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Abstract. Comparison of two numbers is one of the most frequently
used operations, but it has been a challenging task to efficiently compute
the comparison function in homomorphic encryption (HE) which basi-
cally supports addition and multiplication. Recently, Cheon et al. (Asi-
acrypt 2019) introduced a new approximate representation of the com-
parison function with a rational function, and showed that this rational
function can be evaluated by an iterative algorithm. Due to this iterative
feature, their method achieves a logarithmic computational complexity
compared to previous polynomial approximation methods; however, the
computational complexity is still not optimal, and the algorithm is quite
slow for large-bit inputs in HE implementation.
In this work, we propose new comparison methods with optimal asymp-
totic complexity based on composite polynomial approximation. The
main idea is to systematically design a constant-degree polynomial f
by identifying the core properties to make a composite polynomial f ◦
f ◦ · · · ◦ f get close to the sign function (equivalent to the comparison
function) as the number of compositions increases. We additionally intro-
duce an acceleration method applying a mixed polynomial composition
f ◦ · · · ◦ f ◦ g ◦ · · · ◦ g for some other polynomial g with different prop-
erties instead of f ◦ f ◦ · · · ◦ f . Utilizing the devised polynomials f and
g, our new comparison algorithms only require Θ(log(1/ε)) + Θ(logα)
computational complexity to obtain an approximate comparison result
of a, b ∈ [0, 1] satisfying |a− b| ≥ ε within 2−α error.
The asymptotic optimality results in substantial performance enhance-
ment: our comparison algorithm on 16-bit encrypted integers for α = 16
takes 1.22 milliseconds in amortized running time based on an approx-
imate HE scheme HEAAN, which is 18 times faster than the previous
work.

1 Introduction

Homomorphic Encryption (HE) is a primitive of cryptographic computing, which
allows computations over encrypted data without any decryption process. With
HE, clients who sent encrypted data to an untrusted server are guaranteed data
privacy, and the server can perform any operations over the encrypted data. In



recent years, HE has gained worldwide interest from various fields related to data
privacy issues including genomics [37, 38, 39] and finances [3, 31]. In particular,
HE is emerging as one of the key tools to protect data privacy in machine learning
tasks, which now became a necessary consideration due to public awareness of
data breaches and privacy violation.

The comparison function comp(a, b), which outputs 1 if a > b, 0 if a < b and
1/2 if a = b, is one of the most prevalent operations along with addition and mul-
tiplication in various real-world applications. For example, many of the machine
learning algorithms such as cluster analysis [17, 33], gradient boosting [25, 26],
and support-vector machine [19, 40] require a number of comparison operations.
Therefore, it is indispensable to find an efficient method to compute the com-
parison function in an encrypted state for HE applications.

Since HE schemes [7, 11, 24] basically support homomorphic addition and
multiplication, to compute non-polynomial operations including the comparison
function in an encrypted state, we need to exploit polynomial approximations
on them. The usual polynomial approximation methods such as minimax find
approximate polynomials with minimal degree on a target function for given a
certain error bound. However, the computational complexity to evaluate these
polynomials is so large that it is quite inefficient to obtain approximate results
with high-precision by these methods. Recently, to resolve this problem, Cheon
et al. [12] introduced a new identity comp(a, b) = limk→∞ ak/(ak + bk), and
showed that the identity can be computed by an iterative algorithm. Due to
this iterative feature, their algorithm achieves a logarithmic computational com-
plexity compared to usual polynomial approximation methods. However, the
algorithm only achieves quasi-optimal computational complexity, and it is quite
slow in HE implementation; more than 20 minutes is required to compute a
single homomorphic comparison of 16-bit integers.

In this work, we propose new comparison methods using composite polyno-
mial approximation on the sign function, which is equivalent to the comparison
function. Starting from the analysis on the behavior of a composite polynomial
f (d) := f ◦f ◦ · · · ◦f , we identify the core properties of f that make f (d) get close
to the sign function as d increases. We additionally introduce a novel accelera-
tion method by applying a mixed composition of f and some other polynomial
g with different properties instead of a simple composition of f . Applying these
systematically devised polynomials f and g, we construct new comparison al-
gorithms which firstly achieve the optimal computational complexity among all
polynomial evaluations to obtain an approximate value of the comparison result
within a certain error bound.

Our composite polynomial methods can be directly applied to evalute piece-
wise polynomials with two sub-polynomials including the absolute function: For
example, the function p such that p(x) = p1(x) if x ∈ [0, 1] and p(x) = p2(x) if
x ∈ [−1, 0) for polynomials p1 and p2 can be represented by p1(x)·(1+sgn(x))/2+
p2(x) ·(1−sgn(x))/2. Furthermore, our method is potentially applicable to more
general piecewise polynomials including step functions (see Remark 1).
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1.1 Our Idea and Technical Overview

Our key idea to identify several core properties of the basic function f essentially
comes from a new interpretation of the previous work [12]. To be precise, [12]
exploits the following identity to construct a comparison algorithm:

lim
k→∞

ak

ak + bk
=


1 if a > b

1/2 if a = b

0 if a < b

 = comp(a, b)

for positive numbers a, b ∈ [1/2, 3/2]. Since very large exponent k = 2d is re-
quired to obtain a comparison result within small error, they suggest to iter-
atively compute a ← a2/(a2 + b2) and b ← b2/(a2 + b2) with an initial step
a← a/(a+ b) and b← b/(a+ b), which results in a2

d

/(a2
d

+ b2
d

) ' comp(a, b)
after d iterations. The inverse operation 1/(a2+b2) in each iteration is computed
by Goldschmidt’s division algorithm [30].

The computational inefficiency of the comparison algorithm in [12] mainly
comes from that inverse operation which should be done at least d times. Then,
the natural question would be

“How can we construct an efficient comparison algorithm
without inverse operation?”

To do this, we analyze the comparison algorithm in [12] with a new perspective.
Let f0(x) = x2/(x2 + (1 − x)2), then each iteration a ← a2/(a2 + b2) and
b← b2/(a2+b2) can be interpreted as an evaluation of f0(a) and f0(b) = 1−f0(a)
for 0 ≤ a, b ≤ 1, respectively. Indeed, the d iterations correspond to the d-time
composition of the basic function f0 denoted by f (d)0 := f0 ◦ f0 ◦ · · · ◦ f0, and the
comparison algorithm can be interpreted as approximating (sgn(2x− 1) + 1)/2

by a composite polynomial f (d)0 .
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Fig. 1: Illustration of f (d)0 for d = 1, 2, 3
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Our key observation on the basic function f0 is that we actually do not
need the exact formula of f0(x) = x2/(x2 + (1− x)2). Instead, it suffices to use
other polynomials with similar shape to f0: convex in [0, 0.5], concave in [0.5, 1],
symmetric to the point (0.5, 0.5), and have a value 1 at x = 1. For example,
the composition h(d)1 of our devised polynomial h1(x) = −2x3 + 3x2, which has
similar shape to f0, gets close to (sgn(2x− 1) + 1)/2 as d increases. As a result,
we can approximate the comparison function by a composite polynomial f (d) for
some constant-degree polynomial f with several core properties, and identifying
these core properties is the most important step in our algorithm construction.

Core Properties of f . Since the sign function is equivalent to the comparison
function, via sgn(x) = 2 · comp(x, 0) − 1 and comp(a, b) = (sgn(a − b) + 1)/2,
it is enough to find a polynomial f such that f (d)(x) gets close to sgn(x) over
[−1, 1] for some proper d. The core properties of f are as following:

Prop I. f(−x) = −f(x)
Prop II. f(1) = 1, f(−1) = −1
Prop III. f ′(x) = c(1− x)n(1 + x)n for some constant c > 0

The first property is necessary from the origin symmetry of the sign function,
and the second property is required to achieve limd→∞ f (d)(x) = 1 for 0 < x ≤ 1.
The last property makes f to be concave in [0, 1] and convex in [−1, 0], and the
multiplicity n of ±1 in f ′(x) accelerates the convergence of f (d) to the sign
function. Interestingly, for each n ≥ 1, a polynomial fn satisfying above three
properties is uniquely determined as

fn(x) =

n∑
i=0

1

4i
·
(
2i

i

)
· x(1− x2)i.

Since sgn(x) is a discontinuous function at x = 0, the closeness of a polyno-
mial f(x) to sgn(x) should be considered carefully. Namely, we do not consider a
small neighborhood (−ε, ε) of zero when measuring the difference between f(x)
and sgn(x) (if not, the infinite norm is always ≥ 1). In Section 3.2, we prove that
the infinite norm of f (d)n (x) − sgn(x) over [−1,−ε] ∪ [ε, 1] is smaller than 2−α

if d ≥ dn for some dn > 0. Then, (f (dn)n (a − b) + 1)/2 outputs an approximate
value of comp(a, b) within 2−α error for a, b ∈ [0, 1] satisfying |a− b| ≥ ε.

Acceleration Method. Along with {fn}n≥1, we provide another family of odd
polynomials {gn}n≥1 which reduces the required number of polynomial compo-
sitions dn. At a high-level, we can interpret dn as dn := dε + dα where each of
the terms dε and dα has distinct aim as following: The first term dε is a required
number of compositions to map the interval [ε, 1] into the interval [1 − τ, 1] for
some fixed constant 0 < τ < 1 (typically, τ = 1/4), and the second term dα is a
required number of compositions to map [1− τ, 1] into [1− 2−α, 1], i.e.,

f (dε)n ([ε, 1]) ⊆ [1− τ, 1],
f (dα)n ([1− τ, 1]) ⊆ [1− 2−α, 1].
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In this perspective, our idea is to reduce dε by substituting f (dε+dα)n with f (dα)n ◦
g
(dε)
n for some other (2n+ 1)-degree polynomial gn with weaker properties than
the core properties of fn. Since the first dε compositions only need to map [ε, 1]
into [1− τ, 1], Prop II & III are unnecessary in this part. Instead, the following
property along with Prop I is required:

Prop IV. ∃ 0 < δ < 1 s.t. x < gn(x) ≤ 1 for x ∈ (0, δ] and gn([δ, 1]) ⊆ [1− τ, 1]

For gn satisfying Prop I & IV, the composition g
(d)
n does not get close to

the sign function as d increases; however, we can guarantee that g(dε)n ([ε, 1]) ⊆
[1− τ, 1] for some dε > 0 which is exactly the aim of first dε compositions. With
some heuristic properties on gn obtained by Algorithm 2, the required number
of the first-part compositions dε is reduced by nearly half (see Section 3.5).

1.2 Our Results

New Comparison Methods with Optimal Complexity. We first propose
a family of polynomials {fn}n≥1 whose composition f (d)n gets close to the sign
function (in terms of (α, ε)-closeness) as d increases. Based on the approximation

f
(d)
n (a− b) + 1

2
' sgn(a− b) + 1

2
= comp(a, b),

we construct a new comparison algorithm NewComp(a, b;n, d) which achieves op-
timal asymptotic complexity among the polynomial evaluations obtaining an ap-
proximate value of comparison within a certain level of error. The following
theorem is the first main result of our work:

Theorem 1. If d ≥ 2+o(1)
logn · log(1/ε) +

1
logn · logα+O(1), the comparison algo-

rithm NewComp(a, b;n, d) outputs an approximate value of comp(a, b) within 2−α

error for a, b ∈ [0, 1] satisfying |a− b| ≥ ε.

The theorem implies that one can obtain an approximate value of comp(a, b)
within 2−α error for a, b ∈ [0, 1] satisfying |a−b| ≥ ε with Θ(log(1/ε))+Θ(logα)+
O(1) complexity and depth with NewComp.

We also provide another family of polynomials {gn}n≥1, which enables to
reduce the number of polynomial compositions by substituting f (d)n with f (df )n ◦
g
(dg)
n . From the mixed polynomial composition, we construct another comparison
algorithm NewCompG with the following result:

Theorem 2 (Heuristic). If dg ≥ 1+o(1)
logn ·log(1/ε)+O(1) and df ≥ 1

logn ·logα+
O(1), the comparison algorithm NewCompG(a, b;n, df , dg) outputs an approximate
value of comp(a, b) within 2−α error for a, b ∈ [0, 1] satisfying |a− b| ≥ ε.

Since gn and fn have the same degree, the total depth and computational com-
plexity of NewCompG are strictly smaller than those of NewComp.
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The variety on choosing n in our comparison algorithms provides flexibility
in complexity-depth tradeoff. For instance, one can choose n = 4 to achieve the
minimal computational complexity (see Section 3.4). On the other hand, if one
wants to obtain comparison results with larger complexity but smaller depth,
one can choose n larger than 4. Assuming some heuristic properties of gn, the
total depth of NewCompG(·, ·;n, df , dg) gets close to the theoretical minimal depth
as n increases (see Section 3.5).

Improved Performance. For two 8-bit integers which are encrypted by an
approximate HE scheme HEAAN [11], the comparison algorithm NewComp (for
ε = 2−8 and α = 8) takes 0.9 milliseconds in amortized running time, and the
performance is twice accelerated by applying the other comparison algorithm
NewCompG. The implementation result on NewCompG is about 8 times faster than
that on the comparison algorithm of the previous work [12] based on HEAAN.
Note that this performance gap grows up as the bit-length of input integers
increases: For two encrypted 20-bit integers, our algorithm NewCompG is about
30 times faster than the previous work.

Application to Max. Since the max function is expressed by the sign function
as max(a, b) = a+b

2 + a−b
2 ·sgn(a−b), we can directly obtain max algorithms from

the family of polynomials {fn}n≥1 (and hence {gn}n≥1). Our max algorithms
NewMax and NewMaxG outperform the max algorithm in the previous work [12]
in terms of both computational complexity and depth. To be precise, the max
algorithm in [12] requires 4α+O(1) depth and 6α+O(1) complexity to obtain
an approximate value of min/max of two numbers in [0, 1] within 2−α error. In
our case, the max algorithm NewMax applying f4 only require 3.08α+O(1) depth
and complexity, and it can be even reduced to 1.54α+1.72 logα+O(1) by using
the other max algorithm NewMaxG. In practice, for encrypted 20-bit integers our
NewMaxG algorithm is 4.5 times faster than the max algorithm in [12].

Moreover, our max algorithms fundamentally solve a potential problem of the
max algorithm in [12] when inputs are encrypted by HEAAN. When two input
numbers are too close so that the difference is even smaller than approximate
errors of HEAAN, then the max algorithm in [12] may output a totally wrong
result; in contrast, our max algorithms works well for any inputs from [0, 1].

1.3 Related Works

Numerical Analysis on the Sign Function. In the literature of numerical
analysis, to the best of our knowledge, there exist two main approaches on the
polynomial approximation of the sign function. One is to naively apply general
polynomial approximation methods (Taylor, least squares, minimax, etc.), and
the other is to apply Newton’s root-finding algorithm on a function which has
±1 as roots.

General polynomial approximation methods provide an approximate poly-
nomial with minimal degree under a certain upper bound of the approximate
error. However, the evaluation of such approximate polynomial requires at least
Θ(
√
degree) multiplications, which yields super-large computational complexity
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when we aim to obtain a high-precision approximation. For example, when we
want to obtain an approximate polynomial of the sign function with α-bit preci-
sion over [−1,−2−α] ∪ [2−α, 1] via general polynomial approximation methods,
the required computational complexity is at least Θ(

√
α ·2α/2) which is exponen-

tial to α (see Section 2.2 for more details). There have been recent works [8, 32]
applying Chebyshev polynomial approximation (on the sine function) instead
of the minimax polynomial approximation for better efficiency. However, the
Chebyshev polynomial approximation method still requires exponential compu-
tational complexity with respect to α when it is applied to the sign function.

Newton’s root-finding algorithm outputs an approximate value of roots of a
function r(x) by iteratively computing xn+1 = xn − r(xn)

r′(xn)
for an initial point

x0. That is, an iterative computation of the function f(x) = x − r(x)
r′(x) gives

an approximate value to one of the roots of r. The most simple choice of r to
compute the sign function is r(x) = 1 − x2 which derives f(x) = 1

2 ·
(
x+ 1

x

)
so-called Newton’s method [34, 36]. There have also been several attempts to
improve the convergence rate of this iterative method to the sign function by
changing f to f(x) = 3x+x3

1+3x2 (Halley’s method [42]), f(x) = 5x+10x3+x5

1+10x2+5x4 [18], and
f(x) = 10x+98x3+126x5+22x7

1+42x2+140x4+70x6+3x8 [46].c However, all these methods commonly re-
quire the inverse operation, and additional polynomial approximation on inverse
is required to apply these methods in HE as the previous work [12]. Consequently,
these methods are much less efficient than our methods for the evaluation of the
sign function in HE due to a number of expensive inverse operations.

There has been proposed another choice of r that makes f a polynomial as
in this paper, so-called Newton-Schulz method [34, 36]. When we take r(x) =
1 − 1/x2, the function f is expressed as f(x) = x

2 · (3 − x
2) and we can obtain

an approximate value of the sign function by the iterative computation of f .
Interestingly, this function is one of our devised polynomials f1. However, we
note that the design rationale of our methods, setting core properties of f that
makes f (d) get close to the sign function as d increases, is totally different from
that of the Newton’s root-finding method. With Newton’s method it is not clear
at all how to generalize f1 to fn for n > 1 or how to obtain the intuition for
devising other polynomials {gn}n≥1 for convergence acceleration. Our methods
applying {fn}n>1 and {gn}n≥1 achieve much less computational complexity and
depth than the previous numerical method (see Section 3.4 and Section 3.5).

HE-based Comparison Methods. There have been several works on com-
parison algorithms for HE schemes [7, 11, 24] basically supporting addition and
multiplication. The most recent work was proposed by Cheon et al. [12] which
exploits the identity comp(a, b) = limk→∞

ak

ak+bk
for a, b > 0 with an iterative

inverse algorithm. Their comparison algorithm requires Θ(α logα) complexity,

cIn fact, this line of work in numerical analysis aims to compute the matrix sign
function [36] which is a more general object than the sign function in our context. An
inverse operation is not much more costly than a multiplication in their (asymptotic)
cost analysis and experiments, which is a crucial difference from HE which requires an
additional costly polynomial approximation for inverse [12].

7



which is quasi-optimal, to obtain an approximate value of comp(a, b) within 2−α

error for a, b ∈ [1/2, 3/2] satisfying max(a, b)/min(a, b) ≥ 1 + 2−α.
There have been several approaches to approximate the sign function by

polynomials to obtain a comparison algorithm. In 2018, Boura et al. [5] pro-
posed an analytic method to compute the sign function by approximating it
via Fourier series over a target interval which has an advantage on numerical
stability. In this method, one should additionally consider the error induced by
the polynomial approximation on eix. Another approach is to approximate the
sign function by tanh(kx) = ekx−e−kx

ekx+e−kx
for sufficiently large k > 0 [14]. In order

to efficiently compute tanh(kx), they repeatedly apply the double-angle formula
tanh(2x) = 2 tanh(x)

1+tanh2(x)
≈ 2x

1+x2 where the inverse operation is substituted by a
low-degree minimax approximate polynomial. This procedure can be interpreted
as a composition of polynomial f which is the low-degree minimax approxima-
tion polynomial of 2x

1+x2 . However, their method does not catch core properties
of the basic polynomial f (e.g., f(1) = 1), so the error between f (d) and sgn(x)
cannot be reduced below a certain bound even if we increase d to ∞. As an
independent work, Bajard et al. [4] recently proposed a new approach to ap-
proximately compute the sign function by applying the Newton’s root-finding
method on the function r(x) = 1−1/x2, which corresponds to one of our devised
polynomials f1.

When each bit of message is encrypted separately [13, 16, 20], one can perform
a comparison operation of two α-bit integers with O(logα) depth and O(α) com-
plexity. The bit-by-bit encryption method was recently generalized to encrypt
an integer a after decomposing it as a =

∑
aib

i for a power of small prime
b = pr [47]. However, since these encryption methods are quite inefficient for
addition and multiplication, they are not desirable when comparison operations
are mixed with a number of polynomials such as cluster analysis and gradient
tree boosting.

2 Preliminaries

2.1 Notations

All logarithms are of base 2 unless otherwise indicated, and e denotes the Euler’s
constant. Z, R and C denote the integer ring, the real number field and complex
number field, respectively. For a finite set X, we denote the uniform distribution
over X by U(X). For a real-valued function f defined over R and a compact
set I ⊂ R, we denote the infinity norm of f over the domain I by ||f ||∞,I :=
maxx∈I |f(x)|. The d-times composition of f is denoted by f (d) := f ◦ f ◦ · · · ◦ f .
We denote the sign function and the comparison function by

sgn(x) :=


1 if x > 0

0 if x = 0

−1 if x < 0

, comp(a, b) :=


1 if a > b

1/2 if a = b

0 if a < b

,
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which are in fact equivalent to each other by comp(a, b) = (sgn(a− b) + 1)/2.
For α > 0 and 0 < ε < 1, we say a polynomial f is (α, ε)-close to sgn(x) over

[−1, 1] if it satisfies

||f(x)− sgn(x)||∞,[−1,−ε]∪[ε,1] ≤ 2−α.

For a, b ∈ R, we denote the complexity a·log(1/ε)+b·logα+O(1) by L(a, b). The
O notation in this paper regards to α and 1/ε. In the rest of this paper, we only
consider the (non-scalar) multiplicative depth and (non-scalar) multiplicative
computational complexity, i.e., we do not count the number of additions nor
scalar multiplications in computational complexity.

2.2 Minimax Polynomial Approximation Method

In this paper, we measure the accuracy of polynomial approximation methods
by the maximal error between the target function and an approximate polyno-
mial over a predetermined domain. In this respect, the minimax approximation
method provides the best approximate polynomials among general polynomial
approximation methods. For a positive odd integer k, let us denote by pk,ε the
degree-k polynomial p which minimizes ||sgn(x) − p(x)||∞,[−1,−ε]∪[ε,1]. For the
sign function sgn(x), there exists a tight lower bound on the approximation error:

lim
k→∞

√
k − 1

2
·
(
1 + ε

1− ε

) k−1
2

· ||sgn(x)− pk,ε(x)||∞,[−1,−ε]∪[ε,1] =
1− ε√
πε

for 0 < ε < 1, which was proved by Eremenko and Yuditskii [23]. More general
works on minimax polynomial approximation of piecewise analytic function have
been proposed [2, 44], but [23] provides more tight and accurate results on error
analysis for the sign function.

Assume that k is large enough so that the left-hand side
√

k−1
2 ·

(
1+ε
1−ε

) k−1
2 ·

||sgn(x)− pk,ε(x)||∞,[−1,−ε]∪[ε,1] is sufficiently close to the limit value. To bound
the approximation error by 2−α for sgn(x) over [−1,−ε] ∪ [ε, 1], the degree k
should be chosen to satisfy√

k − 1

2
·
(
1 + ε

1− ε

) k−1
2

·
√
πε

1− ε
> 2α,

which implies that k should be at least Θ(α/ε) from the fact log
(

1+ε
1−ε

)
≈

ε
2 for small ε. Then, the evaluation of the polynomial pk,ε requires at least

logα+log(1/ε)+O(1) depth and Θ
(√

α/ε
)
complexity applying the Paterson-

Stockmeyer method [43] which is asymptotically optimal.
There exists a well-known theorem called the equioscillation theorem at-

tributed to Chebychev, which specifies the shape of the minimax approximate
polynomial pk,ε.
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Lemma 1 (Equioscillation Theorem for sign function [23]). Let sgn(x)
be the sign function (Section 2.1). For k ≥ 1 and 0 < ε < 1, an odd polynomial
pk,ε of degree (2k + 1) minimizes the infinity norm ||sgn− pk,ε||∞,[−1,−ε]∪[ε,1] if
and only if there are k + 2 points ε = x0 < x1 < · · · < xk+1 = 1 such that
sgn(xi)− pk,ε(xi) = (−1)i||sgn− pk,ε||∞. Here, x1, x2,..., xk are critical points.

Note that the if-and-only-if statement of the above lemma also implies the
uniqueness of the minimax polynomial approximation of sgn(x) on [−1,−ε]∪[ε, 1]
for given ε and degree 2k+ 1. In the rest of paper, we will use the fact that pk,ε
is concave and increasing in the interval [0, x0] (in fact it holds for [0, x1]).

2.3 Homomorphic Encryption

HE is a cryptographic primitive which allows arithmetic operations including
addition and multiplication over encrypted data without decryption process. HE
is regarded as a promising solution which prevents leakage of private information
during analyses on sensitive data (e.g., genomic data, financial data). A number
of HE schemes [6, 7, 11, 15, 22, 24, 28] have been suggested following Gentry’s
blueprint [27], and achieving successes in various applications [5, 9, 29, 37].

In this paper, we mainly focus on word-wise HE schemes, i.e., the HE schemes
whose basic operations are addition and multiplication of encrypted message
vectors over Z/pZ for p ≥ 2 [7, 24, 28] or the complex number field C [11]. An
HE scheme consists of the following algorithms:

• KeyGen(params). For parameters params determined by a level parameter L
and a security parameter λ, output a public key pk, a secret key sk, and an
evaluation key evk.

• Encpk(m). For a message m, output the ciphertext ct of m.
• Decsk(ct). For a ciphertext ct of m, output the message m.
• Addevk(ct1, ct2). For ciphertexts ct1 and ct2 of m1 and m2, output the cipher-

text ctadd of m1 +m2.
• Multevk(ct1, ct2). For ciphertexts ct1 and ct2 of m1 and m2, output the ci-

phertext ctmult of m1 ·m2.

Though any arithmetic circuit can be computed by HE theoretically, the num-
ber of multiplications and multiplicative depth of the circuit are major factors
affecting the practical performance and feasibility in real-world applications.

3 Our New Comparison Method

Since the comparison function and the sign function are equivalent, it suffices
to find a nice approximate polynomial (with one variable) of the sign function
instead of the comparison function (with two variables). In this section, we will
introduce new polynomial approximation methods for the sign function which
we call composite polynomial approximation, and analyze their computational
efficiency. As in [12], we assume that the input numbers are contained in the
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bounded interval [0, 1], since x ∈ [c1, c2] for known constants c1 < c2 can be
scaled down into [0, 1] via mapping x 7→ (x−c1)/(c2−c1). Therefore, the domain
of sgn(x) we consider in this paper is [−1, 1].

3.1 Composite Polynomial Approximation of Sign Function

As described in [12], approximating a non-polynomial function by composite
polynomials has an advantage in computational complexity: A composite func-
tion F of a constant-degree polynomial f , i.e., F := f◦f◦· · ·◦f , can be computed
within O(log(degF )) complexity, while the evaluation of an arbitrary polynomial
G requires at least Θ(

√
degG) [43]. However, even if this methodology achieves a

log-degree computational complexity, it would be meaningless if the total degree
of F is extremely large (e.g., degF = 2degG). Therefore, it is very important
to well-design a constant polynomial f so that it requires small d to make f (d)
sufficiently close to sgn(x) over [−1, 1]. Since sgn(x) is discontinuous at x = 0,
we are not able to obtain a nice polynomial approximation of sgn(x) over (−ε, ε)
for any 0 < ε < 1. As a result, we set our goal to find f whose composition f (d)
is (α, ε)-close to the sign function for α > 0 and 0 < ε < 1 with small d.

The key observation for designing such polynomial f is as follows: For x0 ∈
[−1, 1], let xi be the i-time composition value f (i)(x0). Then, the behavior of
xi’s can be easily estimated with the graph of f . For example, given x0 on the
x-coordinate, x1 can be identified by the x-coordinate of the intersection point of
the graph y = x and the horizontal line y = f(x0). Note that we can iteratively
estimate xi+1 with the previous point xi (see Figure 2).

-1 1

−1

1

x0 x1 x2

x0x1x2

x

f(x)

Fig. 2: Behavior of xi = f (i)(x0) for f(x) = − 5
16x

7 + 21
16x

5 − 35
16x

3 + 35
16x

In this perspective, the basic polynomial f should be constructed so that xi
gets close to 1 if x0 ∈ (0, 1] and −1 if x0 ∈ [−1, 0) as i increases. We can formally
identify three properties of f as follows: Firstly, since the sign function is an odd
function, we also set f to be an odd function. Secondly, we set f(1) = 1 and
f(−1) = −1 to make f (d)(x) point-wise converge to sgn(x) whose value is ±1
for x 6= 0. More precisely, if f (d)(x) for some x ∈ [−1, 1] converges to y as d

11



increases, it must hold that f(y) = f
(
limd→∞ f (d)(x)

)
= limd→∞ f (d)(x) = y.

Lastly, f should be considered as a better polynomial if it is more concave over
[0, 1] (hence more convex over [−1, 0]), which will accelerate the convergence of
f (d) to the sign function. In order to increase convexity, we set the derivative
function f ′ of f to have maximal multiple roots at 1 and −1. These properties
are summarized as following.

Core Properties of f :

Prop I. f(−x) = −f(x) (Origin Symmetry)

Prop II. f(1) = 1, f(−1) = −1 (Convergence to ±1)
Prop III. f ′(x) = c(1− x)n(1 + x)n for some c > 0 (Fast convergence)

For a fixed n ≥ 1, a polynomial f of the degree (2n + 1) satisfying those
three properties is uniquely determined, and we denote this polynomial by fn
(and the uniquely determined constant c by cn): From Prop I and III, we get
fn(x) = cn

∫ x
0
(1 − t2)ndt, and the constant cn is determined by Prop II. By

applying the following identity∫ x

0

cosm t dt =
1

m
· cosm−1 x · sinx+

m− 1

m
·
∫ x

0

cosm−2 t dt

which holds for any m ≥ 1, we obtain

fn(x) =

n∑
i=0

1

4i
·
(
2i

i

)
· x(1− x2)i.

See Appendix A for more details. Hence, we can easily compute fn as following:

• f1(x) = − 1
2x

3 + 3
2x

• f2(x) = 3
8x

5 − 10
8 x

3 + 15
8 x

• f3(x) = − 5
16x

7 + 21
16x

5 − 35
16x

3 + 35
16x

• f4(x) = 35
128x

9 − 180
128x

7 + 378
128x

5 − 420
128x

3 + 315
128x

Since
(
2i
i

)
= 2 ·

(
2i−1
i−1
)
is divisible by 2 for i ≥ 1, every coefficient of fn can be

represented as m/22n−1 for m ∈ Z.

Size of the Constant cn. The constant cn takes an important role on the
convergence of f (d)n (on d) to the sign function. Informally, since the coefficient
of x term is exactly cn, we can regard fn as fn(x) ' cn · x for small x > 0, and
then it holds that 1 − fn(x) ' 1 − cn · x ' (1 − x)cn . In the next subsection,
we will present a rigorous proof of the inequality 1 − fn(x) ≤ (1 − x)cn for
0 < x < 1. (see Section 3.2). From a simple computation, we obtain cn as a
linear summation of binomial coefficients

cn =

n∑
i=0

1

4i

(
2i

i

)
,

which is simplified by the following lemma.

12



-1 1

−1

1
f1

f2

f3

f4

(a) fn for n = 1, 2, 3, 4

-1 1

−1

1
f
(2)
1

f
(4)
1

f
(6)
1

(b) f (d)
1 for d = 2, 4, 6

Fig. 3: Illustration of f (d)n

Lemma 2. It holds that cn =
∑n
i=0

1
4i

(
2i
i

)
= 2n+1

4n

(
2n
n

)
.

Proof. We prove the statement by induction. It is easy to check for n = 1.
Assume that cn = 2n+1

4n

(
2n
n

)
for some n ≥ 1. Then, it holds that

cn+1 = cn +
1

4n+1

(
2n+ 2

n+ 1

)
=

1

4n+1
·
(
2 · (2n+ 2)!

(n+ 1)!n!
+

(2n+ 2)!

(n+ 1)!(n+ 1)!

)
=

2n+ 3

4n+1

(
2n+ 2

n+ 1

)
.

Therefore, the lemma is proved by induction. ut

To measure the size of cn, we apply Wallis’s formula [35] which gives us very
tight lower and upper bound:

1√
π
· 2n+ 1√

n+ 1
2

<
2n+ 1

4n

(
2n

n

)
<

1√
π
· 2n+ 1√

n
.

From the inequality, we can check that cn = Θ(
√
n), which diverges as n→∞.

Remark 1. Our method can be naturally generalized to the composite polyno-
mial approximation on step functions. For example, if we substitute Prop III by
f ′(x) = cx2m(1− x2)n for m,n ≥ 1, then f (d) would get close to a step function
F (as d increases) such that F (x) = −1 if x ∈ [−1,−t), F (x) = 0 if x ∈ [−t, t]
and F (x) = 1 if x ∈ (t, 1], for some 0 < t < 1 as d increases.

3.2 Analysis on the Convergence of f (d)
n

In this subsection, we analyze the convergence of f (d)n to the sign function as
d increases. To be precise, we give a lower bound of d which makes f (d)n (α, ε)-
close to the sign function. The following lemma gives a nice upper bound on

13



1 − fn(x), which is even tighter than the Bernoulli’s inequality [41]: This well-
known inequality implies 1− cnx ≤ (1− x)cn , but since 1− cnx ≤ 1− fn(x) we
cannot directly obtain the upper bound of 1− fn(x) from this inequality.

Lemma 3. It holds that 0 ≤ 1− fn(x) ≤ (1− x)cn for x ∈ [0, 1].

Proof. It is trivial that fn(x) ≤ fn(1) = 1 for x ∈ [0, 1]. We will prove G(x) :=
(1− x)cn − (1− fn(x)) ≥ 0 for x ∈ [0, 1] by showing

1. G(0) = G(1) = 0,
2. there exists x0 ∈ (0, 1) s.t. G(x0) > 0,
3. there exists a unique y0 ∈ (0, 1) s.t. G′(y0) = 0.

We first check why these three conditions derive the result G(x) ≥ 0. Assume
that there exists x1 ∈ (0, 1) such that G(x1) < 0. Since G is continuous, there
exists a root x2 of G between x0 and x1. Then by the mean value theorem,
there exist y1 ∈ (0, x2) and y2 ∈ (x2, 1) satisfying G′(y1) = G′(y2) = 0, which
contradicts to the third condition.

Now we prove the three conditions. The first condition is trivial. To show
the second condition, we observe G(0) = 0, G′(0) = 0 and G′′(0) > 0 which can
be easily checked. Since G′′ is continuous, G′(0) = 0 and G′′(0) > 0 imply that
G′(x) > 0 for x ∈ (0, δ) for some δ > 0. Combining with G(0) = 0, we obtain
G(x) > 0 for x ∈ (0, δ) which implies the second condition.

To show the uniqueness, let G′(x) = cn(1− x2)n − cn(1− x)cn−1 = 0. Then
it holds that (1− x)n−cn+1 · (1 + x)n = 1 for x ∈ (0, 1) which is equivalent to

log(1 + x)

log (1− x)
= −n− cn + 1

n
.

Since log(1+ x)/ log(1− x) is a strictly increasing function, there should exist a
unique y0 ∈ (0, 1) satisfying the equation which implies G′(y0) = 0. ut

We give another inequality on 1− fn(x) which is tighter than the inequality
in the previous lemma when x is close to 1.

Lemma 4. It holds that 0 ≤ 1− fn(x) ≤ 2n · (1− x)n+1 for x ∈ [0, 1].

Proof. Let y = 1− x, and set

H(y) =
cn · 2n

n+ 1
· yn+1 − (1− fn(1− y)).

Then H ′(y) = cn · 2n · yn − f ′n(1 − y) = cn · 2n · yn − cn · yn(2 − y)n ≥ 0 for
y ∈ [0, 1]. Since H(0) = 0, it holds that H(y) ≥ 0. Therefore, we obtain

1− fn(x) ≤
cn · 2n

n+ 1
· (1− x)n+1 ≤ 2n · (1− x)n+1

for x ∈ [0, 1], where the second inequality comes from cn < n+ 1. ut

Now we obtain the theorem on the convergence of f (d)n to the sign function.
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Theorem 3 (Convergence of f (d)n ). If d ≥ 1
log cn

· log(1/ε)+ 1
log(n+1) · log(α−

1) +O(1), then f (d)n (x) is an (α, ε)-close polynomial to sgn(x) over [−1, 1].

Proof. Since fn is an odd function, it suffices to consider the case that the input
x is non-negative. We analyze the lower bound of d for the convergence of f (d)n by
applying Lemma 3 and Lemma 4. Note that Lemma 3 is tighter than Lemma 4
if x is close to 0 while the reverse holds if x is close to 1. To this end, to obtain
a tight lower bound of d, our analysis is divided into two steps:

Step 1. Since fn is an odd function, it suffices to consider the case x ∈ [ε, 1]

instead of [−1,−ε] ∪ [ε, 1]. Let dε =
⌈

1
log(cn)

· log
(
log
(
1
τ

)
/ε
)⌉

for some constant
0 < τ < 1. Then applying Lemma 3, we obtain following inequality for x ∈ [ε, 1].

1− f (dε)n (x) ≤ (1− x)c
dε
n

≤ (1− ε)log(
1
τ )/ε <

(
1

e

)log( 1
τ )
< τ.

Step 2. Now let dα =
⌈

1
log(n+1) · log

(
(α− 1)/ log

(
1
2τ

))⌉
. Applying previous re-

sult and Lemma 4, we obtain following inequality for x ∈ [ε, 1].

2 ·
(
1− f (dε+dα)n (x)

)
≤
(
2 ·
(
1− f (dε)n (x)

))(n+1)dα

≤ (2τ)(n+1)dα ≤ (2τ)(α−1)/ log(
1
2τ ) = 2−α+1.

Therefore, if d ≥ dε + dα, we obtain 1− f (d)n (x) ≤ 2−α for x ∈ [ε, 1].
Note that the choice of the constant τ is independent to ε and α. When τ =

1/4, then we get dε+dα = 1
log(cn)

· log (1/ε)+ 1
log(n+1) · log(α−1)+ 1

log(cn)
+O(1).

Since 1
log(cn)

≤ 2, the theorem is finally proved. ut

Remark 2. In Appendix D, we also described the erroneous version of the con-
vergence of f (d)n considering the approximate error induced by HEAAN evalua-
tion.

3.3 New Comparison Algorithm NewComp

Now we introduce our new comparison algorithm based on the previous compos-
ite function approximation (Theorem 3) of the sign function. From the identity
comp(a, b) = (sgn(a− b) + 1)/2 and approximation f (d)n (x) ' sgn(x), we get

comp(a, b) ' f
(d)
n (a− b) + 1

2
,

which results in our new comparison algorithm NewComp (Algorithm 1).
It is quite natural that the larger d gives more accurate result. Since the

comparison algorithm NewComp(·, ·;n, d) is obtained from the evaluation of f (d)n ,
Theorem 3 is directly transformed into the context of NewComp as Corollary 1,
which informs us how large d is sufficient to get the result in certain accuracy.
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Algorithm 1 NewComp(a, b;n, d)

Input: a, b ∈ [0, 1], n, d ∈ N
Output: An approximate value of 1 if a > b, 0 if a < b and 1/2 otherwise
1: x← a− b
2: for i← 1 to d do
3: x← fn(x) // compute f (d)n (a− b)
4: end for
5: return (x+ 1)/2

Corollary 1. If d ≥ 1
log cn

· log(1/ε)+ 1
log(n+1) · log(α−2)+O(1), then the error

of the output of NewComp(a, b;n, d) compared to the true value is bounded by 2−α

for any a, b ∈ [0, 1] satisfying |a− b| ≥ ε.

Remark 3. One can substitute non-integer scalar multiplications in the evalua-
tion of fn with integer scalar multiplications by linearly transforming fn to an
integer-coefficient polynomial hn as

hn(x) :=
fn(2x− 1) + 1

2
=

n∑
i=0

1

4i
·
(
2i

i

)
· (2x− 1) · (4x− 4x2)i

=

n∑
i=0

(
2i

i

)
· (2x− 1) · (x− x2)i.

Note that it is easily proved that h(d)n (x) = f(d)(2x−1)+1
2 by induction, so we can

express the comparison functions as

comp(a, b) ' f
(d)
n (a− b) + 1

2
= h(d)n

(
(a− b) + 1

2

)
.

Therefore, Algorithm 1 can be naturally converted into the context of hn which
does not require non-integer scalar multiplications that consume level in HE.

3.4 Computational Complexity of NewComp and its Asymptotic
Optimality

In this subsection, we analyze the computational complexity of our new compar-
ison method, and compare the result with the previous methods. Note that the
(multiplicative) computational complexity of NewComp(·, ·;n, d) equals to that of
evaluating f (d)n , so it suffices to focus on this composite polynomial.

For each n ≥ 1, let Cn be the required number of multiplications (hence the
computational complexity) of fn using some polynomial evaluation algorithm,
and denote the lower bound of d in Theorem 3 by dn := 1

log cn
· log(1/ε) +

1
log(n+1) · log(α − 1) + O(1). Then the total computational complexity of f (dn)n

is TCn := dn ·Cn which varies on the choice of n. When n becomes larger, then
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n Dn Cn dn TDn TCn

1 2 2 L(1.71, 1) L(3.42, 2) L(3.42, 2)

2 3 3 L(1.1, 0.63) L(3.3, 1.89) L(3.3, 1.89)

3 3 4 L(0.89, 0.5) L(2.67, 1.5) L(3.56, 2)

4 4 4 L(0.77, 0.43) L(3.08, 1.72) L(3.08, 1.72)

5 4 5 L(0.7, 0.39) L(2.8, 1.56) L(3.5, 2.45)

6 4 6 L(0.64, 0.36) L(2.56, 1.44) L(3.84, 2.16)

7 4 7 L(0.61, 0.33) L(2.44, 1.32) L(4.27, 2.31)

Table 1: Depth / Computational Complexity of fn and f (dn)n

dn becomes smaller but Cn becomes larger. Namely, there is a trade-off between
dn and Cn, so we need to find the best choice of n which minimizes the total
computational complexity TCn of f (dn)n .

We assume that each polynomial fn is computed by the Paterson-Stockmeyer
method [43] which achieves an optimal computational complexity upto constant.
Then, the depth is Dn := log(deg fn) + O(1) = log n + O(1), and the compu-
tational complexity is Cn := Θ(

√
deg fn) = Θ(

√
n)d. The total depth of f (dn)n

is TDn := dn ·Dn = L
(

logn+O(1)
log cn

, logn+O(1)
log(n+1)

)
(see Section 2.1 for L notation).

Since cn = Θ(
√
n) by Lemma 2, the total depth TDn gets close to L(2, 1) as n

increasese. On the other hand, the total computational complexity of f (dn)n is

TCn := dn · Cn = L

(
1

log cn
·Θ(
√
n),

1

log(n+ 1)
·Θ(
√
n)

)
,

which diverges as n increases, contrary to the total depth TDn. Therefore, the
optimal choice of n which minimize the total complexity TCn exists. The exact
number of multiplications Cn of fn and the exact value of TCn for small n’s are
described in Table 1. From simple computations, we can check that n = 4 gives
the minimal computational complexity TC4.

Asymptotic Optimality. As described in Section 2.2, the minimal degree of an
(α, ε)-close approximate polynomial of the sign function over [−1, 1] is Θ(α/ε).
Since the sign function and the comparison function are equivalent, this implies
that any comparison algorithm on inputs a, b ∈ [0, 1] whose output is within
2−α error when |a − b| ≥ ε requires at least Θ(logα) + Θ(log(1/ε)) complex-
ity. As described above, the computational complexity of NewComp(·, ·;n, dn) is

dThe complexity notations in Dn and Cn only depend on n, not α and ε.
eIt does not mean the “convergence” to L(2, 1) as n → ∞, since the equation

TDn = L
(

logn+O(1)
log cn

, logn+O(1)
log(n+1)

)
only holds when n = O(1) with respect to α and 1/ε.
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Θ(logα) + Θ(log(1/ε)) for each n. Therefore, our method achieves an optimal-
ity in asymptotic computational complexity upto constant, while the previous
method [12] only achieves quasi-optimality with an additional logα factor.

For several settings of α and ε, we compare the computational complexity of
our method to the minimax approximation and the method in [12] as Table 2.

Parameters Minimax Approx. [12] Method Our Method

log(1/ε) = Θ(1) Θ(
√
α) Θ(log2 α) Θ(logα)

log(1/ε) = Θ(α) Θ(
√
α · 2α/2) Θ(α · logα) Θ(α)

log(1/ε) = 2α Θ
(√

α · 22α−1
)

Θ(α · 2α) Θ (2α)

Table 2: Asymptotic Computational Complexity for each Comparison Method

3.5 Heuristic Methodology of Convergence Acceleration

In this subsection, we introduce a heuristic methodology to reduce the con-
stants a and b in L(a, b) of the computational complexity TCn, which accelerates
NewComp in practice.

The intuition of our acceleration method can be found in the proof of The-
orem 3. The proof is divided into two steps: Step 1 is to make f (dε)n ([ε, 1]) ⊆
[1 − τ, 1] for some constant 0 < τ < 1 (applying Lemma 3), and Step 2 is to
make f (dα)n ([1− τ, 1]) ⊆ [1− 2−α, 1] (applying Lemma 4). Our key observation is
that we can accelerate Step 1 by using another function g rather than fn. The
convergence of f (d)n (1 ≤ d ≤ dε) in Step 1 mainly depends on the constant cn,
the derivative of fn at zero. Therefore, we may expect that the required number
of polynomial compositions dε in Step 1 can be reduced if we substitute fn by
some other odd polynomial g which satisfies g′(0) > f ′n(0).

However, we cannot take any g with large derivative at 0, since the range of
g(d) over the domain [ε, 1] must be contained in [1− τ, 1] when d is large enough.
In particular, the polynomial g must satisfy following properties (compare it
with the Core Properties of f in Section 3.1):

Prop I. g(−x) = −g(x) (Origin Symmetry)

Prop IV. ∃ 0 < δ < 1 s.t. x < g(x) ≤ 1 for all x ∈ (0, δ], (Toward [1− τ, 1])
and g([δ, 1]) ⊆ [1− τ, 1] (Keep in [1− τ, 1])

For each g, we denote the minimal δ in Prop IV by δ0 in the rest of paper.
Note that Prop IV is necessary to make g(d)(x) ∈ [1 − τ, 1] for x ∈ [ε, 1]

when d ≥ d0 for some sufficiently large d0 > 0. Intuitively, among all g of the
same degree satisfying above properties, a smaller d is required for g(d)([ε, 1]) ⊆
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[1−τ, 1] if g satisfies Prop IV with smaller δ0 and has bigger value on the interval
(0, δ0) (hence g′(0) is bigger).

We introduce a novel algorithm (Algorithm 2) which outputs a degree-(2n+1)
polynomial denoted by gn,τ having minimal δ0 of Prop IV among all degree-
(2n + 1) polynomials satisfying Prop I & IV. In a certain condition, we can
additionally show that gn,τ (x) > g(x) on x ∈ (0, δ) (hence larger derivative at
zero) for any other polynomials g satisfying Prop I & IV (see Theorem 4 and
Corollary 2). It implies that gn,τ is the best polynomial among all same-degree
polynomials achieving our goal, i.e., g(d)n,τ ([ε, 1]) ⊆ [1− τ, 1] with minimal d.

Algorithm 2 FindG(n, τ)

Input: n ≥ 1, 0 < τ < 1
Output: A degree-(2n+1) polynomial gn,τ satisfying Prop I & IV with minimal

δ of Prop IV.
1: gn,τ ← x // Initialize gn,τ (x) = x
2: repeat
3: δ0 ← minimal δ s.t. gn,τ ([δ, 1]) ⊆ [1− τ, 1] // Initial δ0 is 1− τ
4: gmin ← degree-(2n+ 1) minimax approx. poly. of (1 − τ

2 ) · sgn(x) over
[−1,−δ0] ∪ [δ0, 1]

5: gn,τ ← gmin
6: S ← ||gn,τ − (1− τ

2 )||∞,[δ0,1]
7: until S == τ

2
8: return gn,τ

In Algorithm 2, the equality check S == τ
2 on line 7 is done with a certain

precision in practice (e.g., 2−10 or 2−53). Note that S converges (increases) to
τ
2 , δ0 converges (decreases) to some δconv > 0, and hence gn,τ converges to
some polynomial gconvn,τ (see Appendix B). From this, we obtain two facts: First,
Algorithm 2 terminates in finite iterations given a finite precision for the equality
check. Second, the algorithm output satisfies Prop I & IVf.

We provide a theoretical analysis on gconvn,τ to which gn,τ converges, which
we call the ideal output polynomial of Algorithm 2. Note that the ideal output
polynomial gconvn,τ satisfies ||gconvn,τ − (1− τ

2 )||∞,[δ0,1] =
τ
2 . The following theorem

shows the optimality of gconvn,τ , which implies that the real output of Algorithm 2
with a certain precision is nearly optimal.

Theorem 4 (Optimality of gconvn,τ ). The ideal output polynomial gconvn,τ of Al-
gorithm 2 satisfies Prop I & IV with minimal δ0 among all degree-(2n+1) poly-
nomials satisfying Prop I & IV. Let x2 > 0 be the smallest positive x-coordinate

fIn every iteration of Algorithm 2, the minimax approximate polynomial gmin of
(1 − τ

2
) · sgn(x) over [−1, δ0] ∪ [δ0, 1] satisfies Prop I & IV. Prop I is trivial, and

gmin([δ0, 1]) ⊂ [1− τ, 1] by Lemma 1. Since gmin(δ0) > 1− τ ≥ δ0 and gmin is concave
& increasing in [0, δ0], it holds that x < gmin(x) < 1 for x ∈ (0, δ0].
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of local minimum points of gn,τ following the notation in Lemma 1 (If local
minimum does not exist, set x2 = 1). If x2 ≥ 1 − τ , then gn,τ (x) > g(x) for
x ∈ (0, δ0) for any other degree-(2n+ 1) polynomial g satisfying Prop I & IV.

Proof. Let δconv be the minimal δ such that gconvn,τ ([δ, 1]) ⊆ [1 − τ, 1]. Assume
that there exists a degree-(2n + 1) polynomial g satisfying Prop I & IV with
δ ≤ δconv. By Prop IV, we get ||g − (1 − τ

2 )||∞,[δ,1] ≤
τ
2 , and then it trivially

holds that ||g− (1− τ
2 )||∞,[δconv,1] ≤

τ
2 = ||gconvn,τ − (1− τ

2 )||∞,[δconv,1]. Therefore,
g = gconvn,τ by Lemma 1 which implies the minimality of δconv.

Now we prove the second statement. Let g be a degree-(2n+ 1) polynomial
satisfying Prop I & IV which is distinct from gconvn,τ , and δg be the minimal δ such
that g([δ, 1]) ⊆ [1−τ, 1]. From the minimality of δconv and Prop IV, it holds that
δconv < δg ≤ 1−τ ≤ x2. By Lemma 1, gconvn,τ oscillates on [δconv, 1] with 1 and 1−τ
as maximum and minimum, respectively, and it has n critical points in (δconv, 1).
Since g([δg, 1]) ⊆ [1 − τ, 1] and δg ≤ x2, the polynomial g intersects with gconvn,τ

on at least n points in [δg, 1]: when g(x) = gconvn,τ (x) and g′(x) = gconv
′

n,τ (x), then
x is counted as two points (see Figure 4). Now our second argument is proved as
following: If g(x) ≥ gconvn,τ (x)g on some x ∈ (0, δconv) ⊂ (0, δg), then g and gconvn,τ

intersect on at least one point in (0, δg) by intermediate value theorem since there
exists y ∈ (δconv, δg) such that g(y) < 1 − τ ≤ gconvn,τ (y) by the definition of δg.
This leads to a contradiction since g and gconvn,τ intersect on 2(n+1)+1 = 2n+3
points (the factor 2 comes from the fact that both are odd polynomials) including
the origin while the degree of both g and gconvn,τ is 2n + 1 < 2n + 3. Therefore,
gconvn,τ (x) > g(x) for all x ∈ (0, δconv). ut

Corollary 2. Let gconvn,τ be the ideal output polynomial of Algorithm 2, and δ0
be the corresponding minimal δ satisfying Prop IV. If n = 1, (n, τ) = (2, 0.25),

δ0 δg x2 1

1− τ

1

0
0

g

gconvn,τ

(a) Intersections without multiplicity

δ0 δg x2 1

1− τ

1

0
0

g

gconvn,τ

(b) Intersection with multiplicity at x2

Fig. 4: Example description of intersections of g and gconvn,τ for n = 3

gIf g(x) = gconvn,τ (x) on some x ∈ (0, δ0), it is the point of intersection in (0, δg), and
proof continues.
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or (n, τ) = (3, 0.35), then δ0 < δg and gconvn,τ (x) > g(x) on x ∈ (0, δ0) for any
other degree-(2n+ 1) polynomial g satisfying Prop I & IV.

Though gn,τ is hard to be expressed in closed form contrary to fn, we can find
it with a certain precision (e.g., 2−10) by running Algorithm 2 in MATLAB. For
example, we provide explicit descriptions of the polynomials gn,τ for n = 1, 2, 3, 4
and τ = 1

4 . In this case, the equality check in Algorithm 2 was done with 10−4

precision. We omit the subscript τ of gn,τ for τ = 1
4 for convenience.

• g1(x) = − 1359
210 · x

3 + 2126
210 · x

• g2(x) = 3796
210 · x

5 − 6108
210 · x

3 + 3334
210 · x

• g3(x) = − 12860
210 · x

7 + 25614
210 · x

5 − 16577
210 · x

3 + 4589
210 · x

• g4(x) = 46623
210 · x

9 − 113492
210 · x7 + 97015

210 · x
5 − 34974

210 · x
3 + 5850

210 · x

−1 1

−1
τ − 1

1− τ
1

g1
g2
g3
g4

−1 1

−1

1 f
(5)
1

f
(3)
1 ◦ g(2)1

Fig. 5: Illustration of gn and the comparison of f (df+dg)1 and f (df )1 ◦ g(dg)1

We can empirically check that gn also satisfies the following two heuristic
properties. The first property shows how large g′n(0) is when it compared to
f ′n(0), and the second property shows how fast gn(x) gets close to ±1, i.e., the
gn-version of Lemma 3.

Heuristic Properties of gn:

1. g′n(0) ' 0.98 · f ′n(0)2 (Hence, log g′n(0) ' 2 · log cn)
2. 1− gn(x) ≤ (1− x)g′n(0) for x ∈ [0, δ0] where δ0 is the minimal δ in Prop IV

Experimental results supporting above heuristic properties are described in Ap-
pendix C. Applying these gn polynomials, we can provide a new comparison
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algorithm (Algorithm 3), which is a modified version of Algorithm 1 and offers
the same functionality with the reduced computational complexity and depth.
We can also estimate the number of compositions df and dg required for this
modified algorithm to achieve a certain accuracy as Corollary 3.

Algorithm 3 NewCompG(a, b;n, df , dg)

Input: a, b ∈ [0, 1], n, df , dg ∈ N
Output: An approximate value of 1 if a > b, 0 if a < b and 1/2 otherwise
1: x← a− b
2: for i← 1 to dg do
3: x← gn(x) // compute g(dg)n (a− b)
4: end for
5: for i← 1 to df do
6: x← fn(x) // compute f (df )n ◦ g(dg)n (a− b)
7: end for
8: return (x+ 1)/2

Corollary 3. (With Heuristic Properties) If dg ≥ 1
log g′n(0)

· log(1/ε) + O(1) =
1/2+o(1)
log cn

· log(1/ε)+O(1) and df ≥ 1
logn · log(α− 2)+O(1), then the error of the

output of NewCompG(a, b;n, df , dg) compared to the true value is bounded by 2−α

for any a, b ∈ [0, 1] satisfying |a− b| ≥ ε.

Proof. Following the proof of Theorem 3, it suffices to show that 1−g(dg)n (x) ≤ τ
for x ∈ [ε, 1] where τ = 1/4. Let en := g′n(0). By the second heuristic property of
gn, we obtain two inequalities: 1−g(d)n (x) ≤ (1−x)edn for d satisfying g(d−1)n (x) ≤
δ0, and 1− g(d)n (x) ≤ τ for g(d−1)n (x) > δ0. Therefore, it holds that

1− g(d)n (x) ≤ max
(
(1− x)e

d
n , τ
)

for any d > 0. Applying d = dg :=
⌈

1
log en

· log
(
log
(
1
τ

)
/ε
)⌉
, we finally obtain

1− g(dg)n (x) ≤ τ since (1− x)e
dg
n ≤ (1− ε)log(

1
τ )/ε < τ . ut

The important point is that dg is reduced as approximately half (applying
the first heuristic property of gn) compared to the previous case that only uses
fn to approximate the sign function. Since gn and fn requires same number of
non-scalar multiplications, we can conclude that the computational complexity
of f (df )n ◦ g(dg)n is L

(
an
2 , bn

)
where an and bn are defined from TCn = L(an, bn).
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The total depth of f (df )n ◦ g(dg)n is L
(
logn+O(1)
2·log cn , logn+O(1)

log(n+1)

)
which gets close

to L(1, 1) as n increasesh. Note that L(1, 1) is theoretically the minimal depth
obtained by minimax polynomial approximation (see Section 2.2).

4 Application to Min/Max

As described in [12], min/max functions correspond to the absolute function as

min(a, b) =
a+ b

2
− |a− b|

2
and max(a, b) =

a+ b

2
+
|a− b|

2
.

Therefore, an approximate polynomial of |x| directly gives us the approximate
polynomial of min/max functions. Since |x| = x · sgn(x), we can consider the
convergence of x ·f (d)n (x) to |x| as an analogue. As min(a, b) is directly computed
from max(a, b), we only describe an algorithm of max for convenience.

Contrary to sgn(x), the absolute function |x| is continuous so that the pa-
rameter ε is unnecessary. The following theorem provides the convergence rate
of x · f (d)n (x) to |x|.

Theorem 5 (Convergence of x · f (d)n ). If d ≥ 1
log cn

· (α − 1), then the error

of x · f (d)n (x) compared to |x| is bounded by 2−α for any x ∈ [−1, 1].

Proof. Since |x| = x · sgn(x), the error is upper bounded as∣∣∣x · f (d)n (x)− |x|
∣∣∣ = |x| · ∣∣∣f (d)n (x)− sgn(x)

∣∣∣ ≤ |x| · |1− |x||cdn .
Let y = |x| ∈ [0, 1] and k = cdn, then the error upper bound is expressed as
E(y) = y · (1− y)k. By a simple computation, one can check that E(y) has the
maximal value at y = 1/(k + 1). Therefore, k should satisfy

E

(
1

k + 1

)
=

kk

(k + 1)k+1
≤ 2−α.

Since 2 ≤ (1 + 1/k)k ≤ e for k ≥ 1, setting k ≥ 2α−1 implies d ≥ 1
log cn

· (α− 1).
ut

We denote an algorithm which evaluates a+b
2 + a−b

2 · f
(d)
n (a − b) by NewMax

(see Algorithm 4), and Theorem 5 is naturally transformed into the context of
min/max as Corollary 4.

Corollary 4. If d ≥ 1
log cn

·(α−2), then the error of the output of NewMax(a, b;n, d)
compared to the true value is bounded by 2−α for any a, b ∈ [0, 1].

hIt does not mean the “convergence” to L(1, 1) as n → ∞, since n should be O(1)
with respect to α and 1/ε.
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Algorithm 4 NewMax(a, b;n, d)

Input: a, b ∈ [0, 1], n, d ∈ N
Output: An approximate value of max(a, b)
1: x← a− b, y ← a+b

2
2: for i← 1 to d do
3: x← fn(x) // compute f (d)n (a− b)
4: end for
5: y ← y + a−b

2 · x
6: return y

Our Max v.s.Previous Max. In [12], Cheon et al. introduced a max algorithm
exploiting the same identity max(a, b) = a+b

2 + |a−b|
2 , but they interpret the

absolute function as |x| =
√
x2 which is different with our our interpretation

|x| = x · sgn(x). To compute
√

(a− b)2, they exploit Wilkes’s algorithm [48]
denoted by Sqrt(y; d) which approximately computes √y for y ∈ [0, 1]: Let
a0 = y and b0 = y − 1, and iteratively compute an+1 = an

(
1− bn

2

)
and bn+1 =

b2n
(
bn−3

4

)
for 0 ≤ n ≤ d− 1, where the final output is ad.

We note that the output of Sqrt(x2; d) equals to x ·f (d)1 (x), which means our
max algorithm NewMax(a, b; 1, d) (in the case of n = 1) gives the same output to
the max algorithm in [12]. However, there are several significant advantages to
use our max algorithm instead of the max algorithm in [12].

– Sqrt(x2; d) requires 3 multiplications including 1 square multiplication for
each iteration, while f1(x) can be computed by only 2multiplications. There-
fore, NewMax(·, ·; 1, d1) is faster than the max algorithm in [12].

– We can further optimize our max algorithm by substituting f1(x) with fn(x)
for some n > 1. As an analogue of Section 3.4, we can select an optimal n
which minimizes d · Cn where d = 1

log cn
· (α− 2), where n = 4 is optimal.

– Applying the approximate HE scheme HEAAN [10, 11], the max algorithm
in [12] is unstable when two inputs a and b are too close. To be precise, if the
input (a − b)2 is close to zero and even smaller than an error accompanied
by HEAAN, then the input attached with the error can be a negative value.
However, the output of Sqrt(y; d) for y < 0 diverges as d increases. In
contrary, f (d)n is stable over the interval [−1, 1], so our max algorithm still
works well even if two inputs are very close.

Applying {gn}n≥1 to Max. As a construction of NewCompG, we can also apply
the family of polynomials {gn}n≥1 with heuristic properties to accelerate our
NewMax algorithm. We denote an algorithm which evaluates a+b

2 + a−b
2 · f

(df ) ◦
g(dg)(a− b) by NewMaxG(a, b;n, df , dg). Applying ε = 2−α to Corollary 3, one can
easily obtain the following result on NewMaxG.

Corollary 5. If dg ≥ 1
log g′n(0)

·α+O(1) and df ≥ 1
logn · log(α− 2)+O(1), then

the error of the output of NewMaxG(a, b;n, df , dg) compared to the true value is
bounded by 2−α.
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5 Experimental Results

We measured the performance of our algorithms with comparison to Comp or Max
of [12]. The experiments are divided into two categories: 1. Running algorithms
on plain inputs, 2. Running algorithms on encrypted inputs. All experiments were
conducted on Linux with Intel Xeon CPU at 2.10GHz processor with 8 threads.
For experiments in an encrypted state, we used HEAAN library [11, 45].

5.1 Approximate HE Scheme HEAAN

Cheon et al. [11] proposed an HE scheme HEAAN which supports approximate
computations of real/complex numbers. Let N be a power-of-two integer and
L be the bit-length of initial ciphertext modulus, and define q` = 2` for 1 ≤
` ≤ L. For R = Z[X]/(XN + 1) and Rq := R/qR, let χkey, χerr and χenc be
distributions over R. A (field) isomorphism τ : R[X]/(XN+1)→ CN/2 is applied
for encoding/decoding of plaintexts.

• KeyGen(N,L,D).
- Sample s← χkey. Set the secret key as sk← (1, s).
- Sample a← U(RqL) and e← χerr. Set pk← (−a · s+ e, a) ∈ R2

qL .
- Sample a′ ← U(Rq2L) and e

′ ← χerr, and set evk ← (b′ = −a′ · s + e′ +

qL · s2, a′) ∈ R2
q2L
.

• Encpk(m;∆).
- For a plaintext m = (m0, ...,mN/2−1) in CN/2 and a scaling factor ∆ =
2p > 0, compute a polynomial m← b∆ · τ−1(m)e ∈ R

- Sample v ← χenc and e0, e1 ← χerr. Output ct = [v · pk+(m+ e0, e1)]qL .
• Decsk(ct;∆).

- For a ciphertext ct = (c0, c1) ∈ R2
q`
, compute m′ = [c0 + c1 · s]q` .

- Output a plaintext vector m′ = ∆−1 · τ(m′) ∈ CN/2.
• Add(ct, ct′). For ct, ct′ ∈ R2

q`
, output ctadd ← [ct+ ct′]q` .

• Multevk(ct, ct′). For ct = (c0, c1), ct
′ = (c′0, c

′
1) ∈ R2

q`
, let (d0, d1, d2) =

(c0c
′
0, c0c

′
1 + c1c

′
0, c1c

′
1). Compute ct′mult ← [(d0, d1) + bq−1L · d2 · evke]q` , and

output ctmult ← [b∆−1 · ct′multe]q`−p .

The secret key distribution χkey is set to be HWTN (256), which uniformly sam-
ples an element with ternary coefficients in R that has 256 non-zero coefficients.

5.2 Parameter Selection

We have two parameters α and ε which measure the quality of our comparison
algorithms. In our experiments, we set ε = 2−α, which is the case expecting that
input and output of algorithms have the same precision bits.

HEAAN Parameters. We fix the dimension N = 217, then we can set the
initial ciphertext modulus qL upto 21700 to achieve 128-bit security estimated
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by Albrecht’s LWE estimator [1] (Refer to Appendix E for the script). In each
experiment, we set the initial modulus such that the modulus bit after each algo-
rithm is log∆+10. For example, on our comparison algorithm NewComp(·, ·;n, d),
we set the initial modulus bit as

log qL = (log∆ · dlog(2n+ 1)e+ 2n− 1) · d+ log∆+ 10.

Note that each coefficient of fn is of the form m/22n−1 for m ∈ Z (Section
3.1). We progress the scalar multiplication of m/22n−1 in an encrypted state by
multiplying m and scaling (2n−1) bits down which results in the factor (2n−1)
in the above equation. In the case of NewCompG(·, ·;n, df , dg), we similarly set

log qL = log∆ · dlog(2n+ 1)e · (df + dg) + (2n− 1) · df + 10 · dg + log∆+ 10.

The bit-length of the scaling factor ∆ is set to be around 40 as in [12].
Note that one can evaluate N/2 comparison functions simultaneously in a

single homomorphic comparison. In this sense, an amortized running time of our
algorithm is obtained by dividing the total running time by N/2 = 216.

Choice of n in {fn}n≥1 and {gn}n≥1. One should consider a different cost
model other than TCn in the case of experiments in an encrypted state. When
running our algorithms with HEAAN, not only the complexity TCn but also the
depth TDn is an important factor affecting the running time, since the compu-
tational cost of a homomorphic multiplication is different for each level. Instead
of TCn, we take another cost model TDn ·TCn considering that a multiplication
in Rq takes (quasi-)linear time with respect to log q. Under the setting ε = 2−α,
one can check by simple computation that n = 4 also minimizes TDn · TCn as
well as TCn, and we used fn and gn with n = 4 for the experiments.

5.3 Performance of NewComp and NewCompG

We compare the performance of our new comparison algorithms NewComp and
NewCompG with the previous comparison algorithm Comp proposed in [12]. The
following experimental results show that NewComp is much faster than Comp in
practice, and applying gn polynomials (NewCompG) substantially improves the
performance of NewComp.

Plain State Experiment. For “plain inputs” a, b ∈ [0, 1] satisfying |a − b| ≥
ε = 2−α, we measured the required computational complexity and depth of each
comparison algorithm to obtain an approximate value of comp(a, b) within 2−α

error. The parameters d, df and dg are chosen as the lower bounds described in
Corollary 1 and Corollary 3, and we checked that these theoretical lower bounds
are indeed very close to those obtained experimentally.

From Figure 6, we can see that NewComp requires much less depth and com-
plexity than Comp, and those of NewCompG are even smaller. Note that the gap
between these algorithms in terms of both depth and complexity grows up as
α increases. For example, when α = 8, the required complexity is ×3–4 less in
NewComp and NewCompG; when α = 32, it is over ×7 less in NewCompG.
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Fig. 6: Comp, NewComp and NewCompG on various α with ε = 2−α in a plain state

Encrypted State Experiment. We also measured the performance of our al-
gorithms which output an approximate value of comp(a, b) within 2−α error for
“encrypted inputs” a, b ∈ [0, 1] satisfying |a− b| ≥ ε. Note that parameters d, df
and dg are chosen as the lower bounds in Corollary 1 and 3. We checked through
100 experiments that our algorithms with chosen parameters give accurate re-
sults in spite of errors accompanied by HEAAN.

In Table 3, we can see the running time (and amortized running time) of our
algorithms NewComp, NewCompG, and that of Comp ([12]) for various α. Note that
our new algorithms NewComp and NewCompG provide outstanding performance
in terms of amortized running time: NewComp takes 0.9 milliseconds for 8-bit
comparison, and NewCompG only takes about 1 millisecond to compare up to 20-
bit inputs. It is a significant improvement over the previous algorithm Comp. For
example, NewCompG is about ×8 faster than Comp when α = 8, about ×18 faster
when α = 16, and the ratio increases as α increases.

Note that the required depth of Comp is much larger than that of our algo-
rithms as described in Figure 6. Consequently, to run Comp for α ≥ 10 in an
encrypted state with 128-bit security, one must increase the HEAAN parameter
from N = 217 to N = 218, or use bootstrapping techniques [10], both of which
yields more than twice performance degradation, especially in total running time.

α Comp NewComp NewCompG

8 238 s (3.63 ms)∗ 59 s (0.90 ms) 31 s (0.47 ms)

12 572 s (8.73 ms)∗ 93 s (1.42 ms) 47 s (0.72 ms)

16 1429 s (21.8 ms)∗ 151 s (2.30 ms)∗ 80 s (1.22 ms)

20 2790 s (42.6 ms)∗ 285 s (4.35 ms)∗ 94 s (1.43 ms)∗

Table 3: Running time (amortized running time) of Comp, NewComp and NewCompG
on HEAAN for various α and ε = 2−α; an asterisk (∗) means that the parameter
for HEAAN does not achieve 128-bit security due to large log qL ≥ 1700.
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5.4 Performance of NewMax and NewMaxG

We also compared the performance of NewMax and NewMaxG in an encrypted state
to that of the max algorithm Max in the previous work [12]. The parameters d, df
and dg were chosen from the theoretical lower bounds described in Corollary 4
and Corollary 5, and were confirmed that they are very close to those obtained
experimentally. In Figure 7, we can see the running time of our new algorithms
NewMax, NewMaxG, and that of Max in [12]. Our algorithms improve the Max con-
siderably in running time (and depth), and the gap increases for larger α: when
α = 8, our NewMax and NewMaxG algorithms are ×1.6 and ×2 faster than Max,
respectively; when α = 20, our NewMaxG algorithm is ×4.5 faster than Max.
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Fig. 7: Running Time of Max, NewMax and NewMaxG on HEAAN for various α.
Hollow marker implies that the parameter does not achieve 128-bit security due
to log qL ≥ 1700.
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A Derivation of fn from Core Properties

Given fn(x) = cn
∫ x
0
(1 − s2)nds, we use substitution s = sin t to get fn(x)

cn
=∫ sin−1 x

0
cos2n+1 t dt. Applying the following identity (which holds for any m ≥ 2)∫ x

0

cosm t dt =
1

m
· cosm−1 x · sinx+

m− 1

m
·
∫ x

0

cosm−2 t dt,

we obtain
fn(x)

cn
=

1

2n+ 1
(1− x2)nx+

2n

2n+ 1

fn−1(x)

cn−1

for n ≥ 2, and f1(x)
c1

= 1
3 (1− x

2)x+ 2
3 · x. By induction, we can obtain fn as

fn(x)

cn
=

1

2n+ 2
·
n∑
i=0

n∏
k=i

2k + 2

2k + 1
· (1− x2)ix (1)

Now, since fn(1) = 1, evaluating above equation at x = 1 gives,

cn =

n∏
k=1

2k + 1

2k
=

1

4n

(
2n

n

)
(2n+ 1).

Substituting this cn into equation (1) and arranging, we get

fn(x) =

n∑
i=0

1

4i
·
(
2i

i

)
· x(1− x2)i.

B Convergence of δ0, S and gn,τ

It is trivial that S ≤ τ
2 . Let us denote S, δ0 and gn,τ updated in the i-th iteration

by Si, δ0,i and gn,τ,i respectively. Assume that Si < τ
2 for some i ≥ 1. Then it
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holds that gn,τ,i(x) ≥ (1 − τ
2 ) − Si > 1 − τ for x ∈ [δ0,i, 1]. Therefore, δ0,i+1

should be smaller than δ0,i, and hence Si+1 is larger than Si. Since δ0,i has a
lower bound 0, δ0,i converges to some constant δconv > 0 as i increases. Hence,
gn,τ,i converges to some gconvn,τ , and Si converges to some Sconv ≤ τ

2 .
Now, assume that Sconv < τ

2 and let ρ = τ
2 − Sconv > 0. Since δ0,i converges

(and decreases) to δconv, there exists some i ≥ 1 such that δ0,i < 1−τ+ρ
1−τ · δconv.

Note that gn,τ,i is concave in [0, δ0,i] as noted in Section 2.2. Therefore, it holds
that gn,τ,i(δ0,i)−(1−τ)

δ0,i−δ0,i+1
<

gn,τ,i(δ0,i)
δ0,i

where gn,τ,i(δ0,i+1) = 1− τ . Since gn,τ,i(δ0,i)−
(1− τ) ≥ ρ, we obtain

δ0,i − δ0,i+1 >
gn,τ,i(δ0,i)− (1− τ)

gn,τ,i(δ0,i)
δ0,i = δ0,i −

1− τ
gn,τ,i(δ0,i)

δ0,i

≥ δ0,i −
1− τ

1− τ + ρ
δ0,i =

ρ

1− τ + ρ
δ0,i.

Hence, we get δ0,i > 1−τ+ρ
1−τ · δ0,i+1 ≥ 1−τ+ρ

1−τ · δconv, which is a contradiction.

C Heuristic Properties on gn

We provide experimental results validating the heuristic properties in Section 3.5:

1. g′n(0) ' 0.98 · f ′n(0)2 (Hence, log g′n(0) ' 2 · log cn)
2. 1− gn(x) ≤ (1− x)g′n(0) for x ∈ [0, δ0] where δ0 is the minimal δ in Prop IV

On the First Heuristic. Using MATLAB, we computed g′n(0) and compared
it with f ′2n (0) derived from Lemma 2. See Figure 8 for 1 ≤ n ≤ 20.

0 5 10 15 20 25
0

5

10

15

20

25

f ′2n (0)

g
′ n
(0
)

(f ′2n (0), g′n(0))
0.98 · x− 0.18

Fig. 8: f ′2n (0) and g′n(0) (R2 = 0.9999); n = 1, 2, ..., 20 from the left to the right

On the Second Heuristic. Let Gn(x) := 1 − (1 − x)g′n(0), then we can ex-
perimentally check that Gn(x) ≤ gn(x) when x ∈ (0, δ0], which is equivalent to
1− gn(x) ≤ (1− x)g′n(0). Let δ1 be the largest δ such that Gn(x) ≤ gn(x) for all
x ∈ [0, δ] (see Figure 9a). The experiment results show that 1/δ0 > 1/δ1 which
is equivalent to δ0 < δ1 (see Figure 9b for 1 ≤ n ≤ 20).
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(a) Description of δ0, δ1, G1, and g1
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(b) 1/δ0 and 1/δ1; n = 1, 2, ..., 20 from the
left to the right

Fig. 9: Experimental evidence on 1− gn(x) ≤ (1− x)g′n(0) when x ∈ (0, δ0]

D Convergence of f (d)
n in Erroneous Case

Due to the approximate nature of HEAAN, the evaluation of fn on an input x
in an encrypted stated output an approximate value of fn(x) rather than the
exact value. In this section, we analyze the convergence of f (d)n considering errors
induced by HEAAN evaluation, and show that the convergence is still valid in
some sense under some conditions on parameters.

Les us denote by f̂n(x) an approximate value of fn(x) obtained from HEAAN
evaluation, i.e., |f̂n(x) − fn(x)| ≈ 0. For a fixed n ≥ 1, let us assume that an
approximate error |f̂n(x) − fn(x)| is bounded by 0 < B � 1 (e.g., B ≈ 2−20).
Then it holds that

|1− f̂n(x)| ≤ |1− fn(x)|+B.

Note that B can be easily controlled by changing the scaling factor∆ of HEAAN.
Now we provide some variants of Lemma 3 and Lemma 4 considering the

approximation errors. To simplify the proofs, we assume that n ≥ 3 so that
cn > 2.

Lemma 5. Let B ≤
(

1
2n+1

) cn−1
n −

(
1

2n+1

) cn
n

. For
(

cn
cn−1

)cn−1
· B ≤ x ≤

1−
(

1
2n+1

) 1
n

, it holds that −B < 1− f̂n(x) < (1− x)cn−1.

Proof. The first inequality is trivial since f̂n(x) ≤ fn(x) + B ≤ 1 + B. For
K(x) = (1 − x)cn−1 − (1 − x)cn , it is easy to check that K has a unique local

maximal point
(
x0 = 1

cn
,K(x0) =

1
cn
·
(
1− 1

cn

)cn−1)
over [0, 1] and is convex

in [0, x0]. As a result, for x0

K(x0)
· B =

(
cn
cn−1

)cn−1
· B ≤ x ≤ 1

cn
, it holds

that B ≤ K(x). Since B ≤
(

1
2n+1

) cn−1
n −

(
1

2n+1

) cn
n

= K

(
1−

(
1

2n+1

) 1
n

)
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and K decreases in
[

1
cn
, 1−

(
1

2n+1

) 1
n

]
, the inequality B ≤ K(x) also holds

for 1
cn
≤ x ≤ 1 −

(
1

2n+1

) 1
n

. Therefore, we get 1 − f̂n(x) ≤ 1 − fn(x) + B ≤
(1− x)cn +K(x) = (1− x)cn−1. ut

Lemma 6. For 0 ≤ x ≤ 2
(
n+1
cn

) 1
n − 1, it holds that |1 − f̂n(x)| < (2n + 1) ·

max
{
|1− x|n+1, B

}
.

Proof. We first observe that Lemma 4 can be extended from the domain [0, 1]

to the larger domain
[
0, 2

(
n+1
cn

) 1
n − 1

]
when we consider |1−fn(x)| and |1−x|

instead of 1 − fn(x) and 1 − x respectively. Assume that 1 < x ≤ 2
(
n+1
cn

) 1
n −

1, and let H(x) = 2n · |1 − x|n+1 − |1 − fn(x)| = 2n · (x − 1)n+1 + (−1)n ·
(1 − fn(x)). Then H ′(x) = (n + 1)2n · (x − 1)n − (−1)n · cn(1 − x2)n = (x −
1)n ((n+ 1)2n − cn(1 + x)n), so there exists a unique local maximal point of H

at x = 2
(
n+1
cn

) 1
n − 1. Since H(1) = 0, it holds that H(x) ≥ 0 for 1 ≤ x ≤

2
(
n+1
cn

) 1
n − 1. As a result, we obtain

|1− fn(x)| < 2n · |1− x|n+1

for 0 ≤ x ≤ 2
(
n+1
cn

) 1
n −1. Now we get the result from |1− f̂n(x)| ≤ |1−fn(x)|+

B < 2n · |1− x|n+1 +B ≤ (2n + 1) ·max
{
|1− x|n+1, B

}
. ut

Lemma 7. Assume that B < 1
2n+1 ·min

{(
1

2n+1

) 1
n

, 2

((
n+1
cn

) 1
n − 1

)}
. If |1−

x| < (2n + 1) ·B, then it holds that |1− f̂n(x)| < (2n + 1) ·B.

Proof. Since B < 2
2n+1 ·

((
n+1
cn

) 1
n − 1

)
, if |1− x| < (2n + 1) ·B, then it holds

that 0 < x < 1+(2n+1) ·B < 2
(
n+1
cn

) 1
n −1. Therefore, we can apply Lemma 6

as following:

|1− f̂n(x)| < (2n + 1) ·max
{
(2n + 1)n+1 ·Bn+1, B

}
= (2n + 1) ·B,

where the equality comes from B <
(

1
2n+1

)n+1
n

. ut

Theorem 6. Let B < 1
2n+1 · min

{(
1

2n+1

) 1
n

, 2

((
n+1
cn

) 1
n − 1

)}
, and B <(

1
2n+1

) cn−1
n −

(
1

2n+1

) cn
n

. For ε, α > 0 satisfying ε ≥
(

cn
cn−1

)cn−1
· B and

α ≤ log(1/B)− log(2n+1), if d ≥ 1
log(cn−1) · log(1/ε)+

1
log(n+1) · log(α−1)+O(1),

then ||f̂n
(d)

(x)− sgn(x)||[−1,−ε]∪[ε,1] ≤ 2−α.
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Proof. The proof follows the flow of the proof of Theorem 3.

Step 1. It suffices to consider the case x ∈ [ε, 1] instead of [−1,−ε] ∪ [ε, 1]. Let

0 < τ =
(

1
2n+1

) 1
n

< 1. Our claim is, for any x ∈ [ε, 1] the inequality −B <

1− f̂n
(dε)

(x) < τ holds for some 0 ≤ dε ≤ d′ :=
⌈

1
log(cn−1) · log

(
log
(
1
τ

)
/ε
)⌉
.

Assume that there exists some x0 ∈ [ε, 1] that does not satisfy this claim.
Since ε ≤ x0 ≤ 1 − τ , we obtain −B < 1 − f̂n(x0) < (1 − x0)cn−1 by applying
Lemma 5 on x0. Then we obtain ε < x0 < 1− (1− x0)cn−1 < f̂n(x0) < 1 +B <

1+τ . Since |1− f̂n(x0)| ≥ τ by the assumption, it holds that ε < f̂n(x0) ≤ 1−τ ,
so we can apply Lemma 5 on f̂n(x0) again which implies −B < 1− f̂n

(2)
(x0) <(

1− f̂n(x0)
)cn−1

. By induction, we obtain

−B < 1− f̂n
(d′)

(x0) ≤ (1− x0)(cn−1)
d′

≤ (1− ε)log(
1
τ )/ε <

(
1

e

)log( 1
τ )
< τ,

which contradict to the assumption.

Step 2. Similarly to Step 1, we can set our second claim as following: for any
x ∈ [1− τ, 1 + B] the inequality |1− f̂n

(dα)
(x)| ≤ 2−α holds for some 0 ≤ dα ≤

d′′ :=

⌈
1

log(n+1) · log
(
(α− 1)/ log

(
1

(2n+1)
1
n ·τ

))⌉
.

Assume that there exists some x1 ∈ [1− τ, 1 + B] that does not satisfy this

claim:
∣∣∣∣1− f̂n(d′′′)(x1)∣∣∣∣ ≥ 2−α ≥ (2n + 1) · B for all 0 ≤ d′′′ ≤ d′′. By the

assumption, we can say that x1 ∈ [1 − τ, 1 − (2n + 1) · B], and by applying
Lemma 6 on x1, we get |1− f̂n(x1)| ≤ (2n+1) · (1−x1)n+1 ≤ (2n+1) ·τn+1 = τ .
Therefore, we obtain 1− τ ≤ f̂n(x1) ≤ fn(x1)+B ≤ 1+B so that we can apply
Lemma 6 on f̂n(x1). By induction, it holds that

(2n + 1)
1
n ·
∣∣∣∣1− f̂n(d′′)(x1)∣∣∣∣ ≤ ((2n + 1)

1
n · (1− x1)

)(n+1)d
′′

≤
(
(2n + 1)

1
n · τ

)(n+1)d
′′

≤ 2−α+1,

which contradicts to the assumption.
Combining Step 1, Step 2 and Lemma 7, the proof is completed. ut

Corollary 6 (Special Case of Theorem 6 (n = 4)). Let B < 0.02282. For
ε ≥ 2.15B and α ≤ log(1/B)−4.09, if d ≥ 1.83 log(1/ε)+0.431 log(α−1)+O(1),

then ||f̂4
(d)

(x)− sgn(x)||[−1,−ε]∪[ε,1] ≤ 2−α.

Remark 4. We only addressed about the erroneous evaluation of fn, but the same
logic can be applied to that of gn: Substituting all cn’s in Lemma 5 by g′n(0), then
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it holds that −B < 1− ĝn(x) < (1− x)g′n(0)−1. As an analogue, by substituting
all cn’s in Theorem 6 by g′n(0), we can directly convert the theorem into the

context of f̂n
(df ) ◦ ĝn(dg) instead of f̂n

(d)
for dg ≥ 1

log(g′n(0)−1)
· log(1/ε) + O(1)

and df ≥ 1
log(n+1) · log(α− 1) +O(1).

One can check that ε and α have lower and upper bounds in terms of B,
respectively, and this is quite natural: If an input x > 0 is so small so that
fn(x) < B, then its approximate value f̂n(x) may be negative due to B-bounded
approximation error. Furthermore, if |x−1| � B, then fn(x) should be also very
close (even closer) to 1, but a B-bounded approximation error accompanied to
f̂n(x) would disrupt this closeness. In this sense, those lower/upper bounds on
ε and α with respect to B is actually inevitable.

In fact, Theorem 6 is a worst-case analysis on the convergence of f (d)n in
erroneous case by regarding the HEAAN error size in fn evaluation as B. We
also note that inequalities in Lemma 5, 6 and 7 are not as tight as those in
Lemma 3 and Lemma 4. In practice, as noted in Section 5, even in experiments
based on HEAAN, the number of compositions can still be chosen very close
to the theoretical lower bounds in Corollary 1 and 3 which are based on the
convergence analysis in errorless case.

E Script for Security Estimation

We specified the parameter with security level λ ≥ 128 using the latest LWE
estimator [1]i. We excluded dec estimates which might not be accurate and often
not competitive [21]. The script for checking our parameter is as follows.

load (" e s t imator . py")
n = 2∗∗17 ; q = 2∗∗3400; alpha = 8/q
duald = pa r t i a l ( drop_and_solve , dual_sca le )
primald = pa r t i a l ( drop_and_solve , primal_usvp )
duald (n , alpha , q , s e c r e t_d i s t r i bu t i o n =((−1 ,1) , 256) ,

reduction_cost_model=BKZ. s i e v e )
primald (n , alpha , q , s e c r e t_d i s t r i bu t i o n =((−1 ,1) , 256) ,

r o t a t i o n s=False , reduction_cost_model=BKZ. s i eve ,
po s tp roc e s s=False )

iAvailable on https://bitbucket.org/malb/lwe-estimator.
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