
Improving Speed and Security in Updatable
Encryption Schemes∗

Dan Boneh1, Saba Eskandarian1, Sam Kim12, and Maurice Shih3

1 Stanford University, Stanford, CA, USA
2 Simons Institute for the Theory of Computing, Berkeley, CA, USA

3 Cisco Systems, San Jose, CA, USA

Abstract. Periodic key rotation is a common practice designed to limit
the long-term power of cryptographic keys. Key rotation refers to the pro-
cess of re-encrypting encrypted content under a fresh key, and overwriting
the old ciphertext with the new one. When encrypted data is stored in
the cloud, key rotation can be very costly: it may require downloading the
entire encrypted content from the cloud, re-encrypting it on the client’s
machine, and uploading the new ciphertext back to the cloud.
An updatable encryption scheme is a symmetric-key encryption scheme
designed to support efficient key rotation in the cloud. The data owner
sends a short update token to the cloud. This update token lets the cloud
rotate the ciphertext from the old key to the new key, without learning any
information about the plaintext. Recent work on updatable encryption has
led to several security definitions and proposed constructions. However,
existing constructions are not yet efficient enough for practical adoption,
and the existing security definitions can be strengthened.
In this work we make three contributions. First, we introduce stronger
security definitions for updatable encryption (in the ciphertext-dependent
setting) that capture desirable security properties not covered in prior
work. Second, we construct two new updatable encryption schemes. The
first construction relies only on symmetric cryptographic primitives, but
only supports a bounded number of key rotations. The second construc-
tion supports a (nearly) unbounded number of updates, and is built from
the Ring Learning with Errors (RLWE) assumption. Due to complexities
of using RLWE, this scheme achieves a slightly weaker notion of integrity
compared to the first. Finally, we implement both constructions and
compare their performance to prior work. Our RLWE-based construction
is 200× faster than a prior proposal for an updatable encryption scheme
based on the hardness of elliptic curve DDH. Our first construction, based
entirely on symmetric primitives, has the highest encryption through-
put, approaching the performance of AES, and the highest decryption
throughput on ciphertexts that were re-encrypted fewer than fifty times.
For ciphertexts re-encrypted over fifty times, the RLWE construction
dominates it in decryption speed.

1 Introduction

Consider a ciphertext ct that is a symmetric encryption of some data using
key k. Key rotation is the process of decrypting ct using k, and re-encrypting the

∗The full version of this paper is available at https://eprint.iacr.org/2020/222.pdf

result using a fresh key k′ to obtain a new ciphertext ct′. One then stores ct′ and
discards ct. Periodic key rotation is recommended, and even required, in several
security standards and documents, including NIST publication 800-57 [7], the
Payment Card Industry Data Security Standard (PCI DSS) [25], and Google’s
cloud security recommendations [17].

Key rotation can be expensive when the ciphertext is stored in the cloud, and
the cloud does not have access to the keys. Key rotation requires the client to
retrieve all the encrypted data from the cloud, re-encrypt it by decrypting with
the old key and re-encrypting with the new key, and then upload the resulting
ciphertext back to the cloud. The traffic to and from the cloud can incur significant
networking costs when large amounts of data are involved. Alternatively, the client
can send the old and the new key to the cloud, and have the cloud re-encrypt in
place, but this gives the cloud full access to the data in the clear. We note that
either way, the cloud must be trusted to discard the old ciphertext.

Updatable encryption [11, 15, 21, 20, 12] is a much better approach to
key rotation for encrypted data stored in the cloud. Updatable encryption
is a symmetric encryption scheme that supports the standard key-generation,
encryption, and decryption algorithms, along with two additional algorithms
called ReKeyGen and ReEncrypt used for key rotation. The re-key generation
algorithm is invoked as ReKeyGen(k, k′)→ ∆, taking as input a pair of keys, k
and k′, and outputting a short “update token” ∆, also called a re-encryption key.
The re-encryption algorithm is invoked as ReEncrypt(∆, ct)→ ct′, taking as input
a short ∆ and a ciphertext ct encrypted under k, and outputting an updated
ciphertext ct′ that is the encryption of the same data as in ct, but encrypted
under k′.

If the client’s data is encrypted using an updatable encryption scheme, then
the client can use the re-key generation algorithm ReKeyGen to generate a
short update token ∆ to send the cloud. The cloud then runs the re-encryption
algorithm ReEncrypt to update all the client’s ciphertexts. As before, the cloud
must be trusted to discard the old ciphertexts.

Defining security Intuitively, the update token ∆ must not reveal any “useful”
information to the cloud. This was formalized by Boneh et al. [11] against passive
adversaries, and was improved and extended to provide security against active
adversaries by Everspaugh et al. [15].

However, we show in Section 3 that these existing elegant definitions can
be insufficient, and may not prevent some undesirable information leakage. In
particular, we give a simple construction that satisfies the existing definitions,
and yet an observer can easily learn the age of a ciphertext, namely the number
of times that the ciphertext was re-encrypted since it was initially created. Ideally,
this information should not leak to an observer who only sees the ciphertext.
This issue was recently independently pointed out in [12].

The age of a ciphertext (i.e., the number of times that the ciphertext was
re-encrypted) can leak sensitive private information about the plaintext in many
real-world situations. We give two illustrative examples assuming an annual key
rotation policy is in use:

2

– Consider a national database managed in the cloud where information about
each individual is stored in a single fixed-size encrypted record. Suppose a
newborn is recorded in the database at birth. If an annual key rotation policy
is used, and records are encrypted using a scheme that leaks the number of
key rotations, then an adversary (or a cloud administrator), who examines the
stored ciphertexts will learn every person’s age, even though age is regarded
as personal identifiable information (PII) and must be protected.

– Consider a dating app, like Tinder or Match.com, that maintains customer
information in an encrypted cloud storage. The number of key-updates on a
person’s file can indicate how long the person has been a customer, which is
sensitive information that should be protected.

To address this definitional shortcoming, we define a stronger confidentiality
property that requires that a re-encrypted ciphertext is always computationally
indistinguishable from a freshly generated ciphertext, no matter how many times
it was re-encrypted (Sections 3.2 and 3.3). This ensures that an observer who sees
the encrypted content at a particular point in time, cannot tell the ciphertext age.
We also strengthen the integrity definition of [15] to cover additional tampering
attacks, as discussed in Section 3.4.

Constructing updatable encryption Next, we look for efficient constructions
that satisfy our definitions. We give two new constructions: one based on nested
authenticated encryption and another based on the Ring Learning With Errors
(RLWE) problem [26, 23].

Our first construction, presented in Section 4, makes use of carefully designed
nested encryption, and can be built from any authenticated encryption cipher. It
satisfies our strong confidentiality and integrity requirements, so that an adversary
cannot learn the age of a ciphertext. However, the scheme only supports a bounded
number of re-encryptions, where the bound is set when the initial ciphertext is
created. Another limitation of this scheme is that decryption time grows linearly
with the age of the ciphertext. Hence, the scheme is practical as long as the
maximum number of re-encryptions is not too large. Our implementation and
experiments, discussed below, make this precise.

Our second construction, presented in Section 5, makes use of an almost
key-homomorphic PRF (KH-PRF) built from the RLWE problem. Recall that a
key-homomorphic PRF (KH-PRF) [24, 11] is a secure PRF F : K×X → Y , where
(K,+) and (Y,+) are finite groups, and the PRF is homomorphic with respect to
its key, namely F (k1, x) + F (k2, x) = F (k1 + k2, x) for all k1, k2 ∈ K and x ∈ X .
We say that the PRF is an almost KH-PRF if the equality above holds up to
a small additive error (see Definition 2.1). To see why a KH-PRF is useful for
updatable encryption, consider a single message block mi ∈ Y that is encrypted
using counter mode as cti ← mi + F (k, i), for some i ∈ X and k ∈ K. To rotate
the key, the client chooses a new key k′ ← K and sends ∆ = k′ − k ∈ K to the
cloud. The cloud computes ct′i = cti + F (∆, i), which by the key-homomorphic
property satisfies ct′i = mi + F (k′, i), as required.

3

It remains an open challenge to construct a secure KH-PRF whose performance
is comparable to AES. However, there are several known algebraic constructions.
In the random oracle model [16, 8], there is a simple KH-PRF based on the
Decision Diffie-Hellman (DDH) assumption [24], and a simple almost KH-PRF
based on the Learning With Rounding (LWR) problem [11]. There are also several
KH-PRFs whose security does not depend on random oracles, as discussed in
the related work section.

Everspaugh et al. [15] construct an updatable encryption scheme that sup-
ports unbounded key updates by combining a key-homomorphic PRF with
authenticated encryption and a collision-resistant hash function. They evaluate
their construction using the KH-PRF derived from DDH, in the random oracle
model, instantiated in the 256-bit elliptic curve Curve25519 [9]. We show that
the Everspaugh et al. [15] construction satisfies our new confidentiality security
definitions for updatable encryption. However, compared to our first nested
encryption construction that relies only on generic authenticated encryption, the
implementation of the Everspaugh et al. construction is much slower as it uses
expensive group operations.

In our second updatable encryption scheme, we significantly improve on
the performance of the Everspaugh et al. [15] construction by extending it to
work with an almost key-homomorphic PRF. Our construction supports nearly
unbounded key-updates, and outperforms the Everspaugh et al. construction by
200× in speed. The high performance of the scheme is, in part, due to a new
almost KH-PRF construction from the RLWE assumption. Almost KH-PRFs
can already be constructed from the (Ring-) Learning with Rounding (RLWR)
assumption [6, 11]. However, we observe that for the specific setting of updatable
encryption, the parameters of the PRF can be further optimized by modifying
the existing PRF constructions to base security directly on the standard RLWE
assumption. We provide the details of our construction in Section 6.

The use of an almost key-homomorphic PRF leads to some complications.
First, there is a small ciphertext expansion to handle the noise that arises from the
imperfection of the KH-PRF key-homomorphism. More importantly, due to the
noisy nature of the ciphertext, we show that an adversary may gain information
about the age of the corresponding plaintext using a chosen ciphertext attack,
which violates our new security definition. Therefore, while this construction is
attractive due to its performance, it can only be used in settings where revealing
the age of a ciphertext is acceptable. In Section 5.3 we capture this security
property using a relaxed notion of ciphertext integrity, and show that the scheme
is secure in this model.

Implementation and experiments In Section 7, we experiment with our
two updatable encryption schemes and measure their performance. For our
first construction based on authenticated encryption, we measure the trade-off
between its efficiency and the number of key rotations it can support. Based on
our evaluation, our first construction performs better than the other schemes
in both speed and ciphertext size, as long as any given ciphertext is to be re-
encrypted at most twenty times over the course of its lifetime. It outperforms

4

the other schemes in speed (but not in ciphertext size) as long as ciphertexts are
re-encrypted at most fifty times.

For our second construction, which uses an almost key-homomorphic PRF
based on RLWE, we compare its performance with that of Everspaugh et al. [15],
which uses a key-homomorphic PRF over Curve25519. Since we use an almost
key-homomorphic PRF that is inherently noisy, any message to be encrypted
must be padded on the right to counteract the noise. Therefore, compared to the
elliptic-curve based construction of Everspaugh et al., our construction produces
larger ciphertexts (32% larger than those of Everspaugh et al.). However, in terms
of speed, our implementation shows that our construction outperforms that of
Everspaugh et al. by over 200×. We provide a more detailed analysis in Section 7.
Implementations of both our constructions are open source and available at [1].

Summary of our contributions. Our contributions are threefold. First, we
strengthen the definition of updatable encryption to provide stronger confidential-
ity and integrity guarantees. Second, we propose two new constructions. Finally,
we experiment with both constructions and report on their real world performance
and ciphertext expansion. Encryption throughput of our first construction, while
allowing only a bounded number of key rotations, is close to the performance of
AES. Our second construction, based on a key-homomorphic PRF from RLWE,
is considerably faster than the previous construction of Everspaugh et al. [15],
which is based on elliptic curves.

1.1 Related Work

Two flavors of updatable encryption There are two flavors of updatable
encryption: ciphertext-dependent schemes [11, 15] and ciphertext-independent
schemes [21, 20, 12]. In a ciphertext-dependent updatable encryption scheme, the
client can re-download a tiny fraction of the ciphertext that is stored by the server
before generating the update tokens. In a ciphertext-independent updatable
encryption scheme, the client generates its update token without needing to
download any components of its ciphertext. In this work, we focus on the
ciphertext-dependent setting, where constructions are considerably more efficient.
We provide a detailed comparison of the two settings in the full version [10].
Additional discussion of the two models can be found in [21].

Key-homomorphic PRFs. The concept of key-homomorphic PRFs was in-
troduced by Naor, Pinkas, and Reingold [24], and was first formalized as a
cryptographic primitive by Boneh et al. [11], who construct two KH-PRFs secure
without random oracles: one from LWE, and another from multilinear maps.
They also observe that any seed homomorphic PRG G : S → S2 gives a key-
homomorphic PRF. More constructions for key-homomorphic PRFs from LWE
include [5, 13, 19].

5

2 Preliminaries

Basic notation. For an integer n ≥ 1, we write [n] to denote the set of integers
{1, . . . , n}. For a distribution D, we write x ← D to denote that x is sampled
from D; for a finite set S, we write x←R S to denote that x is sampled uniformly
from S. We say that a family of distributions D = {Dλ}λ∈N is B-bounded if the
support of D is {−B, . . . , B − 1, B} with probability 1.

Unless specified otherwise, we use λ to denote the security parameter. We
say a function f(λ) is negligible in λ, denoted by negl(λ), if f(λ) = o(1/λc) for
all c ∈ N. We say an algorithm is efficient if it runs in probabilistic polynomial
time in the length of its input. We use poly(λ) to denote a quantity whose value
is bounded by a fixed polynomial in λ.

To analyze the exact security of our constructions in Sections 4 and 5, we
parameterize the security of these notions with respect to advantage functions
ε : N → R that bound the probability of an efficient adversary breaking the
security of the primitive.

Basic Cryptographic Primitives. We use a number of standard cryptographic
tools throughout the paper, including collision-resistant hash functions, PRGs,
PRFs, and authenticated encryption, definitions of which we provide in the full
version of this work [10].

Key-Homomorphic PRFs. In this work, we use a special family of pseudoran-
dom functions called key-homomorphic PRFs (KH-PRFs) that satisfy additional
algebraic properties. Specifically, the key space K and the range Y of the PRF
exhibit certain group structures such that evaluation of the PRF on any fixed
input x ∈ X is homomorphic with respect to these group structures. We formally
define a key-homomorphic PRF in the full version [10].

We also work with a slight relaxation of the notion of key-homomorphic PRFs.
Namely, instead of requiring that the PRF outputs are perfectly homomorphic
with respect to the PRF keys, we require that they are “almost” homomorphic
in that F (k1, x)⊗ F (k2, x) ≈ F (k1 ⊕ k2, x). Formally, we define an almost key-
homomorphic PRF as follows.

Definition 2.1 (Almost Key-Homomorphic PRFs [11]). Let (K,⊕) be
a group and let m and q be positive integers. Then, an efficiently computable
deterministic function F : K ×X → Zmq is a γ-almost key-homomorphic PRF if

– F is a secure PRF [10].
– For every key k1, k2 ∈ K and every x ∈ X , there exists a vector e ∈ [0, γ]m

such that

F (k1, x) + F (k2, x) = F (k1 ⊕ k2, x) + e (mod q).

Authenticated Encryption. For our updatable encryption scheme in Section 4,
we make use of authenticated encryption schemes that satisfy a stronger confi-
dentiality requirement than the standard security requirement. Namely, we rely

6

on authenticated encryption schemes that satisfy ciphertext pseudorandomness,
which requires that an encryption of any message is computationally indistinguish-
able from a random string of suitable length. We provide the formal definitions
in the full version [10]. Authenticated encryption schemes that satisfy ciphertext
pseudorandomness can be constructed from pseudorandom functions or blockci-
phers in a standard way. Widely-used modes for authenticated encryption such
as AES-GCM also satisfy ciphertext pseudorandomness.

3 New Definitions for Updatable Encryption

In this section, we present new security definitions for updatable encryption in
the ciphertext dependent setting. Our definitions build upon and strengthen the
confidentiality and integrity definitions for an updatable authenticated encryption
scheme from Everspaugh et al. [15]. We start by defining the syntax for an
updatable encryption scheme and its compactness and correctness conditions in
Section 3.1. We then present security definitions for confidentiality and integrity,
comparing each to prior definitions as we present them.

3.1 Updatable Encryption Syntax

For ciphertext-dependent updatable encryption schemes, it is useful to denote
ciphertexts as consisting of two parts: a short ciphertext header ĉt, which the
client can download to generate its update token, and a ciphertext body ct that
encrypts the actual plaintext.

Formally, we define the syntax for an updatable encryption scheme as follows.
To emphasize the ciphertext integrity properties of our constructions in Section 4
and Section 5, we refer to an updatable encryption scheme as an updatable
authenticated encryption scheme in our definitions.

Definition 3.1 (Updatable Authenticated Encryption). An updatable au-
thenticated encryption (UAE) scheme for a message space M = (Mλ)λ∈N is
a tuple of efficient algorithms ΠUAE = (KeyGen,Encrypt,ReKeyGen,ReEncrypt,
Decrypt) that have the following syntax:

– KeyGen(1λ)→ k: On input a security parameter λ, the key generation algo-
rithm returns a secret key k.

– Encrypt(k,m) → (ĉt, ct): On input a key k and a message m ∈ Mλ, the
encryption algorithm returns a ciphertext header ĉt and a ciphertext body ct.

– ReKeyGen(k1, k2, ĉt)→ ∆1,2,ĉt/⊥: On input two keys k1, k2, and a ciphertext

header ĉt, the re-encryption key generation algorithm returns an update token
∆1,2,ĉt or ⊥.

– ReEncrypt(∆, (ĉt, ct))→ (ĉt
′
, ct′)/⊥: On input an update token ∆, and a ci-

phertext (ĉt, ct), the re-encryption algorithm returns a new ciphertext (ĉt
′
, ct′)

or ⊥.
– Decrypt(k, (ĉt, ct)) → m/⊥: On input a key k, and a ciphertext (ĉt, ct), the

decryption algorithm returns a message m or ⊥.

7

A trivial way of achieving an updatable authenticated encryption scheme is to
allow a client to re-download the entire ciphertext, re-encrypt it, and send it back
to the server. Therefore, for a UAE scheme to be useful and meaningful, we require
that communication between the client and server be bounded and independent
of the size of the message encrypted in the ciphertext to be updated. This is
captured by the compactness property, which requires that any ciphertext header
and update token have lengths that depend only on the security parameter.

Definition 3.2 (Compactness). We say that an updatable authenticated en-
cryption scheme ΠUAE = (KeyGen,Encrypt,ReKeyGen,ReEncrypt,Decrypt) for a
message space M = (Mλ)λ∈N is compact if there exist polynomials f1(·), f2(·)
such that for any λ ∈ N and message m ∈Mλ, we have (with probability 1)

|ĉt| ≤ f1(λ), |∆1,2,ĉt| ≤ f2(λ),

where k1, k2 ← KeyGen(1λ), (ĉt, ct)← Encrypt(k1,m), and ∆1,2,ĉt ← ReKeyGen(k1,

k2, ĉt). That is, the lengths of the ciphertext header and update token are inde-
pendent of the message length.

The correctness condition for an updatable encryption scheme is defined in a
natural way.

Definition 3.3 (Correctness). We say that an updatable authenticated en-
cryption scheme ΠUAE = (KeyGen,Encrypt,ReKeyGen,ReEncrypt,Decrypt) for a
message space M = (Mλ)λ∈N is correct if for any λ ∈ N, N ∈ N and m ∈Mλ,
we have

Pr
[
Decrypt(kN , (ĉtN , ctN)) = m

]
= 1,

where k1, . . . , kN ← KeyGen(1λ), (ĉt1, ct1)← Encrypt(k1,m), and

(ĉti+1, cti+1)← ReEncrypt
(
ReKeyGen(ki, ki+1, ĉti), (ĉti, cti)

)
,

for i = 1, . . . , N − 1.

We note that the definition above requires that the correctness of decryption to
hold even after unbounded number of key updates. In Definition 4.1, we define a
relaxation of this definition that requires correctness of decryption for a bounded
number of updates.

3.2 Prior Notions of Confidentiality

Standard semantic security for a symmetric encryption scheme requires that an
encryption of a message does not reveal any information about the message. In
a regular symmetric encryption scheme, there exists only one way to produce
a ciphertext: via the encryption algorithm. In an updatable authenticated en-
cryption scheme, there exist two ways of producing a ciphertext: the encryption
algorithm Encrypt that generates fresh ciphertexts and the re-encryption algo-
rithm ReEncrypt that generates re-encrypted ciphertexts. Previous formulations

8

of updatable encryption security capture the security of these algorithms in two
separate security experiments. The security of the regular encryption algorithm
Encrypt is captured by the notion of message confidentiality [11, 15] while the
security of the re-encryption algorithm ReEncrypt is captured by the notion of
re-encryption indistinguishability [15].

Both security experiments are divided into three phases, and are parameterized
by h, the number of honest keys, and d, the number of dishonest keys. During
the setup phase of the security experiment, the challenger generates h keys
k1, . . . , kh ← KeyGen(1λ) that arethe game kept private from the adversary, and
d keys kh+1, . . . , kh+d that are provided to the adversary. During the query phase
of the experiment, the adversary is given access to a set of oracles that evaluate
the algorithms Encrypt, ReKeyGen, and ReEncrypt, allowing the adversary to
obtain ciphertexts under honest keys and rekey them.

The only distinction between the message-confidentiality and re-encryption
indistinguishability experiments is in the way we define the final challenge oracle.
In the message confidentiality experiment, the adversary is given access to a
challenge oracle where it can submit a pair of messages (m0,m1). As in a standard
semantic security definition, the challenge oracle provides the adversary with an
encryption of either m0 or m1 under a specified honest key, and the adversary’s
goal is to guess which of the messages was encrypted. In the re-encryption
indistinguishability experiment, on the other hand, the adversary submits a pair
of ciphertexts

(
(ĉt0, ct0), (ĉt1, ct1)

)
of the same length to the challenge oracle

and receives a re-encryption of one of the ciphertexts. The adversary’s goal in
the re-encryption indistinguishability experiment is to guess which of the two
ciphertexts was re-encrypted.

During the query phase of the experiment, the adversary can make queries to
all four oracles as long as their evaluations do not allow the adversary to “trivially”
learn which messages are encrypted by the challenge oracle. In particular, this
means that no oracle will be allowed to rekey a challenge ciphertext from an
honest key to a dishonest key. To this end, the challenger in each experiment
keeps a table of challenge ciphertexts generated under each honest key and their
re-encryptions. Much of the apparent complexity of formalizing the definition
arises from enforcing this straightforward check. We provide the full definitions
of Everspaugh et al. [15] in the full version [10].

3.3 Improving Confidentiality

One property that is not captured by the combination of message confiden-
tiality and re-encryption indistinguishability is the indistinguishability of fresh
ciphertexts from re-encrypted ciphertexts. In particular, an encryption scheme in
which fresh ciphertexts have a completely different structure than those of re-
encrypted ciphertexts can still separately satisfy message confidentiality for fresh
encryptions and re-encryption indistinguishability for re-encryptions. In many
situations, an adversary that learns whether a ciphertext is a fresh encryption
or a re-encryption can deduce information about the underlying plaintext of a
message.

9

Furthermore, in the re-encryption indistinguishability experiment, an ad-
versary is required to submit two ciphertexts ct0, ct1 that have the same size
|ct0| = |ct1|. If we consider the re-encryption algorithm ReEncrypt to be another
form of fresh encryption, this admissibility condition on the adversary is quite
intuitive. However, equal length plaintexts do not necessarily result in equal-
length ciphertexts after different numbers of re-encryptions. This means existing
definitions permit schemes that have a different structure for every possible
number of re-encryptions.

Thus, the existing confidentiality definitions for an authenticated updatable
encryption scheme fail to enforce the following properties:

– Property 1: Freshly generated ciphertexts are indistinguishable from cipher-
texts that are generated via re-encryption.

– Property 2: Ciphertexts do not reveal how many times a re-encryption
algorithm was performed on a given ciphertext.

We state the two properties separately because ciphertexts in our experiment
comparing freshly-generated and re-encrypted ciphertexts must be of the same
length to prevent trivial wins, which does not rule out the possibility of ciphertext
length leaking information about age.

We now augment the confidentiality security definitions of Everspaugh et al. [15]
to enforce these two properties.

Enforcing property 1. A natural way to enforce that fresh ciphertexts are
indistinguishable from re-encrypted ciphertexts is to define a security experiment
analogous to the definitions of message confidentiality and re-encryption indistin-
guishability, but with respect to a challenge oracle that takes in either a message
m or a ciphertext (ĉt, ct) and either encrypts m or re-encrypts (ĉt, ct).

We present the full definition of confidentiality below. The various checks
included in the description of the oracles only serve to ensure that an adver-
sary cannot take a challenge ciphertext under an honest key and obtain its
re-encryption under a dishonest key, as this would result in a trivial win.

Definition 3.4 (Confidentiality). Let ΠUAE = (KeyGen,Encrypt,ReKeyGen,
ReEncrypt,Decrypt) be an updatable authenticated encryption scheme for a mes-
sage space M = (Mλ)λ∈N. Then, for a security parameter λ, positive integers
h, d ∈ N, an adversary A, and a binary bit b ∈ {0, 1}, we define the confidentiality
experiment ExptconfΠUAE

(λ, h, d,A, b) and oracles O = (OEncrypt,OReKeyGen,OReEncrypt,
OChallenge) in Figure 1. The experiment maintains a look-up table T, accessible by
all the oracles, that maps key index and ciphertext header pairs to ciphertext
bodies.

We say that an updatable authenticated encryption scheme ΠUAE satisfies
confidentiality if there exists a negligible function negl(·) such that for all h, d ≤
poly(λ) and efficient adversaries A, we have∣∣∣Pr

[
ExptconfΠUAE

(λ, h, d,A, 0) = 1
]
− Pr

[
ExptconfΠUAE

(λ, h, d,A, 1) = 1
]∣∣∣ ≤ negl(λ).

10

ExptconfΠUAE
(λ, h, d,A, b):

k1, . . . , kh+d ← KeyGen(1λ)

b′ ← AO(kh+1, ..., kh+d)

Output b′ = b

OEncrypt(i,m):

Output Encrypt(ki,m)

OChallenge

(
i, j,m, (ĉt, ct)

)
:

if j > h:

Output ⊥
(ĉt
′
0, ct

′
0)← Encrypt(kj ,m)

∆i,j,ĉt ← ReKeyGen(ki, kj , ĉt)

(ĉt
′
1, ct

′
1)← ReEncrypt(∆i,j,ĉt, (ĉt, ct))

if (ĉt
′
0, ct

′
0) = ⊥ or (ĉt

′
1, ct

′
1) = ⊥:

Output ⊥
if |ĉt′0| 6= |ĉt

′
1| or |ct′0| 6= |ct′1|:

Output ⊥
T[j, ĉt

′
b]← ct′b

Output (ĉt
′
b, ct

′
b)

OReKeyGen(i, j, ĉt):

if j > h and T [i, ĉt] 6= ⊥:

Output ⊥
∆i,j,ĉt ← ReKeyGen(ki, kj , ĉt)

if T [i, ĉt] 6= ⊥:

(ĉt
′
, ct′)← ReEncrypt

(
∆i,j,ĉt, (ĉt,T[i, ĉt])

)
T[j, ĉt

′
]← ct′

Output ∆i,j,ĉt

OReEncrypt

(
i, j, (ĉt, ct)

)
:

∆i,j,ĉt ← ReKeyGen(ki, kj , ĉt)

(ĉt
′
, ct′)← ReEncrypt

(
∆i,j,ĉt, (ĉt, ct)

)
if j > h and T[i, ĉt] 6= ⊥:

Output ⊥
if j ≤ h and T[i, ĉt] 6= ⊥:

T[j, ĉt
′
]← ct′

Output (ĉt
′
, ct′)

Fig. 1: Security experiment for confidentiality (Definition 3.4) and
update independence (Definition 3.6)

Although our original goal in defining the confidentiality experiment above
is to enforce the condition that fresh ciphertexts are indistinguishable from
re-encrypted ciphertexts, the experiment captures a much wider class of con-
fidentiality properties for an updatable authenticated encryption scheme. In
fact, it is straightforward to show that a UAE scheme that satisfies the single
confidentiality definition above automatically satisfies both message confidential-
ity and re-encryption indistinguishability. Specifically, since the confidentiality
definition above implies that an encryption of a message is indistinguishable
from a re-encryption of a ciphertext (given that the resulting ciphertexts are
of the same length), this implies that for any two messages m0,m1 such that
|m0| = |m1|, we have

Encrypt(k,m0) ≈c (ĉt
′
, ct′) ≈c Encrypt(k,m1),

for any key k that is hidden from an adversary and any re-encrypted ciphertext
(ĉt
′
, ct′) of appropriate length. Similarly, the confidentiality definition above

11

implies that for two ciphertexts (ĉt0, ct0) and (ĉt1, ct1) of the same length,

ReEncrypt
(
ReKeyGen(k, k′, ĉt0),(ĉt0, ct0)

)
≈c (ĉt

′
, ct′) ≈c
ReEncrypt

(
ReKeyGen(k, k′, ĉt1), (ĉt1, ct1)

)
,

for an appropriate key k′ that is hidden from an adversary and any fresh ciphertext
(ĉt
′
, ct′) of appropriate length.
In combination with our new strong compactness requirement (which we intro-

duce in Definition 3.5), the security experiment in Definition 3.4 captures all the
confidentiality properties we expect from an updatable encryption scheme. This
is why we refer to the experiment in Definition 3.4 simply as the “confidentiality”
experiment.

Enforcing property 2. Enforcing that an updatable encryption ciphertext
hides the number of key updates is less straightforward. Perhaps the most natural
and general way to enforce this property is to modify the challenge oracle in
Definition 3.4 as follows:

– OChallenge

(
I, (ĉt0,0, ct0,0),J , (ĉt1,0, ct1,0)

)
: A query consists of two sequences

of indices I = (i1, . . . , iτ), J = (j1, . . . , jτ ′) for τ, τ ′ ∈ N such that iτ = jτ ′

are honest keys, and |ct0,0| = |ct1,0|. The challenger computes two sequences
of ciphertexts

∆iγ−1,iγ ← ReKeyGen(kiγ−1
, kiγ , ĉt0,iγ)

(ĉt0,iγ , ct0,iγ)← ReEncrypt(∆iγ−1,iγ , ĉt0,iγ−1
, ct0,iγ−1

) ∀γ ∈ [τ],

and

∆′jγ−1,jγ ← ReKeyGen(kjγ−1 , kjγ , ĉt1,jγ)

(ĉt1,jγ , ct1,jγ)← ReEncrypt(∆′jγ−1,jγ , ĉt1,jγ−1
, ct1,jγ−1

) ∀γ ∈ [τ ′].

It returns either (ĉt0,jτ , ct0,jτ) or (ĉt1,jτ′ , ct1,jτ′).

The challenge oracle above takes in two sequences of indices I, J , and re-encrypts
either the ciphertext (ĉt0,0, ct0,0) according to the sequence of keys specified by
I or the ciphertext (ĉt1,0, ct1,0) according to J . Since the two sequences I and
J can have differing lengths, an updatable encryption scheme that satisfies a
security experiment with respect to such a challenge oracle must hide the number
of times the re-encryption algorithm was applied to a ciphertext.

However, a security experiment that is defined with respect to the challenge
oracle above is generally difficult to work with and requires notationally compli-
cated proofs. Hence, instead of using the challenge oracle as defined above, we
define a stronger compactness requirement on the ciphertexts of an updatable
encryption scheme. Specifically, in addition to the compactness requirement as
specified in Definition 3.2, we require that the size of a ciphertext always remains
fixed no matter how many times the re-encryption algorithm is performed on a
ciphertext.

12

Definition 3.5 (Strong Compactness). We say that an updatable au-
thenticated encryption scheme ΠUAE = (KeyGen,Encrypt,ReKeyGen,ReEncrypt,
Decrypt) for a message space M = (Mλ)λ∈N is strongly compact if for any
λ ∈ N and any message m ∈Mλ, it satisfies the header compactness and body
compactness (with probability 1) after the following operations.

k0, k1, . . . , kN ← KeyGen(1λ)
(ĉt0, ct0)← Encrypt(k0,m)
for i ∈ [N]:
∆i,i−1,ĉti−1

← ReKeyGen(ki−1, ki, ĉti−1)

(ĉti, cti)← ReEncrypt
(
∆i,i−1,ĉti−1

, (ĉti−1, cti−1)
)

– Header compactness: There exist polynomials f1(·), f2(·) such that |ĉti| ≤
f1(λ) and |∆i,i−1,ĉti−1

| ≤ f2(λ) for all i ∈ [N], i.e., header and update token
lengths do not depend on the message length or the number of re-encryptions.

– Body compactness: We have |cti| = |ctj | for all 0 ≤ i, j ≤ N .

In combination with Definition 3.4, the strong compactness property implies
that ciphertexts do not reveal how many times a re-encryption algorithm was
performed on a given ciphertext. The confidentiality property of Definition 3.4
implies that the re-encryption of any two ciphertexts of the same size must be
indistinguishable to an adversary. The strong compactness property requires
that no matter how many re-encryption operations are performed on a given
ciphertext, its length always remains the same size, thereby complementing
Definition 3.4.

Update independence. In Construction 4.2, we present a UAE scheme that
satisfies the strong compactness property of Definition 3.5 as well as message
confidentiality and re-encryption indistinguishability, but does not fully satisfy
the stronger notion of confidentiality as defined in Definition 3.4. Therefore, we
define a slight relaxation of the confidentiality requirement as formulated in
Definition 3.4 that we call update independence and show that Construction 4.2
satisfies this security definition. An update independence security experiment is
defined identically to the confidentiality security experiment but without the re-
encryption key generation oracle OReKeyGen. Since this oracle is removed, update
independence does not suffice to imply message confidentiality and re-encryption
indistinguishability. However, it still suffices to guarantee that fresh ciphertexts
are indistinguishable from re-encrypted ciphertexts as long as update tokens are
hidden from an adversary.

Definition 3.6 (Update Independence). Let ΠUAE = (KeyGen,Encrypt,
ReKeyGen,ReEncrypt,Decrypt) be an updatable authenticated encryption scheme
for a message space M = (Mλ)λ∈N. Then, for a security parameter λ, positive
integers h, d ∈ N, an adversary A, and a binary bit b ∈ {0, 1}, we define the up-

date independence experiment Exptupd-indΠUAE
(λ, h, d,A, b) and oracles O = (OEncrypt,

OReEncrypt,OChallenge) as in Figure 1 with the OReKeyGen oracle omitted. The exper-
iment maintains a look-up table T, accessible by all the oracles, that maps key
index and ciphertext header pairs to ciphertext bodies.

13

We say that an updatable authenticated encryption scheme ΠUAE satisfies
update independence if there exists a negligible function negl(·) such that for all
h, d ≤ poly(λ) and efficient adversaries A, we have∣∣∣Pr

[
Exptupd-indΠUAE

(λ, h, d,A, 0) = 1
]
− Pr

[
Exptupd-indΠUAE

(λ, h, d,A, 1) = 1
]∣∣∣ ≤ negl(λ).

In combination with the message confidentiality and re-encryption indistin-
guishability properties, this relaxed requirement of update independence suffices
for many practical scenarios. Since update tokens are generally sent over secure
channels (e.g. TLS connection) from a client to a server, no malicious eavesdrop-
per can gain access to them. For malicious servers that have access to update
tokens, on the other hand, hiding how many times a re-encryption operation was
previously applied on a ciphertext is less useful since the storage metadata of
the ciphertexts already reveal this information to the server. In essence, update
independence, when combined with message confidentiality and re-encryption
indistinguishability, seems to satisfy the two properties we wanted from our
new confidentiality definition without the convenient benefit of a single unified
definition.

3.4 Integrity

The final security property that an updatable authenticated encryption scheme
must provide is ciphertext integrity. The ciphertext integrity experiment for UAE
is analogous to the standard ciphertext integrity experiment of an authenticated
encryption scheme. As in the confidentiality experiment, the challenger starts
the experiment by generating a set of honest keys, which are kept private from
the adversary, and dishonest keys, which are provided to the adversary. Then,
given oracle access to OEncrypt, OReEncrypt, and OReKeyGen, the adversary’s goal is
to generate a new valid ciphertext that was not (1) previously output by OEncrypt

or OReEncrypt, and (2) cannot be trivially derived via update tokens output by
OReKeyGen.

Our integrity definition is similar to that of Everspaugh et al. [15], except the
previous definition does not include the re-encryption oracle OReEncrypt, which we
add. Giving the adversary access to a re-encryption oracle captures scenarios that
are not covered by the previous definition. For instance, security with respect to
our stronger integrity experiment guarantees that an adversary who compromises
the key for a ciphertext cannot tamper with the data after the key has been
rotated and the data re-encrypted.

Definition 3.7 (Integrity). Let ΠUAE = (KeyGen,Encrypt,ReKeyGen,ReEncrypt,
Decrypt) be an updatable authenticated encryption scheme for a message space
M = (Mλ)λ∈N. Then, for a security parameter λ, positive integers h, d ∈ N, and
an adversary A, we define the re-encryption integrity experiment ExptintΠUAE

(λ, h, d,A)
and oracles O = (OEncrypt,OReKeyGen,OReEncrypt) in Figure 2. The experiment
maintains a look-up table T, accessible by all the oracles, that maps key index
and ciphertext header pairs to ciphertext bodies.

14

ExptintΠUAE
(λ, h, d,A):

k1, . . . , kh+d ← KeyGen(1λ)

(i, (ĉt, ct))← AO(kh+1, ..., kh+d)

if i > h:

Output 0

m← Decrypt
(
ki, (ĉt, ct)

)
if m = ⊥ or T[i, ĉt] = ct:

Output 0

else:

Output 1

OEncrypt(i,m):

(ĉt, ct)← Encrypt(ki,m)

T[i, ĉt]← ct

Output (ĉt, ct)

OReEncrypt

(
i, j, (ĉt, ct)

)
:

∆i,j,ĉt ← ReKeyGen(ki, kj , ĉt)

(ĉt
′
, ct′)← ReEncrypt

(
∆i,j,ĉt, (ĉt, ct)

)
if j ≤ h:

T[j, ĉt
′
]← ct′

Output (ĉt
′
, ct′)

OReKeyGen(i, j, ĉt):

if i > h and j ≤ h:

Output ⊥
∆i,j,ĉt ← ReKeyGen(ki, kj , ĉt)

if T[i, ĉt] 6= ⊥:

(ĉt
′
, ct′)← ReEncrypt

(
∆i,j,ĉt, (ĉt,T[i, ĉt])

)
T[j, ĉt

′
]← ct′

Output ∆i,j,ĉt

Fig. 2: Security experient for integrity (Definition 3.7)

We say that an updatable authenticated encryption scheme ΠUAE satisfies
re-encryption integrity if there exists a negligible function negl(·) such that for
all h, d ≤ poly(λ) and any efficient adversary A, we have

Pr
[
ExptintΠUAE

(λ, h, d,A) = 1
]
≤ negl(λ).

Although our UAE construction in Section 4 can be shown to satisfy the strong
notion of integrity formulated above, the construction in Section 5 that relies on
almost key-homomorphic PRFs is not sufficient to satisfy the stronger notion.
In Section 5, we formulate a relaxation of the notion of integrity that we call
relaxed integrity and show that Construction 5.2 satisfies this weaker variant.

4 UAE with Bounded Updates

We begin this section by presenting an insecure UAE scheme that demonstrates
the importance of the new definitions presented in Section 3. This scheme
leaks the age of ciphertexts but nonetheless satisfies all security definitions for
ciphertext-dependent UAE from prior work.

Next, we extend the insecure scheme to hide the age of ciphertexts, thereby
satisfying the definition of update independence (Section 3.3, Definition 3.6).
This upgrade comes at the cost of relaxing the correctness requirement of an
updatable encryption scheme: the correctness of decryption is guaranteed only
for an a priori bounded number of key updates.

15

4.1 A Simple Nested Construction

In this section, we provide a simple updatable authenticated encryption scheme
using any authenticated encryption scheme. Our simple construction inherently
leaks information about the message; namely, the construction leaks how many
re-encryption operations were previously performed on a given ciphertext, thereby
leaking information about the age of the encrypted message. Despite this in-
formation leakage, the construction satisfies all the UAE security definitions of
Everspaugh et al. [15]. Hence, this construction demonstrates that prior security
definitions did not yet capture all the necessary security properties that an
updatable encryption scheme must provide.

The construction uses an authenticated encryption (AE) scheme. A key for

this UAE scheme is a standard AE key k̂, which we call the header key. The
UAE encryption algorithm implements standard chained encryption. To encrypt
m using k̂, first generate a fresh body key kae and then encrypt the plaintext
ct← AE.Encrypt(kae,m). Next, the body key kae is encrypted under the header

key ĉt ← AE.Encrypt(k̂, kae) to form the ciphertext header. Finally, output the
UAE ciphertext (ĉt, ct).

To update a ciphertext, the client and server proceed as follows:

– Client : The client downloads the ciphertext header ĉt to recover the body
key kae. It then generates fresh header and body keys k̂′ and k′ae, and sends a

new ciphertext header ĉt
′ ← AE.Encrypt

(
k̂′, (k′ae, kae)

)
along with k′ae to the

server.

– Server : The server replaces the old ciphertext header ĉt with the new header
ĉt
′
. It also generates a new ciphertext body by encrypting the original

ciphertext as ct′ ← AE.Encrypt
(
k′ae, (ĉt, ct)

)
.

Now, even with many such key updates, the client can still recover the original
ciphertext. Specifically, the client can first use its current header key k̂ to decrypt
the ciphertext header and recover a body key kae and the old header key k̂′. It
uses kae to remove the outer layer of encryption and recover the old ciphertext
(ĉt
′
, ct′). The client repeats the same procedure with the old header key k̂′ and the

old ciphertext (ĉt
′
, ct′). Note that decryption time grows linearly in the number

of re-encryption operations.

To prove security, we must introduce an additional step during a ciphertext
update. Namely, instead of setting the new ciphertext body as the encryption
of the old ciphertext header and body ct′ ← AE.Encrypt

(
k′ae, (ĉt, ct)

)
, the server

replaces ĉt with a new ciphertext header ĉthistory that the client provides to the

server encrypted under a new key k̂history. The main intuition of the construction,
however, remains unchanged from the description above. Since the construction
is a simpler form of the one formalized in Construction 4.2, we defer the formal
statement of the construction and its associated security theorems for compact-
ness, correctness, update independence, message confidentiality, re-encryption
indistinguishability, and ciphertext integrity to the full version [10].

16

4.2 Bounded Correctness

We now define a variation of correctness that we call bounded correctness. The
bounded correctness condition is defined in a natural way and analogously
to Definition 3.3 (correctness). However, we do modify the syntax of the key
generation algorithm KeyGen to additionally take in a parameter t ∈ N that
specifies an upper bound on the number of key updates that a scheme can support.
This allows the key generator to flexibly set this parameter according to its needs.

Definition 4.1 (Bounded Correctness). We say that an updatable authenti-
cated encryption scheme ΠUAE = (KeyGen,Encrypt,ReKeyGen,ReEncrypt,Decrypt)
for a message space M = (Mλ)λ∈N satisfies bounded correctness if for any
λ, t ∈ N, and m ∈Mλ, we have (with probability 1)

Pr
[
Decrypt(kt, (ĉtt, ctt)) = m

]
≥ 1− negl(λ),

where k1, . . . , kt ← KeyGen(1λ, 1t), (ĉt1, ct1)← Encrypt(k1,m), and

(ĉti+1, cti+1)← ReEncrypt
(
ReKeyGen(ki, ki+1, ĉti), (ĉti, cti)

)
,

for i = 1, . . . , t− 1.

4.3 Nested Construction with Padding

Our modification of the nested construction is straightforward: we pad the cipher-
texts such that as long as the number of key updates is bounded, their lengths
are independent of the number of key updates that are performed on the cipher-
texts. However, executing this simple idea requires some care. First, padding the
(original) ciphertexts with structured strings reveals information about how many
updates were previously performed on the ciphertexts. Therefore, we modify the
encryption algorithm such that it pads the ciphertexts with random strings. If
the underlying authenticated encryption scheme satisfies ciphertext pseudoran-
domness ([10]), an adversary cannot determine which component of a ciphertext
corresponds to the original ciphertext and which component corresponds to a
pad.4

However, simply padding the (original) ciphertexts with random strings also
makes them highly malleable and easy to forge. To achieve integrity, we modify the
encryption and re-encryption algorithms to additionally sample a pseudorandom
generator (PRG) seed and include it as part of the UAE ciphertext header. The
encryption and re-encryption algorithms then generate the ciphertext pads from
an evaluation of the PRG. By PRG security, the original ciphertext components
and the pads are still computationally indistinguishable to an adversary, but now
the adversary cannot easily forge ciphertexts as the decryption algorithm can
verify the validity of a pad using the PRG seed.

4As discussed in Section 2, authenticated encryption schemes that satisfy pseudorandom-
ness can be constructed from pseudorandom functions or blockciphers in a standard
way. Widely-used modes for authenticated encryption such as AES-GCM also satisfy
pseudorandomness.

17

The only remaining issue is correctness. Since the ciphertexts of our UAE
scheme are pseudorandom, the re-encryption algorithm also does not have infor-
mation about where the original ciphertext ends and padding begins. Therefore,
we include this information as part of the re-encryption key (update token). This
is the reason why this scheme satisfies update independence instead of our full
confidentiality definition – even though ciphertexts fully hide their age, update
tokens reveal information about the age of the ciphertext they are updating.
The re-encryptor can now apply the re-encryption on the original ciphertext and
adjust the padding length accordingly. We formalize the construction below.

Construction 4.2 (Nested Authenticated Encryption) Our construction
uses the following building blocks:

– An authenticated encryption scheme ΠAE = (KeyGen,Encrypt,Decrypt) with
message space M = (Mλ)λ∈N. We additionally assume that AE.Encrypt
satisfies εrandae -ciphertext pseudorandomness, i.e., that encryptions under AE
are indistinguishable from random strings.
For the construction description below, we let ρ = ρλ denote the maximum size
of an authenticated encryption key and we let ν = poly(λ) be an additive over-
head incurred by the encryption algorithm. For any key kae ← AE.KeyGen(1λ)
and any message m ∈ Mλ, we have |kae| = ρ and |ct| ≤ |m| + ν, where
ct← AE.Encrypt(kae,m).

– A pseudorandom generator G : {0, 1}λ → {0, 1}∗. To simplify the presentation
of the construction, we assume that G has unbounded output that is truncated
to the required length on each invocation.

We construct an updatable authenticated encryption scheme ΠUAE = (KeyGen,
Encrypt,ReKeyGen,ReEncrypt,Decrypt) for message space M = (Mλ)λ∈N in Fig-
ure 3.

We formally state the compactness, correctness, and security properties of Con-
struction 4.2 in the following theorem. We provide the formal proof in the full
version [10].

Theorem 4.3. Suppose the authenticated encryption scheme ΠAE satisfies cor-
rectness, εconfae -confidentiality, εintae -integrity, and εrandae -ciphertext pseudorandom-
ness, and G satisfies εprg PRG security. Then the updatable authenticated encryp-
tion scheme ΠUAE in Construction 4.2 satisfies strong compactness, correctness,
update independence, message confidentiality, and re-encryption indistinguisha-
bility.

For confidentiality, we have the following concrete security bounds for all
h, d = poly(λ) and efficient adversaries A that make at most Q oracle queries:∣∣∣Pr

[
Exptupd-indΠUAE

(λ, h, d,A, 0) = 1
]
− Pr

[
Exptupd-indΠUAE

(λ, h, d,A, 1) = 1
]∣∣∣

≤ 2h · εconfae (λ) + 2h · εintae (λ) + 2Q · εprg(λ) + 4Q · εrandae (λ)

18

KeyGen(1λ, 1t):

k̂← AE.KeyGen(1λ)

k← (k̂, t)

Output k

Encrypt(k,m)

(k̂, t)← k

kae ← AE.KeyGen(1λ)

s←R {0, 1}λ

ctpayload ← AE.Encrypt
(
kae,m)

ctpad ← G(s) such that ctpad ∈ {0, 1}t·(2ρ+ν)

ĉt← AE.Encrypt
(
k̂, (s, |ctpayload|, kae,⊥))

ct← (ctpayload, ctpad)

Output (ĉt, ct)

ReKeyGen(k1, k2, ĉt):

(k̂1, t)← k1

(k̂2, t)← k2

(s, `, kae, k̂history)← AE.Decrypt(k̂1, ĉt)

if (s, `, kae, k̂history) = ⊥, output ⊥
k̂′history ← AE.KeyGen(1λ)

ĉthistory ← AE.Encrypt(k̂′history, (kae, k̂history))

k′ae ← AE.KeyGen(1λ)

s′ ←R {0, 1}λ

`′ ← `+ |ĉthistory|
ĉt
′ ← AE.Encrypt

(
k̂2, (s

′, `′, k′ae, k̂
′
history)

)
∆1,2,ĉt ← (ĉt

′
, ĉthistory, `, k

′
ae, s

′)

Output ∆1,2,ĉt

ReEncrypt
(
∆1,2,ĉt, (ĉt, ct)

)
:

(ĉt
′
, ĉthistory, `, k

′
ae, s

′)← ∆1,2,ĉt

(ctpayload, ctpad)← ct ∈ {0, 1}` × {0, 1}|ct|−`

if |ct| < `, output ⊥
ct′payload ← AE.Encrypt

(
k′ae, (ctpayload, ĉthistory)

)
if |ct′payload| > |ct|, output ⊥
ct′pad ← G(s′)[1, ..., |ct| − |ct′payload|]

ct′ ← (ct′payload, ct
′
pad) ∈ {0, 1}|ct|

Output (ĉt
′
, ct′)

Decrypt
(
k, (ĉt, ct)

)
:

(k̂, t)← k

(s, `, k′ae, k̂
′
history)← AE.Decrypt(k̂, ĉt)

if (s, `, k′ae, k̂
′
history) = ⊥, output ⊥

if |ct| < `, output ⊥
(ctpayload, ctpad)← ct ∈ {0, 1}` × {0, 1}|ct|−`

ct′pad ← G(s) such that |ct′pad| = |ctpad|
if ct′pad 6= ctpad, output ⊥

(ct′, ĉt
′
history)← AE.Decrypt(k′ae, ctpayload)

if (ct′, ĉt
′
history) = ⊥, output ⊥

while k̂′history 6= ⊥:

kae ← k′ae

k̂history ← k̂′history

ct← ct′

ĉthistory ← ĉt
′
history

(k′ae, k̂
′
history)← AE.Decrypt(k̂history, ĉthistory)

if (k′ae, k̂
′
history) = ⊥, output ⊥

(ct′, ĉt
′
history)← AE.Decrypt(kae, ct)

if (ct′, ĉt
′
history) = ⊥, output ⊥

m← AE.Decrypt(k′ae, ct
′)

Output m

Fig. 3: Our nested scheme.

∣∣∣Pr
[
Exptmsg-conf

ΠUAE
(λ, h, d,A, 0) = 1

]
− Pr

[
Exptmsg-conf

ΠUAE
(λ, h, d,A, 1) = 1

]∣∣∣
≤ (2h+ 4Q) · εconfae (λ) + 2h · εintae (λ)

19

∣∣∣Pr
[
Exptre-enc-indΠUAE

(λ, h, d,A, 0) = 1
]
− Pr

[
Exptre-enc-indΠUAE

(λ, h, d,A, 1) = 1
]∣∣∣

≤ (2h+ 4Q) · εconfae (λ) + 2h · εintae (λ)

For integrity, we have the following bound for all h, d = poly(λ) and efficient
adversaries A that make at most Q challenge, ReKeyGen, or ReEncrypt queries:

Pr
[
ExptintΠUAE

(λ, h, d,A) = 1
]
≤ (h+Q) · εintae (λ) + (h+Q) · εconfae (λ) +Q/2λ

5 UAE from Key-Homomorphic PRFs

In this section, we generalize the updatable authenticated encryption construction
of Everspaugh et al. [15] that is built from a perfectly key-homomorphic PRF, to
also work using an almost key-homomorphic PRF. We do this by incorporating a
plaintext encoding scheme into the construction such that encrypted messages can
still be decrypted correctly after noisy key rotations. We show that this generalized
UAE construction satisfies our notion of confidentiality (Definition 3.4), but
only satisfies a relaxed integrity property. We first describe the construction
in Section 5.2, and then analyze and prove its security in Section 5.3.

5.1 Encoding Scheme

Our construction of an updatable authenticated encryption scheme relies on an
almost key-homomorphic PRF for which key-homomorphism holds under small
noise. To cope with the noise in our updatable encryption scheme in Section 5.2,
we must encode messages prior to encrypting them such that they can be fully
recovered during decryption. A simple way of encoding the messages is to pad
them with additional least-significant bits. However, more sophisticated ways of
encoding the messages are possible with general error-correcting codes. In our
construction description in Section 5.2, we use the syntax of a general encoding
scheme that is described in Fact 5.1 below. In Section 7, we test the performance
of our construction in Section 5.2 with simple padding.

Fact 5.1 Let n, q, γ be positive integers such that γ < q/4, µ = µ(λ) be a
polynomial in λ, and M =

(
{0, 1}µ(λ)

)
λ∈N be a message space. Then there exists

a set of algorithms (Encode,Decode) with the following syntax:

– Encode(m) → (m1, . . . ,m`): On input a message m ∈ Mλ, the encoding
algorithm returns a set of vectors m1, . . . ,m` ∈ Znq for some ` ∈ N.

– Decode(m1, . . . ,m`) → m: On input a set of vectors m1, . . . ,m` ∈ Znq , the
decoding algorithm returns a message m ∈Mλ.

The algorithms (Encode,Decode) satisfy the following property: for all strings
m ∈ Mλ and any error vectors e = e1, . . . , e` ∈ [γ]n, if we set (m1, . . . ,m`) ←
Encode(m), we have

Decode(m1 + e1, . . . ,m` + e`) = m.

20

Due to the use of an encoding scheme, our construction can be viewed as
supporting only a bounded number of updates – the encoding can only support so
much noise before decoding fails. However, for our almost key-homomorphic PRF
construction in Section 5.2, a simple padding scheme can be used as the encoding
scheme. In this case, the bound on the number of updates grows exponentially in
the size of the parameters of the scheme and therefore, the construction can be
interpreted as permitting unbounded updates.

5.2 Construction

We next present our UAE scheme from an almost key-homomorphic PRF. We
analyze its security in the next two subsections.

KeyGen(1λ, 1t):

k← AE.KeyGen(1λ)

Output k

ReKeyGen(k1, k2, ĉt):

µ← AE.Decrypt(k1, ĉt)

if µ = ⊥, output ⊥
(kprf , h)← µ

k′prf ←R KPRF

kupprf ← k′prf − kprf

ĉt
′ ← AE.Encrypt

(
k2, (k

′
prf , h)

)
∆1,2,ĉt ← (ĉt

′
, kupprf)

ReEncrypt
(
∆1,2,ĉt, (ĉt, ct)

)
:

(ĉt
′
, kupprf)← ∆1,2,ĉt

(ct1, . . . , ct`)← ct

for i ∈ [`]:

ct′i ← cti + F (kupprf , i)

ct′ ← (ct′1, . . . , ct
′
`)

Output (ĉt
′
, ct′)

Encrypt(k,m)

(m1, . . . ,m`)← Encode(m)

kprf ←R KPRF

h← H(m)

ĉt← AE.Encrypt
(
kae, (kprf , h)

)
for i ∈ [`]:

cti ← mi + F (kprf , i)

ct = (ct1, . . . , ct`)

Output (ĉt, ct)

Decrypt
(
k, (ĉt, ct)

)
:

µ← AE.Decrypt(k, ĉt)

if µ = ⊥, output ⊥
(kprf , h)← µ

(ct1, . . . , ct`)← ct

for i ∈ [`]:

mi ← cti − F (kprf , i)

m′ ← Decode(m1, . . . ,m`)

if H(m′) = h, output m′

else, output ⊥

Fig. 4: Our UAE from almost Key-Homomorphic PRFs.

Construction 5.2 (UAE from almost Key-Homomorphic PRFs) Let n,
q, γ, and β be positive integers. Our construction uses the following:

21

– A standard authenticated encryption scheme ΠAE = (AE.KeyGen,AE.Encrypt,
AE.Decrypt) with message space M = (Mλ)λ∈N.

– A β-almost key-homomorphic PRF F : KPRF×{0, 1}∗ → Znq where (KPRF,+)
and (Znq ,+) form groups.

– A collision resistant hash family H =
{
H :Mλ → {0, 1}λ

}
. To simplify

the construction, we assume that a description of a concrete hash function
H ←R H is included in each algorithm as part of a global set of parameters.

– An encoding scheme (Encode,Decode) that encodes messages in (M, λ)λ∈N
as elements in Znq . The Decode algorithm decodes any error vectors e ∈ [γ]n

as in Fact 5.1 for any fixed γ = β · λω(1).

We construct an updatable authenticated encryption scheme ΠUAE = (KeyGen,
Encrypt,ReKeyGen,ReEncrypt,Decrypt) for message space (Mλ)λ∈N in Figure 4.

5.3 Security Under Relaxed Integrity

We will show in the next subsection that neither Construction 5.2 nor the
construction of Everspaugh et al. [15] satisfy our integrity definition. To prove
security of either scheme we must relax the notion of integrity in Definition 3.7
to obtain what we call relaxed integrity. In this section we define relaxed integrity
and then prove security of Construction 5.2. In the next subsection we discuss
the implications of relaxed integrity to the security of the scheme in practice.

The relaxed integrity experiment modifies Definition 3.7 (integrity) in two
ways. First, we require that an adversary’s queries to the re-encryption oracle
are well-formed ciphertexts that do not decrypt to “⊥”. Without this restriction,
there is an attack on both Construction 5.2 and the Everspaugh et al. [15] scheme,
as we will discuss below.

Second, we modify the adversary’s winning condition in the integrity game.
When we use an almost key-homomorphic PRFs to instantiate Construction 5.2,
any re-encryption incurs a small error that affects the low-order bits of the
ciphertext. Therefore, to achieve correctness, we encrypt an encoding of a message
(Fact 5.1) such that the decryption algorithm can still recover the full message
even if the low-ordered bits are corrupted. This forces the construction to violate
traditional ciphertext integrity as an adversary can forge new ciphertexts by
adding noise to the low-order bits of a ciphertext. Our construction still guarantees
that an adversary cannot generate new ciphertexts by modifying plaintexts or
the high-order bits of ciphertexts. To capture this formally, we require that the
ciphertext space CT associated with the UAE has a corresponding metric function
d : CT × CT → Z (e.g., Euclidean distance) that gives a distance between any
two ciphertexts. Then, in our relaxed integrity definition that is parameterized
with a positive integer γ ∈ N, an adversary wins the security experiment only if
it produces a valid ciphertext that differs from any of the ciphertexts that it is
given by more than γ.

The rest of the definition of relaxed integrity exactly matches Definition 3.7.
We present the formal definition of relaxed integrity in the full version [10].

22

Security. The following theorem states the compactness, correctness, and security
properties of Construction 5.2. The proof is presented in the full version [10].

Theorem 5.3. Let ΠUAE be the updatable authenticated encryption scheme in
Construction 5.2. If the authenticated encryption scheme ΠAE satisfies correctness,
εconfae -confidentiality and εintae -integrity, F : KPRF × {0, 1}∗ → Y satisfies εprf-
security, and H :Mλ → {0, 1}λ is a εcr-secure collision resistant hash function,
then ΠUAE satisfies strong compactness, correctness, confidentiality, and γ-relaxed
integrity.

For confidentiality, we have the following concrete security bounds for all
h, d = poly(λ) and efficient adversaries A that make at most Q challenge queries:∣∣∣Pr

[
ExptconfΠUAE

(λ, h, d,A, 0) = 1
]
− Pr

[
ExptconfΠUAE

(λ, h, d,A, 1) = 1
]∣∣∣

≤ 2h · εconfae (λ) + 2h · εintae (λ) + 2Q · εprf(λ)

For integrity, we have the following bound for all h, d = poly(λ) and efficient
adversaries A:

Pr
[
Exptrelaxed-intΠUAE

(λ, h, d, γ,A) = 1
]
≤ h · εintae (λ) + εcr(λ)

We note that when we instantiate Construction 5.2 with a perfect key-homomorphic
PRF, we can use the trivial encoding scheme for γ = 0. In this case, the relaxed
integrity experiment Exptrelaxed-intΠUAE

(λ, h, d, 0,A) is comparable to the ciphertext
integrity notion in [15].

5.4 Consequences of Relaxed Integrity

The relaxed integrity definition from Section 5.3 places two restrictions on the
adversary relative to our full integrity definition (Definition 3.7). We discuss
these two restrictions and their implications below.

Weakened Re-encryption oracle. The first restriction of relaxed integrity is
the weakened re-encryption oracle, which only re-encrypts well-formed ciphertexts.
This relaxation of the definition is necessary to prove security of Construction 5.2
as there exists a simple adversary that breaks the integrity experiment when it
is provided arbitrary access to the re-encryption oracle OReEncrypt. This attack
applies equally well to the construction of Everspaugh et al. [15].

To carry out the attack, the adversary does the following:

1. Uses encryption oracle OEncrypt to receive a ciphertext (ĉt, ct)← OEncrypt(i,m)
for a message m ∈ Mλ and an honest key index i. For simplicity, suppose
that the message m is encoded as a single vector in Znq : Encode(m) ∈ Znq and
therefore, ct ∈ Znq .

2. Subtracts an arbitrary vector m′ from the ciphertext body c̃t← ct−m′.
3. Submits the ciphertext (ĉt, c̃t) to the re-encryption oracle OReEncrypt to receive

a new ciphertext (ĉt
′
, c̃t
′
)← OReEncrypt

(
i, j, (ĉt, c̃t)

)
for an honest key index j.

23

4. Returns (ĉt
′
, c̃t
′
+ m′) as the ciphertext forgery.

Since the re-encryption algorithm is homomorphic, we have

OReEncrypt(i, j, ĉt, c̃t−m′) + m′ = OReEncrypt(i, j, ĉt, c̃t).

Therefore, the ciphertext (ĉt
′
, c̃t
′
+m) is a valid forgery. This attack is ruled out in

the relaxed integrity experiment, where the re-encryption oracle OReEncrypt outputs
a re-encrypted ciphertext only when the input ciphertexts are well-formed.

To carry out the attack above, an adversary must have arbitrary access to a
re-encryption oracle. Therefore, Construction 5.2 still provides security against
any active adversary that has arbitrary access to the decryption oracle, but only
observes key rotations on well-formed ciphertexts. For applications where an
adversary (e.g. a corrupted server) gains arbitrary access to the re-encryption
oracle, Construction 5.2 provides passive security as opposed to active security.
This also applies to [15].

Handling noise. The second restriction imposed on the adversary is needed due
to the noise allowed in Construction 5.2. In particular, the encoding scheme used
in the construction allows an adversary to create new ciphertexts by adding small
amounts of noise to an existing ciphertext. In combination with the decryption
oracle, an adversary can take advantage of this property to gain information about
the age of a ciphertext using a chosen ciphertext attack. Namely, an adversary
can take a ciphertext and incrementally add noise to it before submitting the
ciphertext to the decryption oracle. Based on how much noise an adversary
can add to the ciphertext before the decryption oracle returns ⊥, the adversary
can approximate the relative size of the noise in the ciphertext. Since each key
rotation in increases the noise associated with a ciphertext by a fixed amount, an
adversary can gain information about the age of the ciphertext by learning the
size of the noise in the ciphertext. Hence, the age of a ciphertext can be exposed
using a chosen ciphertext attack.

For applications where the age of a ciphertext is not sensitive information,
Construction 5.2 can be used as an efficient alternative to existing UAE schemes.
When combined with confidentiality (Definition 3.4), the relaxed integrity defi-
nition provides an “approximate” analogue of the traditional chosen-ciphertext
security. To see this, take any CCA-secure encryption scheme ΠEnc and modify
it into a scheme Π ′Enc that is identical to ΠEnc, but the encryption algorithm
appends a bit 0 to every resulting ciphertext, and the decryption algorithm
discards the last bit of the ciphertext before decrypting. The scheme Π ′Enc is no
longer CCA-secure as an adversary can take any ciphertext and flip its last bit to
produce different valid ciphertext. However, the introduction of the last bit does
not cause the scheme Π ′Enc to be susceptible to any concrete attack that violates
security. Similarly, Construction 5.2 does not satisfy full ciphertext integrity due
to its noisy nature; however, it still suffices to guarantee CCA security in practice.

These variants of CCA security were previously explored under the name of
Replayable CCA and Detectable CCA [14, 18], where it was argued that they are
sufficient to provide security against an active attacker in practice.

24

6 Almost Key-Homomorphic PRFs from Lattices

In this section, we construct an almost key-homomorphic PRF from the Learning
with Errors (LWE) assumption [26]. There are a number of standard variants of
the LWE assumption in the literature that give rise to efficient PRF constructions.
For instance, using the Learning with Rounding (LWR) [6, 11] assumption, one
can construct an almost key-homomorphic PRF in both the random-oracle and
standard models. However, any LWR-based PRF involves a modular rounding
step [6] that forces the output space of the PRF to be quite small compared to the
key space. Hence, these PRFs are less optimal for the application of updatable
encryption as the noise that is incurred by each key updates grows faster in the
smaller output space. In this work, we modify the existing LWR-based KH-PRF
constructions to work over the ring variant of the LWE problem called the Ring
Learning with Errors (RLWE) problem [22]. We provide the precise definition
in the full version [10]. The use of RLWE as opposed to LWR (or Ring-LWR)
allows us to construct almost KH-PRFs that can support more key updates when
applied to Construction 5.2.

We construct an almost key-homomorphic PRF from the hardness of the
Ring Learning with Errors problem as follows.

Construction 6.1 Let n, q,B, r, ` be positive integers, R = Z[X]/(φ) a poly-
nomial ring for φ ∈ Z[X], Rq = Zq[X]/(φ), and χ an error distribution over
EB ⊆ R. We let Sampχ : {0, 1}r → EB be a sampler for the error distribution χ
that takes in a uniformly random string in {0, 1}r and produces a ring element
in EB according to the distribution χ. For our construction, we set X = {0, 1}`
to be the domain of the PRF and use two hash functions that are modeled as
random oracles:

– H0 : {0, 1}` → Rq,
– H1 : Rq × {0, 1}` → {0, 1}r.

We define our pseudorandom function F : Rq × {0, 1}` → Rq as follows:

F (s, x):

1. Evaluate a← H0(x), ρ← H1(s, x).
2. Sample e← Sampχ(ρ).
3. Output y ← a · s+ e.

We summarize the security and homomorphic properties of the PRF construction
above in the following theorem. We provide its proof in the full version [10].

Theorem 6.2. Let n, q,B, r, ` be positive integers, R = Z[X]/(φ) a polynomial
ring for φ ∈ Z[X], Rq = Zq[X]/(φ), and χ an error distribution over EB ⊆
Rq. Then, assuming that RLWEn,q,χ ([10]) is εRLWE-secure, the pseudorandom
function in Construction 6.1 is a εprf-secure 2B-almost key-homomorphic PRF
(Definition 2.1) with key space and range (Rq,+) such that εprf(λ) = εRLWE(λ).

25

7 Evaluation

In this section we evaluate the performance of our nested and KH-PRF based
UAE constructions (Constructions 4.2 and 5.2), comparing their performance to
that of the ReCrypt scheme of Everspaugh et al. [15] both in terms of running
time and ciphertext size. We find that our constructions dramatically improve
on the running time of the Everspaugh et al. [15] UAE at the cost of an increase
in ciphertext size (albeit our ciphertext sizes are still considerably smaller than
those of ciphertext-independent schemes [21, 20, 12]).

RLWE Parameters

|q| = 28 |q| = 60 |q| = 120 |q| = 128

n 1024 2048 4096 4096
B 352 498 704 704

Fig. 5: RLWE parameters for each value of |q| used in our evaluation.

We implemented our constructions in C and evaluated their performance on
an 8-core Ubuntu virtual machine with 4GB of RAM running on a Windows
10 computer with 64GB and a 12-core AMD 1920x processor @3.8GHz. We
use AES-NI instructions to accelerate AES and AVX instructions for applicable
choices of lattice parameters. Our implementation is single-threaded and does not
take advantage of opportunities for parallelism beyond a single core. We rely on
OpenSSL for standard cryptographic primitives and rely on prior implementations
of NTT and the SHAKE hash function [4, 27]. All numbers reported are averages
taken over at least 1,000 trials. Our choice of lattice parameters for each modulus
size |q| (the length of q in bits) is based on the best known attacks on RLWE [3],
as shown in Figure 5. We discuss some aspects of our KH-PRF implementation
in the full version [10]. Our implementation is open source and available at [1].

Encryption and Re-encryption Costs. Figure 6 shows encryption and re-
encryption times for our KH-PRF based UAE construction for various block sizes
of the underlying KH-PRF as well as the ReCrypt scheme [15] and our nested
construction with padding configured to support up to 128 re-encryptions. Our
lattice-based KH-PRF scheme, when run with the best parameters, has from
250× to over 500× higher encryption throughput than ReCrypt as the message
size increases from 4KB to 100KB. We note that, since KH-PRFs imply key
exchange [2], we should not expect to be able to instantiate the KH-PRF approach
with performance any better than that of public key primitives. The nested AES
construction, on the other hand, has 13− 47× the encryption throughput of our
KHPRF-based construction. The nested AES scheme approaches the machine’s
peak AES throughput of 4.45GB/sec as the message size increases.

We find that for small messages (4KB), our KH-PRF with 28 bit output space
(and accelerated with AVX instructions) performs the best, but as messages grow
larger the KH-PRF with 60 bit output space outperforms other categories. Larger

26

Encrypt and ReEncrypt Throughput (MB/sec)

KH-PRF UAE ReCrypt Nested
|q| = 28 |q| = 28 (AVX) |q| = 60 |q| = 120 |q| = 128 [15] t = 128

4KB Messages
Encrypt 24.85 31.97 20.32 0.76 0.70 0.12 406.69
ReEncrypt 29.80 41.03 32.13 0.82 0.74 0.14 706.37

32KB Messages
Encrypt 29.85 39.89 61.90 5.94 5.50 0.12 1836.9
ReEncrypt 32.33 44.51 83.06 6.43 5.85 0.15 2606.8

100KB Messages
Encrypt 31.03 41.63 65.11 9.42 9.12 0.12 3029.5
ReEncrypt 33.30 45.77 79.63 9.92 8.70 0.14 3766.2

Fig. 6: Comparing the throughput of our KH-PRF, ReCrypt, and our
nested construction configured to allow 128 re-encryptions, for messages
of length 4KB, 32KB, and 100KB. Higher numbers are better. Our KH-
PRF is evaluated with four choices of q. The AVX column refers to an
implementation that takes advantage of Intel’s AVX vector instructions.

block sizes tend to perform worse because the output of the PRF no longer
fits into compiler provided primitive types, causing arithmetic operations to
become less efficient. Increasing the message size improves performance because
the proportion of total time occupied by fixed-cost operations decreases, e.g.,
due to the large blocks in which the KH-PRF output is generated. We run our
remaining experiments with |q| = 60 because it has the overall best performance.

KeyGen and ReKeyGen Time (µsecs)

KH-PRF UAE ReCrypt Nested
|q| = 60 [15] t = 128

32KB Messages
KeyGen 3.0 1.0 2.6
ReKeyGen 72.7 308.8 10.1

Fig. 7: KeyGen and ReKeyGen costs. The main differences in performance
are caused by whether the ReKeyGen algorithm needs to sample only AES
keys or also KH-PRF keys, the type of KH-PRF used, and the number of
ciphertexts contained in the update token.

Key generation. Key generation is a faster and less time-sensitive operation
than encryption, re-encryption, and decryption because it only occurs once for a
small ciphertext header before an entire ciphertext is encrypted or re-encrypted.
We show the performance of our KH-PRF based UAE as well as ReCrypt and
nested encryption on KeyGen and ReKeyGen operations in Figure 7. Generating a
key in all three schemes is very fast because it only requires generating a random
128-bit symmetric key. The cost of rekeying depends on the underlying tool used
to re-encrypt. ReKeyGen runs very quickly in the nested construction because it
only consists of a couple AES-GCM encryptions of a fixed-size ciphertext header.

27

The other two constructions rely on different types of KH-PRFs and incur most
of their costs in generating the update keys for those PRFs.

25 50 75 100 125

0

500

1,000

Number of Re-encryptions

T
im

e
[µ

s]

Decryption Time
32KB Messages

KH-PRF

Nested

Ciphertext Expansion
32KB Messages

KH-PRF UAE
|q| = 28 133%
|q| = 60 36%
|q| = 120 20%
|q| = 128 19%

Nested UAE
t = 20 3%
t = 128 19%

ReCrypt [15] 3%

Fig. 8: KH-PRF based UAE (|q| = 60) and
nested UAE (t = 128) decryption times.
The KH-PRF construction decrypts faster
than nested AES when there are more than
50 re-encryptions. ReCrypt is not depicted
as it takes 500× longer than our KH-PRF
based UAE to decrypt.

Fig. 9: Ciphertext body expansion for the
KH-PRF based UAE, Nested UAE, and
ReCrypt. Our constructions generally have
larger ciphertext expansion than ReCrypt,
although the Nested UAE matches Re-
Crypt for some settings, e.g., annually re-
keying data for 20 years.

Decryption Costs. Figure 8 shows decryption costs for our two main construc-
tions and the tradeoffs between them. We omit the decryption performance of
ReCrypt from this graph because it is 500× slower than our KH-PRF based
construction and is strictly dominated by both schemes for the range of param-
eters we measured. Decryption time for the nested AES construction depends
linearly on the number of re-encryptions that have occured because decryption
needs to remove each layer of encryption to reach the plaintext. As such, it
begins much faster than the KH-PRF construction, as it only requires standard
symmetric primitives for which hardware acceleration is available, but becomes
slower after about 50 re-encryptions. The KH-PRF construction could also vary
its performance slightly based on the number of expected re-encryptions by
varying the amount of padding applied in the message encoding process. However,
we chose to evaluate the scheme with a fixed amount of padding that is enough
to support about 128 re-encryptions.

Ciphertext Size. The ciphertext size of a ciphertext-dependent UAE scheme
consists of two parts: a fixed-size header and the body, whose size depends
on the plaintext. Figure 9 compares ciphertext body expansion between our
constructions and ReCrypt. Our KH-PRF based scheme and ReCrypt have 80-
Byte headers, while our nested construction has a 116-Byte header. Our KH-PRF
based construction is implemented with padding on each block depending on
the size |q|. For example, a 60-bit block contains 44 bits of plaintext and 16 bits
of padding. This corresponds to a 36% ciphertext size expansion. The lowest

28

ciphertext expansion for our evaluation of the KH-PRF based scheme occure
when |q| = 128, with 19% expansion. ReCrypt has lower ciphertext expansion,
at 3%. The ciphertext size of our nested construction depends on the expected
number of encryptions. It has a constant 32-Byte overhead on top of the plaintext,
followed by another 48 Bytes for each re-encryption. For a 32KB message, a
ReCrypt ciphertext takes 33KB and a ciphertext under our KH-PRF scheme
takes 43.6KB. A ciphertext under our nested construction will match the size of
a ReCrypt ciphertext after 19 re-encryptions. This fits well with a ciphertext that
is re-encrypted once a year over a 20-year lifetime. Supporting 128 re-encryptions
still only requires a 38.3KB ciphertext, matching the expansion of the KH-PRF
based PRF when |q| = 128.

Conclusions. Based on the performance of the schemes we evaluated, we can
make the following recommendations:

– If the ciphertext is to be re-encrypted only 10 or 20 times over the course of its
lifetime, say once a year for twenty years to satisfy NIST recommendations [7]
and PCI DSS [25] requirements, then one should use the nested construction,
as it will provide the best performance and ciphertext size. This is especially
true of ciphertexts that are decrypted infrequently.

– If the ciphertext is to be re-encrypted more frequently and its age is sensitive
information, then Recrypt [15] should be used.

– If the ciphertext is to be re-encrypted frequently, but its age is less sensitive,
then our almost KH-PRF based scheme can be used for high performance.

Future work. We have constructed a performant updatable encryption scheme
based on RLWE, but it remains an open problem to construct a UAE scheme
from RLWE that satisfies our strongest integrity definition with decryption time
independent of ciphertext age. We hope that future work will result in such a
construction.

Acknowledgments

This work was funded by NSF, DARPA, a grant from ONR, and the Simons
Foundation. Opinions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views
of DARPA. Part of this work was done while the third author was visiting the
Simons Institute for the Theory of Computing as a Ripple Research Fellow.

References

1. Source code repository. https://github.com/moshih/UpdateableEncryption Code.
2. N. Alamati, H. Montgomery, and S. Patranabis. Symmetric primitives with struc-

tured secrets. In CRYPTO, pages 650–679, 2019.
3. M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with

errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

29

4. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange
- A new hope. In USENIX Security, 2016.

5. A. Banerjee and C. Peikert. New and improved key-homomorphic pseudorandom
functions. In CRYPTO, 2014.

6. A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom functions and lattices. In
EUROCRYPT, 2012.

7. E. Barker. Nist special publication 800-57 part 1 revision 4: Recommendation for
key management, 2016.

8. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In CCS, 1993.

9. D. J. Bernstein. Curve25519: New diffie-hellman speed records. In PKC, 2006.
10. D. Boneh, S. Eskandarian, S. Kim, and M. Shih. Improving speed and security in

updatable encryption schemes. Cryptology ePrint Archive, Report 2020/222, 2020.
https://eprint.iacr.org/2020/222.

11. D. Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan. Key homomorphic
prfs and their applications. In CRYPTO, 2013.

12. C. Boyd, G. T. Davies, K. Gjøsteen, and Y. Jiang. Fast and secure updatable
encryption. In CRYPTO, 2020.

13. Z. Brakerski and V. Vaikuntanathan. Constrained key-homomorphic prfs from
standard lattice assumptions. In TCC, 2015.

14. R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing chosen-ciphertext security.
In CRYPTO, 2003.

15. A. Everspaugh, K. G. Paterson, T. Ristenpart, and S. Scott. Key rotation for
authenticated encryption. In CRYPTO, 2017.

16. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO, 1986.

17. Google. Key rotation. https://cloud.google.com/kms/docs/key-rotation.
18. S. Hohenberger, A. B. Lewko, and B. Waters. Detecting dangerous queries: A new

approach for chosen ciphertext security. In EUROCRYPT, 2012.
19. S. Kim. Key-homomorphic pseudorandom functions from lwe with small modulus.

In EUROCRYPT, 2020.
20. M. Klooß, A. Lehmann, and A. Rupp. (R)CCA secure updatable encryption with

integrity protection. In EUROCRYPT, 2019.
21. A. Lehmann and B. Tackmann. Updatable encryption with post-compromise

security. In EUROCRYPT, 2018.
22. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with

errors over rings. In EUROCRYPT, 2010.
23. V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-lwe cryptography.

In EUROCRYPT, 2013.
24. M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions and

kdcs. In EUROCRYPT, 1999.
25. PCI Security Standards Council. Payment card industry data security standard,

2018.
26. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.

In STOC, 2005.
27. G. Seiler. Faster AVX2 optimized NTT multiplication for ring-lwe lattice cryptog-

raphy. IACR Cryptology ePrint Archive, 2018:39, 2018.

30

https://eprint.iacr.org/2020/222

	Improving Speed and Security in Updatable Encryption Schemes

