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Abstract. Vector commitments with subvector openings (SVC) [Lai-Malavolta,
Boneh-Bunz-Fisch; CRYPTO’19] allow one to open a committed vector at a set
of positions with an opening of size independent of both the vector’s length and
the number of opened positions.
We continue the study of SVC with two goals in mind: improving their efficiency
and making them more suitable to decentralized settings. We address both prob-
lems by proposing a new notion for VC that we call incremental aggregation and
that allows one to merge openings in a succinct way an unbounded number of
times. We show two applications of this property. The first one is immediate and
is a method to generate openings in a distributed way. The second application is
an algorithm for faster generation of openings via preprocessing.
We then proceed to realize SVC with incremental aggregation. We provide two
constructions in groups of unknown order that, similarly to that of Boneh et al.
(which supports aggregating only once), have constant-size public parameters,
commitments and openings. As an additional feature, for the first construction
we propose efficient arguments of knowledge of subvector openings which im-
mediately yields a keyless proof of storage with compact proofs.
Finally, we address a problem closely related to that of SVC: storing a file effi-
ciently in completely decentralized networks. We introduce and construct verifi-
able decentralized storage (VDS), a cryptographic primitive that allows to check
the integrity of a file stored by a network of nodes in a distributed and decentral-
ized way. Our VDS constructions rely on our new vector commitment techniques.

1 Introduction
Commitment schemes are one of the most fundamental cryptographic primitives. They
have two basic properties. Hiding guarantees that a commitment reveals no information
about the underlying message. Binding instead ensures that one cannot change its mind
about the committed message; namely, it is not possible to open a commitment to two
distinct values m 6= m′.

Vector commitments (VC) [LY10, CF13] are a special class of commitment schemes
in which one can commit to a vector ~v of length n and to later open the commitment at
† Work done while author was at IMDEA Software Institute.
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any position i ∈ [n]. The distinguishing feature of VCs is that both the commitment and
an opening for a position i have size independent of n. In terms of security, VCs should
be position binding, i.e., one cannot open a commitment at position i to two distinct
values vi 6= v′i.

VCs were formalized by Catalano and Fiore [CF13] who proposed two realizations
based on the CDH assumption in bilinear groups and the RSA assumption respectively.
Both schemes have constant-size commitments and openings but suffer from large pub-
lic parameters that are O(n2) and O(n) for the CDH- and RSA-based scheme respec-
tively. Noteworthy is that Merkle trees [Mer88] are VCs with O(log n)-size openings.

Two recent works [BBF19, LM19] proposed new constructions of vector commit-
ments that enjoy a new property called subvector openings (also called batch openings
in [BBF19]). A VC with subvector openings (called SVC, for short) allows one to open
a commitment at a collection of positions I = {i1, . . . , im} with a constant-size proof,
namely of size independent of the vector’s length n and the subvector length m. This
property has been shown useful for reducing communication complexity in several ap-
plications, such as PCP/IOP-based succinct arguments [LM19, BBF19] and keyless
Proofs of Retrievability (PoR) [Fis18].

In this work we continue the study of VCs with subvector openings with two main
goals: (1) improving their efficiency, and (2) enabling their use in decentralized systems.

With respect to efficiency, although the most attractive feature of SVCs is the con-
stant size of their opening proofs, a drawback of all constructions is that generating each
opening takes at least time O(n) (i.e., as much as committing). This is costly and may
harm the use of SVCs in applications such as the ones mentioned above.

When it comes to decentralization, VCs have been proposed as a solution for in-
tegrity of a distributed ledger (e.g., blockchains in the account model [BBF19]): the
commitment is a succinct representation of the ledger, and a user responsible for the
i-th entry can hold the corresponding opening and use it to prove validity of vi. In this
case, though, it is not obvious how to create a succinct subvector opening for, say, m
positions held by different users each responsible only of its own position/s in the vector.
We elaborate more on the motivation around this problem in Section 1.2.

1.1 A new notion for SVCs: incremental aggregation
To address these concerns, we define and investigate a new property of vector com-
mitments with subvector openings called incremental aggregation. In a nutshell, ag-
gregation means that different subvector openings (say, for sets of positions I and J)
can be merged together into a single concise (i.e., constant-size) opening (for positions
I ∪ J). This operation must be doable without knowing the entire committed vector.
Moreover, aggregation is incremental if aggregated proofs can be further aggregated
(e.g., two openings for I ∪ J and K can be merged into one for I ∪ J ∪K, and so on
an unbounded number of times) and disaggregated (i.e., given an opening for set I one
can create one for any K ⊂ I).

While a form of aggregation is already present in the VC of Boneh et al. [BBF19],
in [BBF19] this can be performed only once. In contrast, we define (and construct) the
first VC schemes where openings can be aggregated an unbounded number of times.
This incremental property is key to address efficiency and decentralized applications of
SVCs, as we detail below.
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Incremental aggregation for efficiency. To overcome the barrier of generating each
opening in linear time5 Oλ(n), we propose an alternative preprocessing-based method.
The idea is to precompute at commitment time an auxiliary information consisting of
n/B openings, one for each batch of B positions of the vector. Next, to generate an
opening for an arbitrary subset of m positions, one uses the incremental aggregation
property in order to disaggregate the relevant subsets of precomputed openings, and
then further aggregate for the m positions. Concretely, with this method, in our con-
struction we can do the preprocessing in time Oλ(n log n) and generate an opening for
m positions in time roughly Oλ(mB log n).

With the VC of [BBF19], a limited version of this approach is also viable: one
precomputes an opening for each bit of the vector in Oλ(n log n) time; and then, at
opening time, one uses their one-hop aggregation to aggregate relevant openings in
time roughly Oλ(m log n). This however comes with a huge drawback: one must store
one opening (of size p(λ) = poly(λ) where λ is the security parameter) for every bit of
the vector, which causes a prohibitive storage overhead, i.e., p(λ) · n bits in addition to
storing the vector ~v itself.

With incremental aggregation, we can instead tune the chunk size B to obtain flex-
ible time-memory tradeoffs. For example, with B =

√
n one can use p(λ)

√
n bits

of storage to get Oλ(m
√
n log n) opening time. Or, by setting B = p(λ) as the size

of one opening, we can obtain a storage overhead of exactly n bits and opening time
Oλ(m log n).

Incremental aggregation for decentralization. Essentially, by its definition, incre-
mental aggregation enables generating subvector openings in a distributed fashion. Con-
sider a scenario where different parties each hold an opening of some subvector; using
aggregation they can create an opening for the union of their subvectors, moreover the
incremental property allows them to perform this operation in a non-coordinated and
asynchronous manner, i.e. without the need of a central aggregator. We found this appli-
cation of incrementally aggregatable SVCs to decentralized systems worth exploring in
more detail. To fully address this application, we propose a new cryptographic primitive
called verifiable decentralized storage which we discuss in Section 1.2.

Constructing VCs with incremental aggregation. Turning to realizing SVC schemes
with our new incremental aggregation property, we propose two SVC constructions that
work in hidden-order groups [DK02] (instantiatable using classical RSA groups, class
groups [BH01] or the recently proposed groups from Hyperelliptic Curves [DG20]).

Our first SVC has constant-size public parameters and constant-size subvector open-
ings, and its security relies on the Strong RSA assumption and an argument of knowl-
edge in the generic group model. Asymptotically, its efficiency is similar to the SVC
of Boneh et al. [BBF19], but concretely we outperform [BBF19]. We implement our
new SVC and show it can obtain very fast opening times thanks to the preprocess-
ing method described earlier: opening time reduces by several orders of magnitude for
various choices of vector and opening sizes, allowing us to obtain practical opening
times—of the order of seconds—that would be impossible without preprocessing—of

5 We use the notationOλ(·) to include the factor depending on the security parameter λ. Writing
“Oλ(t)” essentially means “O(t) cryptographic operations”.
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the order of hundred of seconds. In a file of 1 Mibit (220 bits), preprocessing reduces
the time to open 2048 bits from one hour to less than 5 seconds!

For the second construction, we show how to modify the RSA-based SVC of [LM19]
(which in turn extends the one of [CF13] to support subvector openings) in order to
make it with constant-size parameters and to achieve incremental aggregation. Com-
pared to the first construction, it is more efficient and based on more standard assump-
tions, in the standard model.

Efficient Arguments of Knowledge of Subvector Opening. As an additional result,
we propose efficient arguments of knowledge (AoK) with constant-size proofs for our
first VC. In particular, we can prove knowledge of the subvector that opens a commit-
ment at a public set of positions. An immediate application of this AoK is a keyless
proof of storage (PoS) protocol with compact proofs. PoS allows a client to verify that a
server is storing intactly a file via a short-communication challenge-response protocol.
A PoS is said keyless if no secret key is needed by clients (e.g., mutually distrustful ver-
ifiers in a blockchain) and the server may even be one of these clients. With our AoK we
can obtain openings of fixed size, as short as 2KB, which is 40x shorter than those based
on Merkle trees in a representative setting without relying on SNARKs (that would be
unfeasible in terms of time and memory). For lack of space, these AoK results appear
in the full version.

1.2 Verifiable Decentralized Storage (VDS)

We now turn our attention to the problem of preserving storage integrity in a highly
decentralized context which some of the distributed features of our VCs (i.e. incre-
mental aggregation) can help us address. We are interested in studying the security of
the emerging trend of decentralized and open alternatives to traditional cloud storage
and hosting services: decentralized storage networks (DSNs). Filecoin (built on top of
IPFS), Storj, Dat, Freenet and general-purpose blockchains like Ethereum6 are some
emerging projects in this space.

Background on DSNs. Abstracting from the details of each system, a DSN consists
of participants called nodes. These can be either storage providers (aka storage nodes)
or simple client nodes. Akin to centralized cloud storage, a client can outsource7 the
storage of large data. However, a key difference with DSN is that storage is provided
by, and distributed across, a collection of nodes that can enter and leave the system
at will. To make these systems viable it is important to tackle certain basic security
questions. DSNs can have some reward mechanism to economically incentivize storage
nodes. This means, for example, that there are economic incentives to fake storing a file.
A further challenge for security (and for obtaining it efficiently) is that these systems
are open and decentralized: anyone can enter the system (and participate as either a
service provider or a consumer) and the system works without any central management
or trusted parties.

6 filecoin.io, storj.io, datproject.org, freenetproject.org,
ethereum.org

7 We point out that in systems like Filecoin some nodes do not effectively outsource anything.
Yet they participate (for economic rewards) verifying that others are actually storing for some
third party node.
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In this work we focus on the basic problem of ensuring that the storage nodes of
the DSN are doing their job properly, namely: How can any client node check that the
whole DSN is storing correctly its data (in a distributed fashion)?

While this question is well studied in the centralized setting where the storage
provider is a single server, for decentralized systems the situation is less satisfactory.

The Problem of Verifiable Decentralized Storage in DSNs. Consider a client who
outsources the storage of a large file F , consisting of blocks (F1, . . . , FN ), to a col-
lection of storage nodes. A storage node can store a portion of F and the network is
assumed to be designed in order to self-coordinate so that the whole F is stored, and to
be fault-resistant (e.g., by having the same data block stored on multiple nodes). Once
the file is stored, clients can request to the network to retrieve or modify a data block
Fi (or more), as well as to append (resp. delete) blocks to (resp. from) the file.

In this scenario, our goal is to formalize a cryptographic primitive that can provide
clients with the guarantee of integrity of the outsourced data and its modifications. The
basic idea of VDS is that: (i) the client retains a short digest δF that “uniquely” points to
the file F ; (ii) any operation performed by the network, a retrieval or a file modification,
can be proven by generating a short certificate that is publicly verifiable given δF .

This problem is similar in scope to the one addressed by authenticated data struc-
tures (ADS) [Tam03]. But while ADS is centralized, VDS is not. In VDS nodes act as
storage in a distributed and uncoordinated fashion. This is more challenging as VDS
needs to preserve some basic properties of the DSN:

Highly Local. The file is stored across multiple nodes and no node is required to hold the
entire F : in VDS every node should function with only its own local view of the system,
which should be much smaller than the whole F . Another challenge is dynamic files:
in VDS both the digest and the local view must be locally updatable, possibly with the
help of a short and publicly verifiable update advice from the node holding the modified
data blocks.

Decentralized Keyless Clients. In a decentralized system the notion of a client who out-
sources the storage of a file is blurry. It may for example be a set of mutually distrustful
parties (even the entire DSN), or a collection of storage nodes themselves that decide to
make some data available to the network. This comes with two implications:
1. VDS must work without any secret key on the clients side, so that everyone in the

network can delegate and verify storage. This keyless setting captures not only clients
requiring no coordination, but also a stronger security model. Here the attacker may
control both the storage node and the client, yet it must not be able to cheat when
proving correctness of its storage. The latter is crucial in DSNs with economic re-
wards for well-behaving nodes8.

2. In VDS a file F exists as long as some storage nodes provide its storage and a pointer
to the file is known to the network through its digest. When a file F is modified into
F ′ and its digest δF is updated into δF ′ , both versions of the file may coexist. Forks

8 Since in a decentralized system a storage node may also be a client, an attacker could “delegate
storage to itself” and use the client’s secret key to cheat in the proof in order to steal rewards
(akin to the so-called “generation attack” in Filecoin [Lab17]).
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are possible and it is left to each client (or the application) to choose which digest to
track: the old one, the new one, or both.

Non-Coordinated Certificates Generation. There are multiple ways in which data re-
trieval queries can be answered in a DSN. In some cases (e.g., Freenet [CSWH01] or
the original Gnutella protocol), data retrieval is also answered in a peer-to-peer non-
coordinated fashion. When a query for blocks i1, . . . , im propagates through the net-
work, every storage node replies with the blocks that it owns and these answers are
aggregated and propagated in the network until they reach the client who asked for
them. To accommodate arbitrary aggregation strategies, in VDS we consider the incre-
mental aggregation of query certificates in an arbitrary and bandwidth-efficient fashion.
For example, short certificates for file blocks Fi and Fj should be mergeable into a
short certificate for (Fi, Fj) and this aggregation process should be carried on and on.
Noteworthy that having certificates that stay short after each aggregation keeps the com-
munication overhead of the VDS integrity mechanism at a minimum.9

A new cryptographic primitive: VDS. To address the problem described above, we
put forward the definition of a new cryptographic primitive called verifiable decentral-
ized storage (VDS). In a nutshell, VDS is a collection of algorithms that can be used
by clients and storage nodes to maintain the system. The basic ideas are the following:
every file F is associated to a succinct digest δF ; a storage node can answer and certify
retrieval queries for subportions of F that it stores, as well as to push updates of F that
enable anyone else to update the digest accordingly. Moreover, certified retrieval results
can be arbitrarily aggregated. With respect to security, VDS guarantees that malicious
storage nodes (even a full coalition of them) cannot create certificates for falsified data
blocks that pass verification. For efficiency, the key property of VDS is that digests and
every certificate are at most O(log |F |), and that every node in the system works with
storage and running time that depends at most logarithmically in F ’s size. We discuss
our definition of VDS in Section 5.

Constructing VDS. We propose two constructions of VDS in hidden-order groups.
Both our VDS schemes are obtained by extending our first and second SVC scheme
respectively, in order to handle updates and to ensure that all such update operations
can be performed locally. We show crucial use of the new properties of our construc-
tions: subvector openings, incremental aggregation and disaggregation, and arguments
of knowledge for sub-vector commitments (the latter for the first scheme only).

Our two VDS schemes are based on the Strong RSA [BP97] and Strong distinct-
prime-product root [LM19], and Low Order [BBF18] assumptions and have similar
performances. The second scheme has the interesting property that the storage node
can perform and propagate updates by running in time that is independent of even its
total local storage.

Finally, we note that VDS shares similarities with the notion of updatable VCs
[CF13] extended with incrementally aggregatable subvector openings. There are two
main differences. First, in VDS updates can be applied with the help of a short advice
created by the party who created the update, whereas in updatable VC this is possible

9 The motivation of this property is similar to that of sequential aggregate signatures, see e.g.,
[LMRS04, BGR12].
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having only the update’s description. The second difference is that in VDS the public
parameters must be short, otherwise nodes could not afford storing them. This is not
necessarily the case in VCs and in fact, to the best of our knowledge, there exists no
VC construction with short parameters that is updatable (according to the updatability
notion of [CF13]) and has incrementally aggregatable subvector openings. We believe
this is an interesting open problem.

1.3 Concurrent Work

In very recent concurrent works, Gorbunov et al. [GRWZ20] and Tomescu et al. [TAB+20]
study similar problems related to aggregation properties of vector commitments. In
[TAB+20], Tomescu et al. study a vector commitment scheme based on the Kate et al.
polynomial commitment [KZG10]: they show how it can be made both updatable and
aggregatable, and propose an efficient Stateless Cryptocurrency based on it. In Point-
proofs [GRWZ20] they propose the notion of Cross-Commitment Aggregation, which
enables aggregating opening proofs for different commitments, and show how this no-
tion is relevant to blockchain applications. The VC schemes in both [TAB+20] and
[GRWZ20] work in bilinear groups and have linear-size public parameters. Also, these
constructions do not support incremental aggregation or disaggregation. In contrast, our
VCs work in hidden-order groups, which likely makes them concretely less efficient,
but they have constant-size parameters, and they support incremental aggregation and
disaggregation. Finally, we note that by using techniques similar to [GRWZ20] we can
extend our constructions to support cross-commitment aggregation; we leave formaliz-
ing this extension for future work.

1.4 Preliminaries

In the paper we use rather standard cryptographic notation and definitions that for com-
pleteness are recalled in the full version. More specific to this paper we denote by
Primes(λ) the set of all prime integers less than 2λ.

Groups of Unknown Order and Computational Assumptions. Our constructions
use a group G of unknown (aka hidden) order [DK02], in which the Low Order as-
sumption [BBF18] and the Strong RSA assumption [BP97] hold. We let Ggen(1λ) be
a probabilistic algorithm that generates such a group G with order in a specific range
[ordmin, ordmax] such that 1

ordmin
, 1
ordmax

, 1
ordmax−ordmin ∈ negl(λ). As discussed in

[BBF18, BBF19, LM19], two concrete instantiations of G are class groups [BH01] and
the quotient group Z∗N/{1,−1} of an RSA group [Wes18]. See the full version for the
formal definitions of the assumptions and for a recall of Shamir’s trick [Sha83] that we
use extensively in our constructions.

2 Vector Commitments with Incremental Aggregation

In this section, we recall vector commitments with subvector openings [CF13, LM19,
BBF19] and then we formally define our new incremental aggregation property.
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2.1 Vector Commitments with Subvector Openings

In our work we consider the generalization of vector commitments proposed by Lai
and Malavolta [LM19] called VCs with subvector openings10 (we call them SVCs for
brevity) in which one can open the commitment to an ordered collection of positions
with a short proof. Below is a brief recap of their definition.

Let M be a set, n ∈ N be a positive integer and I = {i1, . . . , i|I|} ⊆ [n] be an
ordered index set. The I-subvector of a vector ~v ∈ Mn is ~vI := (vi1 , . . . , vi|I|). Let
I, J ⊆ [n] be two sets, and let ~vI , ~vJ be two subvectors of some ~v ∈ Mn. The ordered
union of ~vI and ~vJ is the subvector ~vI∪J , where I ∪ J is the ordered union of I and J .

A vector commitment scheme with subvector openings (SVC) is a tuple of algo-
rithms VC = (VC.Setup,VC.Com,VC.Open,VC.Ver) that work as follows. The prob-
abilistic setup algorithm, VC.Setup(1λ,M)→ crs, which given the security parameter
λ and description of a message spaceM for the vector components, outputs a common
reference string crs; the committing algorithm, VC.Com(crs, ~v) → (C, aux), which on
input crs and a vector ~v ∈ Mn, outputs a commitment C and an auxiliary information
aux; the opening algorithm, VC.Open(crs, I, ~y, aux)→ πI which on input the CRS crs,
a vector ~y ∈Mm, an ordered index set I ⊂ N and auxiliary information aux, outputs a
proof πI that ~y is the I-subvector of the committed message; the verification algorithm,
VC.Ver(crs, C, I, ~y, πI) → b ∈ {0, 1}, which on input the CRS crs, a commitment C,
an ordered set of indices I ⊂ N, a vector ~y ∈ Mm and a proof πI , accepts (i.e., it
outputs 1) only if πI is a valid proof that C was created to a vector ~v = (v1, . . . , vn)
such that ~y = ~vI . We require three properties from a vector commitment: correctness
(verification acts as expected on honestly generated commitments and openings); po-
sition binding (no adversary can produce two valid openings for different subvectors);
conciseness (if its commitments and openings are of size independent of |~v|).

Vector Commitments with Specializable Universal CRS. The notion of VCs defined
above slightly generalizes the previous ones in which the generation of public parame-
ters (aka common reference string) depends on a bound n on the length of the commit-
ted vectors. In contrast, in our notion VC.Setup is length-independent. To highlight this
property, we also call this primitive vector commitments with universal CRS.

Here we formalize a class of VC schemes that lies in between VCs with univer-
sal CRS (as defined above) and VCs with length-specific CRS (as defined in [CF13]).
Inspired by the recent work of Groth et al. [GKM+18], we call these schemes VCs
with Specializable (Universal) CRS. In a nutshell, these are schemes in which the algo-
rithms VC.Com,VC.Open and VC.Ver work on input a length-specific CRS crsn. How-
ever, this crsn is generated in two steps: (i) a length-independent, probabilistic setup
crs ← VC.Setup(1λ,M), and (ii) a length-dependent, deterministic specialization
crsn ← VC.Specialize(crs, n). The advantage of this model is that, being VC.Specialize
deterministic, it can be executed by anyone, and it allows to re-use the same crs for mul-
tiple vectors lengths.

See the full version for the formal definition of VCs with specializable CRS.

10 This is also called VCs with batchable openings in an independent work by Boneh et
al. [BBF19] and can be seen as a specialization of the notion of functional vector commit-
ments [LRY16].
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2.2 Incrementally Aggregatable Subvector Openings

In a nutshell, aggregation means that different proofs of different subvector openings
can be merged together into a single short proof which can be created without knowing
the entire committed vector. Moreover, this aggregation is composable, namely aggre-
gated proofs can be further aggregated. Following a terminology similar to that of ag-
gregate signatures, we call this property incremental aggregation (but can also be called
multi-hop aggregation). In addition to aggregating openings, we also consider the pos-
sibility to “disaggregate” them, namely from an opening of positions in the set I one
can create an opening for positions in a set K ⊂ I .

We stress on the two main requirements that make aggregation and disaggregation
non-trivial: all openings must remain short (independently of the number of positions
that are being opened), and aggregation (resp. disaggregation) must be computable lo-
cally, i.e., without knowing the whole committed vector. Without such requirements,
one could achieve this property by simply concatenating openings of single positions.

Definition 2.1 (Aggregatable Subvector Openings). A vector commitment scheme
VC with subvector openings is called aggregatable if there exists algorithms VC.Agg,
VC.Disagg working as follows:

VC.Agg(crs, (I,~vI , πI), (J,~vJ , πJ))→ πK takes as input triples (I,~vI , πI), (J,~vJ , πJ)
where I and J are sets of indices, ~vI ∈ M|I| and ~vJ ∈ M|J| are subvectors, and πI
and πJ are opening proofs. It outputs a proof πK that is supposed to prove opening
of values in positions K = I ∪ J .

VC.Disagg(crs, I, ~vI , πI ,K)→ πK takes as input a triple (I,~vI , πI) and a set of in-
dices K ⊂ I , and it outputs a proof πK that is supposed to prove opening of values
in positions K.

The aggregation algorithm VC.Agg must guarantee the following two properties:

Aggregation Correctness. Aggregation is (perfectly) correct if for all λ ∈ N, all hon-
estly generated crs ← VC.Setup(1λ,M), any commitment C and triple (I,~vI , πI) s.t.
VC.Ver(crs, C, I, ~vI , πI) = 1, the following two properties hold:

1. for any triple (J,~vJ , πJ) such that VC.Ver(crs, C, J,~vJ , πJ) = 1,

Pr
[
VC.Ver(crs, C,K,~vK , πK)=1 : πK←VC.Agg(crs, (I,~vI , πI), (J,~vJ , πJ))

]
=1

where K = I ∪ J and ~vK is the ordered union ~vI∪J of ~vI and ~vJ ;
2. for any subset of indices K ⊂ I ,

Pr
[
VC.Ver(crs, C,K,~vK , πK) = 1 : πK ← VC.Disagg(crs, I, ~vI , πI ,K)

]
= 1

where ~vK = (vil)il∈K , for ~vI = (vi1 , . . . , vi|I|).

Aggregation Conciseness. There exists a fixed polynomial p(·) in the security param-
eter such that all openings produced by VC.Agg and VC.Disagg have length bounded
by p(λ).

We remark that the notion of specializable CRS can apply to aggregatable VCs as
well. In this case, we let VC.Agg? (resp. VC.Disagg?) be the algorithm that works on
input the specialized crsn instead of crs.

9



3 Applications of Incremental Aggregation

We discuss two general applications of the SVC incremental aggregation property.
One application is generating subvector openings in a distributed and decentralized

way. Namely, assume a set of parties hold each an opening of some subvector. Then it
is possible to create a (concise) opening for the union of their subvectors by using the
VC.Agg algorithm. Moreover, the incremental (aka multi-hop) aggregation allows these
users to perform this operation in an arbitrary order, hence no coordination or a central
aggregator party are needed. This application is particularly useful in our extension to
verifiable decentralized storage.

The second application is to generate openings in a faster way via preprocessing.
As we mentioned in the introduction, this technique is useful in the scenario where a
user commits to a vector and then must generate openings for various subvectors, which
is for example the use case when the VC is used for proofs of retrievability and IOPs
[BBF19].

So, here the goal is to achieve a method for computing subvector openings in time
sub-linear in the total size of the vector, which is the barrier in all existing constructions.
To obtain this speedup, the basic idea is to (A) compute and store openings for all the
positions at commitment time, and then (B) use the aggregation property to create an
opening for a specific set of positions. In order to obtain efficiency using this approach
it is important that both steps (A) and (B) can be computed efficiently. In particular,
step (A) is challenging since typically computing one opening takes linear time, hence
computing all of them would take quadratic time.

In this section, we show how steps (A) and (B) can benefit from disaggregation and
aggregation respectively. As a preliminary for this technique, we begin by describing
two generic extensions of (incremental) aggregation (resp. disaggregation) that support
many inputs (resp. outputs). Then we show how these extended algorithms can be used
for committing and opening with preprocessing.

3.1 Divide-and-Conquer Extensions of Aggregation and Disaggregation

We discuss how the incremental property of our aggregation and disaggregation can be
used to define two extended versions of these algorithms. The first one is an algorithm
that can aggregate many openings for different sets of positions into a single opening
for their union. The second one does the opposite, namely it disaggregates one opening
for a set I into many openings for partitions of I .

Aggregating Many Openings We consider the problem of aggregating several open-
ings for sets of positions I1, . . . , Im into a single opening for

⋃m
j=1 Ij . Our syntax in

Definition 2.1 only considers pairwise aggregation. This can be used to handle many
aggregations by executing the pairwise aggregation in a sequential (or arbitrary order)
fashion. Sequential aggregation might however be costly since it would require execut-
ing VC.Agg on increasingly growing sets. If fa(k) is the complexity of VC.Agg on two
sets of total size k, then the complexity of the sequential method is

∑m
j=2 f(

∑j−1
l=1 |Il|+

|Ij |), which for example is quadratic in m, for fa(k) = Θ(k).
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VC.AggManyToOne(crs, (Ij , ~vIj , πj)j∈[m])

if m = 1 return π1

m′ ← m/2

L← ∪m
′

j=1Ij , R← ∪mj=m′+1Ij ,

πL ← VC.AggManyToOne(crs, (Ij , ~vIj , πj)j=1,...,m′)

πR ← VC.AggManyToOne(crs, (Ij , ~vIj , πj)j=m′+1,...,m)

πL∪R ← VC.Agg(crs, (L,~vL, πL), (R,~vR, πR))

return πL∪R

VC.DisaggOneToMany(crs, B, I, ~vI , πI)

if n = |I| = B return πI

n′ ← n/2

L← ∪n
′
j=1ij , R← ∪mj=n′+1ij ,

π′L ← VC.Disagg(crs, I, ~vI , πI , L)

π′R ← VC.Disagg(crs, I, ~vI , πI , R)

~πL ← VC.DisaggOneToMany(crs, B, L,~vL, π
′
L)

~πR ← VC.DisaggOneToMany(crs, B,R,~vR, π
′
R)

return ~πL||~πR

Fig. 1. Extensions of Aggregation and Disaggregation

In Fig. 1, we show an algorithm, VC.AggManyToOne, that is a nearly optimal solu-
tion for aggregating m openings based on a divide-and-conquer methodology. Assum-
ing for simplicity that all Ij’s have size bounded by some s, then the complexity of
VC.AggManyToOne is given by the recurrence relation T (m) = 2T

(
m
2

)
+ fa(s ·m),

which solves to Θ(s · m logm) if fa(n) ∈ Θ(n), or to Θ(s · m log(sm) logm) if
fa(n) ∈ Θ(n log n).

Disaggregating from One to Many Openings We consider the problem that is dual to
the one above, namely how to disaggregate an opening for a set I into several openings
for sets I1, . . . , Im that form a partition of I . Our syntax in Definition 2.1 only considers
disaggregation from I to one subset K of I . Similarly to aggregation, disaggregating
from one set to many subsets can be trivially obtained via a sequential application of
VC.Disagg on all pairs (I, Ij). This however can be costly if the number of partitions
approaches the size of I , e.g., if we want to disaggregate to all the elements of I .

In Fig. 1, we show a divide-and-conquer algorithm, VC.DisaggOneToMany, for
disaggregating an opening for a set I of size m into m′ = m/B openings, each for a
partition of size B. For simplicity, we assume that m is a power of 2, and B | m. Let
fd(|I|) be the complexity of VC.Disagg. The complexity of VC.DisaggOneToMany
is given by the recurrence relation T (m) = 2T

(
m
2

)
+ 2fd(m/2), which solves to

Θ(m log(m/B)) if fd(n) ∈ Θ(n), or toΘ(m logm log(m/B)) if fd(n) ∈ Θ(n log n).

3.2 Committing and Opening with Precomputation
We present a construction of committing and opening algorithms (denoted VC.PPCom
and VC.FastOpen respectively) that works generically for any SVC with incremental
aggregation and that, by relying on preprocessing, can achieve fast opening time.

Our preprocessing method works with a flexible choice of a parameterB that allows
for different time-memory tradeoffs. In a nutshell, ranging from 1 to n, a larger B
reduces memory but increases opening time while a smaller B (e.g., B = 1) requires
larger storage overhead but gives the fastest opening time.

Let B be an integer that divides n, and let n′ = n/B. The core of our idea is that,
during the commitment stage, one can create openings for n′ = n/B subvectors of ~v
that cover the whole vector (e.g., B contiguous positions). Let πP1

, . . . , πPn′ be such
openings; these elements are stored as advice information.

Next, in the opening phase, in order to compute the opening for a subvector ~vI of
m positions, one should: (i) fetch the subset of openings πPj such that, for some S,
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I ⊆ ∪j∈SPj , (ii) possibly disaggregate some of them and then aggregate in order to
compute πI .

The two algorithms VC.PPCom and VC.FastOpen are described in detail in Fig. 2.

VC.PPCom(crs, B,~v)

(C, aux)← VC.Com(crs, ~v)

π∗ ← VC.Open(crs, [n], ~v, aux)

~π ← VC.DisaggOneToMany(crs, B, [n], ~v, π∗)

aux∗ := (π1, . . . , πn′ , ~v)

return C, aux∗

VC.FastOpen(crs, B, aux∗, I)

Let Pj := {(j − 1)B + i : i ∈ [B]}, ∀j ∈ [n′]

Let I := {i1, . . . , im}

Let S minimal set s.t.
⋃
j∈S

Pj ⊇ I

for j ∈ S do :

Ij ← I ∩ Pj
π′j ← VC.Disagg(crs, Pj , ~vPj , πj , Ij)

endfor

πI ← VC.AggManyToOne(crs, ((Ij , ~vIj , π
′
j))j∈S)

return πI

Fig. 2. Generic algorithms for committing and opening with precomputation.

In terms of auxiliary storage, in addition to the vector ~v itself, one needs at most
(n/B)p(λ) bits, where p(λ) is the polynomial bounding the conciseness of the SVC
scheme. In terms of time complexity, VC.PPCom requires one execution of VC.Com,
one execution of VC.Open, and one execution of VC.DisaggOneToMany, which in
turn depends on the complexity of VC.Disagg; VC.FastOpen requires to perform (at
most) |S| disaggregations (each with a set |Ij | such that their sum is |I|)11, and one
execution of VC.AggManyToOne on |S| openings. Note that VC.FastOpen’s running
time depends only on the size m of the set I and size B of the buckets Pj , and thus
offers various tradeoffs by adjusting B.

More specific running times depend on the complexity of the algorithms VC.Com,
VC.Open, VC.Agg, and VC.Disagg of the given SVC scheme. See Section 4.3 and the
full version for these results for our constructions.

4 Our Realizations of Incrementally Aggregatable SVCs

In this section we describe our new SVC realizations.

4.1 Our First SVC Construction

AN OVERVIEW OF OUR TECHNIQUES. The basic idea underlying our VC can be de-
scribed as a generic construction from any accumulator with union proofs. Consider a
vector of bits ~v = (v1, . . . , vn) ∈ {0, 1}n. In order to commit to this vector we produce
two accumulators, Acc0 and Acc1, on two partitions of the set S = {1, . . . , n}. Each
accumulator Accb compresses the set of positions i such that vi = b. In other words,
Accb compresses the set S=b := {i ∈ S : vi = b} with b ∈ {0, 1}. In order to open to

11 Note that for B = 1 the disaggregation step can be skipped.
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Setup(1λ) : run G←$Ggen(1λ), g1, g2, g3 ←$G, set crs := (G, g1, g2, g3).
Prover’s input: (crs, (Y,C), (a, b)). Verifier’s input: (crs, (Y,C)).

V→ P: `←$Primes(λ)

P→ V: π := ((QY , QC), ra, rb) computed as follows
– (qa, qb, qc)← (ba/`c, bb/`c, bab/`c)
– (ra, rb)← (a mod `, b mod `)

– (QY , QC) := (gqa1 g
qb
2 , g

qc
3 )

V(crs, (Y,C), `, π):
– Compute rc ← ra · rb mod `

– Output 1 iff ra, rb ∈ [`] ∧ Q`Y g
ra
1 g

rb
2 = Y ∧ Q`Cg

rc
3 = C

Fig. 3. PoProd2 protocol

bit b at position i, one can create an accumulator membership proof for the statement
i ∈ S̃b where we denote by S̃b the alleged set of positions that have value b.

However, if the commitment to ~v is simply the pair of accumulators (Acc0,Acc1)
we do not achieve position binding as an adversary could for example include the same
element i in both accumulators. To solve this issue we set the commitment to be the
pair of accumulators plus a succinct non-interactive proof πS that the two sets S̃0, S̃1

they compress constitute together a partition of S. Notably, this proof πS guarantees
that each index i is in either S̃0 or S̃1, and thus prevents an adversary from also opening
the position i to the complement bit 1− b.

The construction described above could be instantiated with any accumulator scheme
that admits an efficient and succinct proof of union. We, though, directly present an ef-
ficient construction based on RSA accumulators [Bd94, BP97, CL02, Lip12, BBF19]
as this is efficient and has some nice extra properties like aggregation and constant-
size parameters. Also, part of our technical contribution to construct this VC scheme is
the construction of efficient and succinct protocols for proving the union of two RSA
accumulators built with different generators.

Succinct AoK Protocols for Union of RSA Accumulators Let G be a hidden order
group as generated by Ggen, and let g1, g2, g3 ∈ G be three honestly sampled random
generators. We propose a succinct argument of knowledge for the following relation

RPoProd2 =
{
((Y,C), (a, b)) ∈ G2 × Z2 : Y = ga1g

b
2 ∧ C = ga·b3

}
Our protocol (described in Fig. 3) is inspired by a similar protocol of Boneh et al. [BBF19],
PoDDH, for a similar relation in which there is only one generator (i.e., g1 = g2 = g3,
namely for DDH tuples (ga, gb, gab)). Their protocol has a proof consisting of 3 groups
elements and 2 integers of λ bits.

As we argue later PoProd2 is still sufficient for our construction, i.e., for the goal of
proving that C = gc3 is an accumulator to a set that is the union of sets represented by
two accumulators A = ga1 and B = gb2 respectively. The idea is to invoke PoProd2 on
(Y,C) with Y = A ·B.

To prove the security of our protocol we rely on the adaptive root assumption and,
in a non-black-box way, on the knowledge extractability of the PoKRep and PoKE∗
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protocols from [BBF19]. The latter is proven in the generic group model for hidden
order groups (where also the adaptive root assumption holds), therefore we state the
following theorem.

Theorem 4.1. The PoProd2 protocol is an argument of knowledge for RPoProd2 in the
generic group model.

For space reasons the full proof is in the full version. The basic intuition is to use the
extractors of PoKRep and PoKE∗ to extract (a, b, c) such that Y = ga1g

b
2 ∧ C = ga·b3 .

Then c = a · b comes from the fact that ` is randomly chosen, which makes the equality
rc = ra · rb mod ` happen with negligible probability if c 6= a · b.

In the full version we also give a protocol PoProd that proves ga1 = A ∧ gb2 = B
instead of ga1g

b
2 = Y (i.e., a version of PoDDH with different generators). Despite being

conceptually simpler, it is slightly less efficient than PoProd2, and thus we use the latter
in our VC construction.

HASH TO PRIME FUNCTION AND NON-INTERACTIVE PoProd2. Our protocols can be
made non-interactive by applying the Fiat-Shamir transform. For this we need an hash
function that can be modeled as a random oracle and that maps arbitrary strings to
prime numbers, i.e., Hprime : {0, 1}∗ → Primes(2λ)12. A simple way to achieve such
a function is to apply a standard hash function H : {0, 1}∗ → {0, 1}2λ to an input ~y
together with a counter i, and if py,i = H(~y, i) is prime then output py,i, otherwise
continue to H(~y, i + 1) and so on, until a prime is found. Due to the distribution of
primes, the expected running time of this method is O(λ), assuming that H’s outputs
are uniformly distributed. For more discussion on hash-to-prime functions we refer to
[GHR99, CMS99, CS99, BBF19, OWB19].

Our First SVC Construction Now we are ready to describe our SVC scheme. For an
intuition we refer the reader to the beginning of this section. Also, we note that while
the intuition was given for the case of committing to a vector of bits, our actual VC
construction generalizes this idea to vectors where each item is a block of k bits. This
is done by creating 2k accumulators, each of them holding sets of indices i for specific
positions inside each block vj .

Notation and Building Blocks.

– Our message space is M = {0, 1}k. Then for a vector ~v ∈ Mn, we denote with
i ∈ [n] the vector’s position, i.e., vi ∈M, and with j ∈ [k] the position of its j’th bit.
So vi,j denotes the j-th bit in position i.

– We make use of a deterministic collision resistant function PrimeGen that maps inte-
gers to primes. In our construction we do not need its outputs to be random (see e.g.,
[BBF19] for possible instantiations).

– As a building block, we use the PoProd2 AoK from the previous section.

12 As pointed out in [BBF18], although for the interactive version of such protocols the prime
can be of size λ, the non-interactive version requires at least a double-sized prime 2λ, as an
explicit square root attack was presented.
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– PartndPrimeProd(I, ~y)→ ((aI,1, bI,1), . . . , (aI,k, bI,k)): given a set of indices I =
{i1, . . . , im} ⊆ [n] and a vector ~y ∈Mm, this function computes

(aI,j , bI,j) :=

 m∏
l=1:yl,j=0

pil ,

m∏
l=1:yl,j=1

pil

 for j = 1, . . . , k

where pi ← PrimeGen(i) for all i.
Basically, for every bit position j ∈ [k], the function computes the products of primes
that correspond to, respectively, 0-bits and 1-bits.
In the special case where I = [n], we omit the set of indices from the notation of the
outputs, i.e., PartndPrimeProd([n], ~v) outputs aj and bj .

– PrimeProd(I)→ uI : given a set of indices I , this function outputs the product of all
primes corresponding to indices in I . Namely, it returns uI :=

∏
i∈I pi. In the special

case I = [n], we denote the output of PrimeProd([n]) as un.
Notice that by construction, for any I and ~y, it always holds aI,j · bI,j = uI .

SVC Scheme. We describe our SVC scheme and then show its incremental aggregation.

VC.Setup(1λ, {0, 1}k)→ crs generates a hidden order group G ← Ggen(1λ) and
samples three generators g, g0, g1 ← G. It also determines a deterministic collision
resistant function PrimeGen that maps integers to primes.
Returns crs = (G, g, g0, g1,PrimeGen)

VC.Specialize(crs, n)→ crsn computes un ← PrimeProd([n]) and Un = gun , and
returns crsn ← (crs, Un). One can think of Un as an accumulator to the set [n].

VC.Com?(crsn, ~v)→ (C?, aux?) does the following:
1. Compute ((a1, b1), . . . , (ak, bk))← PartndPrimeProd([n], ~v); next,

for all j ∈ [k] compute Aj = g
aj
0 and Bj = g

bj
1

One can think of each (Aj , Bj) as a pair of RSA accumulators for two sets that
constitute a partition of [n] done according to the bits of v1j , . . . , vnj . Namely Aj
and Bj accumulate the sets {i ∈ [n] : vi,j = 0} and {i ∈ [n] : vi,j = 1}
respectively.

2. For all j ∈ [k], compute Cj = Aj · Bj ∈ G and a proof π(j)
prod ← PoProd2.P(crs,

(Cj , Un), (aj , bj)). Such proof ensures that the sets represented by Aj and Bj are a
partition of the set represented by Un. Since Un is part of the CRS (i.e., it is trusted),
this ensures the well-formedness of Aj and Bj .

Return C? :=
(
{A1, B1, . . . , Ak, Bk} ,

{
π
(1)
prod, ..., π

(k)
prod

})
and aux? := ~v.

VC.Open?(crsn, I, ~y, aux?)→ πI proceeds as follows:
– let J = [n]\I and compute ((aJ,1, bJ,1), . . . , (aJ,k, bJ,k))←PartndPrimeProd(J,~vJ);

– for all j ∈ [k] compute ΓI,j := g
aJ,j
0 and ∆I,j = g

bJ,j
1 .

Notice that aJ,j = aj,/aI,j and bJ,j = bj,/bI,j . Also ΓI,j is a membership witness
for the set {il ∈ I : yl,j = 0} in the accumulator Aj , and similarly for ∆I,j .
Return πI := {πI,1, . . . , πI,k} ← {(ΓI,1, ∆I,1), . . . , (ΓI,k, ∆I,k)}
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VC.Ver?(crsn, C
?, I, ~y, πI)→ b computes ((aI,1, bI,1), . . . , (aI,k, bI,k)) using

PartndPrimeProd(I, ~y), and then returns b← bacc ∧ bprod where:

bacc ←
k∧
j=1

(
Γ
aI,j
I,j = Aj ∧∆

bI,j
I,j = Bj

)
(1)

bprod ←
k∧
j=1

(
PoProd2.V(crs, (Aj ·Bj , Un), π(j)

prod)
)

(2)

Remark 4.1. For more efficient verification, VC.Open? can be changed to include 2k
(non-interactive) proofs of exponentiation PoE (which using the PoKCR aggregation
from [BBF19] add only k elements of G). This reduces the exponentiations cost in
VC.Ver?. As noted in [BBF19], although the asymptotic complexity is the same, the
operations are in Z22λ instead of G, which concretely makes up an improvement.

The correctness of the vector commitment scheme described above is obvious by
inspection (assuming correctness of PoProd2).

Incremental Aggregation. We show incremental aggregation of our SVC scheme.

VC.Disagg(crs, I, ~vI , πI ,K)→ πK . Let L := I \K, and ~vL be the subvector of ~vI at
positions in L. Then compute {aL,j , bL,j}j∈[k] ← PartndPrimeProd(L,~vL), and for
each j ∈ [k] set: ΓK,j ← Γ

aL,j
I,j ,∆K,j ← ∆

bL,j
I,j and return πK := {πK,1, . . . , πK,k} :=

{(ΓK,1, ∆K,1), . . . , (ΓK,k, ∆K,k)}
VC.Agg(crs, (I,~vI , πI), (J,~vJ , πJ))→ πK := {(ΓK,1, ∆K,1), . . . , (ΓK,k, ∆K,k)}.

1. Let L := I ∩ J . If L 6= ∅, set I ′ := I \ L and compute πI′ ← VC.Disagg(crs,
I, ~vI , πI , I

′); otherwise let πI′ = πI .
2. Compute {aI′,j , bI′,j}j∈[k] ← PartndPrimeProd(I ′, ~vI′) and {aJ,j , bJ,j}j∈[k] ←

PartndPrimeProd(J,~vJ).

3. Parse πI′ := {(ΓI′,j , ∆I′,j)}kj=1, πJ := {(ΓJ,j , ∆J,j)}kj=1, and for all j ∈ [k],
compute ΓK,j ← ShamirTrick(ΓI′,j , ΓJ,j , aI′,j , aJ,j) and
∆K,j ← ShamirTrick(∆I′,j , ∆J,j , bI′,j , bJ,j).

Note that our algorithms above can work directly with the universal CRS crs, and do
not need the specialized one crsn.

Aggregation Correctness. The second property of aggregation correctness (the one
about VC.Disagg) is straightforward by construction:
if we let {aK,j , bK,j}j∈[k] ← PartndPrimeProd(K,~vK), then aI,j = aL,j · aK,j , and
thus Aj = Γ

aI,j
I,j = Γ

aL,j ·aK,j
I,j = Γ

aK,j
K,j (and similarly for ∆K,j).

The first property instead follows from the correctness of Shamir’s trick if the in-
teger values provided as input are coprime; however since I ′ ∩ J = ∅, aI′,j and aJ,j
(resp. bI′,j and bJ,j) are coprime unless a collision occurs in PrimeGen.

Security. The security of our SVC scheme, i.e., position binding, can be reduced to
the Strong RSA and Low Order assumptions in the hidden order group G used in the
construction and to the knowledge extractability of PoProd2.
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A bit more in detail the steps of the proof are as follows. Let an adversary to the po-
sition binding output (C, I, ~y, π, ~y′, π′). First from knowledge extractability of PoProd2

it comes that AjBj = g
aj
1 g

bj
2 and gajbj = Un = gun . However, this does not neces-

sarily means that ajbj = un over the integers and to prove it we need the Low Order
assumptions, under which it holds. Afterwards we prove that since AjBj = g

aj
1 g

bj
2 no

different proofs π, π′ for the same positions can pass the verification under the strong
RSA assumption, which is the core of our proof. The main caveat of the proof is that
instead of knowing that Aj = g

aj
1 and Bj = g

bj
2 we know only that AjBj = g

aj
1 g

bj
2 .

The former case would directly reduce to RSA Accumulator’s security (strong RSA
assumption). For this we first need to prove an intermediate lemma which shows that
specifically for our case AjBj = g

aj
1 g

bj
2 is enough, since the choice of the primes pi in

the exponent is restricted to a polynomially bounded set.
For lack of space, the proof is in the full version. For an intuition we refer to the

overview given at the beginning of this section.

Theorem 4.2 (Position-Binding). Let Ggen be the generator of hidden order groups
where the Strong RSA and Low Order assumptions hold, and let PoProd2 be an argu-
ment of knowledge forRPoProd2 . Then the subVector Commitment scheme defined above
is position binding.

On concrete instantiation. Our SVC construction is described generically from a hid-
den order group G, an AoK PoProd2, and a mapping to primes PrimeGen. The concrete
scheme we analyze is the one where PoProd2 is instantiated with the non-interactive
version of the PoProd2 protocol described in Sec. 4.1. The non-interactive version
needs a hash-to-prime function Hprime. We note that the same function can be used
to instantiate PrimeGen, though for the sake of PrimeGen we do not need its random-
ness properties. One can choose a different mapping to primes for PrimeGen and even
just a bijective mapping (which is inherently collision resistant) would be enough: this
is actually the instantiation we consider in our efficiency analysis. Finally, see Section
1.4 for a discussion on possible instantiations of G.

We note that by using the specific PoProd2 protocol given in Sec. 4.1 we are as-
suming adversaries that are generic with respect to the group G. Therefore, our SVC is
ultimately position binding in the generic group model.

4.2 Our Second SVC Construction

In this section we propose another SVC scheme with constant-size parameters and in-
cremental aggregation. This scheme builds on the SVC of [LM19] based on the RSA
assumption, which in turn extends the VC of [CF13] to support subvector openings.
Our technical contribution is twofold. First, we show that the SVC of [CF13, LM19]
can be modified in order to have public parameters and verification time independent of
the vector’s length. Second, we propose new algorithms for (incremental) aggregation
and disaggregation for this SVC.

Our second SVC Construction. Let us start by giving a brief overview of the [CF13]
VC scheme and of the basic idea to turn it into one with succinct parameters and verifi-
cation time. In brief, in [CF13] a commitment to a vector ~v is C = Sv11 · · ·Svnn , where
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each Si := g
∏
j∈[n]\{i} ej with g ∈ G a random generator and ej being distinct prime

numbers (which can be deterministically generated using a suitable map-to-primes).
The opening for position i is an element Λi such that Λeii · S

vi
i = C and the key idea

is that such Λi is an ei-th root that can be publicly computed as long as one does it
for the correct position i and value vi. Also, as it can be seen, the element Si is nec-
essary to verify an opening of position i, and thus (S1, . . . , Sn) were included in the
public parameters. Catalano and Fiore observed that one can remove the Si-s from crs
if the verifier opts for recomputing Si at verification time at the price of linear-time
verification. Our goal though is to obtain constant-size parameters and constant-time
verification. To do that we let the prover compute Si and include it in the opening for
position i. To prevent adversaries from providing false Si’s, we store in the public pa-
rameters Un = g

∏
i∈[n] ei (i.e., an accumulator to all positions) so that the verifier can

verify the correctness of Si in constant-time by checking Seii = Un. This technique
easily generalizes to subvector openings.

In the following, we describe the scheme in details and then propose our incremental
aggregation algorithms. To simplify our exposition, we use the following notation: for a
set of indices I ⊆ [n], eI :=

∏
i∈I ei denotes the product of all primes corresponding to

the elements of I , and SI := g
∏
i∈[n]\I ei = ge[n]\I = U

1/eI
n (which is a generalization

of the former Si), where, we recall, the ei’s are defined from the crs.

VC.Setup(1λ, `, n)→ crs generates a hidden order group G ← Ggen(1λ) and sam-
ples a generator g←$G. It also determines a deterministic collision resistant function
PrimeGen that maps integers to primes.
Returns crs = (G, g,PrimeGen)

VC.Specialize(crs, n)→ crsn computes n primes of (` + 1) bits e1, . . . , en, ei ←
PrimeGen(i) for each i ∈ [n], and Un = ge[n] and returns crsn ← (crs, Un). One
can think of Un as an accumulator to the set [n].

VC.Com(crs, ~v)→ (C, aux) Computes for each i ∈ [n], Si ← ge[n]\{i} and then C ←
Sv11 . . . Svnn and aux← (v1, . . . , vn).

VC.Open(crs, I, ~y, aux)→ πI Computes for each j ∈ [n] \ I , S1/eI
j ← ge[n]\(I∪{j})

and SI ← ge[n]\I and then

ΛI ←
n∏

j=1,j /∈I

(
S
1/eI
j

)yj
=

 n∏
j=1,j /∈I

S
yj
j

1/eI

Returns πI := (SI , ΛI)

VC.Ver(crs, C, I, ~y, πI)→ b Parse πI := (SI , ΛI), and compute Si = S
eI\{i}
I =

U
1/ei
n for every i ∈ I . Return 1 (accept) if both the following checks hold, and 0

(reject) otherwise:
SeII = Un ∧ C = ΛeII

∏
i∈I

Syii

The correctness of the above construction holds essentially the same as the one of the
SVC of [CF13, LM19] with the addition of the SI elements of the openings, whose
correctness can be seen by inspection (and is the same as for RSA accumulators).
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Incremental Aggregation. Let us now show that the SVC above has incremental ag-
gregation. Note that our algorithms also implicitly show that the RSA-based SVC of
[LM19] is incrementally aggregatable.

VC.Disagg(crs, I, ~vI , πI ,K)→ πK Parse πI := (SI , ΛI). First compute SK from SI ,
SK ← S

eI\K
I , and then, for every j ∈ I \ K, χj = S

1/ej
K , e.g., by computing

χj ← S
eI\(K∪{j})
I .

Return πK := (SK , ΛK) where

ΛK ← Λ
eI\K
I ·

∏
j∈I\K

χ
vj
j

VC.Agg(crs, (I,~vI , πI), (J,~vJ , πJ))→ πK Parse πI := (SI , ΛI) and similarly πJ .
Also, let K = I ∪ J , and assume for simplicity that I ∩ J = ∅ (if this is not the case,
one could simply disaggregate πI (or πJ ) to πI\J (or πJ\I )).
First, compute SK ← ShamirTrick(SI , SJ , eI , eJ). Next, compute φj ← S

eJ\{j}
K =

S
1/ej
I for every j ∈ J , and similarly ψi ← S

eI\{i}
K = S

1/ei
J for every i ∈ I . Then

compute

ρI ←
ΛI∏
j∈J φ

vj
j

and σJ ←
ΛJ∏
i∈I ψ

vi
i

Return πK := (SK , ΛK) where ΛK ← ShamirTrick(ρI , σJ , eI , eJ).

Aggregation Correctness. It follows from the correctness of Shamir’s trick and by
construction. The details are in the full version

Security. For the security of the above SVC scheme we observe that the difference with
the corresponding [LM19] lies in the generation of Si’s. In [LM19] they are generated
in the trusted setup phase, thus they are considered “well-formed” in the security proof.
In our case, the Si’s are reconstructed during verification time from the SI that comes
in the opening πI which can (possibly) be generated in an adversarial way. However,
in the verification it is checked that SeII = U , where U = ge[n] is computed in the
trusted setup. So under the Low Order assumption we get that SI has the correct form,
SI = ge[n]/eI = ge[n]\I , with overwhelming probability. Except for this change, the
rest reduces to the position binding of the [LM19] SVC. The proof of the theorem is in
the full version.

Theorem 4.3 (Position-Binding). Let Ggen be the generator of hidden order groups
where the Low Order assumption holds and the [LM19] SVC is position binding. Then
the SVC scheme defined above is position binding.

As showed in [LM19], their SVC is position binding under the strong Distinct-Prime-
Product Root assumption in the standard model. We conclude that the above SVC is
position binding in hidden order groups where the Low Order and the Strong Distinct-
Prime-Product Root assumptions hold.
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4.3 Comparison with Related Work

We compare our two SVC schemes with the recent scheme proposed by Boneh et al.
[BBF19] and the one by Lai and Malavolta [LM19], which extends [CF13] to support
subvector openings.13 We present a detailed comparison in Table 1, considering to work
with vectors of length N of `-bit elements and security parameter λ. In particular we
consider an instantiation of our first SVC with k = 1 (and thus n = N · `). A detailed
efficiency analysis of our schemes is in the full version.

SETUP MODEL. [BBF19] works with a fully universal CRS, whereas our schemes have
both a universal CRS with deterministic specialization, which however, in comparison
to [CF13, LM19], outputs constant-size parameters instead of linear.

AGGREGATION. The VC of [BBF19] supports aggregation only on openings created
by VC.Open (i.e., it is one-hop) and does not have disaggregatable proofs (unless in
a different model where one works linearly in the length of the vector or knows the
full vector). In contrast, we show the first schemes that satisfy incremental aggregation
(also, our second one immediately yields a method for the incremental aggregation of
[LM19]). As we mention later, incremental aggregation can be very useful to precom-
pute openings for a certain number of vector blocks allowing for interesting time-space
tradeoffs that can speedup the running time of VC.Open.

EFFICIENCY. From the table, one can see that our first SVC has: slightly worse commit-
ments size than all the other schemes, computational asymptotic performances similar
to [BBF19], and opening size slightly better than [BBF19]. Our second SVC is the most
efficient among the schemes with constant-size parameters; in particular, it has faster
asymptotics than our first SVC and [BBF19] for having a smaller logarithmic factor
(e.g., log(N −m) vs. log(`N)), which is due to the avoidance of using one prime per
bit of the vector. In some cases, [CF13, LM19] is slightly better, but this is essentially a
benefit of the linear-size parameters, namely the improvement is due to having the Si’s
elements already precomputed.

When considering applications in which a user creates the commitment to a vector
and (at some later points in time) is requested to produce openings for various subvec-
tors, our incremental aggregation property leads to use preprocessing to achieve more
favorable time and memory costs. In a nutshell, the idea of preprocessing is that one can
precompute and store information that allows to speedup the generation of openings, in
particular by making opening time less dependent on the total length of the vector. Our
method in Section 3.2 works generically for any SVC that has incremental aggrega-
tion. A similar preprocessing solution can also be designed for the SVC of [BBF19] by
using its one-hop aggregation; we provide a detailed description of the method in the
full version. The preprocessing for [BBF19] however has no flexibility in choosing how
much auxiliary storage can be used, and one must store (a portion of) a non-membership
witness for every bit of the vector.

Even in the simplest case of B = 1 (shown in Table 1) both our SVCs save a factor
` in storage, which concretely turns into 3× less storage.

13 We refer to [BBF19] to see how these schemes compare with Merkle trees.
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Furthermore we support flexible choices of B thus allowing to tune the amount of
auxiliary storage. For instance, we can choose B =

√
N so as to get 2

√
N |G| bits of

storage, and opening time about O(`m log n(
√
n + logm)) and O(m(

√
n + log2m))

in the first and second scheme respectively. Our flexibility may also allow one to choose
the buckets sizeB and their distribution according to applications-dependent heuristics;
investigating its benefit may be an interesting direction for future work.

Metric Our First SVC Our Second SVC [BBF19] [CF13, LM19]
Setup

VC.Setup O(1) O(1) O(1) O(1)

|crs| 3 |G| 1 |G| 1 |G| 1 |G|
VC.Specialize O(` ·N · log(`N)) G O(` ·N) G — O(` ·N · logN) G

|crsN | 1 |G| 1 |G| — N |G|
Commit a vector ~v ∈ ({0, 1}`)N

VC.Com O(` ·N · log(`N)) G O(` ·N · logN) G O(` ·N · log(`N)) G O(` ·N) G
|C| 4 |G|+ 2 |Z22λ | 1 |G| 1 |G| 1 |G|

Opening and Verification for ~vI with |I| = m

VC.Open O(` · (N −m) · log(`N)) G O(` · (N −m) · log(N −m)) G O(` · (N −m) · log(`N)) G O(` · (N −m) ·m logm) G
|πI | 3 |G| 2 |G| 5 |G|+ 1 |Z22λ | 1 |G|

VC.Ver O(` ·m · log(`N)) Z22λ +O(λ) G O(` ·m logm) |G| O(m · ` · log(`N)) Z22λ +O(λ) G O(` ·m) G
Commitment and Opening with Precomputation

VC.Com O(` ·N · log(` ·N) · log(N)) G O(` ·N log2(N)) G O(` ·N · log(` ·N) · log(N)) G O(` ·N log2(N))

|aux| 2N |G| 2N |G| 2N |G|+O(` ·N log(`N)) 2N |G|
VC.Open O(m · ` · log(m) log(`N)) G O(m · ` · log2m) G O(m · ` · log(m) log(`N)) G O(m · ` · log2(m)) G

Aggregation Incremental Incremental One-hop Incremental
Disaggregation Yes Yes No Yes

Table 1. Comparison between the SVC’s of [BBF19], [LM19] and this work; our contributions
are highlighted in gray. We consider committing to a vector ~v ∈ ({0, 1}`)N of length N , and
opening and verifying for a set I of m positions. By ‘O(x) G’ we mean O(x) group operations
in G; |G| denotes the bit length of an element of G. An alternative algorithm for VC.Open in
[LM19] costs O(` · (N −m) · log(N −m)). Our precomputation is for B = 1.

4.4 Experimental Evaluation

We have implemented in Rust our first SVC scheme of section 4.1 (with and without
preprocessing) and the recent SVC of [BBF19] (referred as BBF in what follows). Here
we discuss an experimental evaluation of these schemes. 14 Below is a summary of the
comparison, details of the experiments are in the full version.

– Our SVC construction is faster in opening and verification than BBF (up to 2.5×
and 2.3× faster respectively), but at the cost of a slower commitment stage (up to 6×
slower). These differences tend to flatten for larger vectors and opening sizes.

– Our SVC construction with preprocessing allows for extremely fast opening times
compared to non-preprocessing constructions. Namely, it can reduce the running time
by several orders of magnitude for various choices of vector and opening sizes, allow-
ing to obtain practical opening times—of the order of seconds—that would be impos-
sible without preprocessing—of the order of hundred of seconds. In a file of 1 Mibit

14 We did not include BBF with precomputation in our experimental evaluation because this
scheme has worse performances than our preprocessing construction in terms of both required
storage and running time. We elaborate on this in the full version.
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(220 bits), preprocessing reduces the time to open 2048 bits from one hour to less
than 5 seconds! This efficient opening, however, comes at the cost of a one-time pre-
processing (during commitment) and higher storage requirements. We discuss how to
mitigate these space requirements by trading for opening time and/or communication
complexity later in this section. We stress that it is thanks to the incremental aggrega-
tion property of our construction that allows these tradeoffs (they are not possible in
BBF with preprocessing).

– Although our SVC construction with preprocessing has an expensive commitment
stage, this tends to be amortized throughout very few openings15, as few as 30 (see
full version for more details). These effects are particularly significant over a higher
number of openings: over 1000 openings our SVC construction with preprocessing
has an amortized cost of less than 6 seconds, while our SVC construction and BBF
have amortized openings above 90 seconds.

Time/Storage Tradeoffs Our construction allows for some tradeoffs between running
times and storage by selecting larger precomputed chunks or by committing to hashed
blocks of the file. See the full version for a detailed discussion.

5 Verifiable Decentralized Storage

In this section we introduce verifiable decentralized storage (VDS). We recall that in
VDS there are two types of parties (called nodes): the generic client nodes and the
more specialized storage nodes (a storage node can also act as a client node). We refer
the reader to Section 1.2 for a discussion on the motivation and requirements of VDS.

5.1 Syntax

Here we introduce the syntax of VDS. A VDS scheme is defined by a collection of
algorithms that are to be executed by either storage nodes or client nodes. The only
exception is the Bootstrap algorithm that is used to bootstrap the entire system and is
assumed to be executed by a trusted party, or to be implemented in a distributed fashion
(which is easy if it is public coin).

The syntax of VDS reflects its goal: guaranteeing data integrity in a highly dynamic
and decentralized setting (the file can change and expand/shrink often and no single
node stores it all). In VDS we create both parameters and an initial commitment for
an empty file at the beginning (through the probabilistic Bootstrap algorithm, which
requires a trusted execution). From then on this commitment is changed through in-
cremental updates (of arbitrary size). Updating is divided in two parts. A node can
carry out an update and “push” it to all the other nodes, i.e. providing auxiliary in-
formation (that we call “update hint”) other nodes can use to update their local cer-

15 Amortized opening time roughly represents how computationally expensive a scheme is “in
total” throughout all its operations. Amortized opening time for m openings is the cost of one
commitment plus the cost of m openings, all averaged over the m openings.
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tificates (if affected by the change) and a new digest16. These operations are done re-
spectively through StrgNode.PushUpdate and StrgNode.ApplyUpdate. Opening and
verifying are where VC (with incremental aggregation) and VDS share the same mech-
anism. To respond to a query, a storage node can produce (possibly partial) proofs of
opening via the StrgNode.Retrieve algorithm. If these proofs need to be aggregated,
any node can use algorithm AggregateCertificates. Anyone can verify a proof through
ClntNode.VerRetrieve.

Some more details about our notation follow. In VDS we model the files to be
stored as vectors in some message space M (e.g., M = {0, 1} or {0, 1}`), i.e., F =
(F1, . . . ,FN ). Given a file F, we define a portion of it as a pair (I,FI) where FI is essen-
tially the I-subvector of F. We denote input (resp. output) states by st (resp. st′). Update
operations op are modifications, additions or deletions, i.e. op ∈ {mod, add, del}, and
∆ denotes the update description , e.g., which positions to change and the new values.
We denote by Υ∆ the update hint that whoever is producing the update can share with
other nodes to generate a new digest from the changes. The output bit b marks accep-
tance/rejection. For a query Q, we mark by πQ a certificate vouching for a response
FQ.

Definition 5.1 (Verifiable Decentralized Storage). Algorithm to bootstrap the sys-
tem:
Bootstrap(1λ)→ (pp, δ0, st0) which outputs a digest and storage node’s local state

for an empty file. All the algorithms below implicitly take the public parameters pp as
input.

The algorithms for storage nodes are:
StrgNode.AddStorage(δ, n, st, I,FI , Q,FQ, πQ)→ (st′, J,FJ) by which a storage node

can extend its storage from (I,FI) to (J,FJ) := (I,FI) ∪ (Q,FQ). Note: this allows
anyone holding a valid certificate for a file portion FQ to become a storage node of
such portion.

StrgNode.RmvStorage(δ, n, st, I,FI ,K)→ (st′, J,FJ) by which a storage node can
shrink its local storage to (J,FJ).

StrgNode.PushUpdate(δ, n, st, I,FI , op, ∆)→ (δ′, n′, st′, J,F′J , Υ∆) which allows a
storage node to perform an update on (I,FI) generating a corresponding new di-
gest, length and local view, along with hint Υ∆ others can use to update their own
digests/local view.

StrgNode.ApplyUpdate(δ, n, st, I,FI , op, ∆, Υ∆)→ (b, δ′, n′, st′, J,F′J) which allows
a storage node to incorporate changes in a file pushed by another node.

StrgNode.Retrieve(δ, n, st, I,FI , Q)→ (FQ, πQ) which allows a storage node to re-
spond to a query and to create a certificate vouching for the correctness of the re-
turned blocks.

The algorithms for clients nodes are:
ClntNode.ApplyUpdate(δ, op, ∆, Υ∆)→ (b, δ′) which updates a digest by hint Υ∆.

16 One can also see this update hint as a certificate to check that a new digest is consistent with
some changes. This issue does not arise in our context at all but the Bootstrap algorithms are
deterministic.
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ClntNode.VerRetrieve(δ,Q,FQ, πQ)→ b which verifies a response to a query.
AggregateCertificates(δ, (I,FI , πI), (J,FJ , πJ))→ πK which aggregates two certifi-

cates πI and πJ into a single certificate πK (with K := I ∪ J). In a running VDS,
any node can aggregate two (or more) incoming certified data blocks into a single
certified data block.

Remark 5.1 (On CreateFrom). For completeness, our VDS syntax also includes the
functionalities (StrgNode.CreateFrom,ClntNode.GetCreate) that allow a storage node
to initialize storage (and corresponding digest) for a new file that is a subset of an
existing one, and a client node to verify such resulting digest. Although this feature can
be interesting in some application scenarios, we still see it as an extra feature that may
or may not be satisfied by a VDS construction. We refer to the full version for more
discussion and a detailed description of this functionality.

5.2 Correctness and Efficiency of VDS

Intuitively, we say that a VDS scheme is efficient if running VDS has a “small” over-
head in terms of the storage required by all the nodes and the bandwidth to transmit
certificates. More formally, a VDS scheme is said efficient if there is a fixed polynomial
p(·) such that p(λ, log n) (with λ the security parameter and n the length of the file) is
a bound for all certificates and advices generated by the VDS algorithms as well as for
digests δ and the local state st of storage nodes. Note that combining this bound with
the requirement that all algorithms are polynomial time in their input, we also get that
no VDS algorithm can run linearly in the size of the file (except in the trivial case that
the file is processed in one shot, e.g., in the first StrgNode.AddStorage).

Efficiency essentially models that running VDS is cost-effective for all the nodes in
the sense that it does not require them to store significantly more data than they would
have to store without. Notice that by requiring certificates to have a fixed size implies
that they do not grow with aggregation.

For correctness, intuitively speaking, we want that for any (valid) evolution of the
system in which the VDS algorithms are honestly executed we get that any storage
node storing a portion of a file F can successfully convince a client holding a digest of
F about retrieval of any portion of F. And such (intuitive notion of) correctness is also
preserved when updates, aggregations, or creations of new files are done.

Turning this intuition into a formal correctness definition turned out to be nontrivial.
This is due to the distributed nature of this primitive and the fact that there could be
many possible ways in which, at the time of answering a retrieval query, a storage node
may have reached its state starting from the empty node state. The basic idea of our
definition is that an empty node is “valid”, and then any “valid” storage node that runs
StrgNode.PushUpdate “transfers” such validity to both itself and to other nodes that
apply such update. A bit more precisely, we model “validity” as the ability to correctly
certify retrievals of any subsets of the stored portion. A formal correctness definition
follows. To begin with, we define the notion of validity for the view of a storage node.

Definition 5.2 (Validity of storage node’s view). Let pp be public parameters as
generated by Bootstrap. We say that a local view (δ, n, st, I,FI) of a storage node
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is valid if ∀Q ⊆ I: ClntNode.VerRetrieve(δ,Q,FQ, πQ) = 1, where (FQ, πQ) ←
StrgNode.Retrieve(δ, n, st, I,FI , Q)

Remark 5.2. By Definition 5.2 the output of a bootstrapping algorithm (pp, δ0, st0)←
Bootstrap(1λ) is always such that (pp, δ0, 0, st0, ∅, ∅) is valid. This provides a “base
case” for Definition 5.4.

Second, we define the notion of admissible update, which intuitively models when
a given update can be meaningfully processed, locally, by a storage node.

Definition 5.3 (Admissible Update). An update (op, ∆) is admissible for (n, I,FI) if:

– for op = mod, K ⊆ I and |F′K | = |K|, where ∆ := (K,F′K).
– for op = add, K ∩ I = ∅ and |F′K | = |K| and K = {n + 1, n + 2, . . . , n + |K|},

where ∆ := (K,F′K).
– for op = del, K ⊆ I and K = {n− |K|+ 1, . . . , n}, where ∆ := K.

In words, the above definition formalizes that: to push a modification at positions K,
the storage node must store those positions; to push an addition, the new positions K
must extend the currently stored length of the file; to push a deletion of position K, the
storage node must store data of the positions to be deleted and those positions must also
be the last |K| positions of the currently stored file (i.e., the file length is reduced).

Definition 5.4 (Correctness of VDS). A VDS scheme VDS is correct if for all honestly
generated parameters (pp, δ0, st0)← Bootstrap(1λ) and any storage node’s local view
(δ, n, st, I,FI) that is valid, the following conditions hold.
UPDATE CORRECTNESS. For any update (op, ∆) that is admissible for (n, I,FI) and
for any (δ′, n′, st′, J,F′J , Υ∆)← StrgNode.PushUpdate(δ, n, st, I,FI , op, ∆):

1. (pp, δ′, n′, st′, J,F′J) is valid;
2. for any valid (δ, n, sts, Is,FIs), if (bs, δ′s, n

′, st′s, I
′
s,F
′
s)←StrgNode.ApplyUpdate(δ,

n, sts, Is,FIs , op, ∆, Υ∆) then we have: bs = 1, δ′s = δ′, n′s = n′, and (δ′s, n
′
s, st′s,

I ′s,F
′
s) is valid;

3. if (bc, δ′c)← ClntNode.ApplyUpdate(δ, op, ∆, Υ∆), then δ′c = δ′ and bc = 1.

ADD-STORAGE CORRECTNESS. For any (Q,FQ, πQ) such that
ClntNode.VerRetrieve(δ,Q,FQ, πQ) = 1, if (st′, J,FJ) ← StrgNode.AddStorage(δ,
st, I,F, Q,FQ, πQ) then (δ, n, st′, J,FJ) is valid.
REMOVE-STORAGE CORRECTNESS. For any K ⊆ I ,
if (st′, J,FJ)← StrgNode.RmvStorage(δ, st, I,F,K) then (δ, n, st′, J,FJ) is valid.
CREATE CORRECTNESS. For any J ⊆ I , if (δ′, n′, st′, J,FJ , ΥJ) is output of
StrgNode.CreateFrom(δ, n, st, I,FI , J) and (b, δ′′)← ClntNode.GetCreate(δ, J, ΥJ),
then b = 1, n′ = |J |, δ′′ = δ′ and (pp, δ′, n′, st′, J,FJ) is valid.
AGGREGATE CORRECTNESS. For any pair of triples (I,FI , πI) and (J,FJ , πJ) such
that
ClntNode.VerRetrieve(δ, I,FI , πI) = 1 and ClntNode.VerRetrieve(δ, J,FJ , πJ) = 1,
if πK ← AggregateCertificates((I,FI , πI), (J,FJ , πJ)) and (K,FK) := (I,FI) ∪
(J,FJ), then
ClntNode.VerRetrieve(δ,K,FK , πK) = 1.
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Remark 5.3 (Relation with Updatable VCs). Our notion of VDS is very close to the no-
tion of updatable VCs [CF13] extended to support subvector openings and incremental
aggregation. On a syntactical level, in comparison to updatable VCs, our VDS notion
makes more evident the decentralized nature of the primitive, which is reflected in the
definition of our algorithms where for example it is clear that no one ever needs to
store/know the entire file. One major difference is that in VDS the public parameters
must necessarily be short since no node can run linearly in the size of the file (nor it
can afford such storage), whereas in VCs this may not be necessarily the case. Another
difference is that in updatable VCs [CF13] updates can be received without any hint,
which is instead the case in VDS. Finally, it is interesting to note that, as of today, there
exists no VC scheme that is updatable, incrementally aggregatable and with subvector
openings, that enjoys short parameters and has the required short verification time. So,
in a way, our two VDS realizations show how to bypass this barrier of updatable VC by
moving to a slightly different (and practically motivated) model.

5.3 Security of VDS

In this section we discuss the security definition of VDS schemes. For lack of space a
formal definition is in the full version. Intuitively speaking, we require that a malicious
storage node (or a coalition of them) cannot convince a client of a false data block in a
retrieval query. To formalize this, we let the adversary fully choose a history of the VDS
system that starts from the empty state and consists of a sequence of steps, where each
step is either an update (addition, deletion, modification) or a creation (from an existing
file) and is accompanied by an advice. A client’s digest δ is updated following such
history and using the adversarial advices, and similarly one gets a file F corresponding
to such digest. At this point, the adversary’s goal is to provide a tuple (Q, πQ,F

∗
Q) that

is accepted by a client with digest δ but where F∗Q 6= FQ.

VDS PROOF OF STORAGE. As an additional security mechanism we consider the pos-
sibility to ensure a client that a given file is stored by the network at a certain point of
time without having to retrieve it. To this end, we extend the VDS notion to provide
a proof of storage mechanism in the form of a proof of retrievability (PoR) [JK07] or
a proof of data possession (PDP) [ABC+07]. Our proof of storage model for VDS is
such that proofs are publicly verifiable given the file’s digest. Also, in order to support
the decentralized and open nature of DSNs, the entire proof mechanism should not use
any secret, and proofs should be generatable in a distributed fashion (this is a main
distinguishing feature compared to existing PoRs/PDPs) while staying compact. The
formalization of this property is in the full version.

5.4 Realizing VDS

We show two realizations of VDS in hidden-order groups, summarized below.

Theorem 5.1 (VDS1). Under the strong RSA assumption in a hidden-order group G,
there exists a VDS scheme VDS1 in which, for a file F: a digest δF is 2|G|+log |F| bits-
long; a storage node holding (I,FI) keeps a state stI of 2|G| bits, answers retrieval of

26



portion Q with a certificate of 2|G| bits in time O(` · (|I| − |Q|) log |F|), and pushes an
update ∆ in time O(` · |I| log |F|) for op = mod, O(` · |∆| log |F|) for op = add, and
O(` · (|I| − |∆|) log |F|) for op = del; a client verifies a query for positions in Q (resp.
an update ∆) in time O(` · |Q| log |F |) (resp. O(` · |∆| log |F |)).

Theorem 5.2 (VDS2). Under the strong distinct-prime-product root and the Low Order
assumptions in a hidden-order group G, there exists a VDS scheme VDS2 in which, for
a file F: a digest δF is 2|G| + log |F| bits-long; a storage node holding (I,FI) keeps
a state stI of 2|G| bits, answers retrieval of portion Q with a certificate of 2|G| bits in
time O(` · (|I|− |Q|) log(|I|− |Q|)), and pushes an update ∆ in time O(` · |∆| log |∆|)
for op = mod, add, and O(` · (|I|+ |∆| log |∆|)) for op = del; a client verifies a query
for positions inQ (resp. an update∆) in timeO(`·|Q| log |Q|) (resp.O(`·|∆| log |∆|)).

In terms of assumptions, VDS1 is based on a weaker assumption than VDS2 (al-
though the assumptions are equivalent when G is instantiated with RSA groups).

In terms of performances, as one can see, VDS1 and VDS2 do similarly, with VDS2

being slightly more efficient. In VDS1 the complexity of all operations includes a factor
α = log |F|, whereas in VDS2 operations are affected by a factor logarithmic only in
the number of positions involved in the given operation (e.g., how many are updated),
which is typically much smaller than the entire file. Also, VDS2 has the interesting
feature that storage nodes can add and modify values in time which depends only on
the update size but not on the size of the local storage.

Finally, VDS1 has the additional feature of being compatible with our succinct ar-
guments of knowledge, which enable the StrgNode.CreateFrom functionality and com-
pact Proofs of Data Possession (see next section for an intuition and the full version for
the details).

The main ideas of the two constructions are described in the following paragraphs;
full constructions are in the full version.

Our First VDS Construction Our first VDS VDS1 is obtained by extending the tech-
niques used for our SVC of Section 4.1.

Let us assume for a moment that a digest for file F is a commitment to F. Then,
a storage node holding a portion (I,FI) keeps as local state stI = πI = (ΓI , ∆I),
and this clearly enables it to certify retrieval queries for any portion Q ⊆ I by using
disaggregation in order to create πQ from πI . Moreover, such certificates of retrieval
queries can be arbitrarily aggregated over the network.

In order to support updates, the main obstacle is that our commitment cannot be
publicly updated without knowing the entire vector due to the presence of the AoK of
union of Acc0 and Acc1. To solve this, we exploit the fact that in the VDS security model
the digest provided by the adversary must be compatible with the claimed history of
changes. So we can remove the AoK. Then, updating the digest boils down to updating
the two RSA accumulators (Acc0,Acc1) appropriately. For instance, changing the i-th
bit from 0 to 1 requires to remove pi from Acc0 (i.e., Acc′0 = Acc

1/pi
0 computable

through πI ) and adding it to Acc1 (i.e., Acc′1 = Accpi1 ). This can be performed by a
storage node holding positions in the set I such that i ∈ I , and verified by anyone
having previous and new digest. As we show in the full description of the scheme, by
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using similar ideas other storage nodes holding other positions, say J , can also update
their local state stJ accordingly.

Finally, in this VDS we take advantage of our efficient AoK protocols to support
two additional features. The first one is a compact proof of data possession by which the
storage node can convince a verifier that it stores a certain subset of positions without
sending the data at those positions. The second one is what we call “CreateFrom”: a
storage node holding a prefix F′ of F can publish a new digest δF′ corresponding to F′

as a new file, and to convince any client about its correctness without the need for them
to know neither F′ nor F.

Our Second VDS Construction Our second scheme VDS2 is obtained by modi-
fying our second SVC scheme from Section 4.2 and makes key use of its aggrega-
tion/disaggregation properties.

As in our first VDS scheme, a storage node holding (I,FI) keeps an opening πI
as local state, and uses our disaggregation and aggregation methods to certify retrieval
queries for Q ⊂ I .

Let us now turn to how we can support updates. Let us consider an update on a
subset K of the vector. First, the commitment is updatable as C ′ ← C ·

∏
i∈K S

F′
i−Fi
i .

To update the opening proof, which we recall is πI := (SI , ΛI), we note that the ΛI -

part is updatable without the need of hint as Λ′I ← ΛI ·
(∏

j∈K\I S
1/

∏
i∈I ei

j

)F′
j−Fj

.
This part works as in [CF13] with some additional techniques that let a node do this in
time O(|I| + |K| log |K|) and without having to store all the Sj values. The SI -part
resembles an RSA accumulator witness as observed in section 4.2, and thus we can
use techniques similar to those of our first VDS construction to update it. That is, upon
update on K, SK is sufficient for any node to update SI (more details are in the full
version).

A remaining problem is that the SVC scheme works with a specialized CRS, Un =
ge[n] , which depends on the vector’s length. In the SVC schemes, this CRS is generated
(deterministically) only once, but in VDS the vector’s length evolves according to the
updates, i.e., for each addition or deletion Un should also be updated. To solve this
problem, in our VDS2 scheme we make Un part of the digest together with C, and each
node is responsible to verifiably update Un. Technically, Un is an RSA accumulator to
the vector positions, and thus it can be updated by using techniques similar to our first
scheme.
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