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Abstract. We present the Protected-IV construction (PIV) a simple,
modular method for building variable-input-length tweakable ciphers. At
our level of abstraction, many interesting design opportunities surface.
For example, an obvious pathway to building beyond birthday-bound
secure tweakable ciphers with performance competitive with existing
birthday-bound-limited constructions. As part of our design space ex-
ploration, we give two fully instantiated PIV constructions, TCT1 and
TCT2; the latter is fast and has beyond birthday-bound security, the
former is faster and has birthday-bound security. Finally, we consider a
generic method for turning a VIL tweakable cipher (like PIV) into an
authenticated encryption scheme that admits associated data, can with-
stand nonce-misuse, and allows for multiple decryption error messages.
Thus, the method offers robustness even in the face of certain sidechan-
nels, and common implementation mistakes.

Keywords: tweakable blockciphers, beyond-birthday-bound security,
authenticated encryption, associated data, full-disk encryption

1 Introduction

The main contribution of this paper is the Protected-IV construction (PIV), see
Figure 1. PIV offers a simple, modular method for building length-preserving,
tweakable ciphers that:

(1) may take plaintext inputs of essentially any length;

(2) provably achieves the strongest possible security property for this type of
primitive, that of being a strong, tweakable-PRP (STPRP);

(3) admit instantiations from n-bit primitives that are STPRP-secure well be-
yond the birthday-bound of 2n/2 invocations.

Moreover, by some measures of efficiency, beyond-birthday secure instantiations
of PIV are competitive with existing constructions that are only secure to the
birthday bound. (See Table 1.) We will give a concrete instantiation of PIV
that has beyond birthday-bound security and, when compared to EME [16], the
overhead is a few extra modular arithmetic operations for each n-bit block of
input.
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Fig. 1: The PIV[F̃ , Ṽ ] tweakable cipher. In-
put T is the tweak, and X = XL ‖XR is a
bit string, where |XL| = N and XR is any

length accepted by Ṽ . The filled-in box is
the tweak input.

Tweakable ciphers with beyond
birthday-bound security may have
important implications for crypto-
graphic practice. For example, in
large-scale data-at-rest settings, where
the amount of data that must be pro-
tected by a single key is typically
greater than in settings where keys
can be easily renegotiated.

At least two important applica-
tions have already made tweakable ci-
phers their tool-of-choice, namely full-
disk encryption (FDE) and format-
preserving encryption (FPE). Our
work provides interesting new results
for both FDE and FPE.

We also show that tweakable ci-
phers enable a simple mechanism
for building authenticated encryp-
tion schemes with associated data
(AEAD), via an extension of the encode-then-encipher approach of Bellare and
Rogaway [4]. This approach has some practical benefits, for example, it securely
handles the reporting of multiple types of decryption errors. It can also eliminate
ciphertext expansion by exploiting any existing nonces, randomness, or redun-
dancies appearing in either the plaintext or associated data inputs. Combined
with our other results, encode-then-encipher over PIV gives a new way to build
AEAD schemes with beyond birthday-bound security.

Background. Tweakable blockciphers (TBCs) were introduced and formalized

by Liskov, Rivest and Wagner [20]. An n-bit TBC Ẽ is a family of permutations
over {0, 1}n, each permutation named by specifying a key and a tweak. In typical
usage, the key is secret and fixed across many calls, while the tweak is not
secret, and may change from call to call; this allows variability in the behavior
of the primitive, even though the key is fixed. A tweakable cipher1 is the natural
extension of a tweakable blockcipher to the variable-input-length (VIL) setting,
forming a family of length-preserving permutations.

Since the initial work of Liskov, Rivest and Wagner, there has been sub-
stantial work on building tweakable ciphers. Examples capable of handling long
inputs (required for FDE) include CMC [15], EME [16], HEH [30], HCH [10],
and HCTR [33]. Loosely speaking, the common approach has been to build
up the VIL primitive from an underlying n-bit blockcipher, sometimes in con-
cert with one or more hashing operations. The security guaranteed by each of
these constructions become vacuous after about 2n/2 bits have been enciphered.

1 Sometimes called a “tweakable enciphering scheme”, or even a “large-block cipher”.



One of our main goals is to break through this birthday bound, i.e., to build a
tweakable cipher that remains secure long after 2n/2 bits have been enciphered.

The PIV construction. To this end, we begin by adopting a top-down, composi-
tional viewpoint on the design of tweakable ciphers, our PIV construction. It is
a type of three-round, unbalanced Feistel network, where the left “half” of the
input is of a fixed bit length N , and the right “half” has variable length. The
first and third round-functions are an N -bit tweakable blockcipher (F̃ ), where N
is a parameter of the construction, e.g. N = 128 or N = 256. The middle round-
function (Ṽ ) is itself a VIL tweakable cipher, whose tweak is the output of first
round.

It may seem as though little has been accomplished, since we need a VIL
tweakable cipher Ṽ in order to build our VIL tweakable cipher PIV[F̃ , Ṽ ]. How-

ever, we require substantially less of Ṽ than we do of PIV[F̃ , Ṽ ]. In particular,
the target security property for PIV is that of being a strong tweakable pseu-
dorandom permutation. Informally, being STPRP-secure means withstanding
chosen-ciphertext attacks in which the attacker also has full control over all
inputs. The attacker can, for example, repeat a tweak an arbitrary number of
times. Our PIV security theorem (Theorem 1) says the following: given (1) a

TBC F̃ that is STPRP-secure over a domain of N -bit strings, and (2) a tweak-

able cipher Ṽ that is secure against attacks that never repeat a tweak, then the
tweakable cipher PIV[F̃ , Ṽ ] is STPRP-secure. Thus, qualitatively, the PIV con-
struction promotes security (over a large domain) against a restricted kind of
attacker, into security against arbitrary chosen-ciphertext attacks.

Quantitatively, the PIV security bound contains an additive term q2/2N ,
where q is the number of times PIV is queried. Now, N might be the blocksize n
of some underlying blockcipher; in this case the PIV composition delivers a bound
comparable to those achieved by existing constructions. But N = 2n presents
the possibility of using an n-bit primitive to instantiate F̃ and Ṽ , and yet deliver
a tweakable cipher with security well beyond beyond-birthday of 2n/2 queries.

As a small, additional benefit, the PIV proof of STPRP-security is short and
easy to verify.

Impacts of modularity on instantiations. Adopting this modular viewpoint al-
lows us to explore constructions of F̃ and Ṽ independently. This is particularly
beneficial, since building efficient and secure instantiations of VIL tweakable ci-
phers (Ṽ ) is relatively easy, when tweaks can be assumed not to repeat. The

more difficult design task, of building a tweakable blockcipher (F̃ ) that remains
secure when tweaks may be repeated, is also made easier, by restricting to plain-
text inputs of a fixed bit length N . In practice, when (say) N = 128 or 256,

inefficiencies incurred by F̃ can be offset by efficiency gains in Ṽ .
To make thing concrete, we give two fully-specified PIV tweakable ciphers,

each underlain by n-bit blockciphers. The first, TCT1, provides birthday-bound
security. It requires only one blockcipher invocation and some arithmetic, modulo
a power of two, per n-bit block of input. In contrast, previous modes either
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Fig. 2: Security bounds for TCT1, EME and TCT2, all using an underlying 128-bit
primitive and 4096-byte inputs, typical for FDE. The EME curve is representa-
tive of other prior constructions.

require two blockcipher invocations per n-bit block, or require per-block finite
field operations.

The second, TCT2, delivers security beyond the birthday-bound. When com-
pared to existing VIL tweakable ciphers with only birthday-bound security, like
EME∗ construction, TCT2 incurs only some additional, simple arithmetic op-
erations per n bit block of input. Again, this arithmetic is performed modulo
powers of two, rather than in a finite field.

In both TCT1 and TCT2, the VIL component is instantiated using counter-
mode encryption, but over a TBC instead of a blockcipher. The additional tweak
input of the TBC allows us to consider various ‘tweak-scheduling’ approaches,
e.g. fixing a single per-message tweak across all blocks, or changing the tweak
each message block.2 We will see that the latter approach of re-tweaking on a
block-by-block basis leads to a beyond birthday-bound secure PIV construction
that admits strings of any length at least N .

AEAD via encode-then-(tweakable)encipher. The ability to construct beyond
birthday-bound secure tweakable ciphers with large and flexible domains moti-
vates us to consider their use for traditional encryption. Specifically, we build
upon the “encode-then-encipher” results of Bellare and Rogaway [4]. They show
that messages endowed with randomness (or nonces) and redundancy do not
need to be processed by a authenticated encryption (AE) scheme in order to
enjoy privacy and authenticity guarantees; a VIL strong-PRP suffices. This is

2 There is a natural connection between changing the tweak of a TBC, and changing
the key of a blockcipher. Both can be used to boost security, but the former is cleaner
because tweaks do not need to be secret.



valuable when typical messages are short, as there is no need to waste bandwidth
upon transmitting an AE scheme’s IV and a dedicated authenticity tag.

We find that the tweakable setting gives additional advantages to the encode-
then-encipher approach. An obvious one is that the tweak empowers support for
associated data. More interesting, one can explore the effects of randomness,
state or redundancy present in the message and tweak inputs. We find that
randomness and state can be shifted to from the message to the tweak without
loss of security, potentially reducing the number of bits that must be processed
cryptographically.

We also find that AEAD schemes are built this way, via encode-then-encipher
over a tweakable cipher, can accommodate multiple decryption error messages.
Multiple, descriptive error messages can be quite useful in practice, but have
often empowered damaging attacks (e.g. padding-oracle attacks [32, 7, 27, 1, 12]).
These attacks don’t work against our AEAD schemes because, loosely, changing
any bit of a ciphertext will randomize every bit of the decrypted string.

Our work in this direction suggests useful implications for FPE [3, 5], and for
layered-encryption schemes, for example the onion-encryption scheme used by
Tor [23].

Due to space limitations, we refer the reader to the full version of this paper
for our results on AEAD, and a discussion of their potential impacts.

Related work. Here we give a much abbreviated discussion of other related work.
Please refer to Table 1 for a summary comparison of TCT1,TCT2 with other
constructions. A more complete discussion will appear in the full version.

Researchers have developed three general approach for constructing tweak-
able ciphers from n-bit blockciphers. Each approach has yielded a series of in-
creasingly refined algorithms. The first, Encrypt-Mask-Encrypt, places a light-
weight “masking” layer between two encryption layers; examples include CMC [15]
and EME∗ [13]. The second, Hash-ECB-Hash, sandwiches ECB-mode encryption
between two invertible hashes. PEP [9], TET [14], and HEH [30, 31] are examples.
Finally, Hash-CTR-Hash uses non-invertible hashes with CTR-mode encryption.
Both HCH [10] and HCTR [33] use this approach. Mancillas-Lópeze et al. [22]
report on the hardware performance of most of these modes. Chakraborty et
al. [8] discuss implementations of the more recent HEH [30] construction and its
refinement [31], which halves the number of finite field multiplications.

We contribute a new, top-down approach that leads us to the first beyond-
birthday-bound secure tweakable cipher suitable for encrypting long inputs (i.e.,
longer than the blocksize of an underlying blockcipher). Table 1 and Figure 2
compare some of these algorithms with our new TCT1 and TCT2 constructions
in terms of computational cost and security, respectively. Note that the finite
field operations counted in Table 1 take hundreds of cycles in software [21, 2],
whereas their cost relative to an AES blockcipher invocation is much lower in
hardware [22]. TCT1 is the first tweakable cipher to require only a single block-
cipher invocation and no extra finite field multiplications for each additional n
bits of input, while TCT2 is the first to provide beyond-birthday-bound security
(and still gets away with a fixed number of finite field multiplications).



Cost

Cipher [BC] [F2n×] [Zw+] [Z2w] Ref.

HCTR ` 2`+ 2 – – [33]
CMC 2`+ 1 – – – [15]
EME 2`+ 1 – – – [16]
EME∗ 2`+ 3 – – – [13]
PEP `+ 5 4`− 6 – – [9]
HCH `+ 3 2`− 2 – – [10]
TET ` 2` – – [14]
HEH `+ 1 `+ 2 – – [30, 31]

TCT1 `+ 1 5 2`
(
n
w

)2
2`
(
n
w

)2
–

TCT2 2`+ 8 32 4`
(
n
w

)2
4`
(
n
w

)2
–

Table 1: Tweakable ciphers and their computational costs for `n-bit inputs. Costs
measured in n-bit blockcipher calls [BC], finite field multiplications [F2n×], and ring
operations [Zw+] and [Z2w], for some word size w. Typically, ` = 32 for FDE, and we
anticipate n = 128, w = 64.

We mention the LargeBlock constructions due to Minematsu and Iwata [25],
since they provide ciphers with beyond-birthday-bound security. These do not
support tweaking, but it seems plausible that they could without significant
degradation of performance or security. These constructions overcome the birth-
day bound by using 2n-bit blockciphers as primitives, which are in turn con-
structed from an n-bit TBC. To our knowledge, CLRW2 [19] is the most efficient
n-bit TBC with beyond-birthday-bound security that supports the necessary
tweakspace (Minematsu’s TBC [24] limits tweak lengths to fewer than n/2 bits).
Compared to TCT2, instantiating the LargeBlock constructions with this prim-
itive ultimately requires an extra six finite field multiplications for each n bits
of input. Thus, we suspect the LargeBlock designs would be impractical even if
adding tweak support proves feasible.

A construction due to Coron, et al. [11], which we refer to as CDMS (after the
authors), builds a 2n-bit TBC from an n-bit TBC, providing beyond-birthday-
bound security in n. Like PIV, CDMS uses three rounds of a Feistel-like structure.
However, our middle round uses a VIL tweakable cipher, and we require a weaker
security property from the round. This allows PIV to efficiently process long in-
puts. That said, CDMS provides an excellent way to implement a highly-secure
2n-bit TBC, and we will use it for this purpose inside of TCT2 to build F̃ . (Nest-
ing CDMS constructions could create (2mn)-bit tweakable blockciphers for any
m > 1, but again, this would not be practical). We note that Coron, et al. were
primarily concerned with constructions indifferentiable from an ideal cipher, a
goal quite different from ours.

The Thorp shuffle [26] and its successor, swap-or-not [17], are highly-secure
ciphers targeting very small domains (e.g., {0, 1}n for n ≤ 64). Swap-or-not
could almost certainly become a VIL tweakable cipher, without changing the
security bounds, by using domain separation for each input length and tweak in
the underlying PRF. Essentially, one would make an input-length parameterized



family of (tweakable) swap-or-not ciphers, with independent round-keys for each
length. While still offering reasonable performance and unmatched security for
very small inputs, the result would be wildly impractical for the large domains
we are considering: swap-or-not’s PRF needs to be invoked at least 6b times to
securely encipher a b-bit input (below that, the bound becomes vacuous against
even q = 1 query), and disk sectors are often 4096 bytes. Also, to match TCT2’s
security, the PRF itself would need to be secure beyond the birthday bound
(with respect to n).

Finally, we note that Rogaway and Shrimpton [29] considered some forms of
tweakable encode-then-encipher in the context of deterministic AE (“keywrap-
ping”), and our work generalizes theirs.

2 Tweakable Primitives

Preliminary notation. Let N = {0, 1, 2, . . .} be the set of non-negative integers.
For n ∈ N, {0, 1}n denotes the set of all n-bit binary strings, and {0, 1}∗ denotes
the set of all (finite) binary strings. We write ε for the empty string. Let s, t ∈
{0, 1}∗. Then |s| is the length of s in bits, and |(s, t)| = |s ‖ t|, where s‖ t denotes
the string formed by concatenating s and t. If s ∈ {0, 1}nm for some m ∈ N,

s1s2 · · · sm n← s indicates that each si should be defined so that |si| = n and
s = s1s2 · · · sm. When n is implicit from context, it will be omitted from the
notation. If s = b1b2 · · · bn is an n-bit string (each bi ∈ {0, 1}), then s[i..j] =
bibi+1 · · · bj , s[i..] = s[i..n], and s[..j] = s[1..j]. The string s⊕ t is the bitwise
xor of s and t; if, for example, |s| < |t|, then s⊕ t is the bitwise xor of s and

t[.. |s|]. Given R ⊆ N and n ∈ N with n ≤ min(R), {0, 1}R =
⋃
i∈R {0, 1}

i
, and

by abuse of notation, {0, 1}R−n =
⋃
i∈R {0, 1}

i−n
. Given a finite set X , we write

X
$←−X to indicate that the random variable X is sampled uniformly at random

from X . Throughout, the distinguished symbol ⊥ is assumed not to be part of
any set except {⊥}. Given an integer n known to be in some range, 〈n〉 denotes
some fixed-length (e.g., 64-bit) encoding of n.

Let H : K × D → R ⊆ {0, 1}∗ be a function. Writing its first argument
as a subscripted key, H is ε-almost universal (ε-AU) if for all distinct X,Y ∈
D, Pr [HK(X) = HK(Y ) ] ≤ ε (where the probability is over K

$←−K). Simi-
larly, H is ε-almost 2-XOR universal if for all distinct X,Y ∈ D and C ∈ R,
Pr [HK(X)⊕HK(Y ) = C ] ≤ ε.

An adversary is an algorithm taking zero or more oracles as inputs, which it
queries in a black-box manner before returning some output. Adversaries may
be random. The notation Af⇒ b denotes the event that an adversary A outputs
b after running with oracle f as its input.

Syntax. Let K be a non-empty set, and let T ,X ⊆ {0, 1}∗. A tweakable cipher is

a mapping Ẽ : K × T × X → X with the property that, for all (K,T ) ∈ K × T ,

Ẽ(K,T, ·) is a permutation on X . We typically write the first argument (the

key) as a subscript, so that ẼK(T,X) = Ẽ(K,T,X). As ẼK(T, ·) is invertible,



we let Ẽ−1K (T, ·) denote this mapping. We refer to K as the key space, T as the

tweak space, and X as the message space. We say that a tweakable cipher Ẽ
is length preserving if |ẼK(T,X)| = |X| for all X ∈ X , T ∈ T , and K ∈ K.
All tweakable ciphers in this paper will be length preserving. Restricting the
tweak or message spaces of a tweakable cipher gives rise to other objects. When
X = {0, 1}n for some n > 0, then Ẽ is a tweakable blockcipher with blocksize n.
When |T | = 1, we make the tweak implicit, giving a cipher E : K × X → X ,
where EK(·) is a (length-preserving) permutation over X and E−1K is its inverse.
Finally, when X = {0, 1}n and |T | = 1, we have a conventional blockcipher
E : K × {0, 1}n → {0, 1}n.

Security notions. Let Perm (X ) denote the set of all permutations on X . Simi-
larly, we define BC(K,X ) be the set of all ciphers with keyspace K and message
space X . When X ,X ′ are sets, we define Func(X ,X ′) to be the set of all functions
f : X → X ′.

Fix a tweakable cipher Ẽ : K × T × X → X . We define the strong, tweak-
able pseudorandom-permutation (STPRP) advantage measure as Advs̃prp

E (A) =

Pr
[
K

$←−K : AẼK(·,·),Ẽ−1
K

(·,·)⇒ 1
]
− Pr

[
Π

$←− BC(T ,X ) : AΠ(·,·),Π−1(·,·)⇒ 1
]
. The

TPRP advantage measure is defined analogously, by dropping the Ẽ−1K ora-
cle from the first probability, and the Π−1 oracle from the second. We as-
sume that A never makes pointless queries. By this we mean that for the
(S)TPRPexperiments, the adversary never repeats a query to an oracle. For
the STPRP advantage measure, this also means that if A queries (T,X) to its
leftmost oracle and receives Y in return, then it never queries (T, Y ) to its right-
most oracle, and vice versa. These assumptions are without loss of generality.

The strong, indistinguishable-from-random-bits (SRND) advtantage is de-

fined as Advs̃rnd
Ẽ

(A) = Pr
[
K

$←−K : AẼK(·,·),Ẽ−1
K

(·,·)⇒ 1
]
− Pr

[
A$(·,·),$(·,·)⇒ 1

]
,

where the $(·, ·) oracle always outputs a random string equal in length to its
second input: |$(T,X)| = |X| for all T and X. As before, we assume that A
never makes a pointless query. Here, these assumptions are not without loss of
generality, but instead prevent trivial wins. Adversaries for the (S)TPRP and
SRND advantages are nonce-respecting if the transcript of their oracle queries
(T1, X1), . . . , (Tq, Xq) does not include Ti = Tj for any i 6= j.

For a cipher E : K × X → X , we define the strong, pseudorandom per-

mutation (SPRP) advantage as Advsprp
E (A) = Pr

[
K

$←−K : AEK(·),E−1
K

(·)⇒ 1
]
−

Pr
[
π

$←− Perm (X ) : Aπ(·),π
−1(·)⇒ 1

]
. As above, the PRP advantage is defined

analogously, by dropping the E−1K oracle from the first probability, and the π−1

oracle from the second. We again assume (without loss of generality) that the
adversary does not make pointless queries.

For all security notions in this paper, we track three adversarial resources:
the time complexity t, the number of oracle queries q, and the total length of
these queries µ. The time complexity of A is defined to include the complex-
ity of its enveloping probability experiment (including sampling of keys, oracle



computations, etc.), and we define the parameter t to be the maximum time
complexity of A, taken over both experiments in the advantage measure.3

3 The PIV Construction

We begin by introducing our high-level abstraction, PIV, shown in Figure 1.
Let T = {0, 1}t for some t ≥ 0, and let Y ⊆ {0, 1}∗ be such that if Y ∈ Y,

then {0, 1}|Y | ⊆ Y. Define T ′ = T × Y. Fix an integer N > 0. Let F̃ : K′ ×
T ′ × {0, 1}N → {0, 1}N be a tweakable blockcipher and let Ṽ : K × {0, 1}N ×
Y → Y be a tweakable cipher. From these, we produce a new tweakable cipher
PIV[F̃ , Ṽ ] : (K′ × K) × T × X → X , where X = {0, 1}N × Y. As shown in

Figure 1, the PIV composition of F̃ , Ṽ is a three-round Feistel construction,
working as follows. On input (T,X), let X = XL ‖XR where |XL| = N . First,

create an N -bit string IV = F̃K′(T ‖ XR, XL). Next, use this IV to encipher

XR, creating a string YR = ṼK(IV , XR). Now create an N -bit string YL =

F̃K′(T ‖ YR, IV ), and return YL ‖ YR as the value of PIV[F̃ , Ṽ ]K′,K(T,X). The

inverse PIV[F̃ , Ṽ ]−1K′,K(T, Y ) is computed in the obvious manner.
At first glance, it seems that nothing interesting has been accomplished: we

took an N -bit TBC and a tweakable cipher, and produced a tweakable cipher
with a slightly larger domain. However, the following theorem statement begins
to surface what our abstraction delivers.

Theorem 1. Let sets T ,Y, T ′,X and integer N be as above. Let F̃ : K′ × T ′ ×
{0, 1}N → {0, 1}N be a tweakable blockcipher, and let Ṽ : K × {0, 1}N × Y → Y
be a tweakable cipher. Let PIV[F̃ , Ṽ ] be as just described. Let A be an adversary
making q < 2N/4 queries totaling µ bits and running in time t. Then there exist
adversaries B and C, making q and 2q queries, respectively, and both running in

O(t) time such that Advs̃prp

PIV[F̃ ,Ṽ ]
(A) ≤ Advs̃rnd

Ṽ
(B)+Advs̃prp

F̃
(C)+ 4q2

2N
, where B

is nonce-respecting and whose queries total µ− qN bits in length.

The first thing to notice is that the VIL portion of the PIV composition, Ṽ ,
need be SRND-secure against nonce-respecting adversaries only. As we will see
in the next section, it is easy to build efficient schemes meeting this requirement.
Only the FIL portion, F̃ , needs to be secure against STPRP adversaries that
can use arbitrary querying strategies. Thus the PIV composition promotes nonce-
respecting security over a large domain into full STPRP security over a slightly
larger domain.

The intuition for why this should work is made clear by the picture. Namely,
if F̃ is a good STPRP, then if any part of T or X is “fresh”, then the string
IV should be random. Hence it is unlikely that an IV value is repeated, and

3 We do this simply to make our theorem statements easier to read. A more explicit
accounting of time resources in reductions, e.g. separating the running time of A
from the time to run cryptographic objects “locally”, would not significantly alter
any of our results.



so nonce-respecting security of the VIL component is enough. Likewise when
deciphering, if any part of T, Y is “fresh”.

The term 4q2/2N accounts for collisions in IV and the difference between F̃

and a random function. This is a birthday-bound term in N , the blocksize of F̃ .
Since most TBC designs employ (one or more) underlying blockciphers, we have
deliberately chosen the notation N , rather than n, to stress that the blocksize of
F̃ can be larger than that of some underlying blockcipher upon which it might be
built. Indeed, we’ll see in the next section that, given an n-bit blockcipher (and

a hash function), we can build F̃ with N = 2n. This gives us hope of building
beyond birthday-bound secure VIL STPRPs in a modular fashion; we will do
so, and with relatively efficient constructions, too.

It will come as no surprise that, if one does away with the lower F̃ invocation
and returns IV ‖ YR, the resulting composition does not generically deliver a
secure STPRP. On the other hand, it is secure as a TPRP (just not a strong
TPRP). This can be seen through a straight-forward modification of the PIV
security proof.

4 Concrete Instantiations of PIV

Instantiating a PIV composition requires two objects, a (fixed-input-length)

tweakable blockcipher F̃ with an N -bit blocksize, and a variable-input-length
tweakable cipher Ṽ . In this section we explore various ways to instantiate these
two objects, under the guidance of Theorem 1 and practical concerns.

Theorem 1 suggests setting N to be as large as possible, so that the final
term is vanishingly small for any realistic number of queries. But for this to
be useful, one must already know how to build a TBC F̃ with domain {0, 1}N

for a large N , and for which Advs̃prp

F̃
(C) approaches q2/2N . To our knowledge,

there are no efficient constructions that permit Advs̃prp

F̃
(C) to be smaller than

O(q3/22n) when using an n-bit blockcipher as a starting point. (A recent result
by Lampe and Seurin [18] shows how to beat this security bound, but at a
substantial performance cost.) A construction by Coron, et al., which will be
discussed in more detail shortly, does meet this bound4 while providing N = 2n.

So we restrict our attention to building TBC F̃ with small N . In particular,
we follow the common approach of building TBCs out of blockciphers. Letting n
be the blockcipher blocksize, we will consider N = n, and N = 2n. In the former
case, Theorem 1 only promises us security up to roughly q = 2n/2, which is
the birthday bound with respect to the blockcipher. With this security bound
in mind, we can use simple and efficient constructions of both F̃ and the VIL
tweakable cipher Ṽ . On the other hand, when N = 2n, Theorem 1 lets us hope
for security to roughly q = 2n queries. To realize this hope we will need a bit
more from both F̃ and Ṽ , but we will still find reasonably efficient constructions
delivering beyond birthday bound security.

4 However, nesting this construction to provide a VIL tweakable cipher is prohibitively
inefficient.



In what follows, we will sometimes refer to objects constructed in other works.
These are summarized for convenience in Figure 5, found in Appendix A.

An efficient VIL tweakable cipher. We will start by considering general methods
for constructing the VIL tweakable cipher, Ṽ . Recall that Ṽ need only be secure
against adversaries that never repeat a tweak. In Figure 3, we see an analogue
of conventional counter-mode encryption, but over an n-bit TBC Ẽ instead of a
blockcipher. Within a call (T,X) to TCTR, each n-bit block Xi of the input X is

procedure TCTR[Ẽ]K(T,X):

X1, X2, . . . , Xν
n←X

for i = 1 to ν

Ti ← g(T, i); Zi ← 〈i〉
Yi ← ẼK(Ti, Zi)⊕Xi

Return Y1, Y2, . . . , Yν

procedure TCTR[Ẽ]−1
K (T, Y ):

Y1, Y2 . . . , Yν
n← Y

for i = 1 to ν

Ti ← g(T, i); Zi ← 〈i〉
Xi ← Yi ⊕ ẼK(Ti, Zi)

Return X1, . . . , Xν

Fig. 3: The TCTR VIL tweakable cipher.

processed using a per-block tweak Ti, this being determined by a function g : T ′×
N→ T of the input tweak T and the block index i.

Consider the behavior of TCTR when g(T, i) = T . The following result is
easily obtained using standard techniques.

Theorem 2. Let Ẽ : {0, 1}k×T ×{0, 1}n → {0, 1}n be a tweakable blockcipher,

and let TCTR[Ẽ]K and TCTR[Ẽ]−1K be defined as above, with g(T, i) = T ∈ T .
Let A be a nonce-respecting adversary that runs in time t, and asks q queries,
each of length at most `n bits (so, µ ≤ q`n). Then for some adversary B making

at most q` queries and running in time O(t), Advs̃rnd
TCTR[Ẽ]

(A) ≤ Advp̃rp

Ẽ
(B) +

0.5q`2/2n.

We note that the bound displays birthday-type behavior when ` = o(
√
q), and

is tightest when ` is a small constant. An important application with small,
constant ` is full-disk encryption. Here plaintexts X would typically be 4096
bytes long, so if the underlying TBC has blocksize n = 128, we get ` = 256
blocks.5

Extending tweakspaces. In PIV, the TBC F̃ will need to handle long tweaks.
Fortunately, a result by Coron, et al. [11] shows that one can compress tweaks
using an ε-AU hash function at the cost of adding a q2ε term to the tweakable
cipher’s TPRP security bound. In particular, we will use (a slight specialization

5 Actually, slightly less than this when used in the PIV composition, since the first N
bits are enciphered by F̃ .



Fig. 4: The TCT2 construction (top). TCT2 takes τn-bit tweaks, and the input length

is between 2n and `n bits, inclusive. Here, F̃ is implemented using the 2n-bit CDMS
construction coupled with the NH hash function (bottom left). Both Ṽ and the TBC

Ẽ used inside of CDMS are implemented using CLRW2[polyHrn, E] (bottom right),
with r = 6 and r = 2, respectively. The function Pad maps s to s ‖ 10(`+1)n−1−|s|. In

the diagram for CDMS, the strings 00T̃ , 01T̃ , and 10T̃ are padded with 0s to length
5n before being used.

of) the NH hash, defined by Black, et al. [6]; NH[r, s]L takes r-bit keys (|L| = r),
maps r-bit strings to s-bit strings, and is 2s/2-AU. Please see Table 5 for the
description. Given a TBC Ẽ, ẼNH denotes the resulting TBC, whose tweakspace
is now the domain of NH, rather than its range.

4.1 Targeting efficiency at birthday-type security: TCT1

Let us begin with the case of N = n. To instantiate the n-bit TBC F̃ in PIV we
refer to the pioneering TBC work of Liskov, Rivest and Wagner [20], from which
we draw the LRW2 TBC; please refer to Figure 5 for a description.

Before we give the TCT1 construction, a few notes. In Figure 5 we see that
in addition to a blockcipher E, LRW2[H,E] uses an ε-AXU2 hash function, H,
and so, in theory, it could natively accommodate large tweaks. But for practical
purposes, it will be more efficient to implement LRW2 with a small tweakspace,



and then extend this using a fast ε-AU hash function.6 For the ε-AXU2 hash
function itself, we use the polynomial hash polyH (also described in Table 5).

Now are ready to give our TCT1 construction, which is birthday-bound secure
for applications with small plaintext messages (e.g. FDE).

The TCT1 Construction. Fix k, n > 0, and let N = n. Let E : {0, 1}k×{0, 1}n →
{0, 1}n be a blockcipher, and let polyHmn, and NH be as defined in Table 5. Then

define TCT1 = PIV[F̃ , Ṽ ], where to obtain a τn-bit tweakspace and domain

{0, 1}{n,n+1,...,`n}
we set:

1. n-bit TBC F̃ = LRW2[polyH2n, E]NH[(`+τ)n,2n], i.e. LRW2 with its tweakspace

extended using NH. The keyspace for F̃ is {0, 1}k × {0, 1}2n × {0, 1}(`+τ)n,
with key K ′ partitioning into keys for E, polyH2n, and NH[(` + τ)n, 2n].
(Since NH supports only fixed length inputs, we implicitly pad NH inputs
with a 1 and then as many 0s as are required to reach a total length of

(`+ τ)n bits.) The tweakspace for F̃ is {0, 1}{0,1,2,...,(`+τ−1)n}.
2. VIL tweakable cipher Ṽ = TCTR [LRW2[polyHn, E]] with the TCTR func-

tion g : {0, 1}n×N→ {0, 1}n as g(T, i) = T . The keyspace for Ṽ is {0, 1}k×
{0, 1}n, with key K partitioning into keys for E and polyHn. The tweakspace

for Ṽ is {0, 1}n, and its domain is {0, 1}{0,1,...,(`−1)n}.

Putting together Theorems 1,2, and results from previous works [6, 20], we have
the following security bound.

Theorem 3 (STPRP-security of TCT1). Define TCT1 as above, and let A
be an adversary making q < 2n/4 queries and running in time t. Then there
exist adversaries B and C, both running in time O(t) and making (`− 1)q and

2q queries, respectively, such that Advs̃prp
TCT1[E](A) ≤ Advprp

E (B)+Advsprp
E (C)+

32q2

2n + 4q2(`−1)2
2n .

The proof appears in the full version. This algorithm requires 2k + (3 + τ + `)n

bits of key material, including two keys for Ẽ. As we show at the end of this
section, we can get away with a single key for E with no significant damage
to our security bound, although this improvement is motivated primarily by
performance concerns.

Thus TCT1 retains the security of previous constructions (see Figure 2 for a
visual comparison), uses arithmetic in rings with powers-of-two moduli, rather
than in a finite field. This may potentially improve performance in some archi-
tectures.

6 Indeed, one can show composing an ε-AU hash function with an ε′-AXU2 hash
function yields an (ε + ε′)-AXU2 hash function; however, we prefer to work on a
higher level of abstraction.



4.2 Aiming for beyond birthday-bound security: TCT2

Now let us consider the PIV composition with N = 2n. For the FIL component,
we can use Coron et al.’s [11] CDMS construction to get a 2n-bit TBC from an n-
bit TBC, and implement the latter using the CLRW2, a recent beyond-birthday-
bound secure construction by Landecker, Shrimpton, and Terashima [19]. Table 5
describes both constructions.7 We again extend the tweakspace using NH. (To

stay above the birthday bound, we set the range of NH to {0, 1}2n). Ultimately,

setting F̃ = CDMS[CLRW2]NH is secure against up to around 22n/3 queries.
CLRW2 also gives us a way to realize a beyond birthday-bound secure VIL

component, namely Ṽ = TCTR[CLRW2[E,H], at least for ` = o(q1/4). (We’ll
see how to avoid this restriction, if desired, in a moment.)

We are now ready to give our second fully concrete PIV composition, TCT2,
targeted at applications that would benefit from beyond birthday-bound secu-
rity. This algorithm requires us to nest four layers of other constructions, so we
provide an illustration in Figure 4. Again we emphasize that the (admittedly

significant) cost of F̃ can be amortized.

TCT2 supports τn-bit tweaks and has domain {0, 1}{2n,2n+1,...,`n}
.

The TCT2 Construction. Fix k, `, n, τ > 0, and let N = 2n. Let E : {0, 1}k ×
{0, 1}n → {0, 1}n be a blockcipher, and let polyH`n, and NH be as defined in

Table 5. Then define TCT2 = PIV[F̃ , Ṽ ], where:

1. F̃ = CDMS
[
CLRW2[polyH6n, E]

]NH[(`+τ−1)n,4n]
, that is, the 2n-bit TBC

CDMS
[
CLRW2[polyH6n, E]

]
with its tweakspace extended using NH. The

keyspace for F̃ is {0, 1}2k×{0, 1}12n×{0, 1}(`+τ−1)n, with key K ′ partition-
ing into two keys for E, two keys for polyH6n, and a key for NH[`n, 4n]. The

tweakspace for F̃ is {0, 1}τn.

2. Ṽ = TCTR
[
CLRW2[polyH2n, E]

]
, with the TCTR function g : {0, 1}n ×

N→ {0, 1}n as g(T, i) = T . The keyspace for Ṽ is {0, 1}2k×{0, 1}4n with key
K partitioning into two keys for E and two keys for polyH2n. The tweakspace

for Ṽ is {0, 1}2n, and its domain is {0, 1}{0,1,2,...,(`−2)n}.

TCT2 requires 4k+(`+τ+15)n bits of key material. Putting together Theorems 1,
5, and results from previous works [6, 11, 19], we have the following security
result.

Theorem 4 (STPRP-security of TCT2). Define TCT2 as above, and let A
be an adversary making q queries and running in time t, where 6q, `q < 22n/4.
Then there exist adversaries B and C, both running in O(t) time and making

(` − 1)q and 6q queries, respectively, such that Advs̃prp
TCT2

(A) ≤ 2Advprp
E (B) +

2Advsprp
E (C) + 12q2

22n + q(`−1)2
2n + 6`3q3

22n−2−`3q3 + 64q3

22n−2−63q3 .

7 We note that for CDMS[Ẽ], we enforce domain separation via Ẽ’s tweak, whereas

the authors of [11] use multiple keys for Ẽ. The proof of our construction follows
easily from that of the original.



Again, the proof appears in the full version. Some of the constants in this bound
are rather significant. However, as Figure 2 shows, TCT2 nevertheless provides
substantially better security bounds than TCT1 and previous constructions.

4.3 Additional practical considerations

Several variations and optimizations on TCT1 and TCT2 are possible. We high-
light a few of them here. None of these changes significantly impact the above
security bounds, unless otherwise noted.

Reducing the number of blockcipher keys. In the case of TCT1, we can use a single
key for both LRW2 instances provided we enforce domain separation through
the tweak. This allows us to use a single key for the underlying blockcipher,
which in some situations may allow for significant implementation benefits (for
example, by allowing a single AES pipeline). One method that accomplishes this
is to replace LRW2[polyH2n, E]NH[(`+1)n,2n] with LRW2[polyH3n, E]f(ε,·) and
LRW2[polyHn, E] with LRW2[polyH3n, E]f(·,ε). Here, f is a 2−n-AU function

with keyspace {0, 1}3n × {0, 1}`n, taking inputs of the form (X, ε) (for some

X ∈ {0, 1}n) or (ε, Y ) (for some Y ∈ {0, 1}{0,1,...,`n}), and outputting a 3n-bit
string. Let fL(X, ε) = 02n ‖ X and fL(ε, Y ) = 1n ‖ NH[(` + 1)n, 2n]L(Y ). The
function f described here is a mathematical convenience to unify the signatures
of the two LRW2 instances, thereby bringing tweak-based domain separation
into scope; in practice, we imagine the two instances would be implemented
independently, save for a shared blockcipher key. We note that TCT2 can be
modified in a similar manner to require only two blockcipher keys.

Performance optimizations. If we need only a tweakable (FIL) blockcipher, we
can use NH[`n, 2n] in place of NH[(`+ 1)n, 2n] by adjusting our padding scheme
appropriately. We emphasize that in the TCTR portion, the polyH functions
only need to be computed once, since each LRW2 invocation uses the same
tweak. The corresponding optimizations apply to TCT2, as well.

A näıve implementation of TCT2 would make a total 72 finite field multipli-
cations during the two FIL phases (a result of evaluating polyH6n twelve times).
We can cache an intermediate value of the polyH6n hash used inside of CDMS
(four n-bit tweak blocks are constant per invocation), and this saves 32 finite field
multiplications. Precomputing the terms of the polynomial hash corresponding
to the domain-separation constants eliminates 12 more multiplications, leaving
28 in total. Four more are required during the VIL phase, giving the count of 32
reported in Table 1.

Handling large message spaces. Both TCT1 and TCT2 are designed with FDE
applications in mind. In particular, they require ` to be fixed ahead of time, and
require more than `n bits of key material.

These limitations are a consequence of using the NH hash function; however,
a simple extension to NH (described by the original authors [6]) accommodates



arbitrarily long strings. Fix a positive integer r and define NH∗L(M1M2 · · ·Mν) =
NHL(M1) ‖ NHL(M2) ‖ · · · ‖ NHL(Mν) ‖ 〈|M | mod rn〉, where |Mi| = rn for
i < ν, |Mν | ≤ rn, and NHL abbreviates NHL[rn, 2N ]. Thus defined, NH∗ is
2−N -almost universal, has domain {0, 1}∗, and requires rn bits of key material.
This modification shifts some of the weight to the polyH hash; we now require
eight extra finite field multiplications for each additional rn bits of input. As
long as r > 4, however, we require fewer of these multiplications when compared
to previous hash-ECB-hash or hash-CTR-hash constructions.

With these modifications, the final two terms in TCT1’s security bound (The-
orem 3) would become 8q2/2n + 600q2`2/r22n + 4q2(`− 1)2/2n, where `n is now
the length of the adversary’s longest query, ` > 2.5r, and the remaining terms
measure the (S)PRP security of the underlying blockcipher. We also assume
2n ≥ rn, so that |M | mod rn can be encoded within a single n-bit block. Al-
though the constant of 600 is large, we note that setting r = 16, for example,
reduces it to a more comfortable size — in this case to less than three. The
bound for TCT2 changes in a similar manner. (Note that if 2n−2 ≥ rn, we can
use a single n-bit block for both the tweak domain-separation constants and
〈|M | mod rn〉.)

Beyond birthday-bound security for long messages. When ` is not bounded to
some small or moderate value, TCT2 no longer provides beyond-birthday-bound
security. The problematic term in the security bound is q(`−1)2/2n. To address
this, we return to TCTR (Figure 3) and consider a different per-block tweak
function.

In particular, g(T, i) = T ‖ 〈i〉. In the nonce-respecting case, the underlying

TBC Ẽ is then retweaked with a never-before-seen value on each message block.
Again, think about what happens when Ẽ is replaced by an ideal cipher Π:
in the nonce-respecting case, every block of plaintext is masked by the output
of a fresh random permutation.8 In other words, every block returned will be
uniformly random. Thus we expect a tight bound, in this case. Formalizing this
logic yields the following theorem.

Theorem 5. Let Ẽ : {0, 1}k×T ×{0, 1}n → {0, 1}n be a tweakable blockcipher,

and let TCTR[Ẽ]K and TCTR[Ẽ]−1K be defined as above, with g : T ′×N→ T an
arbitrary injective mapping. Let A be a nonce-respecting adversary that runs in
time t, and asks q queries of total length at most µ = σn bits. Then there exists
some adversary B making at most σ queries and running in time O(t) such that

Advs̃rnd
TCTR[Ẽ]

(A) ≤ Advp̃rp

Ẽ
(B).

Consequently, using this variation of TCTR in Theorems 3 and 4 would remove
the q(` − 1)2 term from the bounds, thereby lifting message length concerns.
Note that if this change is made, g(T, i) needs to be computed up to ` times per
invocation, rather than just once. This problem may be mitigated by using the

8 Notice that one could use (say) Zi ← 0n and the same would be true. We present it
as Zi ← 〈i〉 for expositional purposes.



XEX [28] TBC in place of LRW2, which makes incrementing the tweak extremely
fast without significantly changing our security bound.

When the above change are made, TCT1 and TCT2 offer efficient tweakable
ciphers on an unbounded domain, losing security guarantees only after O(2n/2)
(resp., O(22n/3)) bits have been enciphered. Finally, we note that one can use
a conventional blockcipher mode of operation to build the VIL component. We
report on this in the full version.
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A Components for TCT1 and TCT2

LRW2 [20]: Birthday-bound TBC. Needs blockcipher E, ε-AXU2 function H.

LRW2[H,E](K,L)(T,X) = EK(X ⊕HL(T ))⊕HL(T )

CLRW2[19]: TBC with beyond-birthday-bound security. Requires blockcipher E and
ε-AXU2 function H.

CLRW2[H,E](K1,K2,L1,L2)(T,X) =

LRW2[H,E](K2,L2)(T,LRW2[H,E](K1,L1)(T,X))

polyHmn [34]: ε-AXU2 function with domain ({0, 1}n)m and ε = m/2n. All operations
in F2n .

polyHmn
L (T1T2 · · ·Tm) =

m⊕
i=1

Ti ⊗ Li,

NH(νw, 2tw) [6]: ε-AU hash function with ε = 1/2tw. Inputs are νw bits, where ν is
even and w > 0 is fixed.

NH[ν, t]K1 ‖ ··· ‖Kν+2(t−1)
(M) =

HK1···Kν (M) ‖HK3···Kν+2(M) ‖ · · · ‖HK2t−1···Kν+2t−2(M)

where HK1 ‖ ··· ‖Kν (X1 · · ·Xν) =
∑ν/2
i=1(K2i−1 +w X2i−1) · (K2i +w X2i) mod 22w.

CDMS [11]: Feistel-like domain extender for TBC Ẽ.

CDMS[Ẽ]K(T,L ‖R) = ẼK(10 ‖ T ‖R′, L′) ‖R′

where R′ = ẼK(01 ‖ T ‖ L′, R) and L′ = ẼK(00 ‖ T ‖R,L).

Fig. 5: TCT1 and TCT2 use these constructions as components.


