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Abstract. Impossible differentials cryptanalysis and impossible poly-
topic cryptanalysis are the most effective approaches to estimate the se-
curity of block ciphers. However, the previous automatic search methods
of their distinguishers, impossible differentials and impossible polytopic
transitions, neither consider the impact of key schedule in the single-key
setting and the differential property of large S-boxes, nor apply to the
block ciphers with variable rotations.

Thus, unlike previous methods which focus on the propagation of the
difference or s-difference, we redefine the impossible differentials and
impossible (s+ 1)-polytopic transitions according to the propagation of
state, which allow us to break through those limitations of the previous
methods. Theoretically, we prove that traditional impossible differentials
and impossible (s+ 1)-polytopic transitions are equivalent to part of our
redefinitions, which have advantages from broader view. Technically, we
renew the automatic search model and design an SAT-based tool to
evaluate our redefined impossible differentials and impossible (s + 1)-
polytopic transitions efficiently.

As a result, for GIFT64, we get the 6-round impossible differentials which
cannot be detected by all previous tools. For PRINTcipher, we propose
the first modeling method for the key-dependent permutation and key-
dependent S-box. For MISTY1, we derive 902 4-round impossible differ-
entials by exploiting the differential property of S-boxes. For RC5, we
present the first modeling method for the variable rotation and get 2.5-
round impossible differentials for each version of it. More remarkable,
our tool can be used to evaluate the security of given cipher against
the impossible differentials, and we prove that there exists no 5-round 1
input active word and 1 output active word impossible differentials for
AES-128 even consider the relations of 3-round keys. Besides, we also get
the impossible (s + 1)-polytopic transitions for PRINTcipher, GIFT64,
PRESENT, and RC5, all of which can cover more rounds than their
corresponding impossible differentials as far as we know.
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1 Introduction

Impossible differential cryptanalysis was proposed by Biham et al. and Knudsen
respectively, where Biham et al. used it to analyze the security of Skipjack [4],
and Knudsen utilized it to analyze the security of DEAL [14]. Up to now, im-
possible differential cryptanalysis has been applied to lots of block ciphers, such
as AES [18], SIMON [8], XTEA [9], and so on. There is no doubt that it is one
of the most effective cryptanalytic approaches to evaluate the security of block
ciphers.

In the impossible differential cryptanalysis, attackers derive the right keys by
discarding the wrong keys that lead to the impossible differentials inherent to
the given cipher. Thus how to find an impossible differential as longer as possible
is the most essential and critical problem in regard to this kind of attacks.

Impossible (s + 1)-polytopic cryptanalysis was proposed by Tiessen [29],
which is a generalization of impossible differential cryptanalysis. Unlike the im-
possible differentials are constructed by considering the interdependencies of the
differences of two plaintexts and the accordingly two ciphertexts, the distin-
guishers of impossible (s+ 1)-polytopic cryptanalysis, named impossible (s+ 1)-
polytopic transitions, are constructed by considering the interdependencies be-
tween the s-differences of (s+ 1) plaintexts and (s+ 1) ciphertexts 4.

In the last 20 years, using automatic tools to search the distinguishers be-
comes a new trend. The first automatic tool for the impossible differentials is
presented by Kim et al. [13], named U-method. Then, Luo et al. [17] extended
it as UID-method. After that, Wu and Wang [31] introduced another method
using the idea of solving equations, called WW-method. However, those tools
to search impossible differentials cannot describe the details of S-boxes, which
waste plenty of differential property of the propagation.

This problem is settled with the application of the Mixed Integer Linear
Programming (MILP) method to symmetric cryptography. The MILP problem
is a mathematical optimization problem that finds the minimum or maximum
value of some objective function under the conditions of linear equations and
inequalities of integer variables. Mouha et al. [22] first introduced it to symmetric
cryptography to find the lower bound on the number of active S-boxes for both
differential and linear cryptanalysis. Later, Sun et al. [28] proposed the modelling
method to depict the valid differential propagation of small S-boxes (typically 4
bits), and Fu et al. [12] presented the modelling method to depict all the valid
differential/linear characteristics propagations of modular addition. Thus, the
differential propagation of any round for the small S-boxes based block ciphers
and ARX block ciphers can be modeled by a set of linear inequalities accurately.

4 Convention. In our paper, the impossible (s+ 1)-polytopic transition is uniformly
defined for (s ≥ 2), excluding the case of the impossible differential, since it has been
studied in-depth separately.
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On that basis, Cui et al. [10] proposed a MILP-based tool to search the im-
possible differentials for lightweight block ciphers, and an algorithm to verify the
impossible differentials. Soon after, Sasaki and Todo [27] presented a MILP-based
tool to search the impossible differential for SPN block ciphers. In particular,
they proposed the best search method at present for large S-boxes based block
ciphers, named the arbitrary S-box mode, which only treats the large S-boxes
as permutations in order to make their tool valid to detect the contradiction in
linear components.

However, the previous automatic search tools for impossible differentials have
the following limitations in general.

– Previous tools cannot take into account the key schedule in the single-key
setting.

– Previous tools cannot consider the differential property of large S-boxes.
– Previous tools cannot be applied to the block ciphers with variable rotation.

As to impossible polytopic transitions, there was only a search method pro-
posed for DES and AES in the original paper [29]. However, due to the lim-
itation that the searching spaces increase rapidly with the number of rounds,
this method can only be confined to a small number of rounds. Besides, this
tool cannot take into account the key schedule in the single-key setting and be
applied to the block ciphers with variable rotations either.

Our Contributions. In this paper, we define a series of new notations, s-
polygon to describe a tuple with s states, s-polygonal trail to depict the propa-
gation of s-polygon, possible s-polygons and impossible s-polygons to depict the
relations between two s-polygons.

Then, unlike the traditional impossible differentials and impossible (s + 1)-
polytopic transitions that are constituted according to the propagation of dif-
ference and s-difference, we redefine the impossible differentials and impossible
(s+ 1)-polytopic transitions based on the propagation of the s-polygon5. Thus,
the key schedule in the single-key setting can be considered in the construction
of redefined impossible differentials and impossible (s+ 1)-polytopic transitions.
We define the i-impossible differential (resp. i-impossible (s+ 1)-polytopic tran-
sition) to represent the redefined impossible differential (resp. impossible (s+1)-
polytopic transition) which is constituted in the round key independent setting
and d-impossible differential (resp. d-impossible (s+ 1)-polytopic transition) to

5 This idea can be traced back to [21]. In [21], Mironov et al. used the idea of the
transition of states to search two states that satisfy a fixed differential path, which is
the critical step to find a collision of the hash function. Recently, two papers [16,26]
that also used the idea of the transition of states appeared in the ePrint. As we
understand, [16] applied the transition of two states to the non-linear layer. [26]
utilized the idea to determine whether a given differential path of ARX based block
ciphers is compatible or not. In our paper, we exploit the idea of the transition of
multi-states to search the impossible differential and the impossible (s+1)-polytopic
transition for block ciphers.
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represent the redefined impossible differential (resp. impossible (s+1)-polytopic
transition) which is constituted by considering the key schedule.

Next, we study the relation between our redefined impossible differential (re-
sp. impossible (s+1)-polytopic transition) and traditional impossible differential
(resp. impossible (s+ 1)-polytopic transition). We show that the i-impossible d-
ifferential (resp. i-impossible (s+ 1)-polytopic transition) is equivalent to tradi-
tional impossible differential (resp. impossible (s+1)-polytopic transition) which
is constructed by taking into account the inside property of S-boxes for the block
ciphers with SPN or Feistel structures and the block cipher MISTY1.

Finally, we model the propagations of states by the statements in the CVC
format of STP6 (a solver of the SAT problem) for each operation, and design an
SAT-based unified automatic tool for searching the redefined impossible differ-
ential and impossible (s + 1)-polytopic transition. Since traditional impossible
differential is equivalent to the i-impossible differential and traditional impossi-
ble (s+1)-polytopic transition is equivalent to the i-impossible (s+1)-polytopic
transition, our tool can be used to search the traditional impossible differential
and traditional impossible (s + 1)-polytopic transition. Furthermore, our tool
has the following advantages.

Able to search the distinguishers by considering the impact of key
schedule in the single-key setting. Our automatic search tool focuses
on the propagations of states, which are impacted by the value of key. By
adding the constraints of key variables according to the key schedule, it can
be used to search the impossible differentials and impossible (s+1)-polytopic
transitions in the single-key setting confirming the key schedule. As far as we
know, this is the first automatic search tool that considers the impact of key
schedule in the single-key setting for impossible differentials and impossible
(s+ 1)-polytopic transitions.

Able to search the distinguishers for the block ciphers with variable
rotation. In this paper, by exploiting the conditional term of the CVC
format, we propose a novel method to model the propagations of states for
variable rotation. This method allows us to search the impossible differentials
and impossible (s + 1)-polytopic transitions for block ciphers with variable
rotation automatically. As far as we know, this is the first automatic search
method for such type of block ciphers.

Able to search impossible differentials for block ciphers with large
S-boxes by considering the differential property of large S-boxes.
We make use of the conditional terms to model the propagations of states for
large S-boxes. This way allows us to search the impossible differentials for
the block ciphers with large S-boxes by considering the differential property
of large S-boxes. As far as we know, this is the first automatic tool to search
the impossible differentials for such ciphers taking account in the differential
property of large S-boxes.

New proving tool for resisting impossible differentials in aspect of
cipher design. Our tool not only can be used to evaluate the security of

6 http://stp.github.io/
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block ciphers against traditional impossible differentials for block cipher-
s with large S-box in the case of considering the differential property of
large S-boxes, but also can be used to evaluate the security of block ciphers
(includes block ciphers with key-dependent permutation) against the impos-
sible differentials in the case of considering the key schedule in the single-key
setting. It is very favorable in aspect of block ciphers design and assessment.

We apply our tool to various block ciphers, these results can be divided into
three aspects7.
Deriving new impossible differentials.

- For GIFT64 [2], we get the 6-round impossible differentials, which cannot be
detected by Sun et al.’s method or Sasaki et al.’s method. This result shows
that, our tool can detect more contradictions than the previous methods.

- For PRINTcipher48/96 [15], we can not only give the first modeling method
for the key-dependent permutation, but also give the first direct modeling
method for the key-dependent S-box, which is consisted of the key-dependent
permutation and the fixed S-box. Take either of the two modeling method-
s, by considering all the details of the key schedule, we found 730 4-round
impossible differentials for PRINTcipher48 and 234 5-round impossible dif-
ferentials for PRINTcipher96.

- For MISTY1 [20], we found 902 4-round i-impossible differentials by exploit-
ing the differential property of S-boxes, while only 28 4-round i-impossible
differentials were got by implementing the arbitrary S-box mode of Sasaki et
al.’s method.

- For RC5-32/64/128 [24], we propose the first modeling method for variable
rotation, which allows us to get the 2.5-round impossible differentials for
them in the key independent setting.

Evaluating the resistance against the impossible differentials. Besides
applying our tool directly, we also propose three phases technique and inside
value technique to speed up our proving process.

- For GIFT64, PRESENT [6], Midori64 [1], PRINTcipher48, and PRINTci-
pher96, we prove that, in the search space where the input difference on-
ly actives one S-box in the first substitution and the output difference only

7 Illustrantion. Note that, when to search the r-round distinguishers by considering
the key schedule in our model, different beginning round lead to different final mod-
els, since the round constants are different from each round. To a common format,
we place the distinguishers of our model in the 1st round by default (except GIFT64,
since the round key is not XORed with plaintext in the first round, we place the
distinguishers in the 2nd). That is, when we say a distinguisher is an r-round dis-
tinguisher, it is an r-round distinguisher placed from 1st round to the r-th round.
Similarly, when we say there exists no r-round impossible differentials in the search
space, it means that for all the input differences and output differences where the
input differences placed at the 1st round and the output differences placed at the
r-th round, the differences cannot be connected. Actually, in other cases that the
distinguishers do not begin with the 1st round, the distinguisher can be searched
similarly.
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actives one S-box in the last substitution, there exists no 7-round, 7-round, 6-
round, 5-round, and 6-round impossible differentials for GIFT64, PRESENT,
Midori64, PRINTcipher48, and PRINTcipher96 even taking account in the
details of the key schedule.

- For AES [11], by adopting the new proposed three phases technique, we prove
that even considering the relations of middle three-round keys, there still
exists no 5-round 1 input active word and 1 output active word impossible
differentials.

- For 5-round MISTY1 [20] with the FL layers placed at the even rounds, by
adopting the three phases technique and inside value technique, we prove
that there exists no 1 input active bit and 1 output active bit impossible
differentials.

Resulting in new impossible (s+ 1)-polytopic transition (s ≥ 2). Besides
applying our tool directly, we further propose the step by step strategy to speed
up the search.

- For PRINTcipher, by considering all the details of the key schedule, we obtain
the 6-round d-impossible 3-polytopic transition and 7-round d-impossible 4-
polytopic transition for PRINTcipher48, and 7-round d-impossible 3-polytopic
transition and 8-round d-impossible 4-polytopic transition for PRINTci-
pher96. Moreover, we investigate the impact of the restraints of the xor
keys (i.e. the keys which are xored with the state) and control keys (i.e. the
keys which are used to control the key-dependent permutation). The result
shows that, both the restraints of the xor keys and control keys will lead to
more contradictions.

- For GIFT64, we get a 7-round d-impossible 3-polytopic transition.
- For RC5-32, we get 108 3-round i-impossible 3-polytopic transitions. Similarly,

we get a 3-round i-impossible 3-polytopic transition for RC5-64.
- For PRESENT, we get a 7-round i-impossible 4-polytopic transition.

Outline. We introduce the notations and related work in Section 2. Our re-
defined impossible differentials and impossible (s+ 1)-polytopic transitions and
the relations between our redefinitions and traditional definitions are shown in
Section 3. The SAT modeling methods and our search algorithm are detailed in
Section 4. We apply our method to impossible differentials from the cryptanaly-
sis aspect and design aspect in Section 5 and Section 6, respectively. In Section
7, we apply our method to impossible polytopic transitions. In Section 8, we
conclude this paper.

2 Preliminaries

2.1 Notations

The following notations are used in this paper.

- xm,s: the tuple (x0, . . . , xs−1), where xi ∈ Fm2 (0 ≤ i ≤ s− 1).
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- xm,s
i : the tuple (xi,0, . . . , xi,s−1), where xi,j ∈ Fm2 (0 ≤ j ≤ s− 1).

- xm,s||ym,s: the tuple (x0||y0, . . . , xs−1||ys−1), where xi, yi ∈ Fm2 (0 ≤ i ≤
s− 1).

- xm,s+1 Bαm,s: the tuple xm,s+1 satisfy x0 ⊕ xj+1 = αj (0 ≤ j ≤ s− 1).
- 0p1q: the concatenation of p successive 0s and q successive 1s.
- apbq: the concatenation of p-bit constant a and q-bit constant b.
- W (a): the hamming weight of a, i.e., the 1’s number in the bit representation

of a.
- enI : an n bits value, whose i-th bit is 1 for i ∈ I, and 0 otherwise.
- BC(n,m, l): the set of all iterated block ciphers whose block size is n-bit,

master key size is m-bit, and round key size is l-bit.
- Erk(x): the output of encryption E ∈ BC(n,m, l) on the state x ∈ Fn2 after

r-round under k ∈ (Fl2)r.
- Erk(xn,s): the tuple (Erk(x0), . . . , Erk(xs−1)).
- IKSlr: the set {(k1, . . . , kr)|ki ∈ Fl2, 1 ≤ i ≤ r}.
- DKSm,lr : the set {(k1, . . . , kr)|k ∈ Fm2 , ki ∈ Fl2, ki = Gi(k), 1 ≤ i ≤ r}, where

Gi denotes the key schedule to generate the round key ki from the master
key k for a block cipher E ∈ BC(n,m, l).

2.2 A Brief Introduction of Impossible Differentials and Impossible
(s+ 1)-polytopic Transitions

Impossible differential is the distinguisher of impossible differential cryptanaly-
sis, and impossible (s+ 1)-polytopic transition is the distinguisher of the impos-
sible polytopic cryptanalysis. Here, we only recall the definitions of impossible
(s + 1)-polytopic transition, since impossible differential is the special case of
s = 1. First, let us recall the definition of s-polytope and s-difference.

Definition 1 (s-polytope [29]). An s-polytope in Fn2 is an s-tuple of values
in Fn2 .

Definition 2 (s-difference [29]). An s-difference over Fn2 is an s-tuple of
values in Fn2 . For an (s + 1)-polytope (m0,m1, . . . ,ms) , the corresponding s-
difference is defined as (m0 ⊕m1,m0 ⊕m2, . . . ,m0 ⊕ms).

Next, we recall the propagation rule of s-difference and the valid (s + 1)-
polytopic trail.

Definition 3 (The Propagation Rule of The s-difference [29]). Let f :
Fn2 → Fq2 be a function. For the input s-difference αn,s and the output s-
difference βq,s, if there exists x such that, f(x⊕αi)⊕ f(x) = βi(0 ≤ i ≤ s− 1),

we call that αn,s can propagate to βq,s, denoted as αn,s f→ βq,s. Otherwise, we

call that αn,s cannot propagate to βq,s, denoted as αn,s f9 βq,s.

Definition 4 (Valid (s + 1)-polytopic Trail [29]). Let f : Fn2 → Fn2 be a
function that is the iterated composition of round functions fi : Fn2 → Fn2 :
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f := fr ◦ · · · ◦ f2 ◦ f1.
Let αn,s0 be the input s-difference and αn,sr be the output s-difference. Then, a
valid (s+1)-polytopic trail for (αn,s0 ,αn,sr ) on f is an (r+1)-tuple (αn,s0 ,αn,s1 , . . . ,

αn,sr ), where αn,si
fi+1→ αn,si+1(0 ≤ i ≤ r − 1).

By exploiting the definition of the valid (s+1)-polytopic trail, the definitions
of possible (s+1)-polytopic transition and impossible (s+1)-polytopic transition
can be re-expressed as follows.

Definition 5 (Possible (s+ 1)-polytopic Transition [29]). A pair of input
and output s-differences (∆i

n,s,∆0
n,s) is called an r-round possible (s + 1)-

polytopic transition if and only if there exists an r-round valid (s+ 1)-polytopic
trail for (∆i

n,s,∆0
n,s).

Definition 6 (Impossible (s + 1)-polytopic Transition [29]). A pair of
input and output s-differences (∆i

n,s,∆0
n,s) is called an r-round impossible

(s + 1)-polytopic transition if and only if there exists no r-round valid s + 1-
polytopic trail for (∆i

n,s,∆0
n,s).

2.3 SAT Problem & STP

The Boolean Satisfiability Problem (SAT) is a classic scientific computation
problem aiming to determine whether a given boolean formula has a solution.
STP is the openly available solver for the SAT problem, which supports the CVC
format as the file-based input formats.

When to solve an SAT problem, we first model it by the statements in CVC
format and save those statements as a file. Then, we invoke the STP for this file.
If the target SAT problem has no solution, STP will return “Valid.”. Otherwise,
it will return a solution of the SAT problem and “Invalid.”.

In particular, it is worth to mention that the CVC format supports the con-
ditional term, i.e., the statement “IF a THEN b ELSE c ENDIF”, where a is
a boolean term, and b and c are bitvector terms. By exploiting the conditional
term, we give our modeling methods for S-boxes and variable rotation in Sec-
tions 4.1.

3 New Definitions of Impossible Differentials and
Impossible (s+ 1)-polytopic Transitions

In this section, we define the notations of s-polygon, possible s-polygons, and
impossible s-polygons. Based on this, we redefine the impossible differentials and
impossible (s+1)-polytopic transitions. Then, we study the relations between our
redefinitions and traditional definitions of impossible differentials and impossible
(s+ 1)-polytopic transitions.
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3.1 New Definitions of Impossible Differentials and Impossible
(s+ 1)-Polytopic Transitions

Let us think over the definitions of traditional impossible differentials and impos-
sible (s+ 1)-polytopic transitions. For E ∈ BC(n,m, l), suppose (∆i

n,s,∆o
n,s)

is an r-round traditional impossible (s+ 1)-polytopic transition of it. Then, for
∀k ∈ (F l2)r, ∀xi

n,s+1 B ∆i
n,s and ∀yin,s+1 B ∆o

n,s, it holds Erk(xi
n,s+1) 6=

yi
n,s+1. In particular, if (∆i, ∆0) is an r-round impossible differential. Then, for
∀k ∈ (F l2)r, ∀x ∈ Fn2 and ∀y ∈ Fn2 , it holds (Erk(x), Erk(x ⊕∆i)) 6= (y, y ⊕∆o).
Thus, it is important to research the relations between two (resp. s + 1) input
states and two (resp.s+ 1) output states for forming the impossible differentials
(resp.impossible (s+ 1)-polytopic transitions). To investigate such relations, we
define the s-polygon firstly.

Definition 7 (s-polygon). For ∀E ∈ BC(n,m, l), its s-polygon is a tuple with
s elements, where each element belongs to Fn2 .

For an iterated block cipher, the s-polygon propagates through round by
round, which constitutes the s-polygonal trail.

Definition 8 (s-polygonal Trail). Let E ∈ BC(n,m, l) and r ∈ Z. For any
s-polygon xn,s and ∀k = (k1, . . . , kr) ∈ (Fl2)r, we have the following chain of
propagation:

xn,s → E1
(k1)

(xn,s)→ E2
(k1,k2)

(xn,s)→ · · · → Erk(xn,s).

We call (xn,s, E1
(k1)

(xn,s), . . . , Erk(xn,s)) an r-round s-polygonal trail. More-

over, if k ∈ IKSlr, the trail is called an r-round i-s-polygonal trail; if k ∈
DKSm,lr , the trail is called an r-round d-s-polygonal trail.

Based on the definitions of s-polygon and s-polygonal trail, according to the
compatibility of a pair of input and output s-polygons, the possible s-polygon
and impossible s-polygon are defined as follows.

Definition 9 (Possible s-polygons). Let E ∈ BC(n,m, l), a pair of input and
output s-polygons (xn,s,yn,s) is called r-round possible s-polygons of E, if
there exists k = (k1, . . . , kr) ∈ (Fl2)r and s-polygonal trail (xn,s, E1

(k1)
(xn,s), . . . ,

Erk(xn,s)) s.t. yi = Erk(xi)(0 ≤ i ≤ s − 1). Moreover, if k ∈ IKSlr, (xn,s,yn,s)
is called r-round i-possible s-polygons; if k ∈ DKSm,lr , (xn,s,yn,s) is called
r-round d-possible s-polygons.

Definition 10 (Impossible s-polygons). Let E ∈ BC(n,m, l), a pair of input
and output s-polygons (xn,s,yn,s) is called r-round i-impossible s-polygons
(resp. r-round d-impossible s-polygons) of E, if (xn,s,yn,s) is not the r-
round i-possible s-polygons (resp. r-round d-possible s-polygons).

Now, based on the definition of impossible s-polygons, we propose two defi-
nitions of impossible (s+ 1)-polytopic transitions: i-impossible (s+ 1)-polytopic
transition and d-impossible (s+ 1)-polytopic transition.
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Definition 11 (The i-impossible (resp.d-impossible) (s + 1)-polytopic
Transition). Let E ∈ BC(n,m, l), a pair of input and output tuples (αn,s,βn,s)
is called an r-round i-impossible (resp.d-impossible) (s + 1)-polytopic
transition, if for ∀xn,s+1 B αn,s and ∀yn,s+1 B βn,s, (xn,s+1,yn,s+1) are
r-round i-impossible (resp.d-impossible) (s+ 1)-polygons.

Here, we give the definitions of i-impossible differential and d-impossible
differential independently for clarity, while actually impossible differential is a
particular case of impossible (s+ 1)-polytopic transition.

Definition 12 (The i-impossible (resp. d-impossible) Differential). Let
E ∈ BC(n,m, l), α ∈ Fn2 , and β ∈ Fn2 , (α, β) is called an r-round i-impossible
(resp. d-impossible) differential, if for ∀(x0, x1) ∈ {(α0, α1) ∈ Fn2 ×Fn2 |α0⊕
α1 = α} and ∀(y0, y1) ∈ {(β0, β1) ∈ Fn2 × Fn2 |β0 ⊕ β1 = β}, (x0, x1) and (y0, y1)
are r-round i-impossible (resp. d-impossible) 2-polygons.

According to the definitions of d-possible (s + 1)-polygons and i-possible
(s + 1)-polygons, the relation between i-impossible (s + 1)-polytopic transition
and d-impossible (s+ 1)-polytopic transition is obviously as follows.

Theorem 1. Let E ∈ BC(n,m, l). Then an i-impossible (s+ 1)-polytopic tran-
sition of E must be a d-impossible (s+1)-polytopic transition of E. In particular,
an i-impossible differential of E must be a d-impossible differential of E.

3.2 The Equivalence of i-impossible (s + 1)-polytopic Transitions
and Traditional Impossible (s+ 1)-polytopic Transitions

SPN structure and Feistel structure are widely used in the design of block ci-
phers. In this subsection, we show that the i-impossible (s + 1)-polytopic tran-
sitions are equivalent to traditional impossible (s + 1)-polytopic transitions for
the block ciphers with SPN structure or Feistel structure. Moreover, with the
same approach, the equivalence also holds for the block cipher MISTY1. Note
that, since impossible differentials are the particular case of impossible (s+ 1)-
polytopic transitions, we are not going to state the equivalency for impossible
differentials solely here.

First, for narrative purposes, we define a class of round function, which is
widely used in block ciphers.

Definition 13 (Common Round Function). A function Fr is called com-
mon round function(CRF), if it can be represented as Fr = (P

′
r ◦ Sr ◦Pr ◦Kr) ◦

· · · ◦ (P
′
1 ◦ S1 ◦ P1 ◦K1) ◦ (P

′
0 ◦ S0 ◦ P0), where Si(0 ≤ i ≤ r) denotes the substi-

tution layer which is composed of a set of S-boxes in parallel, Pi(0 ≤ i ≤ r) and
P

′
i (0 ≤ i ≤ r) denote the linear permutation layers, and Ki(1 ≤ i ≤ r) denotes

the key mixing layer, where the key is fully Xored with the state. In particular,
in the case of r = 0, denote F0 = (P

′
0 ◦ S0 ◦ P0).
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The above definition of CRF includes a lot of round functions, which are
broadly used in block ciphers. For example, the round function of AES [11] is of
the “SP” structure, in which the substitution layer precedes the linear layer. It
is the CRF in the case of r = 0 and P0 is the identical permutation. The round
function of Prince [7] in the last half rounds is of the “PS” structure, in which
the linear layer precedes the substitution layer. It is the CRF in the case of r = 0
and P

′
0 is the identical permutation. The round function of RoadRunneR [3] is

of the “SPKSPKSPKS” structure. It is the CRF in the case of r = 3 and P
′
3 is

the identical permutation.
Since the common round function is widely used in block ciphers, we study

the relationship between the valid (s + 1)-polytopic transitions and i-possible
(s+ 1)-polygons of it.

↵0
n,s P0 S0 P

0
0 P1 S1 P

0
1 P2 S2 P

0
2 ↵3

n,s

K1 K2

�0
n,s �0

n,s
↵1

n,s ↵1
n,s �1

n,s �1
n,s

↵2
n,s ↵2

n,s �2
n,s �2

n,s

x0
n,s+1 P0 S0 P

0
0 P1 S1 P

0
1 P2 S2 P

0
2 w2

n,s+1

K1 K2

y0
n,s+1 z0

n,s+1 w0
n,s+1 x1

n,s+1 y1
n,s+1 z1

n,s+1 w1
n,s+1 x2

n,s+1 y2
n,s+1 z2

n,s+1

Fig. 2. The Valid (s+1)-polytopic Trail and (s+1)-polygonal Trail for Common Round
Function

Theorem 2 (The Equivalency of CRF). Let Fr be the CRF. Then, (↵0
n,s,↵r+1

n,s)
is the valid polytopic transition of Fr if and only if there exists i-possible (s +
1)-polygons (x0

n,s+1, wr
n,s+1) of Fr , where x0

n,s+1 B ↵0
n,s and wr

n,s+1 B
↵r+1

n,s.

Proof. We prove this theorem in the case r = 2. The other cases can be proved
analogously.

If (↵0
n,s,↵3

n,s) is the valid polytopic transition of F2. Then, there exists a
valid (s + 1)-polytopic trail, as shown in the above of Figure 3.2. For 0  i  2,
since (�i

n,s,�i
n,s) is the valid polytopic transition of Si, there exists ai, such

that Si(ai) � Si(ai � �i,j) = �i,j(0  j  s � 1). Let yi
n,s+1 = (yi,0, . . . , yi,s)

and zi
n,s+1 = (zi,0, . . . , zi,s), where yi,0 = ai and yi,j+1 = ai � �i,j , and zi,0 =

Si(ai) and zi,j+1 = S(ai) � �i,j , we have S(yi,j) = zi,j(0  j  s). Donate
xi

n,s+1 = (xi,0, . . . , xi,s) and wi
n,s+1 = (wi,0, . . . , wi,s), where xi,j = P�1

i (yi,j)

and wi,j = P
0
i (zi,j)(0  j  s). Since ↵i,j = P�1

i (�i,j), we have xi,0 � xi,j+1 =
↵i,j(0  j  s�1). Similar, we have wi,0�wi,j+1 = ↵i+1,j(0  j  s�1). Thus,
for 1  i  2, we have wi�1,0 � wi�1,j+1 = ↵i,j = xi,0 � xi,j+1(0  j  s � 1).
Let Ki = wi�1,0 � xi,0, we have xi,j = wi�1,j � Ki(0  j  s). Therefore, as
shown in the below of Figure 3.2, (x0

n,s+1, w2
n,s+1) is i-possible (s+1)-polygon

of F2, and x0
n,s+1 B↵0

n,s and w2
n,s+1 B↵3

n,s.
Since all the procedures above are invertible, it is easily to show that if there

exist x0
n,s+1 B ↵0

n,s and w2
n,s+1 B ↵3

n,s, such that (x0
n,s+1, w2

n,s+1) is the
i-possible (s + 1)-polygons of F2. Then, (↵0

n,s,↵3
n,s) is the valid polytopic

transition of F2.

In the next two theorems, we show the equivalency between traditional im-
possible (s+1)-polytopic transition and the i-impossible (s+1)-polytopic transi-
tion for the block ciphers with SPN structure and Feistel structure respectively.

Theorem 3 (The Equivalency of SPN Structure Block Ciphers). Let
E 2 BC(n, m, l) be an SPN structure block cipher whose round function is a
CRF, and the round keys fully xor with the state. Then, (↵0

n,s,↵r
n,s) is the

r-round traditional impossible (s + 1)-polytopic transition if and only if it is the
r-round i-impossible (s + 1)-polytopic transition.

14

Fig. 1. The Valid (s+ 1)-polytopic Trail and (s+ 1)-polygonal Trail for CRF

Theorem 2 (The Equivalence of CRF). Let Fr be a CRF. Then, (α0
n,s,

αr+1
n,s) is a valid polytopic transition of Fr if and only if there exist i-possible

(s+1)-polygons (x0
n,s+1,wr

n,s+1) of Fr , where x0
n,s+1Bα0

n,s and wr
n,s+1B

αr+1
n,s.

Proof. We only prove this theorem in the case of r = 2. The other cases can be
proved analogously.

Suppose (α0
n,s,α3

n,s) is a valid polytopic transition of F2. Then there exists
a valid (s+ 1)-polytopic trail (α0

n,s,α1
n,s,α2

n,s,α3
n,s), as shown in the upper

half of Figure 1. For 0 ≤ i ≤ 2, since (βi
n,s,γi

n,s) is a possible (s+ 1)-polytopic
transition of Si, there exists ai such that Si(ai) ⊕ Si(ai ⊕ βi,j) = γi,j(0 ≤ j ≤
s − 1). Let yi

n,s+1 = (yi,0, . . . , yi,s) and zi
n,s+1 = (zi,0, . . . , zi,s), where yi,0 =

ai, yi,j+1 = ai ⊕ βi,j , zi,0 = Si(ai) and zi,j+1 = S(ai) ⊕ γi,j , then we have
S(yi,j) = zi,j(0 ≤ j ≤ s). Denote xi

n,s+1 = (xi,0, . . . , xi,s) and wi
n,s+1 =

(wi,0, . . . , wi,s), where xi,j = P−1i (yi,j) and wi,j = P
′
i (zi,j)(0 ≤ j ≤ s). Since

αi,j = P−1i (βi,j), we have xi,0 ⊕ xi,j+1 = αi,j(0 ≤ j ≤ s − 1). Similar, we
have wi,0 ⊕ wi,j+1 = αi+1,j(0 ≤ j ≤ s − 1). Thus, for 1 ≤ i ≤ 2, we have
wi−1,0 ⊕ wi−1,j+1 = αi,j = xi,0 ⊕ xi,j+1(0 ≤ j ≤ s− 1). Let Ki = wi−1,0 ⊕ xi,0,
then we have xi,j = wi−1,j ⊕Ki(0 ≤ j ≤ s). Therefore, we have constructed i-
possible (s+1)-polygons of F2, which is (x0

n,s+1,w2
n,s+1) with w2

n,s+1Bα3
n,s

and x0
n,s+1 Bα0

n,s, as shown in the lower half of Figure 1.
Since all the procedures above are invertible, it is easy to show that if there

exist x0
n,s+1 B α0

n,s and w2
n,s+1 B α3

n,s, such that (x0
n,s+1,w2

n,s+1) is the
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i-possible (s+ 1)-polygons of F2, then (α0
n,s,α3

n,s) is the valid polytopic tran-
sition of F2. ut

With the same technique, we also can show the equivalence between tradition-
al impossible (s+ 1)-polytopic transition and the i-impossible (s+ 1)-polytopic
transition for the block ciphers with SPN structure and Feistel structure as fol-
lows. The specific process of proofs are shown in the Full Version of our paper
in the ePrint because of space cause.

Theorem 3 (The Equivalence of SPN Structure Block Ciphers). Let
E ∈ BC(n,m, l) be an SPN structure block cipher whose round function is a
CRF, and the round keys are fully Xored with the state. Then, (α0

n,s,αr
n,s) is

an r-round traditional impossible (s+ 1)-polytopic transition if and only if it is
an r-round i-impossible (s+ 1)-polytopic transition.

Theorem 4 (The Equivalence of Feistel Structure Block Ciphers). Let
E ∈ BC(2n,m, l) be a Feistel structure block cipher whose round function is a
CRF and the round keys are fully Xored with the branch. Then, (α0

n,s||β0
n,s,

αr
n,s||βr

n,s) is an r-round traditional impossible (s + 1)-polytopic transition if
and only if it is an r-round i-impossible (s+ 1)-polytopic transition.

The block cipher MISTY1 [20] is designed by adopting the theory of provable
security [23]. We can also show that traditional impossible (s + 1)-polytopic
transition is equivalent to the i-impossible (s + 1)-polytopic transition for the
block cipher MISTY1 as the following theorem. The specific process of proof is
also shown in the Full Version of our paper.

Theorem 5 (The Equivalence of The Block Cipher MISTY1). Let E
denote the block cipher MISTY1. Then, (α0

32,s||β0
32,s,αr

32,s||βr
32,s) is an r-

round traditional impossible (s + 1)-polytopic transition if and only if it is an
r-round i-impossible (s+ 1)-polytopic transition.

The advantages of i-impossible differentials and i-impossible (s + 1)-
polytopic transitions. Since i-impossible differentials (resp. i-impossible (s+
1)-polytopic transitions) are equivalent to traditional impossible differentials (re-
sp. traditional impossible (s + 1)-polytopic transitions), our method gives new
view of traditional impossible differentials and impossible (s+1)-polytopic tran-
sitions, which allows us to get the distinguishers for the block cipher with large
S-boxes or variable rotation in the key independent setting using full knowledge
of their differential or s-differential property. In particular, by exploiting this
new view, we can evaluate the security of block ciphers against traditional im-
possible differentials for block ciphers with large S-box in the case of considering
the differential property of large S-boxes.

4 Automatic Search Method

In this section, we propose an unified automatic search algorithm for our rede-
fined impossible differentials and impossible (s+1)-polytopic transitions. Firstly,

12



we give the statements in CVC format to model the propagation of the state
under each operation.

4.1 Model the Propagation of the State by Statements in CVC
Format

Here, we model the propagation of the state under the operations (Generalized-)
Copy, (Generalized-) Xor, (Generalized-) Modular Addition, Linear Transforma-
tions, S-box and Variable Rotation by statements in CVC format.

Model 1 ((Generalized-)Copy) Let F be a (Generalized-)Copy function, where
the input x takes value from Fq2, and the output is calculated as (y0, y1, . . . , yt−1) =
(x, x, . . . , x). Then, the following statements can describe the propagation of the
state under the (Generalized-)Copy operation.

ASSERT(y0 = x);
ASSERT(y1 = x);

...
ASSERT(yt−1 = x);

Model 2 ((Generalized-)Xor) Let F be a (Generalized-)Xor function, where
the input (x0, x1, . . . , xt−1) take values from (Fq2)t, and the output is calculated
as y = ⊕i=t−1i=0 xi. Then, the following statement can describe the propagation of
the state under the (Generalized-)Xor operation.

ASSERT(y = BVXOR(· · · (BVXOR(BVXOR(x0, x1), x2), . . . , xt−1)); 8

Model 3 ((Generalized-)Modular Addition) Let F be a (Generalized-) Mod-
ular Addition function, where the input (x0, x1, . . . , xt−1) take values from (Fq2)t,
and the output is calculated as y = �i=t−1i=0 xi. Then, the following statement can
describe the propagation of the state under the (Generalized-)Modular Addition
operation.

ASSERT(y = BVPLUS(q, x0, . . . , xt−1)); 9

The linear transformations of block ciphers have various representations, such
as the permutation layer of PRESENT [6], and the MDS matrix in AES [11].
Since all the representations of linear transformations can be converted to the
binary matrix multiplication, we only show the modeling method for the binary
matrix multiplication here.

Model 4 (Binary Matrix Multiplication) Let M = (mi,j)0≤i≤s−1,0≤j≤t−1
be a binary matrix, where the input x = (x0, x1, . . . , xt−1) take values from Ft2,
and the output of multiplication y = (y0, y1, . . . , ys−1) is calculated as

yi =

{
xk, if mi,k = 1 and |{j|mi,j 6= 0}| = 1,
⊕{j|mi,j 6=0}xj , otherwise.

8 BVXOR: Bitwise XOR function which is supported by the CVC format of STP
9 BVPLUS: Bitvector Add function which is supported by the CVC format of STP
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Then, the statements to describe the propagation of the state under binary matrix
multiplication operation can be combined by the modeling methods for Copy and
(Generalized-) Xor.

S-box is often used to provide confusion for block ciphers. By exploiting
the conditional term, we can describe the propagation of the state under it
specifically.

Algorithm 1 Function for Modeling S-box

1: Input: S, x, y
2: Output: The statement to describe the propagation of the state under S-box
3: statement1 = S[0]
4: for j = 1 to 2t − 1 do
5: statement1 = “IF x = j THEN S[j] ELSE statement1”
6: endfor
7: statement = “ASSERT (y = statement1);”
8: return statement

Model 5 (S-box) Let S be an S-box which substitutes t-bit to s-bit, where the
input x takes values from Ft2, and the output y ∈ Fs2 is calculated as y = S(x).
Then the statement generated by Algorithm 1 can describe the propagation of the
state under S-box operation.

Variable rotation is a novel operation used in some typical block ciphers,
such as RC5 [24] and RC6 [25]. Due to the output of variable rotation operation
is closely related to the input values, it is hard to model the propagation of
difference and s-difference under it. In our new model, we exploit the conditional
term to describe the propagation of the state under the variable rotation.

Algorithm 2 Function for Modeling Variable Rotation

1: Input: q, x, y, z
2: Output: The statement to describe the propagation of the state under variable

rotation
3: statement1 = x
4: for j = 1 to q − 1 do
5: statement1 = “IF (y mod q) = j THEN x≪j ELSE statement1”
6: endfor
7: statement = “ASSERT (z = statement1);”
8: return statement

Model 6 (Variable Rotation) Let F be a variable rotation function, the in-
put (x, y) take values from Fq2×Fq2, and the output is calculated as z = x≪y∈ Fq2.
Then, the statement generated by the Algorithm 2 can describe the propagation
of the state under variable rotation operation.
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4.2 The Automatic Search Method for Redefined Impossible
Differentials and Impossible (s+ 1)-polytopic Transitions

In this subsection, we show our automatic search algorithm for the i-impossible
(resp. d-impossible) (s+ 1)-polytopic transitions. Since an i-impossible (resp. d-
impossible) differential is an i-impossible (resp. d-impossible) 2-polytopic tran-
sition, the automatic search algorithm for i-impossible (resp. d-impossible) dif-
ferentials can be derived from the algorithm for i-impossible (resp. d-impossible)
(s + 1)-polytopic transitions with s = 1. First, we propose our method for de-
termining whether a pair of input and output s-differences is an i-impossible
(resp. d-impossible) (s+ 1)-polytopic transition. Then, we discuss the selection
of parameter s and the search space of our method.

The i-impossible (resp. d-impossible) (s+1)-polytopic Transition De-
termining Method.
Our method for determining whether a pair of input and output s-differences
(αn,s,βn,s) is an i-impossible (resp. d-impossible) (s+1)-polytopic transition can
be divided into two phases: statements generated phase and STP invoked phase.
In the statements generated phase, we generate a system of statements as a file
to describe the (s+ 1)-polygons xn,s+1 propagate to yn,s+1 with xn,s+1 B αn,s
and yn,s+1 B βn,s. In the STP invoked phase, we invoke the STP for the file
to determine whether (αn,s,βn,s) is an i-impossible (resp. d-impossible) (s+ 1)-
polytopic transition.

Specification of the statements generated phase.
The algorithm shown in Algorithm 3 generates the statements for judging
whether a pair of input and output s-differences (αn,s,βn,s) is an r-round
impossible (s+ 1)-polytopic transition.

Algorithm 3 Generating statements in CVC format

1: Input: the number of rounds r, the input s-difference αn,s, the output s-difference
βn,s and keyflag∈ {True, False}

2: Output: System of statements in CVC format
3: Declare the input and output (s+ 1)-polygons of xn,s+1 and yn,s+1.
4: Declare the intermediate variables and key variables.
5: for i = 0 to s do
6: Model the r-round propagation of (xi, yi).
7: endfor
8: Generate the constraint of xn,s+1 such that xn,s+1 B αn,s.
9: Generate the constraint of yn,s+1 such that yn,s+1 B βn,s.

10: if keyflag then
11: Generate the constraint of key variables according to key shedule.
12: endif
13: Add the statements “QUERY(FALSE);” and “COUNTEREXAMPLE;”.

We present certain illustrations for Algorithm 3 as follows.
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- Line 3-4. Declare the variables which are used in the system of statements,
including the variables which are used to represent the input (s + 1)-
polygon and output (s+ 1)-polygon, the intermediate variables and key
variables used to describe the propagation from the input (s+1)-polygon
to the output (s+ 1)-polygon.

- Line 5-7. According to the propagation rules for each operation which
are given in Section 4.1, model the propagation from the input (s+ 1)-
polygon xn,s+1 to the output (s+ 1)-polygon yn,s+1 with the aid of the
intermediate variables and key variables.

- Line 8-9. Generate the statements in CVC format such that the input
(s+1)-polygon xn,s+1 satisfies the input s-difference αn,s and the output
(s+ 1)-polygon yn,s+1 satisfies the output s-difference βn,s.

- Line 10-12. If “keyflag=True”, then the algorithm generates the statements
to constraint the key variables according to the key schedule. In this
case, the algorithm generates the statements to judge whether a pair of
input and output s-differences (αn,s,βn,s) is an r-round d-impossible
(s + 1)-polytopic transition; Otherwise, it generates the statements to
judge whether a pair of input and output s-differences (αn,s,βn,s) is an
r-round i-impossible (s+ 1)-polytopic transition.

- Line 13. The statements “QUERY(FALSE);” and “COUNTEREXAM-
PLE;” are added to the system of statements. This is a common method
in STP to determine whether an SAT problem has a solution. By adding
those two statements, if the SAT problem has solutions, the STP will
return one of the solutions and the statement “Invalid.”; Otherwise, it
returns “Valid.”.

Specification of the invoke STP phase.
We invoke the STP for the file which is consisted of the system of statements.
If the statements generated in the case of keyflag=True, then the s-differences
(αn,s,βn,s) is an r-round d-impossible (s+ 1)-polytopic transition when the
STP returns “Valid.”, and (αn,s,βn,s) is not an r-round d-impossible (s+1)-
polytopic transition when the STP returns an r-round d-(s + 1)-polygonal
trail and “Invalid.”. Similarly, if the statements generated in the case of
keyflag=False, then the s-differences (αn,s,βn,s) is an r-round i-impossible
(s+ 1)-polytopic transition when the STP returns “Valid.”, and (αn,s,βn,s)
is not an r-round i-impossible (s + 1)-polytopic transition when the STP
returns an r-round i-(s+ 1)-polygonal trail and “Invalid.”.

Work as a proof tool. Once the search space fixed, we can run our tool
for all the input and output s-differences in such space. If none of the input
and output s-differences is an r-round i-impossible (resp. d-impossible) (s+ 1)-
polytopic transition, we can declare that there exists no r-round i-impossible
(resp. d-impossible) (s+ 1)-polytopic transition in this space.

The Select of parameter s and Search Space.
In our automatic search method for impossible (s+ 1)-polytopic transition, the
total time cost mainly depends on the size of the search space and the time
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cost for determining whether an element in the search space is an impossible
(s+ 1)-polytopic transition.

The time cost for determining whether an element in the search space is an
impossible (s+ 1)-polytopic transition is closely related to operations contained
in the block cipher and the value of parameter s we selected. In our experiment,
we choose s at most 4, since the search time will cost quite a lot if s increases
beyond this range.

For the search space, traditional automatic tools focus on search the µ input
active bits (resp. nibbles) and ν output active bits (resp. nibbles) impossible
differentials. Since the impossible (s+1)-polytopic transition is the generation of
impossible differential, we define the (µ0, . . . , µs−1) active bits and (µ0, . . . , µs−1)
active nibbles to generate the search space.

Definition 14 ((µ0, . . . , µs−1) Active Bits). For a block cipher E ∈ BC(n,m, l),
we call the s-difference αn,s satisfied the (µ0, . . . , µs−1) active bits, if there are
µi bits of the binary representation of αi(0 ≤ i ≤ s− 1) are non-zero.

Definition 15 ((µ0, . . . , µs−1) Active Nibbles). For a block cipher E ∈ BC(n,m, l)
whose S-box size is q, for any s-difference αn,s, the binary representation of
αi (0 ≤ i ≤ s−1) can be divided into n

q pieces, where αi,j = {αi,q·j , . . . , αi,q·j+q−1}
(0 ≤ j ≤ n

q − 1). We call the s-difference αn,s satisfied the (µ0, . . . , µs−1) active

nibbles, if there are µi pieces of αi(0 ≤ i ≤ s− 1) have non-zero items.

Our method focuses on searching the (µ0, . . . , µs−1) input active bits and
(ν0, . . . , νs−1) output active bits or (µ0, . . . , µs−1) input active nibbles and
(ν0, . . . , νs−1) output active nibbles, or the subset of those two spaces according
to the experimental result. Due to the limitation of the size of the executable
search space, we mainly search some small values of active bits and active nibbles.
Assume the value µ′i (0 ≤ i ≤ g) appears ϕi times in the tuple (µ0, . . . , µs−1)
and value ν′i (0 ≤ i ≤ h) appears φi times in the tuple (ν0, . . . , νs−1). Then,
for a block cipher E ∈ BC(n,m, l), the number of pairs of input and output s-
differences with (µ0, . . . , µs−1) input active bits and (ν0, . . . , νs−1) output active
bits is(( n

µ′
0

)
ϕ0

)
×· · ·×

(( n
µ′
g

)
ϕg

)
×
(( n

ν′
0

)
φ0

)
×· · ·×

(( n
ν′
h

)
φh

)
∼ O(nµ

′
0ϕ0+···+µ′

gϕg+ν
′
0φ0+···+ν′

hφh).

For a block cipher E ∈ BC(n,m, l) whose S-box size is q, let p = n
q , the number

of pairs of input and output s-differences with (µ0, . . . , µs−1) input active nibbles
and (ν0, . . . , νs−1) output active nibbles is(( p

µ′
0

)
· (2q − 1)

ϕ0

)
×· · ·×

(( p
µ′
g

)
· (2q − 1)

ϕg

)
×
(( p

ν′
0

)
· (2q − 1)

φ0

)
×· · ·×

(( p
ν′
h

)
· (2q − 1)

φh

)
,

which is O(pµ
′
0ϕ0+···+µ′

gϕg+ν
′
0φ0+···+ν′

hφh · 2q·(µ′
0+···+µ′

g+ν
′
0+···+ν′

h)).
According to the above analysis, the size of the search space is still large even

we only search for small values of active bits and active nibbles for impossible
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(s+ 1)-polytopic transitions with small value of parameter s. For example, if we
search the (1, 1) input active bits and (1, 1) output active bits for the impossible
3-polytopic transition of a block cipher whose block size is 64, the number of

pairs of input and output s-differences is
((64

1 )
2

)
×
((64

1 )
2

)
= 4064256 ≈ 222. Thus,

we propose the following step by step strategy, which is quite helpful to search
the impossible (s+ 1)-polytopic transitions when the search space is too large.

Step by step strategy. The core of this strategy is to search the impos-
sible (s + 1)-polytopic(s ≥ 2) transition based on the result of the impossible
s-polytopic transition. To be specific, for a block cipher E ∈ BC(n,m, l), if
we know that (αn,s−1,βn,s−1) is an impossible s-polytopic transition, then we
search the impossible (s+ 1)-polytopic(s ≥ 2) transition in the set

{(α0, . . . , αs−2, α)× (β0, . . . , βs−2, β)|the active bits (nibbles) of α and β is u

and v respectively},

where u and v are the predetermined values.

5 Applications to Impossible Differentials from the
Aspect of Cryptanalysis

In this section, we apply our method to various block ciphers, including the
block cipher GIFT64 [2], the key-dependent permutation (or the key-dependent
S-box) based block cipher PRINTcipher [15], the large S-boxes based block
cipher MISTY1 [20], and the variable rotation based block cipher RC5 [24].
Only concise descriptions of those block ciphers are specified here. For more
details, please refer to their coresponding references. All the experiments in
this paper are conducted on this platform: Intel(R) Xeon(R) CPU E5-2650 v2
@2.60GHz, 64.00G RAM, 64-bit Windows 7 system. The source codes are avail-
able in https://github.com/HugeChaos/Impossible-differentials-and-impossible-
polytopic-transitions.

5.1 GIFT64

GIFT64 was designed by Banik el at. [2], it is a 64-bit block cipher with 128-
bit master key. Interestingly, its round key is 32-bit while it adopts the SPN
structure.
Previous best result. In [2], they searched the impossible differentials by
limiting the input difference activates only one of the first four S-boxes and the
output difference activates only one S-box. The maximum number of rounds of
impossible differentials they got in this search space is 6.
Advantage of our tool. Compared with the previous tools, our tools can search
the impossible differentials taking into account the key schedule.
Configurations for the tool. Firstly, in the search space where the input and
output difference activates only one S-box, the maximum number of rounds of
the impossible differentials we got is also 6. Then, we try to find the 6-round
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impossible differentials in which the contradiction cannot be detected by the
previous method. To achieve this purpose, we randomly pick the input differences
activate at most the right 16 bits and the output differences activate at most the
i-th (i ∈ {0, 4, 8, 12, 17, 21, 25, 29, 34, 38, 42, 46, 51, 55, 59, 63}) bit. In this way, it
allows at most the 0th, 4th, 8th and 12th S-box to be active in the 2nd round
by propagating the input difference in the forward direction, and at most the
0th, 1st, 2nd and 3rd S-box to be active in the 5th round by propagating the
output difference in the backward direction. After 65536 random tests, we find
3 6-round impossible differentials that the previous tools cannot detect.
Example of 6-round d-impossible differentials. One of the 6-round d-
impossible differentials is

0x0000000000000600
6−round9 0x0000004020000110.

Automatic verification for above example of impossible differential of
GIFT64. Since this impossible differential cannot be detected by the propaga-
tion of difference, verifying this impossible differential by manual is difficult, we
modify the verification algorithm in [10] and apply it to verify this impossible
differential. The details of our verification are shown in the Full Version of our
paper.

5.2 PRINTcipher

PRINTcipher [15] is proposed by Lars et al. at CHES 2010, consisting of two
versions: PRINTcipher48 and PRINTcipher96. PRINTcipher48 is a block cipher
with 48-bit block and 80-bit key. PRINTcipher96 is a block cipher with 96-bit
block and 160-bit key.
Advantage of our tool. Previous tools cannot apply to PRINTcipher direct-
ly due to that they cannot handle the operation of key-dependent permuta-
tion. By making use of the conditional term, we propose the first modeling
method to describe the propagation of state for key-dependent permutation:
ASSERT(y2@y1@y0 = (IF k1@k0 = 0bin11 THEN x0@x1@x2 ELSE (IF k1@k0
= 0bin10 THEN x2@x0@x1 ELSE (IF k1@k0 = 0bin01 THEN x1@x2@x0 ELSE
x2@x1@x0 ENDIF) ENDIF) ENDIF));
where x2||x1||x0 is the input variable, y2||y1||y0 is the output variable, and
k1||k0 is the control key. This modeling method allows us to search the impossible
differentials for PRINTcipher by considering the impact of all the details of key
schedule. Besides, the PRINTcipher also can be regarded as the key-dependent
S-box based block cipher, where the key-dependent S-box is consisted of the key-
dependent permutation and the fixed S-box. We also propose the first modeling
method to describe the propagation of state for key-dependent S-box directly,
which is shown in the Full Version of our paper.
Configurations for the tool. By considering all the details of key schedule,
we search the impossible differentials for PRINTcipher48 and PRINTcipher96
in the space where the input difference activates only one S-box in the first
substitution layer and the output difference activates only one S-box in the last
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substitution layer . Finally, we found 730 4-round d-impossible differentials for
PRINTcipher48 and 234 5-round d-impossible differentials for PRINTcipher96
in total.
Example of d-impossible differentials of PRINTcipher. One of the 730
4-round d-impossible differentials of PRINTcipher48 is

0x000000000001
4−round9 0x000000000008.

One of the 234 5-round d-impossible differentials of PRINTcipher96 is

0x000000000000000200000000
5−round9 0x000000000000000000001000.

Manual verification for the above example of impossible differential of
PRINTcipher. As the impossible differentials are detected by considering the
key schedule, the verification is completely different from the previous impossible
differentials. First, we have the following observation for the composition of key-
dependent permutation and S-box.

Obsetvation 1 Let SPk = S ◦ Pk, where S denotes the S-box of PRINTcipher and

Pk denotes the key-dependent permutation. Then, 1
SP0−→ {1, 3, 5, 7}, 1

SP1−→ {1, 3, 5, 7},
1

SP2−→ {2, 3, 6, 7}, and 1
SP3−→ {4, 5, 6, 7}. On the contrary, we have {1, 3, 5, 7} SP0−→ 1,

{1, 3, 5, 7} SP1−→ 1, {2, 3, 6, 7} SP2−→ 1, and {4, 5, 6, 7} SP3−→ 1.

Then, we verify the 4-round example of impossible differential of PRINTcipher48
in case that 0th or 5th S-box in the 3rd round is active. More details of the proof
are given in the Full Version of our paper. The 5-round example of PRINTcipher96
can be verified similarly.

5.3 MISTY1

The block cipher MISTY1 was designed by Matsui [20]. It is a 64-bit block cipher
which adopts the theory of provable security [23] against differential attack [5]
and linear attack [19].
The result by Sasaki et al.’s method. Sasaki et al.’s method is the most
advanced previous method to search the impossible differentials for block ciphers
with large S-boxes. We employ this method to search the 1 input active bit and 1
output active bit impossible differentials by limiting the input difference activates
only the right branch and the output difference activates only the left branch.
After 32 × 32 = 1024 tests, the maximum number of rounds we got is 4 and a
total of 28 4-round impossible differentials are found.
Advantage of our tool. Compared with previous tools, our tool is the first tool
that can search the impossible differentials for large S-boxes based block ciphers
taking into account the differential property of the S-boxes in the independent
key setting.
Configurations for the Tool. We run our tool to search the i-impossible dif-
ferentials in the search space as that by Sasaki et al.’s method. Finally, we found
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902 4-round i-impossible differentials, and all the 4-round impossible differentials
derived by Sasaki et al.’s method are detected by our tool.
List of 4-round i-impossible differentials. All the 4-round impossible dif-
ferentials we found are shown in the Table 1, where Z32 = {0, 1, . . . , 31} and
A = {33, 35, 36, 46, 49, 50, 51, 52, 53, 57, 58, 62}.

Table 1. 4-Round Impossible Differentials of MISTY-1

ID ∆P ∆C Number

001 e64i (i ∈ Z32/{3, 12, 19, 28}) e6432 28
002 e64i (i ∈ Z32/{14, 30}) e6434 30
003 e64i (i ∈ Z32/{7, 23}) e6437 30
004 e64i (i ∈ {0, 9, 11, 12, 13, 14, 15, 16, 25, 27, 28, 29, 30, 31}) e6438 14
005 e64i (i ∈ {1, 4, 5, 6, 7, 10, 17, 20, 21, 22, 23, 26} e6443 12
006 e64i (i ∈ {4, 5, 6, 7, 10, 20, 21, 22, 23, 26}) e6444 10
007 e64i (i ∈ {0, 3, 4, 5, 6, 7, 8, 10, 16, 19, 20, 21, 22, 23, 24, 26} e6445 16
008 e64i (i ∈ Z32/{12, 28}) e6448 30
009 e64i (i ∈ Z32/{6, 22}) e6454 30
010 e64i (i ∈ Z32) e64j (j ∈ A) 384
011 e64i (i ∈ Z32/{12 + j, 28 + j}) e6455+j(j ∈ {0, 1}) 60
012 e64i (i ∈ Z32/{11, 27}) e64j (j ∈ {47, 63}) 60
013 e64i (i ∈ Z32/{11, 12, 13, 27, 28, 29}) e64j (j ∈ {59, 60, 61}) 78
014 e64i (i ∈ Z32/{12 + j, 28 + j}) e6439+j(j ∈ {0, 1, 2, 3}) 120

Manual verification for the 4-round i-impossible differentials (e64i , e
64
52)(i ∈

Z32) of MISTY1. First, we study the property of the FL and FO function of
MISTY1.

Obsetvation 2 Let F denote the FL function of MISTY1, if the input difference
is one of e32i , e32i+16, and e32i,i+16 (0 ≤ i ≤ 15), all possible output difference of

F is {e32i , e32i+16, e
32
i,i+16}. Moreover, all possible output difference of F 2 is also

{e32i , e32i+16, e
32
i,i+16}, where F 2 denotes the composition of two FL function.

Proposition 1. Let F denote the FO function of MISTY1 and γi(0 ≤ i ≤ 1)

be the 16-bit variables, for ∀(γ1||γ0) ∈ {β|e3220
F−→ β}, the weight of γ1 must be

greater than 1.

Then, we verify the 4-round i-impossible differentials (e64i , e
64
52)(i ∈ Z32) of

MISTY1, which is finished in the Full Version of our paper.

5.4 RC5

RC5 is designed by Rivest in 1994 [24]. The block size of it can be 32, 64, or 128
bits. For each block size n, the version is denoted as RC5-n(n = 32, 64, 128).
Advantage of our tool. The operation variable rotation highly depends on the
value of state, which cannot be handled by the previous automatic search tools
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for impossible differentials. In our model, by exploiting the modeling method we
proposed in Section 4.1, we give the first automatic method for searching the
impossible differentials of RC5.
Configurations of our tool. The key schedule of RC5 is very complex. Thus,
we focus on searching i-impossible differentials. By observing the structure of
RC5-n, the difference en(i,i+n

2 ) propagates to the difference en(i+n
2 ) after 0.5-round

in the encryption direction. Thus, we search the i-impossible differentials for
RC5-n(n = 32, 64, 128) by limiting the input difference and output difference in
the set (en(i,i+n

2 ), e
n
(j))(0 ≤ i ≤ n

2 − 1, 0 ≤ j ≤ n− 1).

List of 2.5-round i-impossible differentials. As a result, our tool found 12 i-
impossible differentials for RC5-32, 27 i-impossible differentials for RC5-64, and
58 i-impossible differentials for RC5-128. This is the first result of impossible
differentials for RC5. All the results are shown in Table 2.

Table 2. 2.5-Round i-impossible Differentials of RC5

Block Size ∆P ∆C Number

32 e32(i,i+16)(4 ≤ i ≤ 15) e32(15) 12

64 e64(i,i+32)(5 ≤ i ≤ 31) e64(31) 27

128 e128(i,i+64)(6 ≤ i ≤ 63) e128(63) 58

Manual verification for the i-impossible differential (en(n
2−1,n−1)

, en(n
2 )−1)

of RC5-n. First, we study the relation of a pair of input values and a pair
of output values for the operation variable rotation, and have that the par-
ity of W (z ⊕ w) is the same as W (x ⊕ u), where z = x ≪ y, w = u ≪
v, x, y, z, u, v, w ∈ Fm2 . Then, we verify the 2.5-round i-impossible differential
(e32(15,31), e

32
(15)) of RC5-32, (e64(31,63), e

64
(31)) of RC5-64, and (e128(63,127), e

128
(63)) of RC5-

128 together. The details of our manual process are shown in the Full Version of
our paper.

6 Applications to Impossible Differentials from the
Aspect of Design

In this section, we apply our tool to evaluate the security of lightweight block
ciphers against the d-impossible differentials directly. For block ciphers with large
S-boxes, we propose the three phases technique and inside value technique, which
improve the security evaluation efficiency against the impossible differentials.

Three phases technique. For a block cipher, proving that all the input differ-
ences in Λ and output differences in Θ are the r-round possible differentials
may be time-consuming. To overcome this dilemma, we pick two sets Φ and
Ψ satisfied: for ∀α ∈ Λ, there exists α0 ∈ Φ such that α can propagate to α0

after r1 rounds in the forward direction, and for ∀β ∈ Θ, there exists β0 ∈ Ψ
such that β can propagate to β0 after r2 rounds in the backward direction.
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In this way, we just need to prove all the difference of the Φ and Ψ are the
(r − r1 − r2)-round possible differentials.

Inside value technique. For a block cipher, proving (α, β) is an r-round i-
possible (resp. d-possible) differential directly may be time-consuming. To
solve this problem, we prove that (0, α) and (0, β) is an i-possible (resp.
d-possible) 2-polygon instead. Our experimental results show that this tech-
nique speeds up our proof process.

6.1 Direct Application to GIFT64, PRESENT, Midori64,
PRINTcipher48, and PRINTcipher96

By exploiting our tool, we prove that, in the search space where the input differ-
ence activates only one S-box in the first substitution and the output difference
activates only one S-box in the last substitution, there exists no 7-round, 7-round,
6-round, 5-round, and 6-round impossible differential for GIFT64, PRESENT,
Midori64, PRINTcipher48, and PRINTcipher96 even considering the details of
the key schedule.

6.2 Three Phases Technique: Apply to AES-128

AES-128 is the most famous standard block cipher designed by Vincent Rijmen
and Joan Daemen [11]. It is a 128-bit block cipher with 128-bit key. AES-128
adopts the SPN structure. Its 128-bit internal state s can be represented as a
4× 4 matrix of bytes si,j ∈ F8

2 (0 ≤ i, j ≤ 3), each values in the finite fields F8
2.

For more details of AES, please refer to [11].

Previous result. Wang el at. [30] have proved that there exists no 5-round 1
input active word and 1 output active word impossible differentials for AES-128
without the last MC operation even considering all the details of the S-box in the
key independent setting. But, the influence of the key schedule for the impossible
differentials about AES-128 is still unknown.

Our method. Determine whether a pair of input and output differences is
the 5-round impossible differential by considering all the details of the relations
of the round keys is very time-consuming. To resolve this issue, we adopt the
three phases technique to finish our proof. First, according to the following two
observations and further the propositions by studying the differential property
of the S-box of AES, we propagate the input difference one round in the forward
direction and the output difference two rounds in the backward direction. Then,
we run our algorithm to show that those differences after the propagation can be
connected through two rounds of AES even considering the relation of 3-round
keys.

Obsetvation 3 Let S denote the S-box of AES, define DDTin(β) = {α|∃x ∈
F8
2, s.t.S(x) ⊕ S(x ⊕ α) = β}, then we have DDTin(0x01) ∪ DDTin(0x02) ∪
DDTin(0xec) = F8

2.
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Obsetvation 4 Let S denote the S-box of AES, define DDTout(α) = {β|∃x ∈
F8
2, s.t.β = S(x) ⊕ S(x ⊕ α)}, then we have DDTout(0x01) ∪ DDTout(0x02) ∪
DDTout(0xf7) = F8

2. Moreover, we have

{0x0d, 0x1a, 0xff} = {0x0d× 0x01, 0x0d× 0x02, 0x0d× 0xf7} ∈ DDTout(0x01),

{0x0b, 0x16, 0xfb} = {0x0b× 0x01, 0x0b× 0x02, 0x0b× 0xf7} ∈ DDTout(0x03),

{0x09, 0x12, 0x0e} = {0x09× 0x01, 0x09× 0x02, 0x09× 0xf7} ∈ DDTout(0x06),

{0x0e, 0x1c, 0xfd} = {0x0e× 0x01, 0x0e× 0x02, 0x0e× 0xf7} ∈ DDTout(0x09).

Proposition 2. Let F1 = MC ◦ SR ◦ SB ◦ARK, any difference Di,j
α (0 ≤ i ≤

3, 0 ≤ j ≤ 3, α ∈ F8
2/{0}) can propagate to at least one of the differences of

MC ◦ SR(Di,j
0x01), MC ◦ SR(Di,j

0x02), and MC ◦ SR(Di,j
0xec) through F1.

Proposition 3. Let F2 = ARK ◦ SR ◦ SB ◦ARK ◦MC ◦ SR ◦ SB and

P =


0x09 0x03 0x01 0x06
0x06 0x09 0x03 0x01
0x01 0x06 0x09 0x03
0x03 0x01 0x06 0x09

 .

Let k = (j + i) mod 4. Then, for any difference Di,j
α (0 ≤ i ≤ 3, 0 ≤ j ≤ 3, α ∈

F8
2/{0}), the difference Gi,j := D0,k

P0,i
+D

1,(k+1)mod4
P1,i

+D
2,(k+2)mod4
P2,i

+D
3,(k+3)mod4
P3,i

can propagate to it through F2.

Proof. Let Q be the inverse matrix of the MDS used in AES10. According to

Observation 4, for ∀z ∈ {0x01, 0x02, 0x7f}, we have Gi,j
SR◦SB−→ D0,k

Q0,i×z +

D1,k
Q1,i×z +D2,k

Q2,i×z +D3,k
Q3,i×z, since the S-box is applied to each byte of the state

in parallel in the SB operation. Then based on the definition of Q, we have
MC(D0,k

Q0,i×z+D1,k
Q1,i×z+D2,k

Q2,i×z+D3,k
Q3,i×z) = Di,k

z . According to Observation 4,

for any difference Di,j
α (0 ≤ i ≤ 3, 0 ≤ j ≤ 3, α ∈ F8

2/{0}), at least one of

Di,k
0x01, D

i,k
0x02, and Di,k

0x7f can propagate to it through SR ◦ SB. Thus, for any

difference Di,j
α (0 ≤ i ≤ 3, 0 ≤ j ≤ 3, α ∈ F8

2/{0}), the difference Gi,j can
propagate to it through F2. ut
Our experiment. Let F3 = ARK◦(MC◦SR◦SB◦ARK)2. For 0 ≤ i, j, s, t ≤ 3,
by considering the relations of K1, K2, and K3 according to the key schedule,
we run our tool to determine whether all the differences of MC ◦ SR(Di,j

0x01),

MC ◦SR(Di,j
0x02), and MC ◦SR(Di,j

0xec) can propagate to Gs,t through F3. After
a total of 16 × 16 × 3 = 768 tests, our result shows that all the differences of
MC ◦SR(Di,j

0x01), MC ◦SR(Di,j
0x02), and MC ◦SR(Di,j

0xec) can propagate to Gs,t
through F3 in our setting, which leads to the following theorem.

10

Q =


0x0e 0x0b 0x0d 0x09
0x09 0x0e 0x0b 0x0d
0x0d 0x09 0x0e 0x0b
0x0b 0x0d 0x09 0x0e

 .
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Theorem 6. For 5-round AES-128 without the last MC operation, there ex-
ists no 1 input active word and 1 output active word impossible differentials by
considering the relations of K1, K2, and K3.

6.3 Combination of Three Phases Technique and Inside Value
Technique: Application to MISTY1

Previous result. Since MISTY1 adopts the 7-bit and 9-bit S-boxes, no auto-
matic search tool could be used to evaluate its security taking account into the
differential property of S-boxes so far.
Our approach. We combine the three phases technique and inside value tech-
nique to accelerate our tool in this part. Denote β0||α0 be the 1 input active bit
difference and β5||α5 be the 1 output active bit difference, and FO(KI,KO) be
the FO function, where KI and KO are the secret keys in the FO function. Let

β1||α1 =

{
e64i+32, if (β0||α0) = e64i (0 ≤ i ≤ 31),
(FO0,0(0)⊕ FO0,0(e32i−32))||e32i−32, if β0||α0) = e64i (32 ≤ i ≤ 63).

β4||α4 =

{
e32i ||(FO0,0(0)⊕ FO0,0(e32i ))e64i+32, if (β5||α5) = e64i (0 ≤ i ≤ 31),
e64i−32, if β5||α5) = e64i (32 ≤ i ≤ 63).

That is, we propagate the difference β0||α0 through one round to β1||α1 in the
forward direction and the difference β5||α5 through one round to β4||α4 in the
backward direction. Then, we prove that (0, β1||α1) and (0, β4||α4) is the i-
possible 2-polygons.
Our experiment. We run our tool to determine whether the input 2-polygons
(0, β1||α1) and the output 2-polygons (0, β4||α4) are the i-possible 2-polygons
for 3 rounds MISTY1. After a total of 64 × 64 = 4096 tests, our result shows
that all the input 2-polygons (0, β1||α1) and the output 2-polygons (0, β4||α4)
are the i-possible 2-polygons for 3-round MISTY1, which leads to the following
theorem.

Theorem 7. For 5-round MISTY1 in which the FL layers were placed at the
even rounds, there exists no 1 input active bit and 1 output active bit impossible
differentials in the key independent setting.

7 Applications to Impossible (s + 1)-polytopic (s ≥ 2)
Transitions

In this section, we run our tool to search the impossible (s+ 1)-polytopic(s ≥ 2)
transitions for PRINTcipher, GIFT64, PRESENT, and RC5. All the contradic-
tions of the distinguishers in this section can be detected by our verification
algorithm, the details are shown in the Full Version of our paper in the supple-
mentary materials. First, for S-boxes based block ciphers, we define some search
spaces for the input and output s-differences.
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Search space1: In this space, the input 2-difference (b1, b2) is the (1, 1) active
bit which only activates the two right S-boxes in the first round, and the
output 2-difference (e1, e2) is the (1, 1) active bit.

Search space2: In this space, the input 2-difference (b1, b2) is the (1, 1) input
active bit which only activates the first right S-box in the first round and the
2-difference (e1, e2) is the (1, 1) output active bit which activates the same
S-box in the last round.

Search spacei(i = 3, 4): In this space, the input 3-difference is of pattern (b1, b2,
b1⊕b2) and the output 3-difference is of pattern (e1, e2, e1⊕e2), where (b1, b2)
and (e1, e2) are in Search spacei−2.

7.1 The d-impossible polytopic transitions of PRINTcipher

In this part, we show our method to search the impossible 3-polytopic transitions
and impossible 4-polytopic transitions for PRINTcipher48 and PRINTcipher96
by considering all the details of the key schedule. Besides, we also study the influ-
ence of the Xor key and control key for the d-impossible 3-polytopic transitions
of PRINTcipher48.

For the d-impossible 3-polytopic transitions of PRINTcipher48, we search

such distinguishers in the Search space1. After a total of
((6

1)
2

)
×
((48

1 )
2

)
= 16920

tests, the maximum number of rounds of d-impossible 3-polytopic transitions
in this search space is 6, and a total of 1471 6-round d-impossible 3-polytopic
transitions are found. One of them is

(0x000000000001, 0x000000010000)
6−round9 (0x000000000002, 0x000000000200).

Impact of the constraints of the Xor keys. In our search above, we restrict the Xor
keys and control keys according to the key schedule. To investigate the impact
of the constraints of the Xor keys, we further release the constraints of the Xor
keys and keep the constraints of the control keys. Then, we run our tool to
search the 6-round impossible 3-polytopic transitions in Search space1. Finally,
we get 1448 6-round impossible 3-polytopic transitions. This result shows that,
the constraint of the Xor keys leads to more contradictions for constructing the
impossible 3-polytopic transitions.

Impact of the constraints of the control keys. Similarly, we keep the constraints of
the Xor keys and release the constraints of the control keys over again. Then, we
run our tool to search the 6-round impossible 3-polytopic transitions in Search
space1. Finally, we found that there exists no 6-round impossible 3-polytopic
transitions in such search space. This result shows that the constraints of the
control keys have a very significant impact on constructing the impossible 3-
polytopic transitions.

Those two results show that, both the Xor keys and control keys may have
influences on the results of impossible (s+ 1)-polytopic transitions. Thus, in the
search of impossible (s+ 1)-polytopic transitions, we should consider the details
of key schedule as much as possible if the time cost permits.
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For the d-impossible 4-polytopic transitions of PRINTcipher48, we search
such distinguishers in Search space3. Finally, we found one 7-round d-impossible
4-polytopic transition of PRINTcipher48 as follows and stop our tool due to the
limitation of search time.

(0x000000000001, 0x000000010000, 0x000000010001)
7−round9

(0x000000000001, 0x000000000200, 0x000000000201).

For the d-impossible 3-polytopic transitions of PRINTcipher96, we search
such distinguishers in Search space1. Finally, we find one 7-round d-impossible
3-polytopic transition of PRINTcipher96 as follows and stop our tool due to the
limitation of search time.

(0x000000000000000000000001, 0x000000000000000100000000)
7−round9

(0x000000000000000000000001, 0x000000000000000008000000)

For the d-impossible 4-polytopic transitions of PRINTcipher96, we search
such distinguishers in Search space3. Finally, we find one 8-round d-impossible
4-polytopic transition of PRINTcipher96 as follows (as the left 48-bit of each
value are 0, we only show the right 48 bits here) and stop our tool due to the
limitation of search time.

(0x000000000001, 0x000100000000, 0x000100000001)
8−round9

(0x000000000001, 0x000000000200, 0x000000000201).

7.2 The 7-round d-impossible 3-polytopic transition of GIFT64

For GIFT64, we search the d-impossible 3-polytopic transitions in Search space2
Finally, we find one 7-round d-impossible 3-polytopic transition as follows and
stop our tool due to the limitation of search time.

(0x0000000000000001, 0x0000000000000002)
7−round9

(0x0000000000000001, 0x0000000000000008).

7.3 The 7-round i-impossible 4-polytopic transition of PRESENT

For the i-impossible 4-polytopic transitions of PRESENT, we search such distin-
guishers in Search space4. Finally, we find one 7-round d-impossible 4-polytopic
transition of PRESENT as follows and stop our tool due to the limitation of
search time.

(0x0000000000000001, 0x0000000000000002, 0x0000000000000003)
7−round9

(0x0000000000000001, 0x0000000000010000, 0x0000000000010001).
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7.4 The 3-round i-impossible 3-polytopic transition of RC5-32 and
RC5-64

In this subsection, we show our method for searching the i-impossible 3-polytopic
transition of RC5-32 and RC5-64 by adopting the step by step strategy.

For RC5-32, since (0x80008000, 0x00008000) is the 2.5-round impossible dif-
ferential, we search the i-impossible 3-polytopic transitions by limiting the input
2-difference (b1, b2) in the set {(0x80008000, e32i,i+16)|0 ≤ i ≤ 15} and the output

2-difference (e1, e2) in the set {(0x00008000, e32i )|0 ≤ i ≤ 31}. Finally, we find
108 3-round i-impossible 3-polytopic transitions and result in that there exists
no 3.5-round i-impossible 3-polytopic transitions in such search space. One of
the transitions is

(0x80008000, 0x00100010)
3−round9 (0x80000000, 0x00200000).

By adopting the same method for RC5-32, we find one 3-round i-impossible
3-polytopic transition as follows.

(0x8000000080000000, 0x0000002000000020)
3−round9

(0x8000000000000000, 0x0000004000000000).

8 Conclusion

In this paper, we redefine the impossible differentials and impossible (s + 1)-
polytopic transitions based on the notation of s-polygon, and design a unity
SAT-based automatic tool to search them. We apply our tool to various block
ciphers. These results show that our tool can not only be used to search the
distinguishers by considering the key schedule in the single-key setting, but also
make the most of the inside property of large S-boxes or variable rotation for
several typical classes of block ciphers.

Moreover, we derive an interesting result that, with the increase of the param-
eter s, the number of rounds in which the impossible (s+1)-polytopic transition
exists also increases. Although due to the limitations of computing power, we
can only search the impossible (s + 1)-polytopic transition with a small value
of s. But, the result indicates a challenge clearly that the impossible (s + 1)-
polytopic transition may bring threats for block ciphers with the development
of the solver of the SAT and the computing power, and it is better to resist this
kind of cryptanalysis in a theoretical way of cipher design.
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editors, Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, May 8-12, 2016, Proceedings, Part I, volume 9665 of Lecture Notes in
Computer Science, pages 214–239. Springer, 2016.

30. Qian Wang and Chenhui Jin. Upper bound of the length of truncated impossible
differentials for AES. Des. Codes Cryptogr., 86(7):1541–1552, 2018.

31. Shengbao Wu and Mingsheng Wang. Automatic search of truncated impossible
differentials for word-oriented block ciphers. In Steven D. Galbraith and Mridul
Nandi, editors, Progress in Cryptology - INDOCRYPT 2012, 13th International
Conference on Cryptology in India, Kolkata, India, December 9-12, 2012. Proceed-
ings, volume 7668 of Lecture Notes in Computer Science, pages 283–302. Springer,
2012.

31


	Mind the Propagation of States

