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Abstract. We revisit the problem of proving that a user algorithm se-
lected and correctly used a truly random seed in the generation of her
cryptographic key. A first approach was proposed in 2002 by Juels and
Guajardo for the validation of RSA secret keys. We present a new secu-
rity model and general tools to efficiently prove that a private key was
generated at random according to a prescribed process, without revealing
any further information about the private key.

We give a generic protocol for all key-generation algorithms based on
probabilistic circuits and prove its security. We also propose a new pro-
tocol for factoring-based cryptography that we prove secure in the afore-
mentioned model. This latter relies on a new efficient zero-knowledge
argument for the double discrete logarithm problem that achieves an ex-
ponential improvement in communication complexity compared to the
state of the art, and is of independent interest.

1 Introduction

Cryptographic protocols are commonly designed under the assumption that the
protocol parties have access to perfect (i.e., uniform) randomness. However, ran-
dom sources used in practical implementations rarely meet this assumption and
provide only a stream of bits with a certain “level of randomness”. The quality
of the random numbers directly determines the security strength of the sys-
tems that use them. Following preliminary work by Juels and Guajardo [22] and
Corrigan-Gibbs, Mu, Boneh and Ford [15], we revisit the problem of proving that
a cryptographic user algorithm has selected and correctly used a truly random
seed in the generation of her cryptographic public—secret key pair.

Related Work. A prominent example that the use of randomness in public-key
cryptography (and especially in key-generation protocols) is error-prone is the
recent randomness failure known as the ROCA wvulnerability [25]. This weak-
ness allows a private key to be recovered efficiently from the public key only (in
factoring-based cryptography). The flawed key-generation algorithm selects spe-
cific prime numbers as part of the private key instead of generating uniformly
random primes and many certified devices were shown vulnerable. This kind



of weaknesses is not new as in 2012, Lenstra, Hughes, Augier, Bos, Kleinjung
and Wachter [23]| did a sanity check of factoring-based public keys collected on
the web. They showed that a significant percentage of public keys (0.5%) share
a common prime factor, and this fact was explained [21] by the generation
of these low entropy keys during booting. Since cryptographic failures due to
weak randomness can be dire [25,23,21], designers should build schemes that
can withstand deviations of the random sources from perfect randomness.

Following seminal works by Simmons on the threat of covert channels (also
called subliminal channels) in cryptography [29], the concept of kleptography
was proposed by Young and Yung [32]. It models the fact that an adversary may
subvert cryptographic algorithms by modifying their implementations in order
to leak secrets using for instance covert channels present in the randomized al-
gorithms. Several sources have recently revealed that cryptographic algorithms
have effectively been subverted to undermine the security of users. This raises
the concern of guaranteeing a user’s security even when she may be using a com-
promised machine or algorithm. For factoring-based public-key cryptography, in
light of the known shortcomings of implemented key generators, a line of research
has focused on proving that RSA moduli satisfy certain properties [18,11,1], or
on attesting that RSA prime factors were generated with a specified prime gen-
erator [5]. This line of work is only concerned with the structure of the keys, not
with the fact that they are generated with enough entropy. Juels and Guajardo
[22] suggested as early as in 2002 an approach for users to prove to another party
(which is typically a trusted certificate authority or CA) that her public-secret
key pair was generated honestly using proper randomness. In their setting, the
CA provides an additional source of randomness in an interactive process, and
the user algorithm proves that it has not weakened, whether intentionally or un-
intentionally, the key-generation procedure.The security goal of such a primitive
is threefold.

1. Maintain User Privacy: if the user uses a randomness source with high
entropy, then an adversary (possibly the CA himself) has no additional in-
formation on the secret-key compared to a key generated by the real key-
generation algorithm on uniform randomness.

2. Improve Randomness Quality: if the user or the CA use a randomness
source with high entropy, then, an adversary (other than the CA) has no
additional information on the secret-key compared to a key generated by
the real key-generation algorithm on uniform randomness.

3. Resist Information Exfiltration: the generated public key leaks no infor-
mation whatsoever to the outer world. In particular, a faulty user algorithm
cannot use it to convey any information. In this sense, the CA certifies to
the end user, that she can securely use to the generated key.

A malicious user can obviously publish her secret key, but the problem we tackle
is different: we want the CA to only certify keys that he knows to have been
generated with high-entropy randomness and without covert channels.



Juels and Guajardo proposed a formal security model for verifiable random
key generation with the goal to achieve these three security objectives. Their
model is unfortunately not strong enough to capture real-world threats since

— it is restricted to public-key cryptosystems where a given public key corre-
sponds to a unique secret key (and cannot be used for many recent schemes);

— it considers only a stand-alone or independent key-generation instances (and
therefore does not prevent attacks such as the one considered in [23,21] where
several public-keys are generated with correlated randomness sources);

— it only bounds the distance that a dishonest user algorithm can generate a
key to that of an honest algorithm executing the key generation protocol.

As a simple example, consider the problem of generating an ElGamal public
key g* in a group G = (g) of prime order p. Juels and Guajardo outlined a
protocol for generating such a key with verifiable randomness. The natural idea
to generate a public-key g* in this (illusorily) simple setting is to share the
secret key x as x = xy + xca mod p where xy denotes the user randomness and
xca denotes the CA randomness. However, this protocol fails to achieve (3) as
the user algorithm can choose xy to match a specify value after seeing xca.
To overcome this issue, a simple idea would be to make the user first commit
to xy and then prove its knowledge. However, the hiding and zero-knowledge
properties of commitment schemes and proof systems inherently rely on perfect
randomness, which the user algorithm is assumed not to have at its disposal.

Juels and Guajardo also proposed a protocol for the generation of RSA keys
where the distance in (3) increases by a factor which is polynomial in the se-
curity parameter A (assuming some number-theoretic conjecture). Therefore,
their protocol does not rule out the existence of covert channels with O(log 1)
bit capacity. Their model was reconsidered by Corrigan-Gibbs, Mu, Boneh and
Ford [15] in a weaker setting that guarantees (1) and (2) but not (3), and does
not even prevent a malicious user algorithm from generating malformed keys.

Contributions. We revisit the verifiable key-generation primitive and provide
the first strong security models and efficient, provably secure constructions.

Game-Based Security Model. We propose a game-based model that covers con-
current protocol executions with different instances of protocol algorithms. It is
inspired by the Bellare-Pointcheval-Rogaway (BPR) model for authenticated key
exchange [4]. The communication between the user and the CA is assumed to
be carried over an insecure channel. Messages can be tapped and modified by an
adversary, and the communication between the user and the CA is asynchronous.
The adversary is split into two algorithms: (1) the sampler which provides the
randomness sources to the user and the CA (for multiple instances of the proto-
col) and (2) the distinguisher which tries to gain information from the generated
public key. The protocol is deemed secure if the distinguisher is unable to do so
assuming that the entropy of either random source is high enough.

The main difficulty to define the security model for this primitive is to for-
malize the third security objective. A dishonest user algorithm can indeed always



execute several instances of the protocol with the CA until she obtains a public-
key which has some specific property which allows to exfiltrate information. This
is similar to the “halting attack” subliminal channel [16] and cannot be avoided.
We manage to take this narrow-band subliminal channel into consideration in
our security model while capturing the fact that in a secure protocol, this should
be the only possible covert channel for a dishonest user algorithm. In practical
applications, this covert channel can be prevented easily if the CA charges an
important fee for a user that performs too many key generation procedures, or
if an increasing time-gating mechanism for repeating queries is introduced.

This model does not suffer from the shortcomings of the model proposed in
[22] as it allows for multiple dependent runs of the protocol and captures the
resistance to exfiltration of information (with only the narrow-band subliminal
channel from the “halting attack”). It guarantees security with concurrent ses-
sions (and is thus much stronger than security considered in the similar notion
of cryptographic reverse firewalls [24]) but not composition.

Providing a universal-composability definition seems natural in this setting,
but the main hurdle in doing so comes from the fact that the sampler cannot
communicate at all with the distinguisher since it would otherwise allow for
covert channels (and break property (3)) as further explained in Section 3.2. As
a consequence, a universal-composability definition would need functionalities
with local adversaries, which would change the target of the paper.

Generic Protocol for Probabilistic Circuits. We then present a generic approach
for key generation based on (families of) probabilistic circuits and we prove
its security in our stringent security model. It relies on two-source randomness
extractors, pseudo-random-function families and extractable commitments with
associated zero-knowledge proofs. Since two-party computation (2PC) protocols
rely on perfect randomness, a generic 2PC protocol cannot be used in this setting;
moreover such a protocol guarantees privacy and correctness, but it does not
guarantee that a user cannot influence the result (and thus requirement (3)).

Efficient Protocol for RSA Keys. We also propose a new generic protocol for
factoring-based cryptography and prove it secure in our model. It relies on
classical cryptographic tools (namely commitments, pseudo-random functions
(PRFs) and zero-knowledge proofs). We provide an instantiation based on the
Dodis—Yampolskiy PRF [17] in the group of quadratic residue modulo a safe
prime which outputs group elements. The main technical difficulty is to convert
the outputs of this PRF into integers while proving that the RSA prime factors
are outputs of the PRF. In the process, we propose a new efficient zero-knowledge
proof system for the so-called double discrete logarithm problem (in groups of
public order). A double discrete logarithm of an element y # 1g in a cyclic group
G of prime order p with respect to bases g € G and h € Z, (generators of G
and Zj, respectively) is an integer x € {0,...,p — 1} such that y = g"". Stadler
introduced this computational problem for verifiable secret-sharing [30] and it
was used to design numerous cryptographic protocols (e.g. group signatures [12],
e-cash systems [13] and credential systems [14]). All these constructions rely on a
proof system proposed by Stadler which has Q(log p) computational and commu-



nication complexity (in terms of group elements). Our new proof system outputs
proofs with only O(loglog p) group elements and permits an efficient instantia-
tion of our generic protocol for factoring-based cryptography. As a by-product,
our new protocol can be used directly in all the aforementioned applications in
a public-order setting to exponentially reduce their communication complexity.

2 Preliminaries

Notation. For n € N, the set of n-bit strings is denoted by {0,1}" and the set
of integers {1, ...,n} is denoted [n]. The set of prime numbers is denoted P. The
security parameter is denoted A, and input lengths are always assumed to be
bounded by some polynomial in 4. A Probabilistic algorithm is said to run in
Polynomial-Time (it is said to be a PPT algorithm) if it runs in time that is
polynomial in A. A function u is negligible if p(1) = A77@M.

The random variable defined by the value returned by a PPT algorithm A
on input x is denoted A(x). The value returned by A on input x and random
string r is denoted A(x;r). Given a probability distribution S, a PPT algorithm
that samples a random element according to S is denoted by x «g¢ S. For a finite
set X, x «g¢ X denotes a PPT algorithm that samples an element uniformly at
random from X. Given a group G with neutral element 1g, G* denotes G\{1g}.
For any two sets X and Y, denote by Y% the set of functions from X to Y.

Vectors are denoted in bold font. For two vectors @ and b in R" where R is
a ring and n a positive integer, @ o b denotes the Hadamard product of @ and b,
ie,aob = [a1b1 anbn].

Group Families. A group-family generator G is a PPT algorithm which takes
as input a security parameter A and returns a tuple (G, ¢, g), with G a cyclic
multiplicative group of prime order ¢, and g € G a generator of G (i.e. g € G¥).

Randomness sources and min-entropy. Imperfect randomness is modeled
as arbitrary probability distributions with a certain amount of entropy. The min-
entropy notion is used to measure the randomness in such an imperfect random
source. A source is said to have k bits of min-entropy if its distribution has the
property that each outcome occurs with probability at most 27%.

Pseudo-Random Functions. A Pseudo-Random Function (PRF) [20] is an
efficiently computable function of which the values are computationally indistin-
guishable from uniformly random values.

Formally, a function PRF: K (1) X X(1) — Y (AQ) is a (T, g, &)-secure PRF
with key space K, input space X and range Y (all assumed to be finite) if the
advantage

‘Pr [1 — APRFED . K g 7(] - Pr [1 A f ey yX”
of every adversary A that runs in time at most 7'(1) is at most &(A).

Dodis—Yampolskiy Pseudo-Random Function. Let G be a group family
generator. The Dodis-Yampolskiy pseudo-random function [17] in an ¢f-order



group (G, ¢, g) «s G is the map F: (K,x) € K x X — g/ K+ € G*, with K = Z;
and X c Z;. This PRF is (T/ (q/lo(l)) . q, sq)—secure under the (7, g, £)-Decisional
Diffie-Hellman Inversion (DDHI) assumption [6,7] for G, where g(1) = O(log 2)
is an upper-bound on the bit-size of X for all A [17, § 4.2].

3 Model

This section formalizes key-generation protocols for arbitrary, predetermined
key-generation algorithms. Such a protocol is executed between a user U and a
certification authority CA. At the end of the protocol, U obtains a pair of pub-
lic—secret keys that CA certifies to be indistinguishable from keys generated by
a fixed algorithm KeyGen, and to have been generated with proper randomness.
These requirements are formally captured by a model for randomness verifia-
bility given below. The security definition of the model ensures that a protocol
satisfying its conditions fulfills the following properties:

1. CA can infer no more information about the secret key than it would from a
public key generated by KeyGen if U’s randomness source has high entropy

2. no external attacker can distinguish a public key generated via the protocol
from a public key generation with KeyGen if the randomness source of either
U or CA has high entropy

3. U cannot bias the generation of the keys if the randomness source of CA
has high entropy. In particular, U cannot use the public key as a subliminal
channel to convey information.

3.1 Syntax

An interactive asymmetric-key-generation protocol is a triple IKG = (Setup, U, CA)
of algorithms such that Setup (1/1) — pp is a probabilistic algorithm which re-
turns public parameters and (U(pp; ry) = CA(pp;rea)) — ((pkqs sk), pkea)
are interactive algorithms. At the end of the protocol, the user key-generation
algorithm U returns a pair of public—secret keys, and the certificate-authority
key-generation algorithm CA returns a public key.

Algorithm Setup may require some randomness, but the parameters it gen-
erates can be fixed once for all and used across multi sessions and by several
users and authorities. Once parameters are fixed, high-entropy randomness is
still needed to securely generate keys, and this is formalized in Section 3.2.

Definition 3.1 (Correctness). In the O-oracle model, a key-generation pro-
tocol IKG is &-correct w.r.t. a class </ of algorithms if for all A € N, for every
A€,

pp «g Setup (1’1)

(Du, Dea) 5 A%V (pp) -
ry —3 Dy, 1ca —3 Dca

((pkqs sk), pkca) « (U(pp; rar) = CA(pp; rea))

Pr|pkqy = pkog # L:



Note that the last line of the probability event implicitly implies that U and CA
must terminate.

The above definition is given in model in which A has oracle access to O.
This latter is used to “distinguish” different models: it may be a random or-
acle, but it could also simply be an oracle which returns a fixed value (i.e.,
the common-reference-string model) or no value at all (the standard model).
The reason for this distinction is that if a component of the protocol (e.g. a
randomized primality-testing algorithm) is not perfectly correct, then its cor-
rectness probability is only defined for perfect randomness although the parties
only have access to imperfect randomness. However, in the random-oracle model
for instance, this imperfect randomness chosen by the algorithm in the definition
may depend on the random-oracle queries made by this latter.

3.2 Security

This section gives a game-based security model for key-generation protocols with
verifiable randomness. It covers concurrent protocol executions with different in-
stances of protocol algorithms. It is inspired by the BPR model for authenticated
key exchange [4] but with key differences.

Protocol Participants. A set of user identities U and a set of certificate-authority
identities C'A are assumed to be fixed. The union of the those sets form the
overall identity space ID. For readability, it is implicitly assumed that during
protocol executions, the messages exchanged are always prepended with the
instance identifier of the receiving party. Note that several instances of the same
algorithm may concurrently run during the game.

Adversaries. The game features a two-stage adversary (Ai, As). Adversaries
Ay and A, may agree on a common strategy before the beginning of the game.
That is to say, the strategy may be part of their code, and it may dictate which
queries to make (possibly depending on the oracle answers), the order of the
queries and so forth. All but the challenge query can only be made by A;. The
role of Ay is essentially only to guess whether a public key was generated with
KeyGen or with the protocol, while ‘A; can make arbitrary queries according to
the pre-established strategy.

However, A; and As cannot communicate after the beginning of the game. It
reflects the fact that in practice, an implementer may distribute its key generator,
but does not necessarily wiretap the execution of the key-generation protocol
for a particular user. From a technical viewpoint, the reason is that in a key-
generation protocol, a user has to prove to the authority that she correctly
performed her computation. However, the randomness used in these proofs can
be used as a subliminal channel to convey information about the secret key.
For instance, an engineer could in practice implement a bogus key generator
which only terminates the protocol if the first bits of the proof and secret key
match. The proof then serves as subliminal channel to leak information about the
secret key. Later on, when a user wants to generate a certified public key, if the



Init (11, U, CA, 1)

h «g Q; pp «g Setup (l/l)
ID <~ UUCA
for i € [I] and id € ID do
stl « rid — 1
usegﬁ’id — FALSE '
acc"id — term’id — flag!,, « FALSE
sidyy — pidi; < L
skiy « pki, < L
OReveal < QCorrupt < 0
return (pin, sin)

Oracle(M) return (M)
Dist (id, i, Déd) r;:d —g Déd I”i(l is simply g(,~1-1er'ato(i and not returned to Ay
Exec(U,i,CA, j) |if (rLl ¢ Uor CA¢ CA or usedfu or usedjcﬂ) return L

. i j

1f7",u;tJ_and T’éﬂ ¢'J_ ‘

. i .
return <U, (pp, r,u), CA; (pp, ré.ﬂ»

return L A1 must specify distributions beforehand
Send(id, i, M) if rid = 1 return L A1 must specify a distribution beforehand

if termi 4 return L

usedé 1< TRUE
<mout, acc, term, sid, pid, pk, sk, sti.d> — <IKG (id, stéd, M; rid)>
if acc and ﬂaccid

Sidli,d «— sid; pid’id «— pid

acct 4 € acc

3 .

if term and —\term;d

pk, < pk; ski, « sk '
return (mout, sid, pid, pk, sk, acc, term’id)

Set keys only after termination

Reveal(id, i)

OReveal < _QReve_al U {(id, i)}
return (pkéd, sk;d)

Corrupt(id) OCorrupt < QCorrugt U {id} ]

for i € [1] {if ~acc’, then flag}, — TRUE}

return {st! liefry . . 4
Testy, (1d*, i) if (El(ido, idl,i.,j): pid;do =1idy, and pidéd1 = idg and acc’idU

and —-term]i ) return L

dq
Once an instance accepts, its partner must eventually terminate
if ﬂterm’:d* return L
if ﬂag’;i* return L
Reject if id™ was corrupt before (id*,i*) accepted
if (id*,i*) € OReveal or (3(id’,j): pid’,. =id’ and pid’ , = id*
and (id’, j) € OReveal)
return L
Reject if the key of (id*,i*) or of its partner has been revealed
if pk! . # L
ifb=0
A
(pk, sk) «g KeyGen (1 )
return pk
return pk’z;*
return L Reject if (id*,i*) does not have a key

Fig. 1. Oracles for the Key-Generation Indistinguishability Experiment.
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engineer could wiretap the protocol execution, he could infer some information
about her secret key through the proof of correct computation. It is the reason
why communication between the adversaries cannot be allowed.

The restriction that A; and A, cannot communicate after the beginning of
the game means that the attacks in which the protocol executions are listened
to are excluded, but as explained above, it seems to be a minimal requirement.

Game QOverview. At the beginning of the game, the challenger first runs an
initialization algorithm. After that, A; can make several queries to the algorithm
instances. It can in particular

% specify distributions from which randomness is drawn and given as an input
to the instances,

* ask for the protocol to be executed between different instances of the protocol
algorithms without its intervention, i.e., perform passive attacks,

% perform active attacks by sending messages to algorithm instances,

+ later on reveal the keys that were generated by a particular instance,

* corrupt a party (user or certificate authority), and thereby gain access to
the state of all its algorithm instances.

As for Asy, it can reveal keys or make a test query that returns either (with
probability 1/2 each) keys freshly generated by the key-generation algorithm or
keys generated by instances of its choice via queries made by A;. Adversary Ao
must eventually return a guess for the origin of the keys it was returned, and
(A1, As) wins the game if the guess of A, is correct.

Initialization & Game Variables. During the initialization phase, game variables
are declared for every instance of the protocol algorithms. Assume that there
are at most I = I(1) instances of any participant id. Each instance i € I of
a participant ¢d maintains a state sti 4+ A session identity szd’l 4 and a partner
identity pidid allow to match instances together in protocol executions. It is
assumed that for each sid‘i 4 there can be at most one partner instance, i.e., one
pair (id’, j) such that pid, = id" and sid’, := (id.i,id’, j, sid’,").

Public/secret-key variables (denoted pk’, and sk%;) hold the keys that were
output, if any, by the ith instance of the algorithm of party id at that step of
the computation. For certificate authorities, the secret keys are always set to L.

A variable usedi 4 indicates whether the adversary has performed an active
attack on the ith algorithm instance of participant id.

Variables accé , and termll'. 4 respectively indicate whether the algorithm of
the ith instance of participant id has accepted and terminated. As in the BPR
model [4], termination and acceptance are distinguished. When an instance ter-
minates, it does not output any further message. However, it may accept at a
certain point of the computation, and terminate later. In the present context, it
may for instance occur when an instance expects no further random input from
its partner instance, and the rest of its computation is purely deterministic. It
may then only terminate after finishing its computation. This distinction is cru-
cial for the security definition. It is important to exclude the trivial case in which,



although every computation was honestly performed, a user discards the public
key if it does not follow a certain pattern, thereby influencing the distribution
of the output public key (i.e., perform rejection sampling), and possibly using it
as subliminal channel to convey information about the secret key.

Another variable ﬂag’; 4 (new compared to the BPR model) indicates whether
party id was corrupted before its ith instance had accepted. Recall that accep-
tance intuitively means that an instance expects no further random input from
its partner instance. As long as flagi 4 is set to FALSE, the only information the
adversary has about r!, is its distribution and therefore, if this distribution has
high min-entropy, the adversary cannot bias the generation of the keys.

A variable ri 4 holds the random string to be used the ith instance of the
algorithm of id.

The challenger maintains a set (initially empty) Qreveal Of identity—instance
pairs of which the keys were revealed. It also maintains a set (initially empty)
Ocorrupt Of corrupt identities.

At the end of the initialization phase, the public parameters, the sets of par-
ticipants and the user public keys are returned in a public input pin, and the
rest is set in a secret input sin. That is, pin <« (pp, U, CA, I, (pk,;;)iq) and sin «
(pin, (skid)ids (stid, sid’,, pid,, accid, termid, used’id)i’id , OCorrupts QReveal). The se-
cret input sin is later made available to all oracles.

Oracles. Throughout the game, adversary A; is given access to the oracles
summarized below and defined in Figure 1. It can query them one at a time.

x Oracle : gives access to a function & chosen uniformly at random from a
probability space Q. The adversary and the protocol may depend on h. The
probability space Q specifies the model in which the protocol is considered.
If it is empty, then it is the standard model. If it is a space of random
functions, then it is the random oracle model. As for the Common-Reference
String (CRS) model, Q is a space of constant functions.

x Dist : via this oracle, the adversary specifies the distribution Z)i o from which
the randomness of the ith instance of id is drawn. These distributions are
always assumed to be independent of oracle Oracle. However, the distribu-
tions specified by the adversary for different instances can be correlated in
any way. Oracle Dist then generates a bit string ri 4 according to the input
distribution and does not return it to the adversary. Whenever oracle Exec or
oracle Send is queried on (id, i), it uses randomness ri , for its computation.
This new (compared to the BPR model) oracle is essential to express require-
ments on the minimal entropy used by the instances, and also to express rea-
sonable winning conditions. It allows to properly capture properties like the
fact that (1) the authority cannot infer any information about the secret key
if the randomness of the user algorithm has high entropy, (2) that the out-
put keys are indistinguishable from keys generated with the key-generation
algorithm if the randomness used by the algorithm of either of the parties
has high entropy, or (3) that a potentially malicious user algorithm cannot
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bias the distribution of the output keys if the randomness of the authority
algorithm has high entropy. That is first because the test query later made
by As requires the min-entropy of the randomness of either the challenge
instance or of its partner to be high. It is also due to the fact that the adver-
sary cannot corrupt the challenge instance (thus learning its randomness)
before the partner randomness necessary to generate the challenge key is
committed, which is monitored by the flags. It for instance means that if
the CA is the target of the test and the adversary plays the role of a user
algorithm (in which case the partner randomness is considered to have nil
entropy) and possibly deviates from the protocol, then the test CA must be
given high-entropy randomness and the definition ensures that the resulting
key is indistinguishable from keys generated with KeyGen.

* Exec : returns the transcript of an honest (i.e., without the interference of
the adversary) protocol execution between the ith instance of U and the jth
instance of CA. The protocol is executed with the random strings generated
for these instances by oracle Dist on the input of adversarial distributions.
The notations U; and CA; mean that algorithms U and CA are executed using
the state of the ith instance of U and the jth instance of CA respectively. It is
implicitly assumed that the states accfu, term%l, acc’c 7 and termjc 7 are set
to TRUE after an honest protocol execution. Moreover, if the termination
variable of either party is set to TRUE, the protocol is not executed and L
is returned. In essence, by querying oracle Exec, adversary A; performs a
passive eavesdropping attack.

x Send : adversary A; can perform active attacks via this oracle. A; can send
any message to an instance of its choice, e.g., the ith instance of a user
algorithm, which runs the honest protocol algorithm of the corresponding
party on the input of the message chosen by the adversary.

To prompt the ith instance of id to initiate a protocol execution with the
Jjth instance of id’, adversary A; can make a Send query on (id, i, (id’, j)).
IKG(id, *) denotes the IKG algorithm of party id, i.e., either U or CA. The
algorithm is executed using the randomness generated by oracle Dist for
that instance. (Note that the input random string may be used only at
certain steps of the computation.) The oracle then returns the output of the
instance to the adversary. It also specifies if this instance accepted and/or
terminated, and returns the session identifier and the identity of its partner
in the protocol execution, as well as the public and secret keys returned by
this instance, if any. Note that if the instance is that of a certificate-authority
algorithm, the secret key is always set to L.

% Reveal : on input (id,i), returns the keys held by the ith instance of the
algorithm of id. The couple (id,i) is added to the set QReveal Of revealed
keys.

x Corrupt : on input id, returns the states of all the instances of the algorithm of
id. The identity id is added to the set Qcorrupt Of corrupt identities. Besides,
for any instance i of id, if it has not yet accepted, ﬂagid is set to TRUE.

Remark 3.1. The first main difference with the BPR model is the new oracle Dist.
It allows to capture an adversary running several instances of the protocol with
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correlated randomness. In the new model, it is also important to express winning
conditions that exclude the trivial (and unavoidable) rejection-sampling attack.
Another difference is that the variable ﬂagi 4 is set to TRUE if A; corrupts id
before its ith instance has accepted. It is to say that for instance, if an adversary
(e.g., a malicious user algorithm) knows the randomness of the other party (by
corrupting the CA) before it has “committed” to its randomness, then that party
can influence the resulting key and break property (3).

As for adversary As, it is given access to oracles Oracle, Reveal and to oracle

x Testp, : on input (id”,i*), it returns the public key pkl;i* generated via IKG
(with an Exec query or Send queries) if b = 0 or a fresh public key generated
via KeyGen if b = 1.

An important restriction on this query is that the following condition must
be satisfied: for any instance i of the algorithm of a party idg, once it has

accepted, i.e., once accl ido is set to TRUE, the partner instance algorithm7 say

the jth instance of id;, must eventually terminate, i.e., term’ iq, Moust have
been set to TRUE as well by the time of query Test. It prevents Ay from
biasing the distribution of the keys by prematurely aborting the protocol
although it was followed, if the resulting key does not follow a certain pattern,
and which would allow As to guess b with a non-negligible advantage.

The other restrictions are simply that i*-th instance of id* must have termi-
nated, that id* was not corrupt before (id*,i*) had accepted®, that neither
the key of the i*th instance of id” nor of its partner instance has been re-
vealed, and that the i*th instance of id* must already hold a key.

Note that Ay can query Test only once. A definition with multiple queries
would be asymptotically equivalent via a standard hybrid argument.

Adversary Ay must eventually return a bit b’ as a guess for the origin (i.e.,
either IKG or KeyGen) of the key returned by oracle Testy,.

To achieve any form of indistinguishability from a key-generation algorithm,
it is clear that either the distribution D . or the distributions D!, for the part-
ner instance (j,4d”) of (i*,id*) must have high entropy. Indeed, if distributions
with low entropy were allowed, A; and Ay could agree on these identities, in-
stances and distributions beforehand. Adversary Ay could then simply return 1
if and only if the challenge key is the most likely key w.r.t. D;.'*d* and Z){ g »and
thereby win the game with a non-negligible advantage.

6 To understand why it is necessary for id* not to be corrupt before (id*,i*) accepts
even though A; and Az do not communicate, suppose that this condition were not
imposed and consider the following strategy which allows (A1, A2) to trivially win:
A1 and Az agree on (id*,i*) and on a distribution Z):;* Adversary A; prompts
(2d*,i*) to 1n1t1ate a protocol execution by maklng a Send query. It then corrupts id*
and obtains st! t4+» from which it can read r! .. Adversary A; could then play the
role of its partner and adapt the messages it sends to make sure that the resulting
public key follows a certain pattern known to Asg. This latter would then be able to
win the game with a non-negligible advantage.
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A parameter « for the maximal min-entropy of D;d and Z){ o specified by
Ay is therefore introduced. If the adversary modified any message from the
partner (j, id") of (id*,i*) before (id*,i*) accepts, then Z)Zd, is set to be the Dirac
mass at the zero bit-string by convention (and it thus has no entropy). The
underlying idea is that as long as at least one of the two parties has a randomness
source with high entropy, the key returned at the end of the protocol should be
indistinguishable from a key generated by the KeyGen algorithm. The security of
a key-generation protocol is then defined for adversaries that specify challenge
distributions with min-entropy at least «.

Definition 3.2 (Indistinguishability). An interactive key-generation proto-
col 1KG is (T, qoracles Dist> JExecs 9Send> GReveal> GCorrupts K» €)-indistinguishable from
a key-generation algorithm KeyGen (running on uniform randomness) if for all
A € N, for every adversary (A, Az) that runs in time at most T(A) and makes
at most qo queries to O € {Oracle, Dist, Exec, Send, Reveal, Corrupt}, and such that
max (Hm (D;d) , He (D;d,)) > k for query Test, the advantage (function of 1)
[ (pin, sin) « Init (1*, U, CA, 1)

0: « {Oracle, Dist, Exec, Send, Reveal, Corrupt}
AZ ) (pip)

Pr|b=>b": b g (0,1} -1/2
O « {Oracle, Reveal, Test,}
b — ﬂgﬂs’”")(pm)

return (b,b")

of (Ay, As) is at most £().

From a practical perspective, this definition (which implies requirement 3
as it enforces indistinguishability from keys generated by IKG) means that keys
generated via a protocol satisfying the definition above are not subject to ran-
domness vulnerabilities such as the ROCA vulnerabilities [25] and those [23,21]
in which several public keys are generated with correlated randomness sources.

4 Generic Constructions

This section presents a protocol that covers a wide class of key-generation al-
gorithms, namely those that can be represented as probabilistic circuits, and
another protocol specific to the generation of RSA keys. The first protocol is
of theoretical interest and shows that randomness verifiability can be achieved
for wide class of key-generation algorithms, whereas the second protocol is a
solution that can actually be used in practice.

4.1 Key-Generation Protocol with Verifiable Randomness for
Probabilistic Circuits

This section gives a key-generation protocol with verifiable randomness for a
large class of key-generation algorithms. The focus is here on the class of key-
generation algorithms that can be modeled as probabilistic circuits.
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The advantage of probabilistic circuits compared to general Turing Machines
for this purpose is that the running time of a probabilistic circuit is independent
of the random inputs. In a key-generation protocol with verifiable randomness,
the user has to prove to the authority that she correctly performed her com-
putation. Having a constant running time then ensures that no one can infer
any information about the secret key from the statement proved by the user or
the proof itself. It prevents malicious user algorithms from using the proofs as
subliminal channels to pass information about the secret key.

To understand why it is important for the running time to be constant,
consider the following artificial random number generator. To generate a k-bit
string ¢t = (tq,...,fk—1), it consists in flipping a random coin s several times for
each bit #; and to set this bit to the parity of the number of flipped coins to obtain
the first “Head”. It produces a k-bit string uniformly distributed within expected
time complexity O(k) and it could be used as a secret-key generation algorithm
(and the public key would then be a deterministic function of the generated
secret key). See the full version [6] for a formal description of the algorithm.
For a user to prove that she correctly generated the random bit string #, she
would have to commit to the #; values and compute a proof on the successive s
values. However, each ¢; is simply the parity of the number of trials before s = 0.
Therefore, from the number of s values for which the user has to perform a proof,
the authority can infer ¢;. For example, if the user generated two s values for 1,
the authority knows that #; = 0.

In other words, the statement of the proof itself reveals some information
about the secret key to the certification authority; and the issue is here that
the running time changes from one random run of the algorithm to the other.
Restricting to probabilistic circuits eliminates this issue.

The restriction to circuits comes at a cost though. It for instance excludes
the class of algorithms for which there is no known circuit that can represent
them. It is for instance the case of algorithms that must efficiently generate
primes during the process. Indeed, there is no known circuit that can efficiently
generate prime numbers. On this ground, the generic protocol for probabilistic
circuits of Section 4.1 does not apply to the RSA-key generation for instance’.
See rather Section 4.2 for the specific case of RSA-key generation with verifiable
randomness for arbitrary properties that the keys must satisfy.

Before describing our protocol, we first formally define probabilistic circuits.

Probabilistic Circuits. A probabilistic circuit is essentially a deterministic
circuit augmented with uniformly random gates. The random gates produce
independent and uniform random bits that are sent along their output wires.
We equivalently define a probabilistic circuit as a uniform random variable
over a finite collection of deterministic boolean circuits. These boolean circuits

7 One can construct families of probabilistic “circuits” which output an RSA key but
only with overwhelming probability (and not probability 1) by relying on the prime
number theorem and Chernoff’s bound. However, such constructions would have
large gate complexity and randomness complexity and applying our generic con-
struction to such circuits family would result in schemes with prohibitive efficiency.
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are restricted to have the same amount n of input variables, and r fixed inputs.
The number r of fixed inputs depends on the security parameter 11. Denote such
a circuit as I'p,...5, (x1,...,X,), With x1, ..., x, the input variables and b, ..., b,
the fixed inputs. To each element in {0, 1} corresponds a circuit in the collection
with the bit string as fixed inputs, so that there are 2" circuits in the collection.
However, these circuits are not required to form a uniform family (i.e., they are
not required to be output by a single Turing machine); the circuit families here
considered can be non-uniform.

A probabilistic circuit T is then defined as a uniform random variable over the
set (of circuits) {T'p}peio,1)-- Namely, for input variables x1, . . ., x,, the evaluation
[(x1,...,%,) is a uniform random variable over the set (of values) {Ip(x1,...,
Xn)lbejo1y - If w € {0,1}" denotes the random input to the probabilistic circuit
I', the evaluation I'(xy, ..., x,;w) is then T'y,(x1,...,x,).

The advantage of this second definition is that randomness is invoked only
once instead of invoking it for each of the r random gates. To generate keys,
PRFs are often used to provide random bit strings from small secret seeds. As
the goal is to build a key-generation protocol which allows the CA to certify
that the keys are generated with high-entropy randomness, the user will have
to prove that she correctly performed the pseudo-random evaluations. Invoking
randomness only once then allows to invoke the PRF only once in the protocol.

Generic Protocol. We now give a two-party protocol in the CRS model to
generate, with verifiable randomness, keys computed by probabilistic circuits.
Requiring that keys are generated with verifiable randomness here means that
the random inputs to the circuits must be uniformly generated in a verifiable
manner. The deterministic inputs can simply be considered as public parameters.

Building Blocks. The protocol involves (see the full version [6] for definitions)

— a function family H = {Hpi}pie(o,1)4v Which is a universal computational
extractor w.r.t. unpredictable sources

— a two-source extractor Ext with key space {0, 1}%V

— an extractable commitment scheme 4 = (Setup, Com, ComVf, TSetup, ExtCom)
for the user algorithm to commit to its random string before receiving any
input from the CA, thereby preventing it from biasing the distribution of
the keys. The parameters returned by Setup are implicit inputs to the other
algorithms of ¢

— a non-interactive, extractable, zero-knowledge proof system IT with IT =
(Setup, Prove, Verf, TSetup®, Sim, TSetup®™’, Ext) for the relation

Ru = {((x0)i k. C, rc, ks 1y d, sk) = ComViF (C, vy d) = 1
A(pk, sk) =T (xl, .o, Xn; Exty (7"(21’ Tcy[))},

— a pseudo-random function PRF to generate the randomness for IT1.Prove.
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Parameters. Given a circuit I' with deterministic inputs x1, ..., x,, to generate
public parameters for the protocol on the input a security parameter 14, run
ppey <« € .Setup (1’1) (ppe is a tacit input to the algorithms of %), crs «

I1.Setup (1’1)7 and generate hk g {0,1}9 and k «g {0,1}°Y. Return pp «
(crs, ppeg, bk, ky x1, ..., xp).

Formal Description. Consider the interactive protocol IKGr on Figure 2 between
a user U and a certification authority CA. Each algorithm maintains acceptance
and termination variables acc;q and term;q, for id € {U,CA}, initially set to
FALSE. On the input of pp and of their respective random strings r¢; and r¢ 4,
the party algorithms proceed as follows:

1. U separates the domain of Hpy in two and applies it to its randomness. It
commits to the first output with the second output as randomness, and sends
the resulting commitment C to CA

2. CA, upon receiving the commitment from U, sets acccs «— TRUE and sends
its random string rc4 to U

3. U, upon receiving r¢eg from CA, sets accqyy «— TRUE. Next, it extracts a
seed s with Ext from the joint randomness. It evaluates I' on x,...,x, and
s, and obtains a key pair (pk, sk). It generates another seed s’ with Hpy.
Algorithm U then evaluates PRF mode on s’ to generate the randomness
necessary to compute I1.Prove since U has no other random string than rq
available, i.e., it computes rr « PRF(s’,0). Algorithm U then proves that it
followed the protocol and correctly evaluated I at xq,. .., x,, i.e., it computes
a proof m < II.Prove (crs, ((x)i k, C, rea, pk) , (r,’u, d, sk) ;rn). After that, it
erases all variables but pk, sk, n, sends pk and n to CA, returns (pk, sk) and
sets termq; «— TRUE

4. CA, upon receiving (pk, r) from U, verifies the proof. If the proof is valid, it
returns pk, otherwise it returns L. It then sets termcg < TRUE.

Correctness & Indistinguishability. In the full version [6], we show that IKGr is
1-correct w.r.t. all algorithms if € is correct and if IT is complete. Moreover, it is
indistinguishable from I' in the CRS model for sources with min-entropy at least
k = max(Kkqy, Kext) if Ext is a (Kext, Eext)-extractor for kg < min(lrgl Ireal), if
H is UCE-secure w.r.t. simply unpredictable sources of min-entropy at least kg,
if ¥ extractable and hiding, if IT is extractable and composable zero-knowledge,
and if PRF is a secure PRF.

Discrete-Logarithm Keys. The full version of the paper [6] presents a simple
illustration of this generic protocol (but rather in the random-oracle model for
better efficiency) applied to discrete-logarithm keys.

4.2 RSA-Key Generation Protocol with Verifiable Randomness

This section gives a two-party protocol for RSA-key generation with verifiable
randomness between a user U and a certification authority CA. The resulting
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U (crs, ppeg, Bk, k, x1, ..., xp; 1q4) CA (crs, ppeg, hk, k, x1, ..., Xn;rC )
gy < Hhk (O”""L(, 1'”“')
pu — Hyy, (1llrgg, 11Pul)
(C.d) — Com (r7; pur)
C
~
rca
2
s « Exty (r(’u, Tcyl)
(pk, sk) « T'(x1,...,xn;8)
s’ Hyp (2llrq, 1151
7« II proof of correct computation
with random string PRF (s’,0)
k, 2
Erase all variables but pk, sk, & EdisiN I1.Verf (crs, ((x1)i, k, C, req, pk),m) =1
return (pk, sk) return pk

Fig. 2. Key-Generation Protocol with Verifiable Randomness for Probabilistic Circuits.

keys can be used in any RSA cryptosystem. The protocol attests that the re-
sulting keys were generated with high-entropy randomness and that they satisfy
(fixed) arbitrary properties. These properties are captured by a relation

Rw = {(N,e € Z;p,ge W CP): p#q AN =pqAged(e,o(N)) =1}

to which the keys generated should belong, where W is a set that defines the
predicates p and g must satisfy, e.g., p = ¢ =3 mod 4 or p and ¢ are safe primes.
Its relative language is denoted Ry . Efficient proof systems for such properties
exist [31,11,1], though none of them aims at proving that the keys were generated
with proper randomness.

In comparison, the protocol by Juels and Guajardo [22] only guarantees the
first two properties, and does mot ensure that the user algorithm cannot bias
the distribution of the keys. Without the third property, an interactive key-
generation protocol is only beneficial if the user does not have high-entropy
randomness locally whereas the CA does, otherwise it is only a burden for the
user. On the other hand, the third property additionally guarantees the end user
that if the CA has high-entropy randomness, her keys are not faulty.

As for the attestation scheme of Benhamouda et al. [5], it allows to prove that
the RSA primes were generated with an arbitrary generator; and the protocols of
Camenisch and Michels [11], of Auerbach and Poettering [1], and of Goldberg et
al. [19], only allow to prove that RSA primes satisfy certain properties, not that
they were generated with high entropy. In a sense, our goal is complementary to
that of proving that RSA moduli satisfy certain properties without proving that
the keys were generated with high-entropy randomness.

RSA Key-Generation Algorithm. The NIST standard [26] for the RSA [28] key-
generation algorithm, further denoted KeyGenggy, is the following:
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— choose at random two distinct large primes p and ¢

— compute N « pg and ¢(N) < (p—1)(g—1)

— choose an integer 216 < e < 2256 such that ged(e, ¢(N)) = 1 (e may be chosen
deterministically or at random); compute d < e~* mod ¢(N)

— Return pk < (N, e) and sk « (N, d).

Equivalently, the secret key sk can be set to (p, g, e) instead of (N,d) as one
can compute (N, d) from (p, g, e) and vice-versa. It is this variant that is here-
after considered. To formally capture the requirement on p and g to be large, a
parameter b = b(A) that specifies the bit-length of p and ¢ is introduced.

Interpretation. There is some ambiguity as to how p and g are generated. The
interpretation (which follows how the algorithm would implemented in prac-
tice) of KeyGengpga in the rest of the paper is first that there exists a PPT
primality-test algorithm PrimeTesty (4, b,e,p) — £ € {0,1} (parameter A is fur-
ther omitted from its syntax) which tests whether an integer p is in W, b-bit
long and such that ged(e, (p — 1)) = 1. Algorithm KeyGengg, then generates,
uniformly at random, integers in [[2b‘1,2b - 1]] until it finds an integer p such
that PrimeTesty (b, e, p) = 1, and continues until it finds a second one g # p such
that PrimeTesty (b,e,q) = 1. If no such two integers are found in a specified
number of iterations Tgsa (1), the algorithm aborts and returns an invalid pair,
e.g., (0,0). The random variable with values in {0, 1, 2} that counts the number
of distinct primes found in at most Trsa (4) iterations is further denoted ctrrsa.

Protocol. We now describe our protocol, further denoted IKGrga, to generate
RSA keys with verifiable randomness. The protocol is given in the random-oracle
model to allow for practical efficiency.

Building Blocks. The protocol builds on

— the same primality-test algorithm PrimeTesty as the one run by KeyGenggy .
It is said to be 8-correct if with probability at most 1-6, PrimeTesty (b, e, p) =
0forp e Wn|[2b-1, 2b - 1]] such that ged(e, (p—1)) = 1, or PrimeTesty (b, e, p) =
lforp¢ Wﬂ[[2b‘1, 2b l]l or such that ged(e, (p—1)) > 1 (i.e., it is an upper-
bound on the probability that it returns a false negative or a false positive)

— a random oracle of which the domain is separated to obtain pairwise inde-
pendent random oracles H, H¢, Hi and Hi,,

— a commitment scheme% = (Setup, Com, ComVf) for the user algorithm to
commit to its random string before receiving any input from the CA. The
parameters returned by Setup are tacit inputs to ¢ other algorithms.

— a pseudo-random function PRF with range (non-empty) Rpre € N for U to
generate the RSA primes from the seed extracted with H

— an extractable non-interactive zero-knowledge (NIZK) argument system Il =
(Setup, Prove, Verf, Sim, Ext) for the relation {(C; Tqp d) : ComVI(C,r),,d) = 1}
with random oracle Hg, i.e., for the user to prove knowledge of an opening
to her committed randomness
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— an extractable NIZK argument system IT = (Setup, Prove, Verf, Sim, Ext)
with random oracle Hp for the relation

{(C, reas N, (ay)yzij; Tqp ds i, aj) : ComVf (C, T d) =1 s=ry ®@H(rca),
Yy € [j] @y = PRF(s,y), 2PO-1 < g aj < 26 _ 1 N = a;a; in N} ,

i.e., for the user to prove the RSA primes are really the first two primes
generated with the seed derived from the committed randomness and the
randomness of the CA. This relation is further denoted Rp

— a NIZK argument system [Ty = (Setup, Prove, Verf, Sim) with random oracle
Hr,, for relation Rw

— another pseudo-random function PRF” with variable output length (encod-
ing in unary as last input) for U to generate the randomness necessaryto
compute I1¢.Prove, PrimeTesty, I1.Prove and Iy .Prove, as the only available
randomness to the parties are their input random bit strings.

Throughout the protocol, e is assumed (without loss of generality) to be a
fixed®, hard-coded value in U. For the sake of simplicity, e is further assumed to
be prime, e.g., e = 65537 (it is a value commonly used in practice).

Parameters. Given a security parameter 11 and a function 7: N — N.; that
gives an upper bound on the number of iterations in Algorithm 1 (and thus the
running time of U), to generate parameters for IKGgrga, run pp, « % .Setup (1/1),

PP Hc.Setup(l’I), ppn < I1.Setup (1’1) and ppp, < Ilw.Setup (1’l>. Set
and return pp « (b(/l), T(2), pps> pPugs PP1> ppnw)-

Formal Description. Consider the interactive protocol on Figure 3 between a
user U and a certification authority CA. Each algorithm maintains acceptance
and termination variables acc;q and term;q for id € {U,CA} initially set to
FALSE. The party algorithms proceed as follows:

1. U applies the random oracle H twice to its randomness rq; to compute
Ty < H(O||lry) and py « H(1||re), commits to 14, With py as random
string. Next, a seed s’ « H(2||rq) from which it derives the randomness
necessary to compute Il¢.Prove, and computes of proof of knowledge of an
opening to the commitment. U sends the commitment and the proof to CA

2. CA, upon receiving the commitment and the proof from U, sets accca «—
TRUE. It verifies the proof and if it holds, sends its randomness to U, and
otherwise returns L and sets termca «— TRUE

3. U, upon receiving r¢a from CA, sets accqy < TRUE. It extracts a seed s
with H from the joint randomness. It continues by generating by running
((a/y)i,:l,i) « Algorithm 1.

8 Alternatively, in the protocol on Figure 3, after N is computed, U could continue
to generate pseudo-random values until it finds one that is coprime with ¢(N) and
then sets it as e. Algorithm U would then also have to reveal the values that did not
satisfy this property and prove that they did not, and also to prove that the chosen
e and ¢(N) are coprime. Assuming e to be fixed in advance avoids this complication.
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Algorithm 1

Require: PrimeTesty, integers T, b, e, pseudo-random function PRF, seed s.
Ensure: Pseudo-random numbers a, and integer i.

1: ctr,i,j <O
2: while ctr <2 and j <T do
3: jej+1;a; < PRF(s,))
4: if PrimeTesty (b, e aj; PRF(s,j)) then
5: if ctr =0 then
6: ie—j
T end if
8: ctr « ctr +1
9: end if
10: end while
11: if ctr <2 then
12: return ((ay);:l,J_)
13: else ]
14: return ((ay);:l,i)
15: end if
(a) ifi = L (i.e., Algorithm 1 did not find 2 primes such that PrimeTesty (b, e,
aj;PRF(s,j)) =1 in T iterations; this case is not depicted on Figure 3),
U sends (rru, (ay);:l) to CA, returns (0,0) and sets termq «— TRUE
(b) ifi # L, U computes a proof rr that it correctly performed its computation
with II, and a proof my that the RSA public key is in Ly with Iy .
After computing the proofs, U erases all variables but N, e, p, g, i, 7,
mw and (ay)yzi,;. It sends these latter to CA, except p and ¢, returns
(pkq < (N,e), sk « (p,q,e)), and sets termq < TRUE
4a. CA, upon receiving (’l"q,(, (a,y)fyzl) from U, computes ry,, py and s as U,
computes (C’,d’) <« Com (r,’u, py), and verifies that C’ = C and that
PRF(s,y) = a, for all y € [j]. If all verifications succeed, CA returns 0,
otherwise it returns L. It sets termeg < TRUE
4b. CA, upon receiving (N, e, T, Ty, 1, (ay)yﬁ,j) from U, generates a seed s” with

H from its randomness, and uses it to generate the randomness necessary to
compute PrimeTesty . The resulting random string is denoted ry, . It verifies
that for all y € [j — 1]\ {i}, PrimeTestw (b, e, ay; r"v) =0, and that 7 and 7y
are valid. If one of the verifications did not succeed, CA returns L, otherwise
it returns pkcg < (N, e). It sets termca < TRUE.

Discussion. U proves among other things that p and g are really the first two
random primes in W such that ged(e,p — 1) = ged(e,qg — 1) = 1, and therefore
cannot have chosen primes with additional conditions to these. It is a subtle
but crucial aspect of the protocol which ensures that U cannot bias the distri-
bution of the keys; and not doing so is precisely what allowed for the ROCA
vulnerabilities [25] in which specific primes where chosen by the user algorithm.
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U (pp, e; ray) CA (pp;rca)
rg < H Olirg); pu < H (Llry)

(C.d) « Com (r1,; puy)
s" — H (2llrgg); rri, — PRF (57,0, 1|’“c‘)

nc « Ilg.Prove (ppnc, C, (7“,21, d) ;VHC)
C,nc

— M. Verf (ppnc,c,nc) ]
TcA
P
s <1y, ®@H(rca)
((a/y)i,:l,i) « Alg.1 with random string
PRF’ (s’, v, 1|'W‘) for PrimeTesty,
p<aj, q<aj, N < pq
7 « II proof of correct computation with
random string PRF’ (s',j +1, 1|r[[|)
aw <« Iy proof that (N, e) € Ly with
random string PRF’ (s’,j +2, 1|mw))
Erase all variables but N, e, i, p, ¢ s — H(rcq)
N,e),n,
(@y)y=i,j. 7 and Ty epmaw, r, — PRF’ (s”,0)
ia(ay)yti.j

Yy #1, j, PrimeTesty (b, e’“)’;rév Zo
MLVerf (ppr, (C, reat, N, (aydysi ) 7) =1

Ty .Verf (pprr,,. (N, e). 7w ) £ 1
return ((N,e), (p,g,e)) return (N, e)

Fig. 3. RSA-Key Generation Protocol with Verifiable Randomness for an Arbitrary
Relation Ry .

Correctness € Indistinguishability. Let j be the number of iterations of Algo-
rithm 1. In the full version [6], we show that, if PrimeTesty is d-correct and
if PRF’ is a secure PRF, IKGrga is approximately (1 — j(1 — &))-correct in
the random-oracle model w.r.t. the class of algorithms that make few oracle
queries compared to the min-entropy of the distributions they provide. More-
over, IKGrga is indistinguishable from KeyGenpg, in the random oracle if € is
hiding and binding, if Il and IT are zero-knowledge and extractable, if ITy is
zero-knowledge and sound, if PRF and PRF’ are secure PRFs, if the probability
that Algorithm 1 fails although IKGrga does not is small, and if the adver-
sary makes few random-oracle queries compared to the min-entropy of the test
distributions. Lastly, in [6], we also show that by tuning the running time of
Algorithm 1 depending on the number of primes in the range of PRF that sat-
isfy the conditions on p and ¢, the probability that Algorithm 1 fails although
IKGrga does not is small.
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5 Instantiation of the RSA-Key Generation Protocol

In this section, we instantiate the protocol of Section 4.2 for RSA key-generation
with verifiable randomness. To do so, we provide efficient instantiations for each
of the building blocks.

Recently, several important advancements have been made on the efficiency
of the commit-and-prove paradigm on committed values which combine algebraic
and non-algebraic statements [14,10,2]. These improvements for cross-domains
statements allow to prove efficiently for instance that some committed value
corresponds to a pre-image of some value of a given hash function such as SHA-
256 or that some value is the output of some non-algebraic PRF (i.e. HMAC-
SHA-256 or AES) using some committed key. To generate an RSA modulus of
3072 bits (for 128-bit security) using the generic protocol from Section 4.2, the
PRF must return 1536-bit integers and the use of non-algebraic PRF with the
technique from [14,10,2] would result in prohibitive schemes.

On this account, we present an instantiation based on an algebraic PRF,
namely the Dodis—Yampolskiy PRF, and use techniques [10] due to Biinz, Bootle,
Boneh, Poelstra, Wuille and Maxwell for range proofs and arithmetic-circuit
satisfiability to obtain short proofs of correct computation (i.e., IT in Section 4.2).

In the process, we give the first logarithmic-size (in the bit-length of the group
order) argument of knowledge of double discrete logarithms, and argument of
equality of a discrete logarithm in a group and a double discrete logarithm in
another related group. In contrast, the protocol of Camenisch and Stadler [12]
for the first relation, and the protocol of Chase et al. [14] for the second are
linear in the security parameter.

Parameters. We consider two related group-family generators GroupGen; and
GroupGen,. Given a security parameter A, to generate an RSA modulus
which is the product of two b(A)-bit prime numbers, let £ be the smallest
prime of binary length equal to (A1) such that 2¢+1 is also a prime number
(i.e., € is a Sophie Germain prime number, or equivalently 2£+1 is a b(4) +1-
bit safe prime). GroupGen, returns, on input A, the group Gs of quadratic
residues modulo 2¢+1 (which is of prime order €). The group-family generator
GroupGen; returns on input A some group G; of prime order A such that ¢
divides A —1 and A > (2¢ + 1)2. In practice®, G; can be taken as a prime
order subgroup A of Z; for some prime number » such that A divides r — 1.
The restriction to quadratic residues is necessary for assumptions like the
g-DDHI assumptions to hold over G,. However, it introduces a bias by de-
sign (not from the user algorithm) in the RSA keys generated: p and ¢ are
necessarily quadratic residues modulo 2¢ + 1. The reason is that the values
returned by the DY PRF are not actually integers but G elements. Nonethe-
less, it is already the case for 1/4 of all RSA moduli since the factors p and
g returned by KeyGenggy -

9 To generate RSA moduli which are products of two 1536-bit primes, one possible
instantiation for the Dodis—Yampolskiy PRF is to use ¢ = 21935 4+ 554415 which is a
Sophie Germain prime, A = (4 +18)( + 1 and r = 1572 - A + 1.
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Commitment Scheme. Scheme % is the Pedersen commitment scheme [27]
in Gy for the user to commit to her randomness and to the secret p and q.

Pseudo-Random Functions. PRF is the Dodis—Yampolskiy (DY) PRF (see
Section 2) in the group Gy = QRor41 of quadratic residues modulo 2¢€ + 1. Tt
is used to generate the secret RSA primes p and ¢. Since 2¢ + 1 is b(1) + 1
bits long, p and g are b(A) bits long with probability close to 1/2. The reason
2¢+ 1 is chosen to be one bit larger than p and g is to ensure that all primes
of b(A) bits can be returned by the PRF so as not to introduce a bias. As
for PRF’, it can be any efficient pseudo-random function, e.g., HMAC [3].

Argument for Ry. The argument system Ily depends on the properties that
the prime factors of N must satisfy, e.g., they must be congruent to 3 modulo
4 or be safe primes. To prove that p = ¢ =3 mod 4, one can prove that N is
of the form p"¢* with p = ¢ =3 mod 4 using the protocol of van de Graaf
and Peralta [31], and run in parallel the protocol of Boyar et al. [9] to prove
that N is square-free. To prove that p and g are safe primes, there exist
proof systems in the literature such as Camenisch and Michel’s [11]. Besides,
Goldberg et al. [19] recently built a protocol to prove that ged (e, #(N)) = 1.

Argument of Correct Computation. The last component is an extractable
zero-knowledge argument system II in the random-oracle model for the user
algorithm to prove that it correctly performed its computation, i.e., an ar-
gument system for Ryp. Section 5.1 presents a perfectly honest-verifier zero-
knowledge interactive protocol for Ry that is also extractable in the random-
oracle model.

5.1 Zero-Knowledge Argument with the Dodis—Yampolskiy PRF

This section gives a zero-knowledge argument IT in the case of the DY PRF in
G2 = QRy¢41- Formally, let 2€+1 be a b(2) +1-bit (i.e., b(1)+1 = [log(2€+1)]+1)
safe prime (i.e., € is a Sophie Germain prime) and let A be a prime integer such
that ¢ divides A—1 and A > (2£+1)2. Consider G, = (G1) a group of prime order
A (in which p and ¢ will be committed) and Gy = (G2) = QRar4+1 the group of
quadratic residues modulo 2¢ + 1, which is a cyclic group of order £. Recall that
the DY PRF is defined as the map (K, x) — Gé/(K”).

Proof Strategy. To prove knowledge of a witness for the membership of
(C, rea, N, (a'y)'y¢i’j) to the language relative to Ry, the user algorithm com-
mits to p = a; and ¢ = a; in G; with the Pedersen commitment scheme and
respective randomness r, and r,;. The commitments are denoted P and Q.

The user algorithm then proves knowledge of a witness for Ry N Ry, with

RO = {(C’ rca, N» P» Q» (a’)/)‘y#i,j; Tf,[,{» Pu> Qi, aj; rp’ rq):
ComVF(C, g pu) = 1, s = 19, + H(rcn) mod £
Vv € [j], ay = PRF(s,y), ComVf(P, a;, rp) = ComVf(Q, aj,rg) = 1}
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and
ﬂ1 = {(C, TcAs N, P’ Q’ (a’)’)’y#i,j; T',L(’ Pus Ais (lj, rpa rq) : Come(P9 a;, rp) = ]-
ComVF(Q.aj.rg) = 1,2°V ™ < aja; < 2"V 1N = g;aj in N} .

To prove knowledge of a witness for relation R, it then suffices to prove in
parallel knowledge of a witness for Ry and of a witness for R; on the same public
inputs. Note that the binding property of the Pedersen commitment scheme in
Gy (relying on the DLOG assumption) guarantees that the a; and a; values used
in both proofs are the same (up to a relabeling).

Relation Ry. We start by giving two preliminary protocols:

— alogarithmic-size zero-knowledge argument of knowledge of a double-discrete
logarithm (Section 5.2) using Bulletproof techniques [10]. The resulting proofs
are of size logarithmic in the bit-length of the group order. In comparison,
the protocol of Camenisch and Stadler [12] has proofs of size linear in the
security parameter

— a logarithmic-size argument of equality of a discrete logarithm in a group
and a double discrete logarithm in another related group (Section 5.2). In
contrast, the protocol of Chase et al. [14, Section 4.3| for this relation uses
the techniques of Camenisch and Stadler and therefore has proofs of size
linear in the security parameter.

We then combine the latter proof with the proof in Section 5.3 to obtain a proof
for relation Ry.

Relation R;. The aggregated logarithmic range proof of Biinz et al. [10, Sec-
tion4.2] is sufficient to prove that the values committed in P and Q modulo A
are in [[2”_1, 2b 1]] (which is equivalent to proving that the values committed

in PGIQb and QGI2b*1 are in {0, L2 1}) With the hypotheses on the
parameters A and ¢, the verifier is convinced that the equation N = a;a; holds
in N. Indeed, the equation N = a;a; mod A implies that there exists m € Z
such that N = g;a; + mA. Integer m cannot be strictly positive as otherwise N
would be strictly greater than A. Besides, m cannot be strictly negative since
A> @20+ 1)2% > ajaj; it is therefore nil and the equation N = a;a; holds in N.

-1

5.2 Logarithmic-Size Argument of Double Discrete Logarithm

This section gives a zero-knowledge argument with logarithmic communication
size for proving knowledge of a double discrete logarithm. It uses as a sub-
argument the logarithmic-size inner-product argument for arithmetic-circuit sat-
isfiability of Biinz et al. [10, § 5.2], which is complete, perfectly honest-verifier
zero-knowledge, and satisfies witness-extended emulation.

Following the ideas of Bootle et al. [8], Biinz et al. convert any arithmetic
circuit with n» multiplications gates into a Hadamard product ay o ag = ap and
Q < 2n linear constraints of the form

Wrg.apL) +{WR 4, ar) +{Wo,4,@0) = ¢4
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for g € [Q]l, with wy 4, WR ¢, Wo0,q € Z}, and ¢4 € Zp,. The vectors ay,, ag respec-
tively denote the vectors of left and right inputs to the multiplications gates, and
ao the vector of outputs. The linear constraints ensure the consistency between
the outputs and the inputs of two consecutive depth levels of the circuit. Bootle
et al. [8, App. A] give a general method to find such linear constraints, though
it may not always result in the most compact ones for a specific circuit.

Biinz et al. actually give an argument for a more general relation which
includes Pedersen commitments of which the openings are included in the linear
consistency constraints. Concretely, given a group G of prime order p and positive
integers n, m and Q, Biinz et al. give a zero-knowledge argument for the relation

{(g, heGgheG"VeG" W, WgWoeZl" Wy eZ",
ce Zg;aL,aR,ao € Z:‘,,v,y € me) (V=g hivj € [m]
Aay oagr =ap A Wrar + Wragr + Wpap = Wyv +c}.
Its soundness relies on the discrete-logarithm assumption over the generator of
G and the prover sends 2[log, n] + 8 group elements and 5 Z,, elements.
The main difficulty in the case of a proof of a double discrete logarithm

relation is to re-write the problem in a way that is suitable to apply the proof
for arithmetic circuits. The goal is to give a zero-knowledge argument for:

RobLOG = {(Gl, Hi,Go,Y:x €Zpr €Zn): ¥ = G?gH{} :

First, let n(4) +1 := b(4) be the bit-length of £. Given the bit representation
(x)), of x, G = GQZ":O %2 _ I; (ng)xi. An important observation is that for
x; € {0, 1}, (G%i)xi = x,-Ggi +(1—x;) =x; (G%i - 1) + 1. The addition here is over
Za, although the notation is purely formal since x; € {0, 1}. It thus follows that
an argument for Roprog is equivalent to an argument for:

i (x: (G2 -1)+1
{(Gl,HlaGQ’Y;(xi)?—o €{0,1}",r €Zy): Y =G, (x( ’ ) )HI}

which is also equivalent to an argument for:
. n v = cAliai gr 21
{(Gl,Hl, GoY;(a) ot €Zp): Y =GV H A a; € {1, G2 }} .

To this end, consider the following array

ap ay ag e an
1 ag apai e apay - - ap-1
ap aopdq dpdi1ds s apg - -dy.

Notice that its third row is the product of the first two. In other words, if a «
(ag,ay,...,a,) € ZTI and b « (by = ag,b1 = agai,...,by_1 = agay---a,-1) €
Zy, thenao (1 b)=(b y)fory:=Gj3.
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0(n+1)x2(n+1)
WL W Wo Wy
R

Fig. 4. Matrices Wz, Wgr, W and Wy for the proof of double discrete logarithm.
U,+1 denotes the square n + 1-matrix with 1 on the upper diagonal. E;x,, (i, j) denotes
the n X m matrix with 1 at position (i, j) and 0 elsewhere.

2
€ Zi("ﬂ) where Ggml denotes the vector (Gg, G%, ng’ A ng), one has aj cag =
ap. If one can prove knowledge of scalars y,r € Zj and of vectors ar, ag and ap
such that Y = G{H{ and ay oag = ap, and such that the vectors are of the form

Moreover, for ay := [a a-— 1”*1]T, ag = [1 ba- GZMl]T and ag = [b y 0"*1]T

above, then one can prove knowledge of (a;), € [1; {1, Ggl} and (bi)i;ol such
that y = apby-1 = anap-1by—o = -+ = anan-1---arbg = ap---ap and Y = G{H{.
That is to say, one can prove knowledge of a double discrete logarithm.

To prove such a relation, one can use the argument of Biinz et al. [10] for
arithmetic circuits with the right linear constraints to ensure that the vec-
tors are of the appropriate form. To express these constraints, consider ma-
trices Wz, Wg, Wo and Wy from Figure 4 and vectors vl = [1 y], =

n+1
[01><(n+2) 1" G2 ' 01X(n+l)]'
2(n+1)

Three vectors ar, ag and ap € Z satisfy the equation Wya; + Wgrag +

Wopap = Wyv + ¢ if and only if there exists a € Zj’\” and b € Z} such that

al = [a a- 1’”1], ak = [1 ba- Ggﬁl] and al) = [b y 0”*1] e 23"V (see [6]).

The argument of Biinz et al. is therefore sufficient to prove in zero-knowledge
knowledge of a double discrete logarithm. The soundness of the proof relies on
the discrete-logarithm assumption over Gj.

Regarding the proof size, the prover sends (2[log, 2(n + 1)1 + 8) G elements
and 5 Zp elements. Notice that the argument of Biinz et al. requires 4(n + 1)
elements of G in addition to G; and H;. To guarantee its soundness, no discrete
logarithm relation between these elements, G; and H; must be known to the
prover. They can then be choosen uniformly at random during set-up.

Logarithmic-Size Argument of Discrete Logarithm and Double Dis-
crete Logarithm Equality. Building on the argument of double discrete loga-
rithm of Section 5.2, we present in [6] a zero-knowledge argument for the relation

Roroc-2 = {(G1, H1,Go, Ho, Y, X;x € Zg,r1,rp € Zp): Y = G?ng,X = G;H?}.
In total, the prover sends 2[logs 4(n + 1)]+ 8 Gy elements and 5 Z, elements.
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5.3 An Intermediate Protocol in G,

This section gives an perfect honest verifier zero-knowledge protocol for relation

Ré = {(GZ’ H2, Xp, qu U9 Ku’ (K)/))’#i,j? (CL)/)’}’; xp9 )Cq, rps rq9 l/t, pu) :
V€ {p.q). Xx = Gy H .U = G4 HY",
Vy.ay = Gy xx(u+Kyz) = x,(u+Ky) =1 mod ¢}

Note that for 7 € {p, q}, (UG?”))C” H, """ = Gy, and that Yy, a¥ = Gga;Ky, ie.,

the discrete logarithms of Gga;Ky in base a, for all y are the same.

The protocol is given on Figure 5). As the proof system is public-coin, it can
be made non-interactive in the random-oracle model via the Fiat—Shamir heuris-
tic by computing ¢ as H(Ga, Ha, (Xz), U, (Kz), (Ky)y, (ay)y, Yz), V, (Hz), (A))) for
a random oracle H with Z, as range. The proof then consists of (¢, (zx, tx)re(p.q}»
W, Ty, (Tn)r), 1.€., 9 Zp elements.

The protocol is complete, perfectly honest-verifier zero-knowledge, and sat-
isfies witness-extended emulation under the discrete logarithm assumption over
G3. The protocol completeness and its zero-knowledge property are straightfor-
ward. See the full version [6] for the proof of the witness-extended—emulation.

P 5 (X )neipagp ) b Pu) ¥ (Ga, Ha, (Xz), U, (Kz), (Ky )y, (ay)y )
Y, Sa, Vs Oy, O g Zf
Y « Gy Hy"
Yz)r,V,(Hp)ns (Ay)
V « GyHJ" -
K, \ Y= On
Hy « (UGV2 )" Hs
Ay (ay)
C g Zg
C
pal
Zn — Yn — CXpylg < Sgp — Cr'y Gy HY X5 £ Yn
(Znstn)n wrgTugrc 2
WV —Cll,Ty < Oy —CPy _ G2H2U =V
W, Tu, (T )n
i ?
Tg — Op + CXrpu (UGE")™ HY" G £ Hy
ZKNC
a;," (GgayKy) = A,

Fig. 5. Honest-Verifier Zero-Knowledge Protocol for Relation R;.

5.4 Protocol for R,

To prove knowledge of a witness for Ry, the prover starts setting by setting
Kp =H(rca) +i, K4 = H(rca) + j, and u = rz,. It then

— computes two commitments X, = G;" H;” and X, = G;qH;‘], for x, =
(u+ Kp)_1 mod ¢ and x, = (u + I(q)_1 mod ¢
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— computes a proof mprog-2,, that the double discrete-logarithm of P is the
discrete logarithm of X, and similarly a proof nprog-2,4 for Q and X,
— computes a proof n’ for relation R} with X, and X,.

The final proof ng for Ry consists of (Xp, X4, TDLOG-2,ps ﬂDLOG_Q’q,ﬂ'(’)).

Security. It is important to note that the security of the generated key is weak-
ened compared to an RSA-key of the same size since the CA can recover seed s
(and thus the prime factors) by solving a discrete logarithm problem in Go. For
3072-bit RSA moduli, this protocol therefore only provides 96 bits of security
(with respect to the CA) instead of the expected 128-bit security level. To avoid
this issue, one can increase the bit size of the prime numbers to 3072 bits (but at
the cost of generating RSA moduli of twice this size). Another possibility is to
use other groups for G, with (alleged) harder discrete logarithm problem, e.g.,
the group of points of an elliptic curve over F, or an algebraic torus defined over
Fp,2 (with compact representation of group elements in F,) for a 1536-bit prime
p. This may however introduce a new bias for the generated primes and require
to adapt the zero-knowledge proofs.

Efficiency. The asymptotic complexity of the communication size depends on
the number of trials to obtain two primes in W since the prover has to send
(ay)y#i,j. However, even though the communication is asymptotically linear in
the number of trials, the overhead incurred by the proof of correct computation
should in practice be small.

Ze|ZN | Zp G1 G2 |Total (kB)
Rol| 9| 0 |10| 4[logy4b] + 16 2 346
R1|| 0| 0 | 5 [2[logy2(b—1)T+4]| 0 142

[V}

Fig. 6. Size of the Arguments (for a 96-bit security level and 3072-bit RSA moduli).

Total Proof Size. As discussed in Section 5.2, proofs npr,oc-2,p and mprLoc-2,4
both consists of 2[logy 4(n + 1)] + 8 Gy elements and 5Z, elements.

Proof n” consists of 9 Z; elements (see Section 5.3). Proof my for Ry therefore
consists of 2 Gy elements, 4[log, 4(n+1)] + 16 G; elements, 10 Z elements
and 9 Z, elements. As for the proof for Ry, the aggregated proof that 2 values
committed in G; are in I[O, 2b-1 _ 1]] consists of 2[logy 2(b — 1)1 + 4 G elements
(recall that n+ 1 = b) and 5 Z, elements.

Running Time. An important question about the protocol is the number of
necessary PRF trials to obtain two primes that satisfy the conditions required
for the factors of N (captured by W C P). We estimate the number j of necessary
trials in the case W =Pn |[2b‘1, 20 — 1]], i.e., when U simply has to prove that p
and g are prime of b(1) bits. The full version [6] shows (using a number-theoretic
heuristic) that the number of trials exceeds 17b(1) = O(log 1) (so the DY PRF
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remains secure), and that the probability that it is larger than that decreases
exponentially fast.

Overall Communication Size. In the last flow of the protocol, the prover
then sends an integer N, two commitments in G, 17b(1) — 2 integers in [0, 2¢]
with high probability, i.e., the (a,),=;,; values which are integers returned by the
PRF and not in W, and the proof of correct computation of which the size is
summarized in Table 6.
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