
Side Channel Information Set Decoding
using Iterative Chunking

Plaintext Recovery from the “Classic McEliece”
Hardware Reference Implementation

Norman Lahr1, Ruben Niederhagen1, Richard Petri1, and Simona Samardjiska2

1 Fraunhofer SIT, Darmstadt, Germany
norman@lahr.email,ruben@polycephaly.org,rp@rpls.de

2 Radboud Universiteit, Nijmegen, The Netherlands
simonas@cs.ru.nl

Abstract. This paper presents an attack based on side-channel informa-
tion and information set decoding (ISD) on the code-based Niederreiter
cryptosystem and an evaluation of the practicality of the attack using
an electromagnetic side channel. We start by directly adapting the tim-
ing side-channel plaintext-recovery attack by Shoufan et al. from 2010
to the constant-time implementation of the Niederreiter cryptosystem as
used in the official FPGA-implementation of the NIST finalist “Classic
McEliece”. We then enhance our attack using ISD and a new technique
that we call iterative chunking to further significantly reduce the number
of required side-channel measurements. We theoretically show that our
attack improvements have a significant impact on reducing the number of
required side-channel measurements. For example, for the 256-bit secu-
rity parameter set kem/mceliece6960119 of “Classic McEliece”, we im-
prove the basic attack that requires 5415 measurements to less than 562
measurements on average to mount a successful plaintext-recovery at-
tack. Further reductions can be achieved at the price of increasing the
cost of the ISD computations. We confirm our findings by practically
mounting the attack on the official FPGA-implementation of “Classic
McEliece” for all proposed parameter sets.

Keywords: ISD · Reaction Attack · Iterative Chunking · SCA ·
FPGA · PQC · Niederreiter · Classic McEliece

1 Introduction

Many fields of research and industry are having high hopes on the power of
quantum computing, e.g., for artificial intelligence, drug design, traffic control,

This work has been funded by the German Federal Ministry of Education and Research and
the Hessen State Ministry for Higher Education, Research and the Arts within their joint sup-
port of the National Research Center for Applied Cybersecurity ATHENE and by the European
Commission through the ERC Starting Grant 805031 (EPOQUE).

and weather forecast [24]. This growing interest in quantum computing has led to
a rapid development of quantum computers in the last decade. At the Consumer
Electronics Show (CES) in 2019, IBM announced their first commercial quantum
computer with 20 qubits [29]. Even larger experimental quantum computers are
operating in the labs of Google, IBM, and Microsoft. However, besides the high
hopes on a new area of quantum computing, quantum computers pose a severe
threat on today’s IT security: A sufficiently large and stable quantum computer
can solve the integer factorization and discrete logarithm problems in polynomial
time using Shor’s quantum-computer algorithm [35], thus completely breaking
most of the current asymmetric cryptography like RSA, DSA, and DH as well
as ECC schemes like ECDSA and ECDH.

As an answer to this threat on asymmetric cryptography, the research field of
post-quantum cryptography (PQC) has emerged in the last two decades, devel-
oping and revisiting alternative cryptographic schemes that are able to withstand
attacks by quantum computers. The most popular approaches are multivariate,
hash-, lattice-, code-, and isogeny-based cryptography. For details on the basic
ideas behind these approaches, we refer the reader to, e.g., [5, 15]. Code-based
cryptography is often regarded as the most mature and reliable, but with a ma-
jor drawback of being much less efficient than, e.g., lattice-based cryptosystems.
The McEliece [27] and the Niederreiter [30] cryptosystems using binary Goppa
codes are typically considered as conservative but safe post-quantum solutions.

The National Institute of Standards and Technology (NIST) started a public
process for the standardization of PQC schemes [12] in November 2017; schemes
from all classes mentioned above have been submitted. Very recently, the stan-
dardization process entered its third and final phase. The “Classic McEliece”
cryptosystem [6] was chosen as one of the four finalists for the standardization
of key-encapsulation mechanisms (KEMs) [1]. It is highly expected by the com-
munity that “Classic McEliece” will become part of a NIST standard of PQC.

An important question in the standardization process besides the definition
of secure schemes and the choice of secure parameters is the impact of the imple-
mentation of a scheme on its security. A general requirement on the implemen-
tation of a scheme is that the runtime of the operations, e.g., key generation,
signing, or decryption, does not vary based on secret information like the private
key or the plaintext, i.e., that the scheme has a constant-time implementation.
(Constant time in regard to public input data like the public key or the ciphertext
is not required for this property.) However, there are more side channels besides
timing that might enable an attacker to get access to private information like
power consumption and electromagnetic, photonic, or acoustic emissions. For
many PQC schemes, it is still unknown what side-channel attacks are practi-
cally feasible and how to protect against them. A general overview of the state
of attacks on the implementation of PQC schemes is presented in [40].

In this work, we focus on the “Classic McEliece” cryptosystem, the well un-
derstood and trusted KEM finalist in the NIST standardization process, and
describe a plaintext-recovery attack on its decryption algorithm using side-
channel information. The “Classic McEliece” cryptosystem — though honouring

2

Robert J. McEliece, the pioneer of code-based cryptography, with its name — is
using the equivalent approach proposed by Harald Niederreiter as described in
Section 2.3.

Our Contributions. We start by directly adapting the side-channel attack from
Shoufan et al. [36] for plaintext recovery on the McEliece cryptosystem to a
side-channel attack on the Niederreiter cryptosystem. There are some important
differences that we overcome in this adaptation: The attack of Shoufan et al. is
aiming at a timing side channel present due to the non-constant time Patterson’s
decoder; in contrast, we attack the constant-time hardware reference implemen-
tation [41] of “Classic McEliece” that uses a constant-time implementation of
the Berlekamp-Massey (BM) decoder. Therefore, a timing side channel does not
exist any more — instead we perform an electromagnetic (EM) side-channel
attack.

Our attack is a reaction-based attack that makes use of decoding failures:
Adding more errors to the ciphertext leads to a failed decoding of the BM decoder
and the output error-locator polynomial has very few roots. This can be detected
over the EM side channel and used to learn the value of the error position.

Our main contribution is the optimization of the number of required side-
channel queries in our reaction-based attack:

1. We introduce a new technique that we call iterative chunking which enables
us to iteratively increase the number of learned error positions (chunks) in
one (cumulative) query. We analyze our approach and theoretically derive
an estimate for the optimal chunk size for an attack based on the system
parameters. Our technique provides huge improvement in the number of
required queries of up to 90% for the “Classic McEliece” parameters [7].

2. We further improve our attack by introducing the possibility of a trade-off
between required queries and computational power. We do this by perform-
ing a certain amount of queries, reducing the problem to a smaller one, and
applying known information set decoding algorithms on the remaining prob-
lem. The trade-off strongly depends on the computational capabilities of the
attacker, but even for relatively small computational effort of 240 operations,
we can further reduce the necessary queries by around 15%.

We implement and demonstrate a practical attack on the official hardware
implementation [41] of “Classic McEliece” [7]. The practically achieved improve-
ments almost perfectly match our theoretical analysis.

Related Work. In [36] Shoufan et al. present a timing attack on the McEliece
cryptosystem that recovers the plaintext of a given ciphertext using a decryption
oracle (see Section 2.4). In this attack, a bit-flip error is added to the ciphertext,
which results in a shorter timing during decryption if the flipped bit was set in
the original error vector. Fault attacks on the variables used during encryption
by McEliece and Niederreiter schemes are examined in [10]. A differential power
analysis (DPA) attack is presented in [11] that recovers the secret key of a QC-
MDPC McEliece FPGA implementation by measuring the leakage of the carry

3

occurring during the key rotation operation. A similar attack on a software
implementation is presented in [15], using the detection of counter overflows. An
attack described in [33] uses information gained by DPA about the positions of
set bits to recover the secret key in a cryptanalytic attack.

The attack in [36] by Shoufan et al. can be considered as a reaction-based
side channel attack. In a different scenario, reaction attacks have been success-
fully applied to several code-based cryptosystems [18, 17, 34, 2]. In these attacks,
the attacker (typically) sends carefully chosen encrypted messages to a decryp-
tion oracle and observes whether these cause decryption failures. Based only on
observing whether there was a failure, these attacks can extract the secret key.

Information set decoding is a well known decoding technique that is dating
back to the work of Prange [31] in the 1960’s. The basic approach has been
improved throughout the years by the works of Lee and Brickell [21], Leon [22],
Stern [39] (and concurrently Dumer [14]) who first proposed to use collision
decoding (actually the term was introduced later [9]). All subsequent improve-
ments build on top of Stern’s algorithm by exploring more refined techniques for
collision search. The list is extensive and includes: [16, 9, 25, 3, 26].

We are not aware of a previous work that combines information set decoding
with side-channel analysis and cumulative reactions.

Structure of this paper. Section 2 provides some background information on in-
formation set decoding and on the code-based McEliece and Niederreiter cryp-
tosystems and gives a brief introduction to the side-channel attack from Shoufan
et al. [36]. Section 3 follows up with a description of our adaption of Shoufan
et al.’s attack to Niederreiter and our improvements for reducing the number
of queries with iterative chunking. Here, we mathematically estimate the opti-
mal parameter for our chunking strategy, describe an implementation using an
ideal decryption oracle, and discuss the first evaluation results. In Section 4,
we provide a leakage analysis of the FPGA implementation from [41] using EM
leakage, present a construction of a practical decryption oracle, and evaluate the
entire approach practically. We discuss the applicability of the iterative chunking
approach in Section 5 and conclude the paper in Section 6.

Notation. In the following, GF(q) denotes the Galois field of order q. Capital
bold letters like H denote matrices and small bold letters denote column vectors
over a Galois field, e.g., plaintext message m, ciphertext c, and error vector e.
The corresponding rows vectors are denoted as m>. The i-th column vector of
a matrix H is denoted as Hi and the j-th coordinate in a vector m as mj . The
function w(v) returns the Hamming weight (HW) of an input vector v.

2 Background

In this section, we briefly introduce information set decoding, the McEliece cryp-
tosystem, and its dual variant, the Niederreiter cryptosystem, which will be the
object of our attack, as well as the timing attack from Shoufan et al. [36].

4

2.1 Information Set Decoding
Suppose we are given a parity check matrix H ∈ GF(2)(n−k)×n of a binary
[n, k] code of dimension k and length n, and a syndrome s ∈ GF(2)n−k. An
information set decoding (ISD) algorithm solves the decoding problem:

Find e ∈ GF(2)n, w(e) = w such that H · e = s. (1)

Basically, the algorithm guesses the error vector on k coordinates, and then uses
this information to obtain the remaining error coordinates. The set of k coordi-
nates is called information set, since it carries enough information to recover the
entire error vector. The decoding problem gives rise to a linear system with the
error coordinates e1, . . . , en as unknowns. If k coordinates are correctly guessed,
the system can be uniquely solved. We check the correctness of the solution by
measuring the weight of the error. If the guess was wrong, we guess again.

ISD was proposed by Prange [31]. In this simplest form, we assume an error-
free information set. The probability that we guess k error-free coordinates is(
n−k
w

)
/
(
n
w

)
. Stern’s variant [39] first introduced collision decoding that makes use

of the birthday paradox. In essence, we allow some errors in the information set
which increases the probability of success. The information set is split into sets
with equal amount of errors p. Then the algorithm searches for collisions on these
two sets, such that the sum of p columns restricted to ` coordinates matches the
appropriate coordinates of the syndrome. It is the birthday decoding idea that
improves asymptotically with respect to the previous variants. This idea was
further generalized in the May-Meurer-Thomae (MMT) [25] and the Becker-
Joux-May-Meurer (BJMM) [3] variants that use the more elaborate generalized
birthday problem. Here instead of looking for collisions between two lists, the
collision search is between 4 or 8 lists in multiple layers. May and Ozerov [26]
noticed that Stern’s approach can be improved by using more sophisticated
algorithms for approximate matching. Their approach is general enough to be
applied to other variants such as BJMM.

2.2 McEliece Cryptosystem
In 1978, McEliece proposed a cryptosystem using error correcting codes [27].
The basic idea of this cryptosystem is to use an error correcting code with an
efficient error correction algorithm that can correct up to t errors as secret key
and an obfuscated generator matrix of the corresponding code as public key.
With code length n and code dimension k, the public key is a k × n generator
matrix G. Encryption works by computing a code word for the plaintext m
using the generator matrix and by adding an error e with w(e) ≤ t that is small
enough so that the error correction algorithm is able to correct the error. The
ciphertext c is therefore computed as c> = m>G + e>. The receiver simply
corrects the error by applying his secret error correction algorithm and recovers
the plaintext from the code word. The security of the system is based on the
hardness of decoding a general linear code, a problem known to be NP-hard [4],
and the difficulty to recover the secret structure of the code from the public
generator matrix.

5

2.3 Niederreiter Cryptosystem

In 1986, Niederreiter proposed a dual variant of the McEliece cryptosystem us-
ing a (n− k)× n parity-check matrix H instead of a generator matrix as public
key [30]. In this case, an error vector e of weight w(e) = t is the plaintext;
the syndrome s = He of the error vector is the ciphertext. Here, an efficient
syndrome decoding algorithm is used for decryption. Due to the format require-
ments on the plaintext of having a certain length and weight, this scheme is
usually used as a hybrid scheme with a random error vector that is used with
a key derivation function to obtain a symmetric key for the encryption of the
actual message.

In general, any error correcting code can be used for the McEliece and Nieder-
reiter cryptosystems; however, in order to obtain an efficient and secure system,
the code must be efficient to decode with possession of the secret key and hard
to decode given only the public key and a ciphertext. McEliece proposed to use
binary Goppa codes, which is still considered secure, while Niederreiter origi-
nally proposed to use Reed-Solomon codes, which turned out to be insecure [37].
Today, there are many variants of the McEliece and Niederreiter systems using
different codes with different properties. However, using binary Goppa codes
(for both McEliece and Niederreiter) is generally the most conservative choice.
A drawback of using binary Goppa codes is the large size of the public key of
around 1MB for 256-bit security.

In the following, we will focus on the Niederreiter cryptosystem with bi-
nary Goppa codes with parameters as defined in the NIST submission “Classic
McEliece” for Round 1 [6] and Round 2 [7] (see also [8]). We have summarized
the notation that we will use in Table 1.
Key generation of the Niederreiter cryptosystem using binary Goppa codes
works as follows (see [41]): Choose a random irreducible polynomial g(x) over
GF(2m) of degree t and a list (α0, α1, . . . αn−1) ∈ GF(2m)n of distinct elements
of GF(2m) (the support). From g(x) and (α0, α1, . . . αn−1), compute the t × n
matrix H̃ over GF(2m). Transform H̃ into a mt×n binary matrix H by replacing
each GF(2m)-entry by a m-bit column. Finally, compute the systematic form
H′ = [Imt|K] of H (where Imt ∈ GF(2)mt×mt denotes the identity matrix)
and return g(x) and (α0, α1, . . . αn−1) as private key and K as public key. The
last step of computing the systematic form H′ of the parity-check matrix H
compresses the size of the public key from mtn bits to mt(n−mt) bits, because
the preceding identity matrix Imt does not need to be stored or communicated.
Encryption works as follows: The sender constructs the mt× n binary parity-
check matrix H′ = [Imt|K] by appending K to the identity matrix Imt and
encrypts the error vector e ∈ GF(2)n (i.e., the plaintext) with w(e) = t to the
syndrome s ∈ GF(2)mt as s = H′e (i.e., the ciphertext).
Decryption of the syndrome depends on the error-correcting algorithm used.
Examples are Patterson’s algorithm and the BM algorithm. Using the BM algo-
rithm as in [8, 41], decryption works as follows: First, use the idea attributed to
Sendrier in [19] and compute the double-size 2t × n matrix H̃(2) over GF(2m).

6

Symbol Description

m ∈ N Size of the binary field.
t ∈ N Correctable errors.
n ∈ N Code length.
k ∈ N Code dimension (k = n−mt).

g(x) Goppa polynomial over GF(2m) of degree t.
(α0, α1, . . . αn−1) ∈ GF(2m)n Support of n distinct elements of GF(2m).

H ∈ GF(2)mt×n Parity-check matrix.
H′ = [Imt|K] ∈ GF(2)mt×n Parity-check matrix in systematic form.
K ∈ GF(2)mt×(n−mt) Public key.

e ∈ GF(2)n Error vector (plaintext).
s ∈ GF(2)mt Syndrome (ciphertext).

σ(x) Error-locator polynomial over GF(2m) of degree t.

Table 1. Symbols for “Classic McEliece” (Niederreiter) [7, 41].

kem/mceliece-
348864 460896 6688128 6960119 8192128

m 12 13 13 13 13
t 64 96 128 119 128
n 3488 4608 6688 6960 8192

k = n−mt 2720 3360 5024 5413 6528

Table 2. Parameter sets of “Classic McEliece” [7].

Compute the double-size syndrome s(2) = H̃(2) · (s|0) by appending n −mt ze-
ros to the syndrome s. Now, we can use the BM algorithm to compute the
error-locator polynomial σ(x) of s(2). The roots of σ(x) correspond to the error-
positions. Therefore, the error-vector bits can be determined by evaluating σ(x)
at all points in (α0, α1, . . . αn−1). If σ(αi) = 0, 0 ≤ i < n, the i-th bit of the
error vector ei = 1, otherwise ei = 0.
A KEM is constructed in “Classic McEliece” from the basic encryption/decryp-
tion primitives using a standard transformation. Table 2 shows the parameters
proposed by [7].

2.4 Timing Side-Channel Attack on McEliece

Shoufan et al. in [36] describe a plaintext-recovery attack on the McEliece cryp-
tosystem that is based on distinguishing the number of added error bits during
the decoding step: The idea of the attack is to add (xor) an additional error bit

7

to a given ciphertext at a certain position. If previously there had not been an
error added to the code word on that position, in total, there is now one more
error in the code word. If previously there had already been an error at that
position, the error is extinguished and there is now one error less. If the attacker
is able to distinguish these two cases based on some side channel, he is able to
mount the following attack: By iteratively adding an error to each position of
the ciphertext and determining via the side channel if in total the number of
errors has increased or decreased, the attacker is able to determine the position
of all error bits, to correct the errors, and to decode the ciphertext.

Patterson’s algorithm is a popular decoding algorithm for binary Goppa
codes. However, the runtime of Patterson’s algorithm depends on the number
of errors that have been added to the code word. Shoufan et al. are using these
timing variations in Patterson’s algorithm as side-channel information to mount
their attack: If an error is added to a previously error-free position, Patterson’s
algorithm has a slightly longer runtime; if an error is extinguished by the addi-
tional error bit, the runtime of Patterson’s algorithm is slightly shorter. Precisely
measuring and categorizing the runtime of Patterson’s algorithm gives the re-
quired information to recover the error positions.

3 Reaction-based Side-Channel Analysis

In this section, we describe our reaction-based plaintext-recovery attack on the
Niederreiter cryptosystem. In Section 3.1, we explain how to adapt the timing
attack by Shoufan et al. [36] introduced in Section 2.4 on the McEliece cryp-
tosystem to an EM side-channel attack on the Niederreiter cryptosystem. We
describe how to reduce the number of queries required for a side-channel attack
when using ISD in Section 3.2 and we improve our basic attack in Section 3.3
using the iterative chunking technique. Further, we mathematically estimate the
optimal parameter for our query strategy and evaluate its implementation with a
simulation using an ideal decryption oracle. Finally, we explain how to combine
the ISD techniques with our improved attack in Section 3.4.

3.1 Side-Channel Attack on Niederreiter

In the attack by Shoufan et al. in [36] on the McEliece cryptosystem, the number
of errors in the ciphertext is modified simply by adding one more error on varying
positions to the original ciphertext. However, the Niederreiter cryptosystem is
not operating with erroneous code words as ciphertext but with syndromes.
Here, the equivalent of adding an error to a code word in McEliece, is to add
a column of the parity-check matrix (i.e., the public key) to the syndrome (i.e.,
the ciphertext). Therefore, the attack from [36] can trivially be adapted to the
Niederreiter cryptosystem by systematically adding columns of the public key
one by one to the original syndrome. If the bit corresponding to the column was
not set in the original error vector (i.e., the plaintext), the number of errors in
the modified syndrome is increased. Accordingly, if the corresponding bit was

8

Algorithm 1: Iterative Reaction-based SCA
input : “Classic McEliece” parameters n,m, t ∈ N+,

parity-check matrix H′ = [Imt|K] ∈ GF(2)mt×n,
syndrome s ∈ GF(2)mt.

output: Error vector e ∈ GF(2)n.
1 e← (0, . . . , 0);
2 for i ∈ E = {1, . . . , n} do
3 s′ ← s⊕H′

i ;
4 if Oracle(s′) = true then ei ← 1 ;
5 end
6 return e;

set, an error in the original error vector is effectively removed from the syndrome,
reducing the number of errors. If an attacker can find a side channel that enables
him to distinguish these two cases, he is able to mount an attack. Algorithm 1
shows the general approach for this attack. In order to distinguish the cases with
a reduced number of errors from the cases with an increased number of errors,
a query to an oracle is required (line 4 in Algorithm 1) that returns true if the
number is reduced and thus an error position has been found.

This decryption oracle can practically be achieved by having the victim de-
crypt the manipulated ciphertext and by measuring the side channel during the
decryption. Therefore, when a non-constant time decoding algorithm like Patter-
son’s algorithm is used, a timing side-channel attack as in [36] can be mounted
on Niederreiter as well.

Attacking constant-time implementations. Modern implementations typically
avoid timing side channels by providing a constant-time implementation of crit-
ical algorithms. Thus, in this case another side channel is required to mount the
attack. In Section 4, we investigate the EM side channel in the reference hard-
ware implementation by Wang et al. [41] using a constant-time implementation
of the BM algorithm to demonstrate a practical attack. Another side channel
could for example be a response in a communication protocol if adding an error
results in a decoding failure and if this failure is reported over the network.

For a side-channel attack based on EM, the attacker needs to be in possession
of the device under attack, e.g., a smart card or a security token, that has
physical measures protecting secret information such as private and secret keys,
but no explicit countermeasures prohibiting the exploitation of the side channel.
Furthermore, the attacker needs to be in possession of a ciphertext that he
intends to decrypt, e.g., intercepted on a communication channel. Under these
requirements, the attacker can perform a series of measurements of EM emissions
of the device under attack while decrypting manipulated ciphertexts.

The number of side-channel measurements that is needed for this basic iter-
ative attack algorithm is the number of columns n in the parity check matrix,
which ranges from 3488 to 8192 queries for the NIST parameters of “Classic

9

Algorithm 2: ISD-supported Iterative Reaction-based SCA
input : Same as Algorithm 1
output: Same as Algorithm 1

1 Ê ⊂ E = {1, . . . , n}, |Ê| 6 k;
2 Same as Algorithm 1 lines 1-5 with Ê instead of E
3 s̃← s−H′ · e;
4 ẽ := (ei)i∈E\Ê ; ê := (ei)i∈Ê ;
5 H̃′ := (H′

i)i∈E\Ê ;
6 ẽ← ISD(n− |Ê|, k − |Ê|, w − w(ê), H̃′, s̃);
7 e← Reconstruct(ê, ẽ);
8 return e;

McEliece” (cf. Section 2.3). However, depending on the attack scenario, the at-
tacker might only be able to take a limited amount of measurements, e.g., due to
the cost of each measurement, limited access to the device, or additional coun-
termeasures on the device. In the next sections, we describe improvements to
this basic algorithm that allow the attacker to significantly reduce the number
of decoding operations that he needs to query from the device under attack.

3.2 Reducing the Number of Queries with Information Set
Decoding

In the reaction attack described in Algorithm 1, we clearly do not have to re-
construct the entire error vector (all error coordinates) using side-channel infor-
mation. We can recover an information set of size k < n, instead, and use basic
linear algebra to recover the rest of the error vector (cf. Section 2.1). We can do
even better if the attacker is in a position to trade-off queries for computational
power — first collect a number of queries less than k, use them to reduce the
problem to a smaller one, and then solve the smaller problem using some of the
ISD algorithms described in Section 2.1.

In more detail, let ISD(n, k, w,H, s) be any ISD algorithm, such as Stern’s or
Ball Collision decoding, that on input of a parity check matrix H ∈ GF(2)(n−k)×n

and syndrome s ∈ GF(2)n−k outputs an error vector e ∈ GF(2)n with w(e) = w
— a solution to the decoding problem (1).

Suppose we are given an oracle as in Algorithm 1 that we can use to learn the
value of a coordinate ei of the error vector. Using the oracle, we learn a subset of
error indices Ê ⊂ E = {1, . . . , n} where |Ê| 6 k. We denote the corresponding
subvector of e by ê = (ei)i∈Ê and its complement by ẽ = (ei)i∈E\Ê . Similarly
Ĥ = (H′

i)i∈Ê and H̃′ = (H′
i)i∈E\Ê . From the obtained information, setting

s̃ = s− Ĥ · ê, the decoding problem (1) transforms to:

H̃′ · ẽ = s̃. (2)

10

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

2100

2200

2300

Number of Queries

C
om

pl
ex

ity

-8192128 (Stern)
-8192128 (MMT)
-6960119 (Stern)
-6960119 (MMT)
-6688128 (Stern)
-6688128 (MMT)

-460896 (Stern)
-460896 (MMT)
-348864 (Stern)
-348864 (MMT)

Fig. 1. Time-queries trade-off when using ISD decoding algorithms.

So, we have reduced our initial problem to a smaller decoding problem with
parameters k′ = k − |Ê|, n′ = n − |Ê|, w′ = w − w(ê). We solve this problem
by calling the available ISD algorithm ISD(n′, k′, w′, H̃′, s̃). If |Ê| = k, we have
recovered an entire information set and we only need to solve a linear system
using Gaussian elimination. Thus, for convention, we assume ISD(n, 0, w,H, s)
simply performs Gaussian elimination. Algorithm 2 details the whole procedure.

The performance of Algorithm 2 depends directly on the size of the set Ê,
i.e., on the number of queries to the oracle. There is a clear trade-off between
the running time and the queries to the oracle, which is depicted in Figure 1.
Basically, the attacker is free to choose the number of queries that he performs
based on his computational resources. In our depiction of the trade-off, for sim-
plicity, we used only two ISD algorithms — Stern’s and MMT. We did not use
the state of the art BJMM variant, because there is no compact representation
of the concrete complexity of this algorithm.

3.3 Reducing the Number of Queries with Iterative Chunking

For the approach that we describe here, we need to slightly change the oracle
from the previous section. In particular, we assume the oracle returns true if
the number of errors has not increased (instead of reduced as in Section 3.1)
and false otherwise. Note that the real oracle that we construct in Section 4.2
actually captures both cases.

To get some intuition on how our iterative chunking works, we first present
a simpler variant that already reduces the number of needed queries by more
than 35%.

Iterative chunking with chunks of size β = 2. Suppose that instead of a
single error index, we query two error indices (a chunk of size β = 2) at once. We

11

(ei, ej) (e
′
i, e

′
j) w(e′) Oracle

(0, 0) (1, 1) w + 2 false
(0, 1) (1, 0) w true
(1, 0) (0, 1) w true
(1, 1) (0, 0) w − 2 true

Table 3. All cases of the response of the decryption oracle when querying chunks of
size two at once (s′ = s ⊕H′

i ⊕H′
j). The first column shows the initial state of the

queried chunk, the second shows the state of the pair after ’flipping’ the values, the
third shows the total number of errors in the new state, and the last column shows the
oracle’s answer.

first randomly select a chunk (i, j) of error indices, i, j ∈ {1, . . . , n}, i 6= j. We
add both columns H′

i and H′
j to the syndrome s to obtain the new syndrome s′.

We give the input s′ to the decryption oracle. Note that the decryption oracle
will output false only in the case when the values at the corresponding error
indices in the error vector were (ei, ej) = (0, 0) (which we call a ’low’ chunk).
In all the other cases (we refer to them as ’high’ chunks, to indicate that there
is at least one ’1’ in the chunk) the decryption oracle will output true. Indeed,
if (ei, ej) = (0, 0), after adding the pair of columns (H′

i,H
′
j) to the syndrome,

we obtain (e′i, e
′
j) = (1, 1), and in total w + 2 errors. Hence, the number of

errors has increased beyond w and the decryption oracle will output false. If
(ei, ej) = (0, 1) or (ei, ej) = (1, 0), we get (e′i, e

′
j) = (1, 0) and (e′i, e

′
j) = (0, 1)

respectively, and in this case the number of errors does not change (it remains
w) so the decryption oracle returns true. In the last case, (ei, ej) = (1, 1), after
adding the columns we obtain (e′i, e

′
j) = (0, 0). So in this case, the number of

errors reduces to w − 2, and the decryption oracle returns true as well. Table 3
summarizes the above.

What we can conclude from the previous is that if false is returned, we can
be sure that the corresponding error positions in the error vector were (ei, ej) =
(0, 0). We perform the procedure for new random pairs of positions (i, j) until
we find k/2 pairs whose initial state was (0, 0), i.e., until we encounter k/2 false
oracle answers. Note that after a pair has been queried, we need to undo the
changes made, i.e., return the pair to its initial state.

The improvement using chunks of two is easy to see: Since the length of
the error vector is much bigger than its Hamming weight, most of the time the
randomly chosen chunk will be (ei, ej) = (0, 0), and we can confirm these values
by only one query, instead of two as in the approach from the previous section.

Iterative chunking for β > 2. This simple strategy for β = 2 is already
significantly better than the naïve approach from the previous section, but we
can do much better by extending this idea to chunks (ei1 , . . . , eiβ) of size β. We
keep the convention of calling the all-zero chunk (0, . . . , 0) ’low’ chunk and all
other chunks containing 1s ’high’ chunks.

12

s s′ = s⊕H′
i

(ei, ej , ek) (e
′
i, e

′
j , e

′
k) w(e′) Oracle w(e′)− 1 Oracle

(0, 0, 0) (1, 1, 1) w + 3 false w + 2 false
(0, 0, 1) (1, 1, 0) w + 1 false w true
(0, 1, 0) (1, 0, 1) w + 1 false w true
(1, 0, 0) (0, 1, 1) w + 1 false w true
(1, 1, 0) (0, 0, 1) w − 1 true w − 2 true
(1, 0, 1) (0, 1, 0) w − 1 true w − 2 true
(0, 1, 1) (1, 0, 0) w − 1 true w − 2 true
(1, 1, 1) (0, 0, 0) w − 3 true w − 4 true

Table 4. Overview of the oracle answers for β = 3 when the number of errors in the
syndrome s are reduced to w(e′) − 1 (s′ = s ⊕ H′

i) with the knowledge of an error
position i in the original error vector e.

First, note that we cannot directly use the same approach for chunks of size
β > 2. For example for β = 3 we have Table 4 analogous to Table 3. Table 4
shows (columns 3 and 4) that there is ambiguity in the oracle answers, so if
the oracle answers false we cannot distinguish whether the chunk was (0, 0, 0),
(0, 0, 1), (0, 1, 0), or (1, 0, 0). However, we can remedy this situation if we reduce
the initial number of errors from w to w − 1 as columns 5 and 6 from Table 4
show. This requires knowledge about the position of one 1 in the error vector.
Adding the corresponding column of the matrix H′ to the syndrome reduces the
number of errors to w − 1. So how can we find the position of one 1? Well, this
can easily be done by first querying chunks of size β = 2 until a ’high’ chunk
is found. Querying both positions within the ’high’ chunk of size β = 2 reveals
the position of one 1. The same reasoning extends to any chunk size β: If the
number of errors before we start querying β size chunks is w− (β−2), the oracle
answers false only for low chunks, and we can use this information to distinguish
low chunks. To summarize, the procedure informally goes as follows:
Part I: For a chunk size β, starting at β = 2:

1. Query random chunks of size β without replacement until the oracle
returns true which indicates a ’high’ chunk.

2. Inspect the positions within the ’high’ chunk and locate the 1s.
3. Use these 1s to increase the size of the chunks that we query: by adding

to the syndrome a column H′
i of the matrix H′ corresponding to a 1 at

position i in the error vector we reduce the number of errors by one.
4. Increase the chunk size to β + 1 and repeat from Step 1 until β = βT .

Part II: When a threshold βT is reached, change the procedure to:
1. Query random chunks of size βT without replacement. If the oracle re-

turns true save the ’high’ chunk in a bucket of capacity n− k.
2. End the whole procedure when k error positions have been learned.

The threshold βT is an optimization parameter — the optimal value for the
chunk size β at which we need to stop increasing. We determine its value so that
the number of necessary queries to recover an information set is minimized.

13

Note that, in Part II, we only care about finding enough ’low’ chunks so that
we recover an information set. So in principle, we can throw away the ’high’
chunks, unless there are too few chunks remaining — not enough to recover an
information set. This is why we save them in a bucket. After the bucket has been
filled, we start inspecting ’high’ chunks as well, because we will not be able to
recover an information set otherwise.

Remark 1. Typically there will be only one 1 in a ’high’ chunk, so to simplify
our analysis, in Part I we will always increase the size of the queried chunks
only by one, although in theory, it is also possible to increase by more than one,
precisely by the weight of the ’high’ chunk.

Remark 2. We could continue Part I, i.e., increase the size of the queried chunks,
until we have learned k error positions — enough to recover an information set.
However, the increase only makes sense as long as there is a good probability
that the queried chunk is ’low’ — in which case one can learn β zeros in the
error vector in only one query. In contrast, if the chunk size is ’high’, since we
want to increase the chunk size further, a more expensive inspection with addi-
tional queries is required (around O(log β) queries using a divide-and-conquer
strategy). Thus, if the chunk is ’high’ with big probability, the advantage from
the increased chunk size quickly diminishes.

The details of the procedure are given in Algorithm 3. The algorithm for
inspecting the ’high’ chunks is given in Algorithm 4. It uses a divide-and-conquer
strategy to reduce the number of needed queries.

Finding the optimal βT . We next analyze the approach in order to determine
the best threshold value and estimate the number of queries needed for the
attack. First let us make some simple but important observations.

The process of querying chunks of size β can be modeled as a sequence of
independent and identical Bernoulli trials in which success means querying a
’high’ chunk. Indeed, since we assume uniform distribution of the error vectors,
the success probability of all the trials is the same, and depends only on the
number of 1s in the error vector and the size of the queried chunks. As a re-
sult, the number of queries needed to find a ’high’ chunk follows the geometric
distribution. Based on these observations, we have the following results.

Proposition 1. Suppose we query chunks of size β without replacement, until
we find a ’high’ chunk.

a. The probability that a queried chunk is high is pβ = 1−
(
n−w
β

)(
n
β

) .

b. The probability that the weight of the chunk is j under the condition that it
is a ’high’ chunk is given by

Pr(w(β) = j|High) =

(
w
j

)(
n−w
β−j

)(
n
β

)
−
(
n−w
β

) . (3)

14

Algorithm 3: Iterative Chunking with β ≥ 2

input : “Classic McEliece” parameters n,m, t ∈ N+,
binary parity-check matrix H′ = [Imt|K] ∈ GF(2)mt×n,
syndrome s ∈ GF(2)mt,
threshold βT .

output: Partial error vector e′ ∈ GF(2)n,
bucket of chunks containing an error position,
list of remaining column indices.

1 e′ ← [0, . . . , 0] ; // initialize with zero vector
2 β ← 2 ; // start with chunk size 2
3 s′[1]← s; s′[β]← s ; // list of syndromes s′[i] for each chunk size 0 < i ≤ βT

4 indices← [n, . . . , 0] ; // column indices in reverse order
5 bucket← [];
6 while Len(indices) > β do
7 chunk ← Pop(indices, β) ; // pop β-many indices
8 s′′ ← s′[β] + Sum([H′[i] for i in chunk]) ; // add columns in chunk to s′

9 if Oracle(s′′) = true then // a ‘high’ chunk is found
10 if β < βT or |bucket| > n− k then // conditions for inspecting
11 eid ← FindErrorPositions(chunk, s′,H′); // inspect ‘high’ chunk
12 for i in eid do
13 ei ← 1 ; // update e′ with found errors from ‘high’ chunk
14 if β < βT then
15 s′[β + 1]← s′[β]−H′[i] ; // remove found errors from s′

16 β ← β + 1 ; // increase chunk size, up to βT

17 end
18 else
19 bucket← bucket+ chunk ; // collect chunks with remaining errors
20 end
21 return e′, bucket, indices;

c. The expected number of queries until we find a ’high’ chunk of size β is

E(β) =
1

pβ
. (4)

d. The expected weight of a ’high’ chunk of size β is

E(w(β)) =
w
(
n−1
β−1

)(
n
β

)
−
(
n−w
β

) . (5)

Proof. a. Directly, since the probability of hitting a low chunk is

Pr(Low) =

(
n−w
β

)(
n
β

) .

15

Algorithm 4: FindErrorPositions
input : chunk ∈ Ni,

list of temporary syndromes s′ with s[i] ∈ GF(2)mt,
binary parity-check matrix H′ = [Imt|K] ∈ GF(2)mt×n.

output: List with error indices.
1 stack ← [Left(chunk),Right(chunk)];
2 eid ← [];
3 while stack not empty do
4 chunk ← Pop(stack);
5 s′′ ← s′[Len(chunk)] + Sum([H′[i] for i in chunk]);
6 if Oracle(s′′) = true then next← chunk ; // there is an error position
7 else next← Pop(stack) ; // continue search in the stack head
8 if Len(next) = 1 then // found an error position
9 Push(eid, next[0]);

10 stack ← [Flatten(stack)]; // inspect entire stack
11 else // split the next chunk directly
12 Push(stack, Left(next));
13 Push(stack, Right(next));
14 end
15 return eid;

b. Let Pr(w(β) = j|High) denote the probability that the weight of the chunk
is j under the condition that it is a high chunk. Then,

Pr(w(β) = j|High) =
Pr(w(β) = j)

pβ
.

Since Pr(w(β) = j) =
(wj)(

n−w
β−j)

(nβ)
we obtain (3).

c. Since the querying of chunks of size β follows the geometric distribution, we
immediately obtain the claim.

d. From a. we can directly calculate

E(w(β)) =

β∑
j=1

j · Pr(w(β) = j|High) =
1(

n
β

)
−
(
n−w
β

) β∑
j=1

j ·
(
w

j

)(
n− w

β − j

)
=

=
1(

n
β

)
−
(
n−w
β

) β∑
j=1

w ·
(
w − 1

j − 1

)(
n− w

β − j

)
=

w ·
(
n−1
β−1

)(
n
β

)
−

(
n−w
β

) . ut

Now that we know the expected weight E(w(β)) of a ’high’ chunk from
Proposition 1, we should also estimate the number of queries to inspect a ’high’
chunk, i.e., to determine all error positions within the ’high’ chunk. Various
strategies can be applied for this task. The simplest one is to just query all po-
sitions, which requires β queries, but this would make sense only if many 1s are
expected within the chunk. In our problem we typically have a ’high’ chunk of

16

weight only 1, so a divide-and-conquer approach is more suitable: We split the
chunk in half and query the left half depth first. When one 1 is identified, we
collect all remaining unknown positions (denoted as “Flatten(stack)” in Algo-
rithm 4), and query them at once as one chunk. The probability is high that this
chunk will be ’low’, so we do not need any more queries. If it happens that the
chunk is high, we repeat the same procedure for this smaller chunk. The details
are given in Algorithm 4. Proposition 2 estimates the number of queries needed
to inspect a ’high’ chunk using this algorithm.

Proposition 2. Suppose we inspect a ’high’ chunk of size β. Then, the expected
number of queries to learn all positions within the ’high’ chunk of size β using
Algorithm 4 is bounded from above by

EHigh(β) 6
β∑

j=1

(

(
w
j

)(
n−w
β−j

)(
n
β

)
−
(
n−w
β

)) · (j − j

β
+

j−1∑
i=0

log2 (β − i)). (6)

Proof. To estimate EHigh(β), we will first write it as

EHigh(β) =

β∑
j=1

Pr(w(β) = j|High) · EHigh(β|w(β) = j),

where EHigh(β|w(β) = j) denotes the expected number of queries to learn all
positions within a high chunk of size β under the condition that there are exactly
j 1s in the chunk.

We consider first EHigh(β|w(β) = 1). Note that we need log2 β queries to
locate the 1, and on average 1 − 1/β additional queries for the remaining un-
queried positions. Here, −1/β comes from the case where the 1 is on the last
β-th position of the chunk. Hence EHigh(β|w(β) = 1) = log2 β + 1− 1/β. Next,

EHigh(β|w(β) = 2) =

=
1(
β
2

) ∑
16i,j6β

j 6=β

(log2 β + log2 (β − i) + 2) +
1(
β
2

) ∑
16i,j6β

j=β

(log2 β + log2 (β − i) + 1) =

=
1(
β
2

) ∑
16i,j6β

(log2 β + log2 (β − i)) + 2−
(
β−1
1

)(
β
2

) 6
6

1(
β
2

) ∑
16i,j6β

(log2 β + log2 (β − 1)) + 2− 2

β
= log2 β + log2 (β − 1) + 2− 2

β

where the second sum in the first row comes from the fact that if the second 1 is
on the last position, we need one less query. We bound EHigh(β|w(β) = 2) from
above, instead of calculating it exactly, in order to simplify the expression and
the analysis. It is a rather tight bound, which can be confirmed by the simulation
and experiments we have performed (see Table 5).

17

Using induction it is easy to show that

EHigh(β|w(β) = j) =

j−1∑
i=0

log2 (β − i) + j − j

β
.

Finally, Pr(w(β) = j|High) can be easily calculated from Proposition 1, which
gives the final expression. ut
Using Propositions 1 and 2 we can now estimate the number of queries required
in Algorithm 3.
Proposition 3. The number of queries required to recover k error positions
using Algorithm 3 is given by

Q(βT) =

βT−1∑
i=2

(E(i) +EHigh(i)) +N1 ·E(βT) +N2 · (E(βT) +EHigh(βT)), (7)

where N1 and N2 are given by

N1 = min{n− k

βT
,

k−
βT−1∑
i=2

i · E(i)

βT ·(E(βT)−1)
}, N2 =

k −
βT−1∑
i=2

i · E(i)+N1 · βT

βT · E(βT)
−N1. (8)

The optimal βT is then the one that minimizes the number of queries Q(βT).
Proof. With the notation introduced so far, the number of error positions I1(βT)
that we learn before we reach the threshold βT and the required queries Q1(βT)
in the process is

I1(βT) =

βT−1∑
i=2

i · E(i), and Q1(βT) =

βT−1∑
i=2

(E(i) + EHigh(i)). (9)

When we reach the threshold value βT , we change the strategy and continue
to query only chunks of size βT . Recall that we do not inspect ’high’ chunks,
but save them in a bucket of capacity n − k and only start inspecting them if
the bucket is full and we have not yet recovered k error positions. Suppose we
query N1 ·E(βT) chunks while the bucket is sill not full and N2 ·E(βT) chunks
after the bucket is full, for some unknown N1, N2. The number of learned error
positions I2(βT) and the required number of queries Q2(βT) is

I2(βT) = N1 · βT · (E(βT)− 1) +N2 · βT · E(βT),
Q2(βT) = N1 · E(βT) +N2 · (E(βT) + EHigh(βT)).

(10)

The algorithm stops when k error positions have been learned, i.e., when the
condition

I1(βT) + I2(βT) > k (11)
is satisfied. Since the bucket has capacity n− k, we also have the condition

N1 · βT 6 n− k. (12)

From (11) and (12) we find the expressions in (8) for N1 and N2. Now, (7) follows
by combining (9) and (10). ut

18

4 8 12 16 20 24

400

600

800

1,000

1,200

1,400

1,600

βT

N
um

be
r

of
Q

ue
rie

s
Theory

4 8 12 16 20 24

βT

Simulation

kem/mceliece8192128 kem/mceliece6960119 kem/mceliece6688128
kem/mceliece460896 kem/mceliece348864

Fig. 2. The expected number of queries needed for threshold values from 2 to 25 both
for the theoretical prediction and averaged simulations. The minima are marked.

Evaluation. Using the estimate from Proposition 3 we get the expected number
of queries for βT ∈ {2, . . . , 25} for all the parameter sets kem/mceliece348864,
kem/mceliece460896, kem/mceliece6688128, kem/mceliece6960119, as well
as kem/mceliece8192128 of “Classic McEliece” (see Table 2).

In order to evaluate our findings, we implemented the described iterative
chunking strategy using Python and SageMath3 and ran the implementation
as a simulation with an ideal oracle that always returns the correct response.
The simulation was applied to ten different key pairs using ten different plain-
text/ciphertext pairs for each key pair (100 in total) per parameter set and βT

value. We generated the key pairs as well as the plain- and ciphertext pairs us-
ing the SageMath scripts that are enclosed with the publicly available FPGA
implementation of the Niederreiter cryptosystem from Wang et al.

The optimal threshold values for the parameter sets together with the number
of needed queries are given in Table 5 and depicted in Figure 2. The results of
the simulation and the later experiments in Section 4.3 show that the estimate
matches very well (see Figure 2). For the parameter set kem/mceliece460896, in
the simulation βT = 18 turned out to be slightly more efficient than the expected
βT = 19. However, we believe that this is only because the number of queries for
βT = 18 and βT = 19 in the theoretical estimate are very close to each other.

Compared to recovering the information set without iterative chunking (the
case of aquiring k traces from the oracle in Algorithm 2) the number of traces
is decreased by approximately 87.7% for kem/mceliece348864 and 90% for
kem/mceliece8192128.

3 http://www.sagemath.org/

19

http://www.sagemath.org/

300 400 500 600

250

2100

2150

2200

Number of Queries

C
om

pl
ex

ity

-8192128 (Stern)
-8192128 (MMT)
-6960119 (Stern)
-6960119 (MMT)
-6688128 (Stern)
-6688128 (MMT)

-460896 (Stern)
-460896 (MMT)
-348864 (Stern)
-348864 (MMT)

Fig. 3. Time-queries trade-off when using optimal iterative chunking and ISD.

3.4 Combining Iterative Chunking with Information Set Decoding

The number of needed queries can be further decreased by combining iterative
chunking with some non-trivial ISD algorithm. Instead of recovering an entire
information set from queries, we can stop early, when we have learned only
δ < k error coordinates. Assume at this point we have n′ columns remaining,
the weight of the error vector on these coordinates is w′ and we need to recover
k′ = k − δ more elements from the information set.

Then we are left with the decoding problem with parameters (n′, k′, w′) which
we can solve using any ISD algorithm. Of course this comes at a price, since ISD
algorithms are exponential in time. Finding the right trade-off depends on the
computational power (CPU hours) the attacker has at hand. Figure 3 gives the
trade-off when using Stern’s or MMT algorithm.

In order to express the trade-off more accurately, but at the same time avoid
complicated expressions due to in-between or corner cases, we will discretize the
possible values for the number of performed queries and learned error positions.
This discretization is quite natural, since it follows exactly the steps of our
algorithm. Using the notation from the proof of Proposition 3 we consider the
partial sums of the number of performed queries Q(βT) defined as

Qi(βT) =

{
Qi−1(βT) + E(i) + EHigh(i), i ∈ {2, . . . , βT − 1}
Qi−1(βT) + E(βT) + b · EHigh(βT), i ∈ {βT , . . . , βT +N1+N2−1}

with Q1(βT) = 0 and b = 0 if i < βT +N1 and b = 1 otherwise.
Similarly, we define the partial sums of the learned error positions I(βT) as

Ii(βT) =

{
Ii−1(βT) + iE(i), i ∈ {2, . . . , βT − 1}
Ii−1(βT) + βT (E(βT)− (1− b)), i ∈ {βT , . . . , βT +N1+N2−1}

20

with I1(βT) = 0 and b = 0 if i < βT +N1 and b = 1 otherwise. Let I ′i(βT) be the
same as Ii(βT) except b = 1 for all i ∈ {βT , . . . , N1+N2−1}. Finally, let w1 = 0
and wi = wi−1 + E(i) for i ∈ {2, . . . , βT +N1+N2−1}.

Now it is not difficult to verify that the trade-off between performed queries
and computational power is given by the following proposition.

Proposition 4. An attacker performing Qi(βT) queries to the decryption oracle
can recover the secret message by solving the ISD(n− I ′i(βT), k − Ii(βT), w − wi)
problem. The case of i = 1 corresponds to the case of no side-channel informa-
tion, and the case of i = βT + N1+N2−1 corresponds to recovering an entire
information set using side-channel information.

4 Attack Evaluation

For the practical attack evaluation we adapted the implementation presented
in [41] for field programmable gate arrays (FPGAs). In Section 4.1 we describe
our approach for a preliminary leakage analysis of the decryption module de-
sign and in Section 4.2 we construct a practical decryption oracle. Finally, in
Section 4.3 we evaluate the practical attack.

4.1 Leakage Analysis

To construct a decryption oracle for our attack approach we investigated the
implementation by Wang et al. from [41] in detail to find a proper point of inter-
est at which we can find significant leakage. The selected implementation uses a
constant-time implementation of the BM algorithm for the error correction. The
BM algorithm returns an error-locator polynomial that has roots at the points
that correspond to an error position. Thus, if there are t′ ≤ t errors, t′ input
points to the error-locator polynomial evaluate to zero. If the number of errors is
larger than t, a random polynomial is returned by the BM algorithm, which most
likely has a very small number of roots. Thus, in order to distinguish whether
the number of errors has increased or decreased, we need to distinguish cases
where the reconstructed error vector has a low HW (for cases with an increased
error number where error correction failed) and where it has a high HW (for
cases with a decreased error number where error correction succeeded).

The FPGA implementation of the decryption module in [41] consists of five
major steps: First, an additive fast Fourier transformation (FFT) evaluates the
secret Goppa polynomial. Then the double syndrome is computed. Afterwards
the BM algorithm is performed and another additive FFT is applied to evaluate
the error-locator polynomial. In the final step, the error vector is constructed.

In addition to the analysis of the source code we simulated the implemen-
tation for a preliminary leakage analysis in order to find possible leakage in a
noise-free simulated environment. We wrote a Python script that computes a
simulated power trace from a VCD-file (value change dump) of an Icarus Verilog
(iverilog) simulation using a simple Hamming-distance model. This results in a

21

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
0

1,000

2,000

3,000

Clock Cycles

N
um

be
r

of
B

it
Fi

lp
s

high HW
low HW

Fig. 4. Simulated power consumption based on a Hamming-distance model for success-
ful decoding (high HW in the resulting error vector) and unsuccessful decoding (low
HW) using a small parameter set with m = 12, t = 66, and n = 3307. The different
parts of the algorithm can clearly be seen (marked with alternating blue background
color). In the first block, an additive FFT is performed for evaluating the secret Goppa
polynomial. In the second block, the double syndrome is computed. In the third block,
BM is performed. In the fourth block, another additive FFT is performed in order to
evaluate the error-locator polynomial. Finally, the error vector is constructed. A clear
difference in the simulation is visible in the last step for the low and high HW results.

simulated power trace with cycle accuracy. Figure 4 shows the resulting graphs
of the simulation for two different simulated power traces, one for a successful
decoding (high HW error vector) and one for an unsuccessful decoding (low HW
error vector). The five steps of the decryption are highlighted.

The first point at which side-channel information may be leaked is at the
last round of the second additive FFT operation that evaluates the error-locator
polynomial returned from the BM decoder. The result of this evaluation equals
to zero if there is a root and results in other values if not. Thus, it should be
distinguishable in general. However, because the implementation of the additive
FFT uses several multiplicator instances in parallel, the logical noise added to
the exploitable leakage is quite high.

The second point of possible leakage is at the last step, the error vector
construction. Here, the graph of the high HW error vector (blue) increases during
the construction in contrast to the low HW error vector (red) such that there is
a growing distance between them. The reason for the increasing number of bit
flips at this stage is that the result of the error vector construction is shifted
into a large flip-flop shift-register step by step. To lower the effort compared to
the analysis of the second FFT we exploit the significant leakage of the iterative
reconstruction at the end of the decryption process. Therewith, the side-channel
information enables the construction of a decryption oracle.

22

30 40 50 60
10−34

10−20

1

Query

p
-v

al
ue

t-test(Ti, Thigh)

t-test(Ti, Tlow)

Fig. 5. Example p-values of the t-tests of consecutive oracle queries. For each query a
trace Ti is compared to a known faulty (Tlow) and a known decodable trace (Thigh). If
a trace is similar to the faulty trace (i.e., due to a higher p-value), a decoding failure
is detected (light blue background). In the opposite case (light red background) the
syndrome could be decoded.

4.2 Building an Oracle in Practice

We decided to use the electromagnetic radiation (EMR) leakage emanated by
the FPGA during the decryption and developed a differential electromagnetic
analysis (DEMA). Power leakage could be exploited in the same way.

In order to get a response for individual queried syndromes, we apply Welch’s
t-test [42] to compare the means of the traces from the error-vector construc-
tion range against two known reference traces. The reference traces stem from
deciphering the original syndrome for which we know that it is decodable, and
from a faulty syndrome that includes more than t errors so that it cannot be
decoded. This has the disadvantage that it adds an overhead of two traces to
the total number of required traces. Alternatively, we could statistically deter-
mine a threshold to compare it to the result of a t-test with just one of the
reference traces, which would save one trace. However, we decided to spend one
additional trace and avoid the statistical computation. The faulty syndrome is
constructed by adding five columns randomly chosen from the public key matrix
H′. The probability that this results in a syndrome with more errors than can
be corrected is high; nevertheless, we use a t-test comparison to the trace of the
original syndrome to ensure this requirement. Algorithm 5 details the prepara-
tion procedure. Now, we compute the difference p∆ of the p-values of the t-tests
comparing a trace Ti against the original syndrome trace Thigh and against the
faulty syndrome trace Tlow as

p∆ = t-test(Ti, Thigh)− t-test(Ti, Tlow). (13)

Thus, if the difference of the p-values p∆ is positive, the acquired trace is similar
to the original syndrome trace and interpreted as decodable. Otherwise, if p∆
becomes negative it is interpreted as not decodable. Figure 5 gives an example
section of p-values of consecutive oracle queries. The response when used as

23

Algorithm 5: GetReferences
input : “Classic McEliece” parameters n,m, t ∈ N+,

binary parity-check matrix H′ = [Imt|K] ∈ GF(2)mt×n,
syndrome s ∈ GF(2)mt.

output: Reference traces T ′
high, T

′
low.

1 Decrypt(s) Thigh, Clkhigh;
2 T ′

high ← Compress(Thigh, Clkhigh);
3 s∗ ← s;
4 repeat
5 for i← 1 to 5 do s∗ ← s∗ ⊕H′

j , j ∈R {0 . . . n− 1} ;
6 Decrypt(s∗) Tlow, Clklow;
7 T ′

low ← Compress(Tlow, Clklow);
8 until t-test(T ′

high, T
′
low) ≈ 0;

9 return T ′
high, T

′
low;

Algorithm 6: DEMA-based Oracle
input : Manipulated syndrome s′ ∈ GF(2)mt, reference traces T ′

high, T
′
low.

output: Oracle response.
1 Decrypt(s′) Tj , Clkj ;
2 T ′

j ← Compress(Tj , Clkj);
3 p∆ ← t-test(T ′

j , T
′
high)− t-test(T ′

j , T
′
low);

4 return
{
true if p∆ > 0

false otherwise
;

decryption oracle therefore is

response =

{
true (decodable), if p∆ > 0

false (not decodable), otherwise
. (14)

Algorithm 6 shows a query process. This approach requires just a single
trace per query plus two traces for the reference traces at the beginning. In
detail, we cannot apply the t-test to the raw traces directly because of misalign-
ment between the signals. To handle this, we apply a trace compression similar
as described in [23]. We reduce the raw signal to the maximum peak-to-peak
difference of the amplitudes of the EM signal in each first clock half-wave and
take it as the new value for the entire clock cycle. We just need to know the
clock frequency to identify the clock cycle ranges in the raw signal.

Optimization. The quality metric of the side-channel oracle is the difference of
the p-values p∆. The greater the absolute value is the better is the differentia-
bility of the ‘low’ and the ‘high’ case. The more errors are removed from the
syndrome during the iterative chunking process the less 1s are in the resulting

24

error vector and its weight decreases. Since we are using the Hamming weight
of the error-vector construction as the exploitable leakage, |p∆| decreases during
the attack as well. Therefore, we optimized our side-channel oracle by updating
the reference trace Thigh by the trace which is recorded if a single 1 is recovered.

4.3 Practical Evaluation

To evaluate the attack in practice, we ported the FPGA design of [41] to a Xilinx
Kintex-7 (XC7K160T) on a SAKURA-X4 board running at 24MHz clock fre-
quency. We added a UART communication interface, a control unit that handles
the storage of the secret key parts (g(x), (α0, α1, . . . αn−1)), and a trigger signal
to one of the output ports that indicates the start and the end of a decryption
operation. We acquired the EMR profiles and the trigger signal using a Pico-
Scope 5244D MSO oscilloscope at 500MSamples/s and a near-field probe from
Langer (RF-U 5-2). We added a 10MHz high-pass filter to remove noise in the
lower frequency range and used a customized Python script for an automatic
acquisition and analysis process. The ISD-support was implemented using the
GF(2) arithmetic of SageMath.

We analyzed the design of the Niederreiter decryption for all parameter sets
proposed for “Classic McEliece” in the second round of the NIST PQC compe-
tition (see Table 2). Corresponding to the simulated trace in Figure 4, the five
individual parts of the decryption process were identifiable.

We evaluated the ISD-supported iterative approach (Section 3.2) and the
chunk-based approach (Section 3.3) using the oracle described in Algorithm 6 for
all parameter sets. We are using plain ISD (Prange) as ISD algorithm, replacing
the “guessing” with queries to our oracle, effectively implementing the ISD as
Gaussian elimination on n − k columns that are collected in the bucket. If an
attacker is able to invest additional computing power, he is able to reduce the
number of traces even further, trading in a higher complexity of the ISD.

We are using the same implementation of the iterative chunking as the sim-
ulation described in Section 3.3 — however, we substituted the ideal oracle with
the real side-channel oracle described in Algorithm 6. We examined the same
data sets as used for the simulation, i.e., ten different key pairs using ten dif-
ferent plaintext/ciphertext pairs for each key pair (100 in total) per parameter
set. To demonstrate the feasibility of the side-channel-based oracle, we ran the
practical evaluation of the plaintext-recovery attack for the optimal chunk size
threshold (βT) that was determined from the simulation (see Table 5).

For each “Classic McEliece” parameter set we were able to recover the entire
plaintexts with our iterative chunking approach. Since the responses of the side-
channel oracle and the ideal oracle in the simulation are equal, we get the same
average number of traces for the same value of βT in the simulation as well as
the experiments.

4 http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-X.html

25

http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-X.html

kem/
mceliece-

Approach Simulation Theory Experiment

min. avg. max. plain cost ≈ 240

348864

β = 1 – 2722 (k + 2) –
βT = 17 281 335.89 483 346.17 — —
βT = 18 275 334.51 481 345.16 — —
βT = 19 273 334.16 481 345.06 287.26 334.16
βT = 20 279 337.36 494 345.74 — —
βT = 21 282 337.92 482 347.09 — —

460896

β = 1 – 3362 (k + 2) –
βT = 16 353 397.01 523 404.41 — —
βT = 17 343 391.72 513 400.00 — —
βT = 18 337 389.33 514 396.95 — 389.33
βT = 19 333 390.33 515 395.06 337.66 —
βT = 20 329 392.14 517 396.62 — —
βT = 21 326 399.59 532 403.45 — —

6688128

β = 1 – 5026 (k + 2) –
βT = 15 505 553.56 608 556.73 — —
βT = 16 480 540.10 598 544.22 — —
βT = 17 468 532.11 595 534.14 470.91 532.11
βT = 18 456 534.30 604 535.31 — —
βT = 19 448 540.46 617 543.39 — —

6960119

β = 1 – 5415 (k + 2) –
βT = 15 529 584.15 708 585.21 — —
βT = 16 518 569.93 692 571.24 — —
βT = 17 505 561.29 680 559.87 493.90 561.29
βT = 18 508 562.15 679 561.61 — —
βT = 19 499 567.68 685 567.58 — —

8192128

β = 1 – 6530 (k + 2) –
βT = 15 618 679.41 788 676.59 — —
βT = 16 596 661.87 771 658.28 — —
βT = 17 587 653.97 760 648.66 576.96 653.97
βT = 18 571 654.86 760 652.85 — —
βT = 19 586 658.33 778 657.53 — —

Table 5. Statistical data for the required number of queries for a successful recovery of
an entire error vector. The data for the simulation and the experiments was gathered
from the same sets of ten different key pairs and ten different plaintext/ciphertexts per
key pair (100 in total) for each parameter set. We also give the theoretical prediction
and the number of required queries for applying ISD at a cost of around 240 operations.
For comparison, we also give the number of traces when no chunking is used, i.e., β = 1
for all queries.

26

5 Application Perspectives of Iterative Chunking

In general, our iterative chunking approach requires a) a controllable decryption
failure using public information (the public key) to manipulate the syndrome
and b) a reliable decryption oracle for the feedback. The feedback can be, e.g.,
some side-channel information or an explicit protocol response. Thus, any de-
cryption implementation, hardware or software, with these two characteristics
is vulnerable to our iterative chunking approach if a reliable feedback can be
established.

As presented in this work, the Berlekamp-Massey decoding algorithm ex-
hibits the first required property. If also the second property, i.e., a side channel
as feedback exists, then the following implementations of “Classic McEliece” are
vulnerable to our attack: The NIST reference C implementation [7] which is
based on the work of “McBits revisited” [13] and the implementation found in
the project PQClean [20] which is included in several projects, e.g., the library
from the Open Quantum Safe project [38]. The code-based scheme HQC [28]
also uses the Berlekamp-Massey decoder and is attackable as well if a detectable
difference is revealed when the decoding fails.

Furthermore, the attack of Shoufan et al. in [36] can be improved using
iterative chunking when exploiting the distinguishable behavior of the deployed
Patterson’s decoder since it shows a timing side-channel information when the
syndrome exceeds its decoding capacity.

Further open research questions are whether iterative chunking is applicable
to rank-based schemes or if it can improve reaction attacks revealing the private
key, as for example shown for CCA-secure lattice-based KEM schemes in [32].

6 Conclusion

In this paper, we showed that side-channel attacks on code-based cryptosystems
can significantly be improved using our new iterative chunking approach and that
the cost of an ISD attack can be significantly reduced when it is combined with
this improved side-channel attack, revealing the plaintext of a given message.

If “Classic McEliece” is used as a basis for a KEM scheme in a key exchange,
the plaintext is used to derive a session key even if the long-term decryption key
is protected. Therefore, we suggest to research proper countermeasures against
decryption leakage.

References

[1] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, J. Kelsey,
Y.-K. Liu, C. Miller, D. Moody, R. Peralta, R. Perlner, A. Robinson, and D.
Smith-Tone. NISTIR 8309: Status Report on the Second Round of the NIST
Post-Quantum Cryptography Standardization Process. Tech. rep. National
Institute of Standards and Technology, 2020.

27

[2] N. Aragon and P. Gaborit. “A key recovery attack against LRPC using de-
cryption failures”. In: International Workshop on Coding and Cryptography
– WCC 2019. 2019.

[3] A. Becker, A. Joux, A. May, and A. Meurer. “Decoding Random Binary
Linear Codes in 2n/20: How 1 + 1 = 0 Improves Information Set Decoding”.
In: Advances in Cryptology – EUROCRYPT 2012. Ed. by D. Pointcheval
and T. Johansson. Vol. 7237. LNCS. Springer, 2012, pp. 520–536.

[4] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg. “On the
inherent intractability of certain coding problems (Corresp.)” In: IEEE
Trans. Inf. Theory 24.3 (1978), pp. 384–386.

[5] D. J. Bernstein, J. Buchmann, and E. Dahmen, eds. Post-Quantum Cryp-
tography. Springer, 2009. isbn: 978-3-540-88702-7.

[6] D. J. Bernstein, T. Chou, T. Lange, I. von Maurich, R. Misoczki, R. Nieder-
hagen, E. Persichetti, C. Peters, P. Schwabe, N. Sendrier, J. Szefer, and W.
Wang. Classic McEliece: conservative code-based cryptography — Round 1.
https://classic.mceliece.org/nist/mceliece-20171129.pdf. Nov.
2017.

[7] D. J. Bernstein, T. Chou, T. Lange, I. von Maurich, R. Misoczki, R. Nieder-
hagen, E. Persichetti, C. Peters, P. Schwabe, N. Sendrier, J. Szefer, and W.
Wang. Classic McEliece: conservative code-based cryptography — Round 2.
https://classic.mceliece.org/nist/mceliece-20190331.pdf. Mar.
2019.

[8] D. J. Bernstein, T. Chou, and P. Schwabe. “McBits: fast constant-time
code-based cryptography”. In: Cryptographic Hardware and Embedded Sys-
tem – CHES 2013. Ed. by G. Bertoni and J.-S. Coron. Vol. 8086. LNCS.
Springer, 2013, pp. 250–272.

[9] D. J. Bernstein, T. Lange, and C. Peters. “Smaller Decoding Exponents:
Ball-Collision Decoding”. In: Advances in Cryptology – CRYPTO 2011.
Ed. by P. Rogaway. Vol. 6841. LNCS. Springer, 2011, pp. 743–760.

[10] P.-L. Cayrel and P. Dusart. “McEliece/Niederreiter PKC: Sensitivity to
Fault Injection”. In: 5th International Conference on Future Information
Technology. IEEE, 2010, pp. 1–6.

[11] C. Chen, T. Eisenbarth, I. von Maurich, and R. Steinwandt. “Horizontal
and Vertical Side Channel Analysis of a McEliece Cryptosystem”. In: IEEE
Trans. Inform. Forensics Security 11.6 (2016), pp. 1093–1105.

[12] L. Chen, D. Moody, and Y.-K. Liu. Post-Quantum Cryptography. NIST,
https://csrc.nist.gov/Projects/post-quantum-cryptography.

[13] T. Chou. “McBits Revisited”. In: Cryptographic Hardware and Embedded
System – CHES 2017. Ed. by W. Fischer and N. Homma. Vol. 10529.
LNCS. Springer, 2017, pp. 213–231.

[14] I. I. Dumer. “Two Decoding Algorithms for Linear Codes”. In: Probl.
Peredachi Inf. 25 (1 1989), pp. 24–32.

[15] L. D. Feo, D. Jao, and J. Plût. “Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies”. In: J. Mathematical Cryptology
8.3 (2014), pp. 209–247.

28

https://classic.mceliece.org/nist/mceliece-20171129.pdf
https://classic.mceliece.org/nist/mceliece-20190331.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography

[16] M. Finiasz and N. Sendrier. “Security Bounds for the Design of Code-
Based Cryptosystems”. In: Advances in Cryptology – ASIACRYPT 2009.
Ed. by M. Matsui. Vol. 5912. LNCS. Springer, 2009, pp. 88–105.

[17] Q. Guo, T. Johansson, and P. Stankovski. “A Key Recovery Attack on
MDPC with CCA Security Using Decoding Errors”. In: Advances in Cryp-
tology – ASIACRYPT 2016. Ed. by J. H. Cheon and T. Takagi. Vol. 10031.
LNCS. Springer, 2016, pp. 789–815.

[18] C. Hall, I. Goldberg, and B. Schneier. “Reaction Attacks against Several
Public-Key Cryptosystem”. In: Information and Communication Security
– ICICS 1999. Ed. by V. Varadharajan and Y. Mu. Vol. 1726. LNCS.
Springer, 1999, pp. 2–12.

[19] S. Heyse and T. Güneysu. “Code-based cryptography on reconfigurable
hardware: tweaking Niederreiter encryption for performance”. In: JCEN
3.1 (2013), pp. 29–43.

[20] M. J. Kannwischer, J. Rijneveld, P. Schwabe, D. Stebila, and T. Wiggers.
The PQClean Project. https://github.com/PQClean/PQClean. Aug.
2020.

[21] P. J. Lee and E. F. Brickell. “An Observation on the Security of McEliece’s
Public-Key Cryptosystem”. In: Advances in Cryptology - EUROCRYPT
1988. Ed. by C. G. Günther. Vol. 330. LNCS. Springer, 1988, pp. 275–280.

[22] J. S. Leon. “A probabilistic algorithm for computing minimum weights
of large error-correcting codes”. In: IEEE Trans. Information Theory 34.5
(1988), pp. 1354–1359.

[23] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing
the Secrets of Smart Cards (Advances in Information Security). Springer,
2007. isbn: 978-0-387-30857-9.

[24] B. Marr. 6 Practical Examples Of How Quantum Computing Will Change
Our World. Forbes, https://www.forbes.com/sites/bernardmarr/
2017/07/10/6-practical-examples-of-how-quantum-computing-
will-change-our-world/. 2017.

[25] A. May, A. Meurer, and E. Thomae. “Decoding Random Linear Codes in
Õ(20.054n)”. In: Advances in Cryptology – ASIACRYPT 2011. Ed. by D. H.
Lee and X. Wang. Vol. 7073. LNCS. Springer, 2011, pp. 107–124.

[26] A. May and I. Ozerov. “On Computing Nearest Neighbors with Applica-
tions to Decoding of Binary Linear Codes”. In: Advances in Cryptology –
EUROCRYPT 2015. Ed. by E. Oswald and M. Fischlin. Vol. 9056. LNCS.
Springer, 2015, pp. 203–228.

[27] R. J. McEliece. “A Public-Key Cryptosystem Based On Algebraic Coding
Theory”. In: DSN Progress Report 42–44 (1978), pp. 114–116.

[28] C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J. Bos, J.-C.
Deneuville, P. Gaborit, E. Persichetti, J.-M. Robert, P. Véron, and G.
Zémor. Hamming Quasi-Cyclic (HQC) — Second round version. http:
//pqc-hqc.org/doc/hqc-specification_2020-05-29.pdf. May 2020.

[29] C. Nay. IBM Unveils World’s First Integrated Quantum Computing Sys-
tem for Commercial Use. IBM News Roomm https://newsroom.ibm.

29

https://github.com/PQClean/PQClean
https://www.forbes.com/sites/bernardmarr/2017/07/10/6-practical-examples-of-how-quantum-computing-will-change-our-world/
https://www.forbes.com/sites/bernardmarr/2017/07/10/6-practical-examples-of-how-quantum-computing-will-change-our-world/
https://www.forbes.com/sites/bernardmarr/2017/07/10/6-practical-examples-of-how-quantum-computing-will-change-our-world/
http://pqc-hqc.org/doc/hqc-specification_2020-05-29.pdf
http://pqc-hqc.org/doc/hqc-specification_2020-05-29.pdf
https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use
https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use

com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-
Computing-System-for-Commercial-Use. 2019.

[30] H. Niederreiter. “Knapsack-type cryptosystems and algebraic coding the-
ory”. In: Probl. Control Inform. 15 (1986), pp. 19–34.

[31] E. Prange. “The use of information sets in decoding cyclic codes”. In: IRE
Trans. Information Theory 8.5 (1962), pp. 5–9.

[32] P. Ravi, S. Sinha Roy, A. Chattopadhyay, and S. Bhasin. “Generic Side-
channel attacks on CCA-secure lattice-based PKE and KEMs”. In: IACR
Transactions on Cryptographic Hardware and Embedded Systems – TCHES
2020.3 (2020), pp. 307–335.

[33] M. Rossi, M. Hamburg, M. Hutter, and M. E. Marson. “A Side-Channel
Assisted Cryptanalytic Attack Against QcBits”. In: Cryptographic Hard-
ware and Embedded Systems – CHES 2017. Ed. by W. Fischer and N.
Homma. Vol. 10529. LNCS. Springer, 2017, pp. 3–23.

[34] S. Samardjiska, P. Santini, E. Persichetti, and G. Banegas. “A Reaction
Attack Against Cryptosystems Based on LRPC Codes”. In: Progress in
Cryptology – LATINCRYPT 2019. Ed. by P. Schwabe and N. Thériault.
Vol. 11774. LNCS. Springer, 2019, pp. 197–216.

[35] P. W. Shor. “Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer”. In: SIAM review 41.2 (1999),
pp. 303–332.

[36] A. Shoufan, F. Strenzke, H. G. Molter, and M. Stöttinger. “A Timing
Attack against Patterson Algorithm in the McEliece PKC”. In: Informa-
tion, Security and Cryptology – ICISC 2009. Ed. by D. Lee and S. Hong.
Vol. 5984. LNCS. Springer, 2010, pp. 161–175.

[37] V. M. Sidelnikov and S. O. Shestakov. “On insecurity of cryptosystems
based on generalized Reed-Solomon codes”. In: Discrete Math. Appl. 2.4
(1992), pp. 439–444.

[38] D. Stebila and M. Mosca. Open Quantum Safe Project. https://github.
com/open-quantum-safe/liboqs. Aug. 2020.

[39] J. Stern. “A method for finding codewords of small weight”. In: Coding
Theory and Applications. Ed. by G. Cohen and J. Wolfmann. Vol. 388.
LNCS. Springer, 1989, pp. 106–113.

[40] M. Taha and T. Eisenbarth. Implementation Attacks on Post-Quantum
Cryptographic Schemes. Cryptology ePrint Archive, Report 2015/1083.

[41] W. Wang, J. Szefer, and R. Niederhagen. “FPGA-Based Niederreiter Cryp-
tosystem Using Binary Goppa Codes”. In: Post-Quantum Cryptography –
PQCrypto 2018. Ed. by T. Lange and R. Steinwandt. Vol. 10786. LNCS.
Springer, 2018, pp. 77–98.

[42] B. L. Welch. “The Generalization of ‘Student’s’ Problem when Several
Different Population Variances are Involved”. In: Biometrika 34.1/2 (1947),
pp. 28–35.

30

https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use
https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use
https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use
https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/liboqs
https://eprint.iacr.org/2015/1083

	Side Channel Information Set Decoding using Iterative Chunking

