3, x5, x7 and using the
output bytes of round r + 3, the attacker can retrieve the actual values of
bytes b0,0, b0,2, b2,0 and b2,2 in the output of round r + 2.

4. Using the output of round r and Observation 2, the attacker can obtain the
differences α1, α3, α5, α7. Then, she can use the guessed differences x1, x3, x5, x7

and Observation 1 to obtain the actual values of bytes b1,1, b1,3, b3,1 and b3,3

at the end of round r + 1.
5. Finally, using again the output of round r and Observation 2, the attacker

can obtain the differences ǫ1, ǫ3, ǫ5, ǫ7. Then, using the guessed differences
ν1, ν3, ν5, ν7 and Observation 1, the attacker can obtain the actual values of
bytes b1,0, b1,2, b3,0, and b3,2 at the end of round r.

The bytes whose actual values are known to the attacker at this stage are
presented in Figure 5 marked in gray.

4 Retrieving the Key in the Special Cases

The last step of the attack is a guess-and-determine procedure. Given the actual
values of the 16 additional state bytes obtained in the second step of the attack,
the entire key can be recovered using Observations 2 and 3 (properties of the
MixColumns operation and of the key schedule algorithm of AES-128).

The deduction is composed of two phases. In the first phase, presented in
Figure 5, no additional information is guessed. We outline in Appendix B the
exact steps of the deduction. At the beginning of the second phase, presented
in Figure 6, the attacker guesses the value of two additional subkey bytes. We
outline in Appendix C the exact steps the attacker performs after guessing these
two bytes. In both figures we use gray bytes to mark bytes which are known at
the beginning of that deduction phase. Then, if a byte contains a number i it
means that this byte is computed in the i-th step of the deduction sequence.
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Fig. 5. The First Phase of the Guess-and-Determine Attack on LEX (for Odd Rounds)

Summarizing the attack, the attacker guesses 10 bytes of information (8
bytes of differences guessed in the second step of the attack, and 2 subkey bytes
guessed in the third step of the attack), and retrieves the full secret key. Since all
the operations used in the attack are elementary, the attack requires 280 simple
operations for each time the attack procedure is applied. Thus, as the attack
procedure is repeated 232 times, the total running time of the attack is 2112

operations. Since the most time-consuming step of the attack is a guess-and-
determine procedure, it is very easy to parallelize the attack, and obtain a speed
up equivalent to the number of used CPUs.

4.1 Data Complexity of the Attack

The attack is based on examining special difference patterns. Since the probabil-
ity of occurrence of a special pattern is 2−64, it is expected that 232.5 encryptions
under the same key (possibly with different IVs) yield a single pair of encryptions
satisfying the special pattern.

However, we note that the attack can be applied for several values of the
starting round of the difference pattern. The attack presented above is applicable
if r is equal to 1, 3, 5, or 7, and a slightly modified version of the attack (presented
in Appendix A) is applicable if r is equal to 0, 2, 4, or 6.4 Hence, 264/8 = 261 pairs
of encryptions are sufficient to supply a pair satisfying one of the eight possible

4 We note that while the attack considers five rounds of the encryption (rounds r − 1
to r + 3), it is not necessary that all the five rounds are contained in a single AES

10



SB
SR

MC ARK
kr

SB
SR

MC ARK
kr+1

SB
SR

MC ARK
kr+2

SB
SR

MC ARK
kr+3

1

1

1

1

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

7

7

7

78

8

9

910

11

12 13

14

15

16

16

16

1617

18

Gray boxes are bytes which are known.
Black boxes are the two bytes guessed in this phase.
Bytes marked with i, are bytes which are computed in step i of the second phase.
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difference patterns. These 261 pairs can be obtained from 231 AES encryptions,
or equivalently, 236.3 bytes of output key stream generated by the same key,
possibly under different IVs.

5 Further Observations on LEX

In this section we present several observations on the structure of LEX that may
be helpful in further cryptanalysis of the cipher.

5.1 Sampling resistance of LEX

One of the main advantages of LEX, according to the designers (see [6], Section
1), is the small size of its internal state allowing for a very fast key initialization
(a single AES encryption). It is stated that the size of the internal state (256 bits)
is the minimal size assuring resistance to time-memory-data tradeoff attacks.

Time-memory-data tradeoff (TMDTO) attacks [2, 9, 10, 20] are considered a
serious security threat to stream ciphers, and resistance to this class of attacks
is a mandatory in the design of stream ciphers (see, for example, [16]). A cipher

encryption. For example, if r = 7 then round r+3 considered in our attack is actually
round 0 of the next encryption. The only part of the attack which requires the rounds
to be consecutive rounds of the same encryption is the key schedule considerations.
However, in these considerations only three rounds (rounds r to r+2) are examined.

11



with an n-bit key is considered (certificationally) secure against TMDTO attacks
if any TMDTO attack on the cipher has either data, memory, or time complexity
of at least 2n.

In order to ensure security against conventional TMDTO attacks trying to
invert the function (State → Key Stream), it is sufficient that the size of the
internal state is at least twice the size of the key [10]. LEX satisfies this criterion
(the key size is 128 bits and the size of the internal state is 256 bits). As a result,
as claimed by the designers (see [6], Sections 3.2 and 5), the cipher is secure with
respect to TMDTO attacks.

However, as observed in [1], having the size of the internal state exactly
twice larger than the key length is not sufficient if the cipher has a low sampling
resistance. Roughly speaking, a cipher has a sampling resistance of 2−t, if it is
possible to list all internal states which lead to some t-bit output string efficiently.
In other words, if it is possible to find a (possibly special) string of t bits, whose
“predecessor” states are easily computed, then the cipher has sampling resistance
of at most 2−t.

It is easy to see that LEX has maximal sampling resistance of 2−32, as out
of the 256 bits of internal state, 32 bits are output directly every round. As
a result, using the attack algorithm presented in [10], it is possible to mount
a TMDTO attack on LEX with data complexity 288, and time and memory
complexities of 2112. Hence, LEX provides only 112-bit security with respect to
TMDTO attacks.

5.2 Loss of Entropy in the Initialization of LEX

The first step in the initialization of LEX is the encryption of IV by AES under
the secret key K. When considering AESK(IV ) as a function of K, one can
easily see that under reasonable randomness assumptions on AES, this function
is a random function of the key K. As a result, the first internal state S used in
LEX, does not contain 128 bits of entropy, even when the IV has full entropy.
Actually, the expected number of possible S’s for a given IV is about 63% of all
possible values, i.e., about 2127.3 possible S’s.

Even though our attack does not use this observation, it might still be used in
attacks which rely on entropy. Especially, the variant of [15] of time-memory-data
tradeoff attacks (trying to invert the function (key, IV ) → keystream) might
use this observation by trying to invert the function (key, S) → keystream.

5.3 Analysis of the submitted reference implementation of the
original (untweaked) version of LEX

After communicating a preliminary version of our attack, we received a request to
discuss the implementation of the original (untweaked) version of LEX submitted
to eSTREAM. According to a claim made in [3] and verified later by us, the
submitted code of the untweaked LEX outputs different bytes than intended
and specified (specifically, in the even rounds, b1,1, b1,3, b3,1 and b3,3 are given
as the key stream). Of course, this seems like an unintended typo made in the
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submission pack (as the fact that it was corrected in the tweaked submission of
LEX).

It appears that this variant is much weaker than the intended cipher: First,
given the difference in the key stream corresponding to an even round of AES
and the consecutive odd round, the difference in two full columns (i.e., four
additional internal bytes) can be found easily, without any assumption on the
difference between the states. Second, it is possible to devise a simple meet-in-
the-middle attack which uses only 256 bits of output stream and retrieves the
secret key using 2112 simple operations.

The difference between the security of the intended version and that of the
actual implementation emphasizes the importance of verifying the implemen-
tations of cryptographic primitives very carefully. This importance was first
observed in [12] with respect to public key encryption, and adopted in [5] to
the symmetric key scenario. While differential fault analysis assumes that the
attacker can access both a faulty implementation and a regular implementa-
tion, our observations are valid when the attacker has to attack only the faulty
implementation.

6 Summary and Conclusions

In this paper we presented a new attack on the LEX stream cipher. We showed
that there are special difference patterns that can be easily observed in the
output key stream, and that these patterns can be used to mount a key recovery
attack.

The attack uses a total of 236.3 bytes of key stream produced by a single key
(possibly under different IVs) and takes 2112 simple operations to implement.

Our results show that for constructions based on the Goldreich-Levin ap-
proach (i.e., PRNGs based on pseudo-random permutations), the pseudo-randomness
of the underlying permutation is crucial to the security of the resulting stream
cipher. In particular, a small number of rounds of a (possibly strong) block ci-
pher cannot be considered random in this sense, at least when a non-negligible
part of the internal state is extracted.
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Fig. 7. The First Phase of the Guess-and-Determine Attack on LEX (in Even Rounds)

A Special Difference Pattern Starting with an Even

Round

In this section we present the modified version of the attack that can be applied
if the special difference pattern occurs in the even rounds. The first two steps of
the attack (observing the difference pattern and deducing the actual values of
16 additional bytes of the state) are similar to the first two steps of the attack
presented in Section 3. The known byte values after these steps are presented in
Figure 7, marked in gray. The third step of the attack is slightly different due
to the asymmetry of the key schedule, and Observation 4 is used in this step
along with Observations 2 and 3. The two phases of this step are presented in
Figures 7 and 8. The overall time complexity of the attack is 2112 operations,
like in the case of a difference pattern in the odd rounds.

B Detailed Description of the Steps in the First

Deduction Phase

In this section we present the exact deduction steps done during the first phase
depicted in Figure 5. The numbers of the steps correspond to the numbers in
the figure.

1. The application of MixColumns in round r + 1 on two columns (second and
fourth) gives these bytes.
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Fig. 8. The Second Phase of the Guess-and-Determine Attack on LEX (in Even
Rounds)

2. The application of MixColumns in round r + 2 on two columns (first and
third) gives these bytes.

3. The knowledge of the value of four bytes before the XOR with the subkey
kr+1 and after the XOR, gives the value of the subkey in these bytes.

4. The knowledge of the value of four bytes before the XOR with the subkey
kr+2 and after the XOR, gives the value of the subkey in these bytes.

5. By the key schedule of AES, the knowledge of byte (0,0) of the subkey kr+2

and byte (1,3) of the subkey kr+1 gives the value of byte (0,0) of the subkey
kr+1. Similarly, the knowledge of byte (2,0) of the subkey kr+2 and byte
(3,3) of the subkey kr+1 gives the value of byte (2,0) of the subkey kr+1.

6. These two bytes are the XOR of the two subkey bytes found in the previous
step and known bytes.

7. Applying Observation 2 to the first column in the MixColumns operation of
round r + 1 gives these four bytes.

8. The two bytes after the SubBytes and ShiftRows operation are just computed
backwards.

9. These bytes are computed using the four bytes found in Step 4, and the
application of Observation 3.

10. These bytes are computed by XORing the subkey bytes found in the previous
step with known values.

11. Applying Observation 2 to the third column in the MixColumns operation
of round r gives these four bytes.

12. The input and output of the AddRoundKey operation of round kr in these
two bytes is known, and allows retrieving these two subkey bytes.
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13. By the key schedule of AES, the knowledge of bytes (1,1) and (3,1) of the
subkey kr+1 and bytes (1,2) and (3,2) of the subkey kr gives the values of
bytes (1,2) and (3,2) of the subkey kr+1, respectively.

14. By the key schedule of AES, the knowledge of bytes (1,2) and (3,2) of the
subkey kr and bytes (1,3) and (3,3) of the subkey kr+1 gives the values of
bytes (1,3) and (3,3) of the subkey kr, respectively.

15. By the key schedule of AES, the knowledge of byte (0,0) of the subkey kr+1

and byte (1,3) of the subkey kr gives the value of byte (0,0) of the subkey
kr. Similarly, the knowledge of byte (2,0) of the subkey kr+1 and byte (3,3)
of the subkey kr gives the value of byte (2,0) of the subkey kr.

16. These bytes are computed by XORing the subkey bytes found in the previous
step with known values.

17. Applying Observation 2 to the first column in the MixColumns operation of
round r gives these four bytes.

18. These bytes are the XOR of the bytes found in the previous step with known
bytes.

19. This byte is the XOR of one of the bytes found in Step 14 and a byte found
in Step 8.

C Detailed Description of the Steps in the Second

Deduction Phase

In this section we present the exact deduction steps performed during the second
phase depicted in Figure 6. The numbers of the steps correspond to the numbers
in the figure.

1. Using the key schedule algorithm, it is possible to deduce four bytes of kr+1

(each is the XOR of two known bytes in kr+2).

2. Decrypting two known bytes using two of the subkey words found in Step 1
gives these two bytes.

3. Applying Observation 2 to the third column in the MixColumns operation
of round r + 1.

4. These four bytes are computed by the XOR of known state bytes and subkey
bytes (in kr+1).

5. These four bytes are the application of the SubBytes and ShiftRows opera-
tions on the bytes found in the previous step.

6. These bytes are the XOR of known bytes and the subkey bytes that were
guessed.

7. Applying Observation 2 to the second column in the MixColumns operation
of round r + 2 gives these four bytes.

8. These two bytes are found by applying the inverse ShiftRows and SubBytes
operations to two of the bytes found in the previous step.

9. These two subkey bytes are computed as the XOR of the corresponding bytes
before and after the AddRoundKey operation of round r + 1.
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10. By the key schedule of AES, the knowledge of byte (3,0) of the subkey kr+1

and byte (3,0) of the subkey kr gives the value of byte (2,3) of the subkey
kr.

11. By the key schedule of AES, the knowledge of bytes (1,0) and (2,3) of the
subkey kr+1 gives the value of byte (1,0) of the subkey kr+1.

12. This byte is the XOR of a known state byte with the subkey byte found in
the previous step.

13. This byte is computed by applying the SubBytes and ShiftRows operations
to the byte found in the previous step.

14. By the key schedule of AES, the knowledge of byte (2,2) of the subkey kr+2

and byte (2,3) of the subkey kr+1 gives the value of byte (2,3) of the subkey
kr+2.

15. This byte is the XOR of a known state byte with the subkey byte found in
the previous step.

16. This byte is the partial decryption of a known byte by the byte found in the
previous step.

17. Applying Observation 2 to the fourth column in the MixColumns operation
of round r + 2 gives these four bytes.

18. This byte is found by applying the inverse ShiftRows and SubBytes opera-
tions to one of the bytes found in the previous step.

19. This byte is the partial decryption of a known byte by the byte found in the
previous step.
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