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Abstract. Non-committing encryption (NCE) introduced by Canetti
et al. (STOC ’96) is a central tool to achieve multi-party computation
protocols secure in the adaptive setting. Recently, Yoshida et al. (ASI-
ACRYPT ’19) proposed an NCE scheme based on the hardness of the
DDH problem, which has ciphertext expansion O(log λ) and public-key
expansion O(λ2).
In this work, we improve their result and propose a methodology to
construct an NCE scheme that achieves constant ciphertext expansion.
Our methodology can be instantiated from the DDH assumption and
the LWE assumption. When instantiated from the LWE assumption, the
public-key expansion is λ · poly(log λ). They are the first NCE schemes
satisfying constant ciphertext expansion without using iO or common
reference strings.
Along the way, we define a weak notion of NCE, which satisfies only
weak forms of correctness and security. We show how to amplify such a
weak NCE scheme into a full-fledged one using wiretap codes with a new
security property.

Keywords:Non-Committing Encryption, Wiretap Codes, Learning with
Errors

1 Introduction

1.1 Background

In secure multi-party computation (MPC) protocols, a group of parties can com-
pute some function of their private inputs by communicating with each other.
Depending on when corrupted parties are determined, two types of adversarial
settings called static and adaptive have been considered for MPC. In the static
setting, an adversary is required to declare which parties it corrupts before the
protocol starts. On the other hand, in the adaptive setting, an adversary can
choose which parties to corrupt on the fly, and thus the corruption pattern can
depend on the messages exchanged during the protocol. Security guarantee in
the adaptive setting is more desirable than that in the static setting since the



former naturally captures adversarial behaviors in the real world while the latter
is somewhat artificial.

Beaver and Haber [3] showed if honest parties are assumed to be able to
erase sensitive local information completely, then adaptively secure MPC can
be obtained efficiently. However, as discussed by Canetti et al. [8], such trusted
erasure may be unrealistic in many scenarios.

If private channels are provided between each pair of parties, information-
theoretically secure MPC protocols such as those proposed by Ben-Or et al. [7]
and Chaum et al. [12] are secure against adaptive adversaries. 3 In order to use
those protocols in the actual usage scenarios, we have to simulate private chan-
nels by using encryption primitives. For this aim, non-committing encryption
(NCE) was introduced by Canetti et al. [8]. Informally, an encryption scheme is
said to be non-committing if it can generate a dummy ciphertext that is indis-
tinguishable from real ones but can later be opened to any message by producing
a secret key and encryption randomness that “explain” the ciphertext as an en-
cryption of the message. Canetti et al. showed that the information-theoretically
secure MPC protocols are still adaptively secure if private channels are replaced
by NCE over insecure channels (assumed they are authenticated). Canetti, Lin-
dell, Ostrovsky, and Sahai [9] also showed a slightly augmented version of NCE
is useful to achieve adaptive security in the universally composable (UC) setting.

Prior Works on Non-Committing Encryption. The ability to open a dummy
ciphertext to any message is generally achieved at the price of efficiency. This is
in contrast to the ordinary public-key encryption for which we can easily obtain
schemes the size of whose ciphertext is n + poly(λ) by using hybrid encryption
methodology, where n is the length of an encrypted message and λ is the security
parameter. Thus, many previous works have focused on constructing efficient
NCE schemes. Especially, they tried to improve ciphertext expansion which is the
ratio of ciphertext length and message length since ciphertext length dominates
the online communication complexity.

In literature, the term NCE was also used to indicate 3-round message trans-
mission protocols which have the non-committing property [2,15]. In this work,
we only focus on 2-round schemes, that is, public-key encryption with the non-
committing property.

Canetti et al. [8] constructed the first NCE scheme, based on common-domain
trapdoor permutations which can be instantiated from the computational Diffie-
Hellman (CDH) or RSA problem. Ciphertext expansion of their scheme isO

(
λ2

)
.

Choi, Dachman-Soled, Malkin, and Wee [13] constructed an NCE scheme
with ciphertext expansion O(λ) from trapdoor simulatable PKE. Their construc-
tion can be instantiated under many computational problems including factoring
problem, since many existing (ordinary) PKE schemes satisfy trapdoor simulata-
bility.

3 On the other hand, for the MPC protocols relying on complexity assumption such as
the one proposed by Goldreich et al. [20], the security proof fails against an adaptive
adversary as observed by Damg̊ard and Nielsen [15].
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The first NCE scheme with sub-linear ciphertext expansion was proposed
by Hemenway, Ostrovsky, and Rosen [23]. They proposed an NCE scheme with
ciphertext expansion O(log n) for n-bit messages based on the Φ-hiding problem,
which we can easily modify its ciphertext expansion to O(log λ) by dividing long
messages to λ-bit blocks. Hemenway, Ostrovsky, Richelson, and Rosen [22] also
showed constructions of NCE with ciphertext expansion poly(log λ) from the
learning with errors (LWE) and Ring-LWE problems.

Canetti, Poburinnaya, and Raykova [10] studied the construction of NCE in
the common reference strings (CRS) model. They achieved optimal ciphertext
expansion 1 + o (1) assuming the existence of indistinguishability obfuscation
(iO) and one-way function.

Recently, Yoshida, Kitagawa, and Tanaka [31] constructed an NCE scheme
with ciphertext expansion O(log λ) from a primitive called chameleon encryption
(CE), which additionally satisfies oblivious sampleability. They showed an in-
stantiation of obliviously sampleable CE based on the decisional Diffie-Hellman
(DDH) problem.

1.2 Our Contribution

We propose the first NCE schemes with constant ciphertext expansion without
the use of iO or CRS.

We construct such an NCE scheme based on the construction paradigm using
obliviously sampleable CE proposed by Yoshida et al. [31]. Yoshida et al. showed
obliviously sampleable CE can be realized based on the DDH problem. In this
work, we also show that it can be realized based on the LWE problem for super-
polynomially large modulus. As a result, we obtain constant ciphertext expansion
NCE schemes based on the DDH problem and LWE problem.

One of the disadvantage of the NCE scheme proposed by Yoshida et al. is
its relatively large public-key size. The size of public key for each message bit
of their scheme is O

(
λ2

)
. In addition to the ciphertext expansion, our LWE

based NCE scheme also improves public-key size compared to Yoshida et al.’s
scheme. The size of the public key for each message bit of our LWE based
scheme is λ · poly(log λ). This is the same as that of NCE scheme proposed
by Hemenway et al. [22], which is also based on the LWE problem for super-
polynomially large modulus. We provide a comparison between our NCE schemes
and existing NCE schemes in Table 1.

1.3 Overview

Weak Non-Committing Encryption. Our starting point is the observation that
by adjusting the parameters of an intermediate version of Yoshida et al. ’s NCE
scheme, its ciphertext expansion can be reduced to a constant, at the cost of its
perfect form of correctness and security.

Specifically, the scheme only satisfies weak correctness, which means that
each bit of decrypted plaintext is flipped with constant probability. Moreover,
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CT Expansion PK Expansion Assumption

Canetti et al. [8] O
(
λ2

)
O
(
λ2

)
Common-Domain TDP (CDH, RSA)

Choi et al. [13] O(λ) O(λ) Trapdoor Simulatable PKE (DDH etc.)

Hemenway et al. [23] O(log λ) λ · poly(log λ) Φ-hiding

Hemenway et al. [22] poly(log λ) λ · poly(log λ) LWE

Hemenway et al. [22] poly(log λ) poly(log λ) Ring-LWE

Canetti et al. [10] (∗) 1 + o (1) 1 + o (1) Indistinguishability Obfuscation

Yoshida et al. [31] O(log λ) O
(
λ2

)
Obliviously Sampleable CE (DDH)

This work O(1) O
(
λ2

)
Obliviously Sampleable CE (DDH)

This work O(1) λ · poly(log λ) Obliviously Sampleable CE (LWE)

Table 1. Comparison of existing (2-round) NCE schemes in terms of their ciphertext
and public-key expansion. The security parameter is denoted by λ. (∗) This scheme
uses common reference strings.

the scheme only satisfies weak security that only guarantees the secrecy of some
part of encrypted plaintexts. In Section 3, we formally define weak correctness
and weak security for NCE and introduce the notion of weak NCE as NCE
satisfying only those weak correctness and weak security.

In Section 5, we give the description of the above scheme and its building
block, obliviously sampleable CE. Then we prove that the scheme is indeed a
weak NCE scheme.

Amplification for Non-Committing Encryption. Next, we show that we can am-
plify a weak NCE scheme into a full-fledged NCE scheme in Section 4. As a tool
of amplification, we use a coding scheme called wiretap codes. More specifically,
we define a new security property, conditional invertibility for wiretap codes. We
show an instantiation of wiretap codes constructed from randomness extractor
and linear error-correcting codes satisfies the conditional invertibility.

This amplification increases the ciphertext expansion by only a constant fac-
tor. Thus, by applying this transformation to the weak NCE scheme shown in
Section 5, we obtain an NCE scheme with a constant ciphertext expansion.

Lattice-Based Instantiation. We propose a lattice-based instantiation of oblivi-
ously sampleable CE in Section 6. The construction is a natural composition of
the lattice-based hash encryption by Döttling et al. [17] and the lattice-based
chameleon hash functions by Cash et al. [11].

One caveat of our construction is that we need the modulus of lattices to
be super-polynomially large for the correctness of it. This seems unavoidable
since the chameleon encryption implies non-interactive key exchange, which is
considered difficult to be realized from lattice problems for polynomially large
modulus as discussed by Guo et al. [21].
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1.4 Related Works on Amplification for Public-Key Encryption

Studies on security amplification have asked and answered the question: “How
far can we weaken a security definition so that schemes satisfying the defini-
tion can still be transformed into those satisfying full-fledged security?” Dwork,
Naor, and Reingold [18] first studied the amplification of public-key encryption.
They showed that a public-key encryption scheme that satisfies weak forms of
one-wayness and correctness can be transformed into one satisfies the ordinary
correctness and IND-CPA security. Holenstein and Renner [24] showed a more
efficient amplification method, starting from a scheme satisfying weak forms of
IND-CPA security and correctness. Lin and Tessaro [26] provided an amplifi-
cation method for schemes with IND-CCA security. In this work, we show an
amplification method for NCE, which can be seen as one of this line of research.

2 Preliminaries

Notations. In this paper, PPT denotes probabilistic polynomial time. x ← X
denotes an element x is sampled from uniform distribution over a set X. y ←
A(x; r) denotes A given input x, using internal randomness r, outputs y. f(λ) =
negl(λ) denotes function f is negligible, that is, f(λ) = 2−ω(log λ) holds.

For an integer n, [n] denotes a set {1, . . . , n}. For a subset I ⊂ [n] and a vector
x = (xi)1≤i≤n ∈ {0, 1}n, xI denotes (xi)i∈I . For a matrix M = (mi)1≤i≤n ∈
{0, 1}k×n, MI ∈ {0, 1}k×|I| denotes the matrix composed from column vectors
mi of M for i ∈ I.

h2(·) denotes the binary entropy function, h2(p) = −p log p−(1−p) log(1−p).
H(Y |X) denotes the conditional entropy.

Lemma 1 (Chernoff Bound). Let X be a binomial random variable. If E [X] ≤
µ, then for all δ > 0, Pr [X ≥ (1 + δ)µ)] ≤ e−

δ2

2+δµ holds.

Lemma 2 (Leftover hash lemma). Let H := {h : {0, 1}n → {0, 1}ℓ} be a
universal hash family. If ℓ ≤ H∞(x)−ω(log λ), (h, h(x)) and (h, u) are statisti-
cally indistinguishable where u← {0, 1}ℓ.

Channel Model. When a sender transmits a message x ∈ {0, 1}n through a
channel ChR, the receiver gets a noisy version of the message x̃ ∈ {0, 1,⊥}n. We
define the procedure of such channels as probabilistic functions, x̃← ChR(x; rch).
We review two channel models, Binary Erasure Channel (BEC) and Binary
Symmetric Channel (BSC).

Let Bnp be the n-bit Bernoulli distribution with parameter p. In other words,
rch ← Bnp is an n-bit string where for each i ∈ [n], Pr[rchi = 1] = p and
Pr[rchi = 0] = 1− p.

Definition 1 (Binary Erasure Channel (BEC)). Through a binary erasure
channel BECp, each bit of input x ∈ {0, 1}n is erased with probability p.

BECp(x; rch) samples randomness rch ← Bn
p . Output of the channel is x̃ where

x̃i = ⊥ if rchi = 1 and x̃i = xi if rchi = 0.
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We also denote the output of BEC by xI ← BECp(x; rch) where I = {i ∈
[n] | rchi = 0} is the set of non-erased indices.

Definition 2 (Binary Symmetric Channel (BSC)). Through a binary sym-
metric channel BSCp, each bit of input x ∈ {0, 1}n is flipped with probability p.

BSCp samples randomness rch ← Bn
p . Output of the channel is x̃ = x⊕ rch.

We denote by BEC≤p, a binary symmetric channel with parameter p′ ≤ p.

3 (Weak) Non-Committing Encryption

A non-committing encryption (NCE) scheme is a public-key encryption (PKE)
scheme that has efficient simulator algorithms (Sim,Open) satisfying the follow-
ing properties. The simulator Sim can generate a simulated public key pk and a
simulated ciphertext CT . Later Open can explain the ciphertext CT as encryp-
tion of any message. Concretely, given a message m, Open can output a pair
of randomness for key generation rGen and encryption rEnc, as if pk was gener-
ated by the key generation algorithm with the randomness rGen, and CT is an
encryption of m with the randomness rEnc.

Some previous works proposed NCE schemes that are three-round protocols[2,15].
In this work, we focus on NCE that needs only two rounds, which is also called
non-committing public-key encryption, and we use the term NCE to indicate it
unless stated otherwise.

In this work, we abstract the intermediate construction of NCE by Yoshida et al. [31]
and formalize it as weak NCE. Specifically, we introduce weak correctness and
weak security for NCE.

Syntax. Since an NCE scheme is public-key encryption, we recall its syntax.

Definition 3 (Public-Key Encryption). A PKE scheme consists of the fol-
lowing PPT algorithms (Gen,Enc,Dec).

– Gen
(
1λ; rGen

)
: Given the security parameter 1λ, using a randomness rGen, it

outputs a public key pk and a secret key sk.

– Enc (pk,m; rEnc): Given a public key pk and a plaintext m ∈ {0, 1}µ, using a
randomness rEnc, it outputs a ciphertext CT .

– Dec (sk, CT ): Given a secret key sk and a ciphertext CT , it outputs m or
⊥.

Public-Key/Ciphertext Expansion. Public-key expansion and ciphertext expan-
sion of a public-key encryption scheme are defined by |pk|/|m| and |CT |/|m|,
respectively, for |m| = poly(λ).
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Correctness. Since the ordinary correctness can be seen as a special case of
weak correctness, we first introduce the notion of weak correctness and then
define correctness. Informally, we say that a PKE scheme is weakly correct if it
has decryption error for each message bit as defined below.

Definition 4 ((Weak) Correctness). We say that a PKE scheme NCE =
(Gen,Enc,Dec) is weakly correct if it has non-negligible decryption error for each
plaintext bit. Specifically, we say that NCE has ϵ-decryption error if for all plain-
text m ∈ {0, 1}µ and i ∈ [µ],

Pr [mi ̸= Dec (sk,Enc (pk,m; rEnc))i] ≤ ϵ

holds, where (pk, sk)← Gen
(
1λ; rGen

)
and the probability is taken over the choice

of rGen and rEnc. In other words, the procedure of encryption and decryption works
as the binary symmetric channel

Dec(sk,Enc(pk, · )) = BSC≤ϵ(·).

Furthermore, we say that NCE satisfies correctness if ϵ = negl(λ).

Security. We first introduce the notion of weak security. We then recall the
ordinary security of NCE.

Weak security allows an adversary to learn some partial information of a
plaintext Leak(m). Still, it guarantees that other information of m remains hid-
den. Furthermore, in the security experiment of weak security, the challenge
message is fixed in advance independently of the public key.

Definition 5 (Weak Security for NCE). For a PKE scheme NCE = (Gen,Enc,Dec)
and a probabilistic function Leak, consider the following PPT simulators (SimGen,
SimEnc,Open):

– SimGen
(
1λ

)
: Given the security parameter 1λ, it outputs a simulated public

key pk and its internal state information st1.

– SimEnc(m̃ ← Leak(m; r), st1): Given a partial information of a plaintext m̃
which is computed by the probabilistic function Leak with randomness r, and
a state st1, it outputs a simulated ciphertext CT and a state st2.

– Open(m, r, st2): Given a plaintext m, randomness r used by Leak, and a state
st2, it outputs randomness for key generation rGen and encryption rEnc.

For an adversary A and a message m, define two experiments as follows.

ExpWeak Real
NCE,A ExpWeak Ideal

NCE,A
(pk, sk)← Gen

(
1λ; rGen

)
(pk, st1)← SimGen

(
1λ

)
CT ← Enc (pk,m; rEnc) (CT, st2)← SimEnc(Leak(m; r), st1)

(rGen, rEnc)← Open(m, r, st2)
out← A (pk, CT, rGen, rEnc) out← A (pk, CT, rGen, rEnc)
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We say that NCE is weakly secure with respect to Leak if there exist PPT
simulators (SimGen,SimEnc,Open) such that for any PPT adversary A and any
message m,

AdvWeak
NCE,A (λ) :=

∣∣∣Pr [out = 1 in ExpWeak Real
NCE,A

]
− Pr

[
out = 1 in ExpWeak Ideal

NCE,A

]∣∣∣
=negl(λ)

holds.

Weak security with respect to Leak = ⊥ in which the target message is chosen
by the adversary is exactly the same notion as the full-fledged security for NCE
which we recall below.

Definition 6 (Security for NCE). For a PKE scheme NCE = (Gen,Enc,Dec),
consider the following PPT simulators (Sim,Open):

– Sim
(
1λ

)
: Given the security parameter 1λ, it outputs a simulated public key

pk, a simulated ciphertext CT and its state st.
– Open(m, st): Given a message m and a state st, it outputs randomness for

key generation rGen and encryption rEnc.

For a stateful adversary A, we define two experiments as follows.

ExpReal
NCE,A ExpIdealNCE,A

(pk, sk)← Gen
(
1λ; rGen

)
(pk, CT, st)← Sim

(
1λ

)
m← A (pk) m← A (pk)
CT ← Enc (pk,m; rEnc) (rGen, rEnc)← Open(m, st)
out← A (CT, rGen, rEnc) out← A (CT, rGen, rEnc)

We say that NCE is secure if there exist PPT simulators (Sim,Open) such that
for all PPT adversary A,

AdvNCE,A (λ) :=
∣∣∣Pr [out = 1 in ExpReal

NCE,A

]
− Pr

[
out = 1 in ExpIdealNCE,A

]∣∣∣ = negl(λ)

holds.

Definition 7 ((Weak) Non-Committing Encryption). Let NCE be a PKE
scheme. NCE is said to be NCE if it satisfies the above correctness and security for
NCE. Also, NCE is said to be weak NCE if it satisfies the above weak correctness
and weak security for NCE.

4 Amplification for Non-Committing Encryption

When weak NCE is used to communicate, roughly speaking, the receiver gets
a noisy version of the transmitted message x, and the adversary can see some
partial information of x. In fact, such a situation is very natural and studied as
physical layer security in the Information and Coding (I&C) community since the
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wiretap channel model was proposed by Wyner [30]. Based on this observation,
in this section, we show how to amplify a weak NCE scheme into a full-fledged
one by using wiretap codes. 4

4.1 Wiretap Codes

As described in Figure 1, when the sender transmits a message x over the wiretap
channel, on one hand, the receiver gets the message affected by noise over receiver
channel ChR(x). On the other hand, an adversary can interrupt the transmission
and gets a noisier version of the message ChA(x).

In such a model, using the difference in the amount of noise the receiver and
the adversary are affected, wiretap codes WC enable us to transmit a message m
correctly to the receiver while keeping it information-theoretically secure against
the adversary.

Sender Receiver

AdversaryChA

ChREncode Decode

ChA(x)

m x ChR(x) m′

���

�

Fig. 1. Wiretap channel model.

Wiretap codes have an encoding and a decoding algorithm similar to error-
correcting codes. Wiretap codes satisfy two properties. One is correctness, which
ensures that the receiver can decode codewords even if they are affected by some
amount of noise. The other is security, which guarantees that the adversary can
get no information about the message given some part of the codeword. It is
known that the encoding algorithm must use randomness to satisfy security.

Originally in the I&C community, the security of wiretap codes was defined
by mutual information. Bellare et al. [6,4,5] proposed several equivalent defi-
nitions in a cryptographic manner. Among them, we recall one adopting the
distinguishing style of security below. Then we proposed a new security prop-
erty, conditional invertibility for wiretap codes, which we need in the security
proof of our amplification for NCE.

Note that the following definition adopts the seeded version of wiretap codes
also proposed by Bellare et al. [6]. In the seeded wiretap channel, the sender,
receiver, and an adversary can see a public random seed. We adopt the seeded
wiretap codes to give a simple construction of the codes. The seed can be removed
without increasing the rate of the codes by a transformation shown in [4]. In this
work, we put the seed into a part of the public key when constructing NCE.

4 In literature, wiretap codes sometimes appeared in the name of “encryption” or
“one-way secret-key agreement”. It can be also interpreted as a kind of secret sharing
scheme.
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Definition 8 (Wiretap Codes). (Seeded) wiretap codes WC consist of the fol-
lowing PPT algorithms (WC.Setup,WC.Encode,WC.Decode).

– WC.Setup(1λ): Given the security parameter 1λ, it samples a public seed p.
– WC.Encode(p,m; s): It encodes a message m ∈ {0, 1}µ with a public seed p

and randomness s← S, and outputs a codeword x ∈ {0, 1}n.
– WC.Decode(p, x): On input a noisy codeword x ∈ {0, 1}n and a public seed

p, it outputs a message m.

Rate of Wiretap Codes. The rate of WC is the length of messages over the length
of codewords µ/n ∈ (0, 1). The rate of WC is at most the secrecy capacity of
the wiretap channel. The secrecy capacity of wiretap channel, defined with sym-
metric channels ChR and ChA, is equal to H(U |ChA(U)) −H(U |ChR(U)) for a
uniformly random bit U [25], where H(Y |X) denotes the conditional entropy.

Usually, wiretap codes are required to satisfy the following correctness and
security.

As a security property, we present a definition of distinguishing security
adopted for seeded wiretap codes. This is a natural extension of the distin-
guishing security for seedless wiretap codes proposed by Bellare et al. [6].

Correctness: WC is correct over the receiver’s channel ChR if for all message
m ∈ {0, 1}µ and public seed p, we have

Pr[WC.Decode(p,ChR(WC.Encode(p,m))) ̸= m] = negl(λ) .

Security: WC is DS-secure against adversary’s channel ChA if for any unbounded
stateful adversary A, we have∣∣∣∣∣∣∣∣∣Pr

b = b′

∣∣∣∣∣∣∣∣∣
p←WC.Setup(1λ), (m0,m1) = A(p),
b← {0, 1}, x←WC.Encode(p,mb),

x̃← ChA(x; rch),

b′ = A(x̃)

− 1

2

∣∣∣∣∣∣∣∣∣ = negl(λ) .

Next, we introduce a new security property for wiretap codes, conditional
invertibility.

Intuitively, this security notion states that after the adversary sees the partial
information x̃← ChA(x) resulted from the codeword x of a message m′, we can
efficiently explain that x̃ has resulted from another message m. The security
definition involves a PPT inversion algorithm WC.Invert, which on inputs seed
p, a condition x̃, and a message m, outputs randomness s′ and rch

′ such that
ChA(WC.Encode(p,m; s′); rch

′) is equal to the condition x̃.
Conditional invertibility implies the ordinary distinguishing security. It can

be seen as non-committing security for wiretap codes. Note that wiretap codes
are inherently non-committing in the sense that they usually required to statis-
tically lose the information of messages. Thus, the only point conditional invert-
ibility additionally requires is that the inversion can be computed efficiently.
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Definition 9 (Conditional Invertibility). For an unbounded stateful adver-
sary A and a PPT algorithm WC.Invert, define two experiments as follows:

ExpReal
WC,A ExpIdealWC,A

p←WC.Setup(1λ) p←WC.Setup(1λ)
(m,m′) = A(p) (m,m′) = A(p)
x←WC.Encode(p,m; s) x←WC.Encode(p,m′; s)
x̃← ChA(x; rch) x̃← ChA(x; rch)

(s′, rch
′)←WC.Invert(p, x̃,m)

out = A (x̃, s, rch) out = A (x̃, s′, rch
′)

We say that WC is invertible conditioned on ChA if there exists a PPT inverter
WC.Invert such that for any unbounded adversary A,∣∣∣Pr [out = 1 in ExpReal

WC,A

]
− Pr

[
out = 1 in ExpIdealWC,A

]∣∣∣ = negl(λ)

holds.

4.2 Instantiation of Wiretap Codes

Overview. We recall a modular construction of wiretap codes proposed by Bel-
lare et al. [6] called Invert-then-Encode construction. The building blocks are
error-correcting codes and invertible extractors. This idea of composing error-
correcting codes and extractors can be found also in the construction of a linear
secret sharing scheme proposed by Cramer et al. [14].

Consider an seeded extractor Ext : {0, 1}k → {0, 1}µ which on inputs X ∈
{0, 1}k and a seed p, outputs m ∈ {0, 1}µ. The extractor is invertible if there
is an efficient inverter Inv, which on inputs m ∈ {0, 1}µ and seed p, samples a
preimage X ∈ {0, 1}k using randomness s. The Invert-then-Encode construction
takes input m with seed p, first inverts the extractor X ← Inv(m, p; s), then
encodes X by the error-correcting code as x = Encode(X).

For a concrete instantiation, Bellare et al. suggested to use the polar codes [1]
as error-correcting codes to achieve the optimal rate. Note that we can compute
the encoding of input m by mG where G is a generator matrix of the linear error-
correcting code. Invertible extractors can be instantiated using multiplication
over GF(2k). Concretely, the extractor takes inputs x ∈ {0, 1}k and seed p ∈
GF(2k), and outputs the first µ bit of x ⊙ p, where ⊙ denotes multiplication
over GF(2k). The inverter Inv for this extractor is obtained by Inv(m, p; s) =
(m∥s)⊙ p−1.

Construction. We describe the construction of wiretap codes for µ = O(λ) bit
messages. For a longer message, we can encode it by first dividing it into blocks
of µ bit and then encoding each block by the following codes (see [4]).

Let µ, k, n = O(λ). Let G ∈ {0, 1}k×n be a generator matrix of a lin-
ear error-correcting code, and ECC.Decode a corresponding decoding algorithm.
Choose a constant ϵ > 0 such that the error-correcting code can be correct over

11



ChR = BSC≤ϵ. We construct wiretap codes which is correct over ChR = BSC≤ϵ
and invertible conditioned on ChA = BEC0.5. Thus, in this construction, the
wiretap decoding algorithm takes as input x′ ← BSCϵ(x), and the wiretap in-
verter algorithm takes as input xI ← BEC0.5(x; rch) where I ∈ [n] is the set of
non-erased indices determined by a uniformly random n-bit string rch.

– WC.Setup(1λ): Sample and output p← GF(2k) \ {0}.
– WC.Encode(p,m; s): For input m ∈ {0, 1}µ, sample s ← {0, 1}k−µ, output

x = ((m∥s)⊙ p)G ∈ {0, 1}n.
– WC.Decode(p, x′): Output the first µ bits of ECC.Decode(x′)⊙ p−1.
– WC.Invert(p, xI ,m): On input a condition xI ← BEC0.5(x; rch), sample and

output s′ which satisfies xI = ((m∥s′)⊙ p)GI .
Concretely, let

∑
i zici+ c0 (ci ∈ {0, 1}k, zi ∈ {0, 1}) be the general solution

of linear equation xI = yGI . Then, uniformly sample a solution {zi}i of
linear equationm =

∑
i zi(ci⊙p−1){1,...,µ}+(c0⊙p−1){1,...,µ}. Finally, output

s′ =
∑

i zi(ci ⊙ p−1){µ+1,...,k} + (c0 ⊙ p−1){µ+1,...,k}.
It also outputs randomness for the channel rch

′ = rch, which is a uniformly
random n-bit string representing the non-erased indices I.

Rate of the Scheme. The rate µ/n of the scheme can be set to a constant smaller
than ( kn −

1
2 ). If the rate k/n of the error-correcting codes is close to its capacity

1− h2(ϵ), the rate of WC can be close to its secrecy capacity 1/2− h2(ϵ), which
is the optimal rate of wiretap codes.

Correctness. The correctness of the wiretap codes directly follows from the cor-
rectness of the underlying error-correcting codes.

Conditional Invertibility. To show the invertibility conditioned on BEC0.5, we
need to show that distributions of (x̃, s, rch) are statistically indistinguishable
in the real and ideal experiments of the definition. We introduce the hybrid
experiment defined as follows:

ExpReal
WC,A ExpHybrid

WC,A ExpIdealWC,A
p←WC.Setup(1λ) p←WC.Setup(1λ) p←WC.Setup(1λ)
(m,m′) = A(p) (m,m′) = A(p) (m,m′) = A(p)
x←WC.Encode(p,m; s) x←WC.Encode(p,m; s′) x←WC.Encode(p,m′; s)
x̃← ChA(x; rch) x̃← ChA(x; rch) x̃← ChA(x; rch)

(s′, rch
′)←WC.Invert(p, x̃,m) (s′, rch

′)←WC.Invert(p, x̃,m)
out = A (x̃, s, rch) out = A (x̃, s′, rch

′) out = A (x̃, s′, rch
′)

Claim. The distribution of output in the real and hybrid experiments are same.

Proof. In general, for a function f : X → Y,

{(x, y) | x← X , y = f(x)} ≡
{
(x′, y) | x← X , y = f(x), x′ ← f−1(y)

}
holds, where f−1(y) denotes the set of pre-images of y.

12



By applying the above fact to fp,m(s, rch) = ChA(WC.Encode(p,m; s); rch),
what we need to show is thatWC.Invert implements sampling (s′, rch

′)← f−1p,m(x̃).

Since we consider ChA = BEC0.5,WC.Invert can uniquely determine rch
′ = rch

from the representation of x̃ = xI . Recall that WC.Invert samples s′ satisfying
xI = ((m∥s′) ⊙ p)GI = BEC0.5(WC.Encode(p,m; s′); rch) uniformly at random.
Hence, the claim follows. ⊓⊔

Claim. The hybrid and ideal experiments are statistically close if the wiretap
codes are secure in the ordinarily sense.

Proof. Consider the adversary A that distinguished the two experiments. We
can construct another adversary A′ against the security of the wiretap codes as
follows: Given p, run A′ on p and obtain m,m′; send them to its challenger and
receive x̃; compute (s, rch) ← WC.Invert(p, x̃,m); run A′ on x̃, s, rch and receive
out; output out. The claim is proven, since the simulation by A is perfect. ⊓⊔

Claim. The wiretap codes are secure in the ordinarily sense.

Bellare et al. [6] show a detailed security proof of the wiretap codes for general
ChA. Below, we show a specific security proof for ChA = BEC0.5.

Proof. Recall that the parameter is selected to satisfy µ/n < (k/n − 1/2). Let
2δ := ((k − µ)/n− 1/2) > 0 be a constant.

Since ChA = BEC0.5, the input for the adversary is xI = ((m∥s)⊙ p)GI . By
the Chernoff bound, |I| < ( 12 + δ)n holds except negligible probability.

Let us decompose the submatrix of the generator GI = PDQ, where P ∈
{0, 1}k×k andQ ∈ {0, 1}|I|×|I| are invertible. FurthermoreD = (di,j) ∈ {0, 1}k×|I|
satisfies di,i = 1 for 1 ≤ i ≤ r := Rank(GI) and di,j = 0 for other elements. We
interpret the multiplication by D as getting the first r bits and concatenating
0|I|−r. Thus xI = ((((m∥s)⊙ p)P )[r]∥0|I|−r)Q.

For input m∥s and seed p, hp(m∥s) := ((m∥s⊙p)P )[r] forms a universal hash
family. Note that the input has min-entropy H∞(m∥s) = k − µ.

Since r ≤ |I| ≤ ( 12 + δ)n ≤ k − µ − δn < H∞(m∥s) − ω(log λ) holds,
by the left over hash lemma, (p, hp(m∥s)) is statistically indistinguishable from
(p, u) where u ← {0, 1}r. Therefore xI is statistically indistinguishable from
(u∥0|I|−r)Q, which is independent of m. Thus, the claim is proven. ⊓⊔

By combining the above three claims, conditional invertibility of the wiretap
codes follows.

4.3 Full-Fledged NCE from Weak NCE

In this section, we amplify a weak NCE scheme into a full-fledged one using
conditionally invertible wiretap codes.
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Construction. Let NCE = (Gen,Enc,Dec) be a weak NCE scheme which has ϵ-
decryption error and weak security with respect to BEC0.5, and wiretap codes
WC = (WC.Setup,WC.Encode,WC.Decode) which is correct over receiver channel
BSC≤ϵ and conditionally invertible against the adversary channel BEC0.5. We
construct a full-fledged NCE scheme NCE′ = (Gen′,Enc′,Dec′) as follows.

Gen′(1λ):
– Sample a public seed of the wiretap codes p←WC.Setup(1λ).
– Generate a key pair of weak NCE (pk, sk)← Gen

(
1λ; rGen

)
.

– Output (pk′, sk′) := ((p, pk), sk).
The randomness for key generation rGen

′ is rGen.
Enc′(pk′,m):

– Sample a key for one-time pad k ← {0, 1}µ.5
– Encode the key as x←WC.Encode(p, k; s) ∈ {0, 1}n.
– Compute CT ← Enc(pk, x; rEnc).
– Output ciphertext CT ′ = (CT,m⊕ k).

The randomness for encryption rEnc
′ is (rEnc, k, s).

Dec′(sk′, CT ′):
– Parse CT ′ as (c1, c2).
– Compute k = WC.Decode(p,Dec(sk, c1)).
– Output m = c2 ⊕ k.

Ciphertext Expansion. The ciphertext expansion of NCE′ is

ciphertext expansion of NCE

rate of WC
+ 1. (1)

Since the rate of the wiretap codes is constant, this amplification increases
ciphertext expansion only by a constant factor. Combining the ciphertext ex-
pansion given in Section 5, we will estimate its concrete value for our scheme in
Section 7.

Correctness. Due to the decryption error of NCE, each bit of the decrypted code-
word x is flipped with probability at most ϵ. The wiretap codes correct this error
as shown below.

Theorem 1 (Correctness). If NCE has ϵ-decryption error, and WC is correct
over BSC≤ϵ, then NCE′ is correct.

Proof. The probability of NCE′ fails to decrypt is evaluated as

Pr[k ̸= WC.Decode(p,Dec(sk,Enc(pk, x)))]

= Pr[k ̸= WC.Decode(p,BSC≤ϵ(WC.Encode(p, k; s)))]

= negl(λ) .

Thus NCE′ is correct.
5 Note that weak security of NCE requires the challenge message to be independent
of the public key. To address this issue, we use one-time pad in this amplification.
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Security. We now show the security of NCE′.

Theorem 2 (Security). If NCE is weakly secure with respect to BEC0.5, and WC

is invertible conditioned on BEC0.5, then NCE′ is secure.

Proof. We first construct a simulator of NCE′ (Sim′,Open′) from the simulator
(SimGen,SimEnc,Open) of NCE, and the inverter WC.Invert of WC.

Sim′(1λ) :
– Sample p←WC.Setup(1λ).
– Generate (pk, st1)← SimGen

(
1λ

)
.

– Sample k ← {0, 1}µ.
– Compute x̃← BEC0.5(WC.Encode(p, 0µ; s′); rch

′).
– Compute (CT, st2)← SimEnc(x̃, st1).
– Set pk′ = (p, pk), CT ′ = (CT, k), st′ = (st2, p, k, x̃).
– Output (pk′, CT ′, st′).

Open′(m, st′) :
– Parse st′ as (st2, p, k, x̃).
– (s, rch)←WC.Invert(p, x̃,m⊕ k).
– (rGen, rEnc)← Open(WC.Encode(p,m⊕ k; s), rch, st2).
– Output (rGen

′, rEnc
′) = (rGen, (rEnc,m⊕ k, s)).

Let A be an adversary against the security of NCE′. We then define the fol-
lowing experiments:

Exp 0 : This experiment is the same as ExpReal
NCE′A. Specifically,

1. Sample p←WC.Setup(1λ).
2. Generate the key pair (pk, sk)← Gen

(
1λ; rGen

)
.

3. Run the adversary to output plaintext m← A(p, pk).
4. Sample k ← {0, 1}µ and encoded it as x←WC.Encode(p, k; s).
5. Encrypt the codeword as CT ← Enc(pk, x; rEnc).
6. Output this experiment is out← A((CT,m⊕ k) , rGen, (rEnc, k, s)).

Exp 1 : In this experiment, we use the simulator (SimGen,SimEnc,Open) for NCE.
The ciphertext CT is simulated by SimEnc only given partial information of
the message x̃← Leak(x), where Leak = BEC0.5 and x←WC.Encode(p, k; s)
now. Specifically,
1. Sample p←WC.Setup(1λ).
2. Simulate the public key as (pk, st1)← SimGen

(
1λ

)
.

3. Run the adversary to output plaintext m← A(p, pk).
4. Sample k ← {0, 1}µ and encoded it as x←WC.Encode(p, k; s).
5. Compute partial information x̃← BEC0.5(x; rch).
6. Simulate the ciphertext as (CT, st2)← SimEnc(x̃, st1).
7. Explain the randomness for key generation and encryption as (rGen, rEnc)←

Open(WC.Encode(p, k; s), rch, st2).
8. Output of this experiment is out← A((CT,m⊕ k) , rGen, (rEnc, k, s)).

Exp 2 : In this experiment, we completely eliminate the information of k from
the input of SimEnc to simulate the ciphertext. Later WC.Invert determines
the randomness s used in the encode. Specifically,
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1. Sample p←WC.Setup(1λ).
2. Simulate the public key as (pk, st1)← SimGen

(
1λ

)
.

3. Run the adversary to output plaintext m← A(p, pk).
4. Sample k ← {0, 1}µ, but the codeword is x←WC.Encode(p, 0µ; s′).
5. Compute partial information x̃← BEC0.5(x; rch

′).
6. Simulate the ciphertext as (CT, st2)← SimEnc(x̃, st1).
7. Invert the randomness for encode as (s, rch)←WC.Invert(p, x̃, k).
8. Explain the randomness for key generation and encryption as (rGen, rEnc)←

Open(WC.Encode(p, k; s), rch, st2).
9. Output of this experiment is out← A((CT,m⊕ k) , rGen, (rEnc, k, s)).

Exp 3 : In this experiment, we completely eliminate m from the ciphertext by
switching k to m⊕ k. Specifically,
1. Sample p←WC.Setup(1λ).
2. Simulate the public key as (pk, st1)← SimGen

(
1λ

)
.

3. Run the adversary to output plaintext m← A(p, pk).
4. Sample k ← {0, 1}µ, but the codeword is x←WC.Encode(p, 0µ; s′).
5. Compute partial information x̃← BEC0.5(x; rch

′).
6. Simulate the ciphertext as (CT, st2)← SimEnc(x̃, st1).
7. Invert the randomness for encoding as (s, rch)←WC.Invert(p, x̃,m⊕ k).
8. Explain the randomness for key generation and encryption as (rGen, rEnc)←

Open(WC.Encode(p,m⊕ k; s), rch, st2).
9. Output of this experiment is out← A((CT, k) , rGen, (rEnc,m⊕ k, s)).
Note that the last experiment Exp 3 is identical to ExpIdealNCE′A.

We show the difference between each experiments are negligible.

Lemma 3. If NCE is weakly secure with respect to BEC0.5, the difference of
Pr[out = 1] in Exp 0 and Exp 1 is negligible.

This lemma directly follows from the weak security of NCE. Note that the message
encrypted by NCE is the key of one-time pad k, which is independent of the public
key.

Lemma 4. If WC is invertible conditioned on BEC0.5, the difference of Pr[out =
1] in Exp 1 and Exp 2 is negligible.

By the conditional invertibility of WC, the following items are statistically indis-
tinguishable.

– (BEC0.5(WC.Encode(p, k; s); rch), (s, rch))
– (BEC0.5(WC.Encode(p, 0µ; s′); rch

′), (s, rch)) where (s, rch) is output ofWC.Invert(
p,BEC0.5(WC.Encode(p, 0µ; s′); rch

′), k)

The lemma follows because (CT ′, r′Gen, r
′
Enc), and hence out in Exp 1 are computed

from the former item, while those in Exp 2 are computed from the latter item.

Lemma 5. Pr[out = 1] is identical in Exp 2 and Exp 3.

This lemma holds unconditionally, because (k,m⊕ k) and (m⊕ k, k) distribute
identically when k is sampled uniformly at random.

Combining the above lemmas, we complete the proof of Theorem 2.

16



5 Construction of Weak NCE

In this section, we show an intermediate version of the NCE scheme in Yoshida et al. [31]
is a weak NCE scheme. Their scheme is constructed from obliviously sampleable
CE. We first recall the definition of obliviously sampleable CE. We then describe
the construction of weak NCE, show that it has 1/2ℓ+1-decryption error, where
ℓ is a constant which appears in the chameleon encryption, and prove its weak
security with respect to BEC0.5. The ciphertext expansion of the resulting weak
NCE is 2ℓ+ o(1).

5.1 Obliviously Sampleable Chameleon Encryption

Chameleon encryption (CE) was proposed by Döttling and Garg [16]. We recall
its obliviously sampleable variant, introduced by Yoshida et al. [31] as a building
block of their NCE scheme. They showed an instantiation of obliviously sam-
pleable CE from the DDH problem. We also show an instantiation from the LWE
problem in Section 6.

Definition 10 (Obliviously Sampleable Chameleon Encryption). An obliv-
iously sampleable chameleon encryption scheme CE consists of PPT algorithms
for hash functionality

(
G,H,H−1

)
, those for encryption functionality (E1,E2,D),

and those for oblivious sampling
(
Ĝ, Ê1

)
. We first introduce algorithms for the

first two functionality. Below, we let RH (and RE, resp.) be the randomness
space of H (and that of E1 and E2, resp.). We let {0, 1}ℓ be the key space.

– G
(
1λ, 1n

)
: Given the security parameter 1λ and the length of inputs to the

hash function 1n, it outputs a hash key hk and a trapdoor td.
– H (hk, x; r): Given a hash key hk and an input x ∈ {0, 1}n, using randomness

r ∈ RH, it outputs a hash value y.
– H−1 (td, (x, r), x′): Given a trapdoor td, an input to the hash function x,

randomness for the hash function r, and another input to the hash function
x′, it outputs randomness r′.

– E1 (hk, (i, b); ρ): Given a hash key hk, an index i ∈ [n], b ∈ {0, 1}, using
randomness ρ ∈ RE, it outputs a ciphertext ct.

– E2 (hk, (i, b), y; ρ): Given a hash key hk, an index i ∈ [n], b ∈ {0, 1}, and a
hash value y, using randomness ρ ∈ RE, it outputs K ∈ {0, 1}ℓ.

– D (hk, (x, r), ct): Given a hash key hk, a pre-image of the hash function (x, r),
and a ciphertext ct, it outputs K ∈ {0, 1}ℓ.

We then introduce algorithms for oblivious sampling.

– Ĝ
(
1λ, 1n

)
: Given the security parameter 1λ, it outputs only a hash key ĥk

without using any randomness other than ĥk itself.

– Ê1

(
ĥk, (i, b)

)
: Given a hash key ĥk, an index i ∈ [n], and b ∈ {0, 1}, it

outputs a ciphertext ĉt without using any randomness except ĉt itself.
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An obliviously sampleable CE scheme satisfies the following trapdoor collision
property, correctness, oblivious sampleability of hash keys, and security with
oblivious sampleability.

Trapdoor Collision: For a chameleon encryption scheme and a stateful adver-
sary A, we define two experiments as follows.

ExpReal ExpIdeal

(hk, td)← G
(
1λ, 1n

)
(hk, td)← G

(
1λ, 1n

)
(x, x′) = A(hk) (x, x′) = A(hk)
y ← H (hk, x; r) y ← H(hk, x′; r′)

r ← H−1(td, (x′, r′), x)
out = A (y, r) out = A (y, r)

We say the chameleon encryption scheme satisfies trapdoor collision if for
any unbounded stateful adversary A,∣∣∣Pr [out = 1 in ExpReal

]
− Pr

[
out = 1 in ExpIdeal

]∣∣∣ = negl(λ)

holds.
Correctness: For all x ∈ {0, 1}n, r ∈ RH, i ∈ [n], hk output by either G

(
1λ, 1n

)
or Ĝ

(
1λ, 1n

)
, we have

Pr[E2(hk, (i, xi), y; ρ) = D (hk, (x, r), ct)] = 1− negl(λ)

where ρ ← RE, y ← H (hk, x; r) , ct ← E1(hk, (i, xi); ρ), and xi denotes the
i-th bit of x.

Oblivious Sampleability of Hash Keys: hk← G
(
1λ, 1n

)
and ĥk← Ĝ

(
1λ, 1n

)
are computationally indistinguishable.

Security with Oblivious Sampleability: For any x ∈ {0, 1}n, r ∈ RH, i ∈
[n], and PPT adversary A, define two experiments as follows.

ExprealCE,A ExposCE,A
(hk, td)← G

(
1λ, 1n

)
(hk, td)← G

(
1λ, 1n

)
ct← E1(hk, (i, 1− xi); ρ) ct← Ê1(hk, (i, 1− xi))
K ← E2(hk, (i, 1− xi),H(hk, x; r); ρ) K ← {0, 1}ℓ
out← A (hk, ct,K) out← A (hk, ct,K)

Then, we have

AdvCE,A (λ) :=
∣∣∣Pr [out = 1 in ExprealCE,A

]
− Pr

[
out = 1 in ExposCE,A

]∣∣∣ = negl(λ) .

Remark 1. In the original definition of Yoshida et al. [31], security of an obliv-
iously sampleable CE scheme and its oblivious sampleability of ciphertexts are
defined separately. In the above definition, we combine them into a single no-
tion, security with oblivious sampleability. This yields a clean and simple security
proof of obliviously sampleable CE based on the LWE assumption and that of
NCE scheme based on obliviously sampleable CE.

18



5.2 Construction

We show a construction of weak NCE scheme NCE for message space {0, 1}n based
on an obliviously sampleable CE scheme CE below. NCE has constant ciphertext
expansion and ϵ-decryption error, and satisfies weak security with respect to
Leak = BEC0.5. We can set ϵ to be arbitrarily small constant by appropriately
selecting the constant parameter ℓ of CE; we require that ϵ ≥ 2−ℓ−1 + negl(λ).

Gen
(
1λ; rGen

)
:

– Generate ĥk← Ĝ
(
1λ, 1n

)
, and sample z ← {0, 1}n.

– For all i ∈ [n], sample ρi ←RE.
– For all i ∈ [n] and b ∈ {0, 1}, compute

cti,b ←

E1

(
ĥk, (i, b); ρi

)
(if b = zi)

Ê1

(
ĥk, (i, b)

)
(otherwise)

.

– Output

pk :=

(
ĥk,

(
ct1,0, . . . , ctn,0
ct1,1, . . . , ctn,1

))
and sk := (z, (ρ1, . . . , ρn)) . (2)

The key generation randomness rGen is
(
ĥk, z, {ρi}i∈[n], {cti,1−zi

}i∈[n]
)
.

Enc(pk, x ∈ {0, 1}n; rEnc):
– Parse public key pk as the equation 2.

– Sample randomness r ←RH and compute y ← H(ĥk, x; r).
– For all i ∈ [n] and b ∈ {0, 1}, compute

Ki,b ←

{
D
(
ĥk, (x, r), cti,b

)
(if b = xi)

{0, 1}ℓ (otherwise) .

– Output

CT :=

(
y,

(
K1,0, . . . ,Kn,0

K1,1, . . . ,Kn,1

))
. (3)

The encryption randomness rEnc is
(
r, {Ki,1−xi

}i∈[n]
)
.

Dec (sk, CT ):
– Parse sk and CT as the equations 2 and 3, respectively.
– For all i ∈ [n], compute

xi :=

{
zi

(
if Ki,zi = E2

(
ĥk, (i, zi), y; ρi

))
1− zi (otherwise)

– Output x.
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Ciphertext Expansion. Ciphertext length of this scheme is |CT | = |y| + 2nℓ,
where length of the output of the chameleon hash |y| does not depend on n.
Therefore ciphertext expansion of this scheme is

|CT | /n = 2ℓ+ o(1).

Next, we show that NCE is weak NCE. More concretely, we show that NCE

has ϵ-decryption error and satisfies weak security with respect to BEC0.5.

Theorem 3 (Weak Correctness). Let ℓ be a constant noticeably larger than
log(1/ϵ)− 1. If CE satisfies correctness, then NCE has ϵ-decryption error.

Proof. Let x ∈ {0, 1}n be a message encrypted by NCE and z ∈ {0, 1}n a random
string sampled when generating a key pair of NCE.

We fail to decrypt xi if the underlying chameleon encryption causes cor-
rectness error when zi = xi, or Ki,1−zi ← {0, 1}ℓ accidentally coincides with
E2 (hk, (i, zi), y; ρi) when zi ̸= xi. The probability of the former is negligible
since CE is correct, and that of the later is 1/2ℓ. Notice that correctness of CE

holds for obliviously sampled hash key ĥk. Thus, the probability of failure to
decrypt xi is evaluated as

Pr [xi ̸= (Dec (sk, CT ))i]

= Pr

(zi = xi ∧ D
(
ĥk, (x, r), cti,xi

)
̸= E2

(
ĥk, (i, zi), y; ρi

))
∨
(
zi ̸= xi ∧Ki,1−xi

= E2

(
ĥk, (i, zi), y; ρi

))


=
1

2

(
negl(λ) +

1

2ℓ

)
≤ ϵ .

⊓⊔

Theorem 4 (Weak Security). If CE is an obliviously sampleable CE scheme,
then NCE is weakly secure with respect to Leak = BEC0.5.

Proof. We construct a tuple of simulators as follows.

SimGen
(
1λ

)
:

– Generate (hk, td)← G
(
1λ, 1n

)
.

– For all i ∈ [n] and b ∈ {0, 1}, compute cti,b ← E1 (hk, (i, b); ρi,b).

– Output a simulated public key pk :=

(
hk,

(
ct1,0, . . . , ctn,0
ct1,1, . . . , ctn,1

))
and state

st1 = (hk, td, {ρi,b}i∈[n],b∈{0,1}).
SimEnc(xI ← BEC0.5(x; rch), st1):

– Sample r′ ←RH and compute y ← H (hk, 0; r′).
– For all i /∈ I, compute Ki,b ← E2 (hk, (i, b), y; ρi,b) for b ∈ {0, 1}. For all

i ∈ I, compute

Ki,b ←

{
E2 (hk, (i, b), y; ρi,b) (if b = xi)

{0, 1}ℓ (otherwise)
.
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– Output a simulated ciphertext CT :=

(
y,

(
K1,0, . . . ,Kn,0

K1,1, . . . ,Kn,1

))
and state

st2 = (st1, r
′, {Ki,b}i∈[n],b∈{0,1}).

Open(x, rch, st2):

– Sample r ← H−1 (td, (0, r′) , x).
– Set z = x⊕ 1n ⊕ rch.
– Output the following simulated randomness

rGen :=
(
hk, z, {ρi,zi}i∈[n], {cti,1−zi

}i∈[n]
)

and

rEnc :=
(
r, {Ki,1−xi}i∈[n]

)
.

Let A be a PPT adversary against weak security of NCE and x ∈ {0, 1}n. We
define the following sequence of experiments.6

Exp 0: This experiment is exactly the same as ExpReal
NCE,A. Specifically;

1. Generate ĥk← Ĝ
(
1λ, 1n

)
and z ← {0, 1}n.

2. For all i ∈ [n], sample ρi ←RE.
3. For all i ∈ [n] and b ∈ {0, 1}, compute

cti,b ←

E1

(
ĥk, (i, b); ρi

)
(if b = zi)

Ê1

(
ĥk, (i, b)

)
(otherwise)

.

4. Set

pk :=

(
ĥk,

(
ct1,0, . . . , ctn,0
ct1,1, . . . , ctn,1

))
and rGen :=

(
ĥk, z, {ρi}i∈[n], {cti,1−zi

}i∈[n]
)
.

5. Sample r ←RH and compute y ← H(ĥk, x; r).
6. For all i ∈ [n] and b ∈ {0, 1}, compute

Ki,b ←

{
D
(
ĥk, (x, r), cti,b

)
(if b = xi)

{0, 1}ℓ (otherwise) .

7. Set

CT :=

(
y,

(
K1,0, . . . ,Kn,0

K1,1, . . . ,Kn,1

))
and rEnc :=

(
r, {Ki,1−xi

}i∈[n]
)
.

8. Output of this experiment is out← A(pk, CT, rGen, rEnc).

Exp 1: In this experiment, instead of sampling z ← {0, 1}n, we first compute
xI ← BEC0.5(x; rch) and set z = x⊕ 1n ⊕ rch.

6 The flow of the hybrids is slightly different from the proof given by Yoshida et al. [31]
as the security definition of obliviously sampleable CE is reorganized.
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Notice that z distributes uniformly at random over {0, 1}n also in Exp 1 since
rch ← Bn

0.5. Thus, Pr[out = 1] in Exp 1 is identical to that in Exp 0. Also notice
that i ∈ I iff zi ̸= xi holds by the setting of z.

Exp 2: In this experiment, we run (hk, td) ← G
(
1λ, 1n

)
instead of ĥk ←

Ĝ
(
1λ, 1n

)
.

From the oblivious sampleability of hash keys of CE, the difference of Pr[out =
1] between Exp 1 and Exp 2 is negligible.

In subsequent experiments, we eliminate information of xi for i /∈ I from the
ciphertext CT = (y, {Ki,b}i∈[n],b∈{0,1}).

Exp 3.j: This experiment is defined for j = 0, . . . , n. Exp 3.j is the same exper-
iment as Exp 2 except that we modify the procedures 3. and 6. as follows.
3. For all i ≤ j, compute cti,b for b ∈ {0, 1} as cti,b ← E1 (hk, (i, b); ρi,b).

For all i > j, compute them in the same way as Exp 2.
6. For all i ≤ j, if i /∈ I, compute Ki,0,Ki,1 as Ki,xi ← D (hk, (x, r), cti,xi)

and Ki,1−xi
← E2 (hk, (i, 1− xi), y; ρi,1−xi

).
For all i ≤ j, if i ∈ I, compute them in the same way as Exp 2.
Also, for all i > j, compute them in the same way as Exp 2 regardless of
whether i ∈ I or not.

Note that Exp 3.0 is exactly the same as Exp 2.

Lemma 6. If CE satisfies security with oblivious sampleability, the difference of
Pr[out = 1] between Exp 3.(j − 1) and Exp 3.j is negligible for every j ∈ [n].

Proof. UsingA, we construct a reduction algorithmA′ which attacks the security
with oblivious sampleability of CE with respect to x, r, and j.

What differ in Exp 3.(j − 1) and Exp 3.j are cti,1−xi
, Kj,xj

, and Kj,1−xj
.

Kj,xj is the same in both experiments except negligible probability due to
the correctness of CE. We consider the following two cases.

Case 1. zj = xj: ctj,1−xj is output of Ê1 (hk, (j, 1− xj)) or E1

(
hk, (j, 1− xj); ρj,1−xj

)
.

Kj,1−xj
is uniform random or output of E2

(
hk, y; ρi,1−xj

)
. In this case, the

reduction algorithm A′, given (hk∗, ct∗,K∗), embed cti,1−xi
= ct∗,Kj,1−xj

=
K∗.

Case 2. zj ̸= xj: ctj,1−xj
is output of Ê1 (hk, (j, 1− xj)) or E1

(
hk, (j, 1− xj); ρj,1−xj

)
.

Kj,1−xj
is uniform random in both experiments.

In this case, the reduction algorithmA′, given (hk∗, ct∗,K∗), embed cti,1−xi =
ct∗, set Kj,1−xj

← {0, 1}ℓ.

In both cases, A′ returns output out← A(pk, CT, rGen, rEnc).
Depending on A′ playing in either ExprealCE,A′ or ExposCE,A′ , A′ perfectly simulates

ExpWeak Real
NCE,A or ExpWeak Ideal

NCE,A except correctness error onKj,xj , which occurs with
negligible probability.

Hence assuming the CE satisfies security with oblivious sampleability, the
difference of Pr[out = 1] in Exp 3.(j − 1) and Exp 3.j is negligible.
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Exp 4: This experiment is the same as Exp 3.n except that Ki,xi
is generated

by Ki,xi
← E2 (hk, (i, xi), y; ρi,xi

) instead of Ki,xi
← D (hk, (x, r), cti,b) for

every i ∈ [n].

From the correctness of CE, the difference of Pr[out = 1] between Exp 3.n and
Exp 4 is negligible.

Exp 5: In this experiment, we compute y as y ← H (hk, 0; r′), where r′ ← RH.
Later, we compute r as r ← H−1 (td, (0, r′) , x). Note that this experiment is
exactly the same as ExpWeak Ideal

NCE,A in which Leak = BSC0.5 is used. In detail,
the experiment proceeds as follows.

1. Generate (hk, td)← G
(
1λ, 1n

)
and z ← {0, 1}n.

For all i ∈ [n], b ∈ {0, 1}, compute cti,b ← E1 (hk, (i, b); ρi,b). Set

pk :=

(
hk,

(
ct1,0, . . . , ctn,0
ct1,1, . . . , ctn,1

))
.

Note that this pk does not depend on z.
2. Compute y ← H (hk, 0; r′),

Ki,b ←

{
E2 (hk, y; ρi,b) (b = xi ∨ zi = xi)

{0, 1}ℓ (b ̸= xi ∧ zi ̸= xi)

for all i ∈ [n], b ∈ {0, 1}, and

CT :=

(
y,

(
K1,0, . . . ,Kn,0

K1,1, . . . ,Kn,1

))
.

Note that this CT can be computed only from xI , where I = {i ∈ [n] |
zi ̸= xi}. Moreover, we can regard xI ← BEC0.5(x; rch = x ⊕ z ⊕ 1n),
since z ← {0, 1}n has not appeared elsewhere in this experiment.

3. Sample r ← H−1 (td, (0, r′) , x).
Set the randomness as

rGen :=
(
hk, z, {ρi,zi}i∈[n], {cti,1−zi

}i∈[n]
)

rEnc :=
(
r, {Ki,1−xi

}i∈[n]
)
.

4. out← A(pk, CT, rGen, rEnc)

Lemma 7. If the obliviously sampleable CE satisfies trapdoor collision, the dif-
ference of Pr[out = 1] in Exp 4 and Exp 5 is negligible.

From the above arguments, we see that NCE satisfies weak security with re-
spect to Leak = BSC0.5. This completes the proof of Theorem 4. ⊓⊔
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6 Obliviously Sampleable Chameleon Encryption from
Lattices

We propose a lattice-based construction of obliviously sampleable CE. The ci-
phertext length of the proposed scheme is λ · poly(log λ), which is smaller than
O
(
λ2

)
of the construction from the DDH problem [31].

The construction is similar to the construction of hash encryption from LWE
proposed by Döttling et al. [17]. However we need a super-polynomially large
modulus Zq for the scheme to satisfy correctness. Although security of the hash
encryption is claimed to be proved from a valiant of the LWE assumption, called
extended-LWE, we prove the security directly from the LWE assumption.

Before describing our construction, we recall preliminaries on lattices.

6.1 Preliminaries on Lattices

Notations Let A,B be matrices or vectors. [A|B] and [A;B] denotes concate-
nation of columns and rows respectively. A\i denotes the matrix obtained by
removing the i-th column of A.

The n-dimensional Gaussian function with parameter s is defined as ρs(x) :=
exp(−π∥x∥2/s2). For positive real s and countable set A, the discrete Gaussian
distribution DA,s is defined by DA,s(x) = ρs(x)/

∑
y∈A ρs(y). We note that, if

s = ω(logm),
Pr

r←DZm,s

[∥r∥ ≤ s
√
m] ≥ 1− 2−m+1.

(See [28].)

Parameters. We let n = λ, m = O(n log q) (e.g., m = 2n log q), q = 2poly(log λ).
Let χ be the discrete Gaussian distribution over Z with parameter s = ω(

√
m log n),

that is, DZ,s. Rounding function round : Zq → {0, 1} is defined as round(v) =
⌊2v/q⌉. If input for round is a vector v ∈ Zℓ

q, the rounding is applied to each
component. ℓ be a constant.

Definition 11 ((Decisional) Learning with Errors [29]). The LWE as-
sumption with respect to n dimension, m samples, modulus q, and error distri-
bution χ over Zq states that for all PPT adversary A, we have∣∣Pr[A(A,STA+E) = 1]− Pr[A(A,B) = 1]

∣∣ = negl(λ) ,

where A← Zn×m
q ,S ← Zn×ℓ

q ,E ← χm×ℓ,B ← Zm×ℓ
q .

Definition 12 (Lattice Trapdoor [19,27]).
There exists following PPT algorithms TrapGen and Sample.

TrapGen(1λ) : Output a matrix AT ∈ Zn×m
q together with its trapdoor T .

Sample(AT ,T ,u, s) : Given a matrix AT with its trapdoor T , a vector u ∈ Zn
q ,

and a parameter s, output a vector r ∈ Zm.

These algorithms satisfy the following two properties.
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1. AT is statistically close to uniform in Zn×m
q .

2. If s ≥ ω(
√
m · log n), then r ∈ Zm output by Sample(AT ,T ,u, s) is statis-

tically close to DZm,s conditioned on r ∈ Λu(AT ) := {r ∈ Zm | ATr ≡ u
(mod q)}.

6.2 Construction

We construct an obliviously sampleable CE scheme from the LWE problem for
super-polynomially large modulus.

G(1λ, 1N ):
– Sample R← Zn×N

q and (AT ∈ Zn×m
q ,T )← TrapGen(1λ).

– Output
hk := A = [R | AT ] and td := T .

H (hk, x; r):
– Sample r ∈ Zm

q according to distribution RH = χm.
– Output

y := A · [x; r] mod q.

H−1 (td, (x, r), x′):
– Set y′ = R(x − x′) +ATr mod q. Sample and output a short collision

by the sampling algorithm of the lattice trapdoor

r′ ← Sample(AT ,T ,y′, s).

E1 (hk, (i, b); ρ):
– Sample ρ = (S,E) where S ← Zn×ℓ

q ,E ← χℓ×(N+m).
– Output

ct := STA\i +E\i ∈ Zℓ×(N+m−1)
q .

E2(hk, (i, b), y; ρ):
– Compute v = ST(y − b · ai) + ei and output K := round(v), where ai

and ei are the i-th rows of A and E.
D (hk, (x, r), ct):

– Compute v′ = ct · [x\i; r] and output K := round(v′).

Ĝ(1λ, 1N ):
– Sample and output

ĥk← Zn×(N+m)
q .

Ê1

(
ĥk, (i, b)

)
:

– Sample and output
ĉt← Zℓ×(N+m−1)

q .

Trapdoor Collision. For all x,x′, H(hk,x; r) = H(hk,x′; r′) holds, because the
lattice trapdoor samples r such that ATr

′ ≡ y′ (mod q) where y′ = R(x−x′)+
ATr mod q. Moreover, if r ← χm, ATr mod q is statistically close to uniform
over Zn

q [19, Cor. 5.4], hence y′ is also statistically close to uniform. Thus, the
distribution of r′ is statistically close to χm (conditioned on Rx′ + ATr

′ ≡
Rx+ATr (mod q)).
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Correctness. Let ∆ :=
∣∣vj − v′j

∣∣, where vj and v′j are the j-th component of the
inputs to the rounding function in the computation of E2 and D respectively.

∆ =
∣∣(sjT(y − xi · ai) + ei,j

)
−
(
ctj · [x\i; r]

)∣∣
=

∣∣sjT(A · [x; r]− xi · ai) + ei,j −
(
sj

TA\i + e\i,j
)
[x\i; r]

∣∣
=

∣∣ei,j − e\i,j [x\i; r]
∣∣

≤ ∥ej∥ · ∥[x; r∥

≤ s
√
N +m ·

√
N + s2m ≤ s2(N +m),

holds with overwhelming probability. The probability of decryption error on j-th
bit is bounded by

Pr[round(vj) ̸= round(v′j)] ≤ 2∆/q = negl(λ) ,

which is negligible since the modulus q is super-polynomially large. Thus, by
taking the union bound for all |v| = ℓ bits, the probability of decryption error
is bounded by

Pr[round(v) ̸= round(v′)] ≤ 2ℓ∆/q = negl(λ) .

Oblivious Sampleability of Hash Keys. R distributes uniformly at random. The
distribution of AT output by TrapGen(1λ) is also statistically close to uniform.
Thus, A output by G

(
1λ, 1n

)
is statistically indistinguishable from the output

of Ĝ
(
1λ, 1n

)
.

Security with Oblivious Sampleability. Let A be an adversary that distinguishes
experiments ExprealCE,A and ExposCE,A.

We construct a reduction algorithm A′ that breaks the LWE assumption
with (N +m) samples by using A as follows:

1. A′ receives
(
A = [R | AT ] ∈ Zn×(N+m)

q ,B ∈ Zℓ×(N+m)
q

)
, where B is either

STA+E or uniformly random.
2. A′ sets

a′ := (2xi − 1)
(
ai −A\i[x\i; r]

)
,

R′ := [a1 | · · · | ai−1 | a′ | ai+1 | · · · | aN ].

and set

hk := [R′ | AT ], ct := B\i, and K := round(bi).

3. Finally, A′ returns A(hk, ct,K).

In the LWE case, that is, B = STA + E and bi = STai + ei, A′ statistically
simulates ExprealCE,A: (1) The distribution of hk = [R | AT ] is the uniform one and
statistically close to the real distribution of hk, in which AT is one of output of
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TrapGen(1λ); (2) The distribution of ct is perfectly correct; (3) The distribution
of K = round(bi) is also perfectly correct: By our reduction algorithm, we have
y = H(hk,x; r) = hk · [x; r] = A\i[x\i; r] + xia

′. Thus, in the computation of
K ← E2(hk, (i, 1− xi),y; ρ), we compute

vi = ST(y − (1− xi) · a′) + ei

= ST(A\i[x\i; r] + xia
′ − (1− xi) · a′) + ei

= ST(A\i[x\i; r] + (2xi − 1)a′) + ei

= ST
(
A\i[x\i; r] + (2xi − 1)(2xi − 1)

(
ai −A\i[x\i; r]

))
+ ei

= ST
(
A\i[x\i; r] +

(
ai −A\i[x\i; r]

))
+ ei

= STai + ei = bi,

where we use the fact (2xi− 1)(2xi− 1) = 1 for xi ∈ {0, 1} to move forth line to
fifth line. Therefore, K = round(vi) = round(bi) has the correct distribution.

In the random case, A′ statistically simulates ExposCE,A.
Therefore, assuming the LWE assumption, we obtain AdvCE,A (λ) = negl(λ).

Public-Key Size of the Resulting NCE. The ciphertext space of this chameleon

encryption is Zℓ×(N+m)
q , where q = 2poly(log λ), ℓ = O(1), N = O(λ), m =

O(n log q) = λ · poly(log λ). Thus the length of ciphertexts is

|ct| = poly(log λ) · O(1) · (O(λ) + λ · poly(log λ)) = λ · poly(log λ).

The length of the hash key is

|hk| = poly(log λ) · λ · (O(λ) + λ · poly(log λ)) = λ2 · poly(log λ).

The length of seed for the wiretap codes is |p| = O(λ). Public key expansion
of the resulting NCE scheme is

|p|+ |hk|+ 2N |ct|
N

= λ · poly(log λ).

7 Conclusion

In this work, we constructed NCE schemes with constant ciphertext expansion
from the DDH or LWE problem.

Along the way, we defined weak NCE. Given that the full-fledged NCE is a
tool to establish private channels in adaptively secure MPC, weak NCE can be
interpreted as a tool to establish wiretap channels in adaptively secure MPC.
Through wiretap channels, we can securely transmit a message by encoding with
wiretap codes that satisfy conditional invertibility.

We showed instantiation of weak NCE that has constant ciphertext expan-
sion and amplified it by using constant rate wiretap codes. Finally, we roughly
estimate the ciphertext expansion of the resulting NCE scheme. As we see in
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section 5, ciphertext expansion of our weak NCE scheme is 2ℓ asymptotically.
Suppose the wiretap codes used in the amplification achieve the secrecy rate
1/2−h2(ϵ) where ϵ = 1/2ℓ+1. Then, the ciphertext expansion in Equation 1 has
minimum value ≈ 27 when ℓ = 5.

We also showed the public-key expansion of our NCE scheme can be reduced
to λ · poly(log λ) if it is instantiated from the LWE problem. One may think
that the use of the ring-LWE problem may further reduce public-key expansion
similar to the LWE based NCE scheme by Hemenway et al. [22]. However, un-
fortunately, it seems that the ring-LWE problem is not helpful to reduce the
public-key size asymptotically. Constructing an NCE scheme with constant ci-
phertext expansion and better public-key expansion is a natural future direction.
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