On the Exact Round Complexity of
Best-of-both-Worlds Multi-party Computation

Arpita Patra'*, Divya Ravi®, Swati Singla?

! Indian Institute of Science, India. {arpita,divyar}@iisc.ac.in
2 Google India, Bangalore. swatis@iisc.ac.in

Abstract. The two traditional streams of multiparty computation
(MPC) protocols consist of- (a) protocols achieving guaranteed output
delivery (god) or fairness (fn) in the honest-majority setting and (b) pro-
tocols achieving unanimous or selective abort (ua, sa) in the dishonest-
majority setting. The favorable presence of honest majority amongst the
participants is necessary to achieve the stronger notions of god or fn.
While the constructions of each type are abound in the literature, one
class of protocols does not seem to withstand the threat model of the
other. For instance, the honest-majority protocols do not guarantee pri-
vacy of the inputs of the honest parties in the face of dishonest majority
and likewise the dishonest-majority protocols cannot achieve god and
fn, tolerating even a single corruption, let alone dishonest minority. The
promise of the unconventional yet much sought-after species of MPC,
termed as ‘Best-of-Both-Worlds’ (BoBW), is to offer the best possible
security depending on the actual corruption scenario.

This work nearly settles the exact round complexity of two classes of
BoBW protocols differing on the security achieved in the honest-majority
setting, namely god and fn respectively, under the assumption of no setup
(plain model), public setup (CRS) and private setup (CRS + PKI or
simply PKI). The former class necessarily requires the number of parties
to be strictly more than the sum of the bounds of corruptions in the
honest-majority and dishonest-majority setting, for a feasible solution to
exist. Demoting the goal to the second-best attainable security in the
honest-majority setting, the latter class needs no such restriction.
Assuming a network with pair-wise private channels and a broadcast
channel, we show that 5 and 3 rounds are necessary and sufficient for
the class of BoOBW MPC with fn under the assumption of ‘no setup’ and
‘public and private setup’ respectively. For the class of BoOBW MPC with
god, we show necessity and sufficiency of 3 rounds for the public setup
case and 2 rounds for the private setup case. In the no setup setting, we
show the sufficiency of 5 rounds, while the known lower bound is 4. All
our upper bounds are based on polynomial-time assumptions and assume
black-box simulation. With distinct feasibility conditions, the classes dif-
fer in terms of the round requirement. The bounds are in some cases
different and on a positive note at most one more, compared to the max-
imum of the needs of the honest-majority and dishonest-majority setting.

* Arpita Patra would like to acknowledge financial support from SERB MATRICS
(Theoretical Sciences) Grant 2020 and Google India AI/ML Research Award 2020.

Our results remain unaffected when security with abort and fairness are
upgraded to their identifiable counterparts.

1 Introduction

In secure multi-party computation (MPC) [1,2,3], n parties wish to jointly per-
form a computation on their private inputs in a way that no adversary A actively
corrupting a coalition of ¢ parties can learn more information than their out-
puts (privacy), nor can they affect the outputs of the computation other than
by choosing their own inputs (correctness). MPC protocol comes in distinct
flavours with varying degree of robustness— guaranteed output delivery (god),
fairness (fn), unanimous abort (ua) and selective abort (sa). The strongest secu-
rity, god, implies that all parties are guaranteed to obtain the output, regardless
of the adversarial strategy. In the weaker notion of fn, the corrupted parties
receive their output if and only if all honest parties do. In the further weaker
guarantee of ua, fairness may be compromised, yet the adversary cannot break
unanimity of honest parties. That is, either all or none of the honest parties re-
ceive the output. Lastly, sa security, the weakest in the lot, allows the adversary
to selectively deprive some honest parties of the output.

While highly sought-after, the former two properties can only be realised,
when majority of the involved population is honest [4]. In the absence of this
favorable condition, only the latter two notions can be attained. With these
distinct affordable goals, MPC with honest majority [5,6,7,8,9,10,11] and dis-
honest majority [1,12,13,14,15,16,17] mark one of the earlier demarcations in
the world of MPC. With complementary challenges and techniques, each set-
ting independently stands tall with spectacular body of work. Yet, the most
worrisome shortcoming of these generic protocols is that: a protocol in one set-
ting completely breaks down in the other setting i.e. the security promises are
very rigid and specific to the setting. For example, a protocol for honest majority
might no longer even be “private” or “correct” if half (or more) of the parties are
corrupted. A protocol that guarantees security with ua for arbitrary corruptions
cannot pull off the stronger security of god or fn even if only a “single” party
is corrupt. In many real-life scenarios, it is highly unlikely for anyone to guess
upfront how many parties the adversary is likely to corrupt. In such a scenario,
the best a practitioner can do, is to employ the ‘best’ protocol from her favorite
class and hope that the adversary will be within assumed corruption limit of
the employed protocol. If the guess fails, the employed protocol, depending on
whether it is an honest or dishonest majority protocol, will suffer from the above
mentioned issues. The quest for attaining the best feasible security guarantee in
the respective settings of honest and dishonest majority in a single protocol sets
the beginning of a brand new class of MPC protocols, termed as ‘Best of Both
Worlds (BoBW)’ [18,19,20]. In critical applications like voting [21,22], secure
auctions [23], secure aggregation [24], federated learning and prediction [25,26],
financial data analysis [27] and others, where privacy of the inputs of an honest

party needs protection at any cost and yet a robust completion is called for (as
much as theoretically feasible), BOBW protocols are arguably the best fit.

Denoting the threshold of corruption in honest and dishonest majority case
by ¢t and s respectively, an ideal BoOBW MPC should promise the best possi-
ble security in each corruption scenario for any population of size n, as long
as t < n/2 and s < n. Quite contrary to the expectation, the grand beginning
of BoBW MPC with the works of [18,19,20] is mostly marred with pessimistic
results showing the above goal is impossible for many scenarios. For reactive
functionalities that receive inputs and provide outputs in multiple rounds main-
taining a state information between subsequent invocations, it is impossible to
achieve BoBW security [18]. While theoretical feasibility is not declined, non-
reactive or standard functionalities are shown to be impossible to realise as long
as t + s > n in expected polynomial time (in the security parameter), making
any positive result practically irrelevant [19,20]. A number of meaningful relax-
ations were proposed in the literature to get around the impossibility of BoBW
security when t + s > n [19,20]. The most relevant to our work is the relax-
ation proposed in [28] where the best possible security of god is compromised
to the second-best notion of fn in the honest-majority setting. Other attempts
to circumvent the impossibility result appear in [18] and [19,29] where the secu-
rity in dishonest-majority setting is weakened to allowing the adversary to learn
s evaluations of the function (each time with distinct inputs ezclusively corre-
sponding to the corrupt parties) in the former and achieving a weaker notion
of O(1/p)-security with abort (actions of any polynomial-time adversary in the
real world can be simulated by a polynomial-time adversary in the ideal world
such that the distributions of the resulting outcomes cannot be distinguished
with probability better than O(1/p)) in the latter. [18] shows yet another cir-
cumvention by weakening the adversary in dishonest-majority case from active
to passive. On the contrary, constructions are known when ¢ 4+ s < n is assumed
[18], tolerating active corruptions and giving best possible security in both the
honest and dishonest majority case.

In this work, we consider two types of BoBW MPC protocols and study
their exact round complexity: (a) MPC achieving the best security of god and
ua in the honest and dishonest majority setting respectively assuming s+t < n,
referred as (god|ua)-BoBW; (b) MPC achieving second-best security notion of
fn in the honest majority and the best possible security of ua in the dishon-
est majority for any n, referred as (fn|ua)-BoBW. The adversary is considered
malicious, rushing and polynomially-bounded in either world. The latter notion
(introduced in [28]) is an elegant and meaningful relaxation that brings back
the true essence of BoBW protocols with no constraint on n, apart from the
natural bounds of ¢ < n/2 and s < n. Furthermore, fn is almost as good as god
for many practical applications where the adversary is rational enough and does
not wish to fail the honest parties at the expense of losing its own output. In
spite of immense practical relevance of BoBW protocols, the question of their
exact round complexity has not been tackled so far. Below, we review relevant
literature on BoBW protocols and exact round complexity of MPC.

1.1 On the Round Complexity of BoBW MPC

The phenomenal body of work done on round complexity catering to various
adversarial settings and network models emphasises its theoretical importance
and practical relevance. For instance, the exact round complexity of MPC inde-
pendently in honest and dishonest majority has been examined and the recent
literature is awash with a bunch of upper bounds that eluded for quite a long
time [30,31,16,17]. We review the round complexity of the honest-majority and
dishonest-majority MPC in the cryptographic setting which define natural yet
possibly loose bounds for the BoBW MPC. To begin with, 2 rounds are known
to be necessary to realize any MPC protocol, regardless of the setting, no mat-
ter whether a setup is assumed or not as long as the setup (when assumed) is
independent of the inputs of the involved parties [32]. In the dishonest-majority
setting, when no setup is assumed (plain model) 4 rounds are necessary [33].
Tight upper bounds appear in [14,15,16,17,34], with the latter three presenting
constructions under polynomial-time assumptions, yet with sa security. In the
presence of a public setup (Common Reference String a.k.a. CRS setting), the
lower bound comes down to 2 rounds [32]. A series of work present matching
upper bounds under various assumptions [13,35,36], culminating with the works
of [30,31] that attain the goal under the minimal assumption of 2-round oblivi-
ous transfer (OT). In the honest-majority setting and in plain model, 3 rounds
are shown to be necessary for fn (and hence for god) protocols, in the presence
of pairwise-private and broadcast channels for ¢ > 2 active corruptions [37] and
for any t as long as n/3 < t < n/2 [38]. The results of [37,38] hold in the pres-
ence of CRS but does not hold in the presence of correlated randomness setup
such as PKI. Circumventing the lower bound of 3 for fn, [39] shows a 2-round
4PC protocol against a single active corruption achieving god even without a
broadcast channel. The matching upper bounds appear in [11] for the general
case under public-key assumption, and in [38] for the special case of 3PC un-
der the minimal assumption of (injective) OWF. In the CRS model, 3 rounds
remains to be the lower bound for fn in a setting where broadcast is the only
medium of communication (broadcast-only setting) [40] and additionally with
point-to-point channels [38,37,41]. Given PKI, the bound can be improved to 2
[40].

In the BoBW setting, constant-round protocols are presented in (or can be
derived from) [18,20] for (god|ua)-BoBW and BoBW where only semi-honest
corruptions are tolerated in the dishonest majority. The recent work of [42]
settled the exact round complexity of the latter class, as a special case of a
strong adversarial model that allows both active (with threshold ¢,) and passive
(with threshold t,,, which subsumes the active corruptions) corruption for a range
of thresholds for (t4,t,) starting from ([n/2] -1, [n/2]) to (0,n—1). Lastly, the
round complexity of BoBW protocols of [29] that achieve 1/p- security with abort
in dishonest-majority (and god in honest majority), depends on the polynomial
p(k) (where x denotes the security parameter).

1.2 Our Results

This work nearly settles the exact round complexity for two classes of BoBW
protocols, (god|ua)-BoBW and (fn|ua)-BoBW, under the assumption of no setup
(plain model), public setup (CRS) and private setup (CRS + PKI or simply
PKI). The adversary is assumed to be rushing, active and static. The parties are
connected via pair-wise private channels and an additional broadcast channel.
All our upper bounds are based on polynomial-time assumptions and assume
black-box simulation. We summarise our results below.

(fnjua)-BoBW. We settle the exact round complexity of this class of BoBW
protocols by establishing the necessity and sufficiency of: (a) 5 rounds in the plain
model and (b) 3 rounds in both the public (CRS) and private (CRS+PKI) setup
setting. In the CRS model, the necessity of 3 rounds for honest-majority MPC
achieving fn (and hence for (fn|ua)-BoBW) has been demonstrated in [40,37,38],
the former in a setting where broadcast is the only mode of communication
(broadcast-only) and the latter two additionally with pairwise-private channels.
However, these results do not hold in the presence of PKI. Our lower bound
argument, on the other hand, is resilient to the presence of both CRS and PKI,
and further holds in the presence of broadcast and pairwise-private channels.

|No setup (Plain Model) |[Public Setup (CRS)

[Private Setup (CRS + PKI)

Honest Majority
t<n/2
fn / god

Round: 3
Lower Bound:
Upper Bound:

(38,37]
[11,43]

Round: 3
Lower Bound: [38,37]
Upper Bound: [40,11,43]

Round: 2
Lower Bound: [32]
Upper Bound: [40]

Dishonest Majority
s<n
sa /ua

Round: 4
Lower Bound:
Upper Bound:
(sa only)

(33]
[16,17,34]

Round: 2

Lower Bound: [32]
Upper Bound: [13,35]
[36,30,31]

Round: 2

Lower Bound: [32]
Upper Bound: [13,35]
[36,30,31]

(fn|ua)-BoBW
t<n/2,s<n
fn & ua

Round: 5
Lower Bound:
Upper Bound:

This paper
This paper

Round: 3
Lower Bound: [37,38]
Upper Bound: This paper

Round: 3
Lower Bound: This paper
Upper Bound: This paper

(god|ua)-BoBW
t<n/2,t+s<n
god & ua

Round:
Lower Bound:
Upper Bound:

4 [33]
5 This paper

Round: 3
Lower Bound: This paper
Upper Bound: This paper

Round: 2
Lower Bound: [32]
Upper Bound: This paper

Table 1: Summary of results

(god|ua)-BoBW. In this regime, we demonstrate that 4, 3 and 2 are the respec-
tive lower bounds in the no-setup, public setup and private setup setting. The
first lower bound follows from the fact that BoBW MPC in this class trivially
subsumes the dishonest majority MPC when ¢ = 0 and the lower bound for
dishonest-majority MPC is 4 [33]. The last lower bound follows from the stan-
dard 2-round bound for MPC needed to counter “residual function attack” [32].
Regarding the lower bound of 3 for the public setup (CRS) setting, we point
that it follows directly from the 2-round impossibility of MPC with fn for hon-
est majority in the CRS model [40,38,37] for most values of (t,s,n) satisfying
s+t < n. However, these existing results do not rule out the possibility of 2-round
(god|ua)-BoBW MPC for (t = 1,s > t,n > 4). (In fact the protocols of [44,39]

circumvent the 3-round lower bound for fn when ¢t = 1,n > 4). We address this
gap by giving a unified proof that works even for s > ¢, for all values of ¢ (includ-
ing t = 1). This is non-trivial and it demonstrably breaks down in the presence
of PKI. The bounds are totally different from the ones for previous class, owing
to the different feasibility condition of s + ¢ < n. While our upper bound falls
merely one short of matching the first lower bound in case of no-setup, the upper
bounds of the other two settings are tight. We leave the question of designing or
alternately proving the impossibility of 4-round (god|ua)-BoBW MPC protocol
as open. Our results summarised and put along with the bounds known in the
honest and dishonest majority setting appear in Table 1.

Ezxtensions. We can boost the security of all our protocols to offer identifi-
ability (i.e. public identifiability of the parties who misbehaved) when abort
happens— (fn|ua)-BoBW protocols with identifiable fairness and abort in honest
and dishonest majority setting respectively and (god|ua)-BoBW protocols with
identifiable abort in dishonest-majority setting. Our lower bound results hold as
is when ua and fn are upgraded to their stronger variants with identifiability.
Furthermore, all our upper bounds relying on CRS have instantiations based
on a weaker setup, referred as common random string, owing to the availability
of 2-round OT [45] and Non-Interactive Zero Knowledge (NIZK) [46] under the
latter setup assumption. Lastly, we also propose few optimizations to minimize
the use of broadcast channels in our compilers upon which our upper bounds
are based. Specifically, these optimizations preserve the round complexity of our
upper bounds at the cost of relaxing the security notion in dishonest majority
setting to sa (as opposed to ua).

1.3 Techniques

(fnJua)-BoBW. The lower bounds are obtained via a reduction to 3-round OT in
plain model and 1-round OT in private setup setting, both of which are known
to be impossible [33,32] (albeit under the black-box simulation paradigm which
is of concern in this paper). The starting point is a protocol 7 between 3 parties
which provides fn when 1 party is corrupt and ua when 2 parties are corrupt,
in 4 rounds when no setup is assumed and 2 rounds when private/public setup
is assumed. The heart of the proof lies in devising a function f such that the
realization of f via m, barring its last round, leads to an OT.

The upper bounds are settled with a proposed generic compiler that turns
an r-round dishonest-majority MPC protocol achieving ua to an (r + 1)-round
BoBW MPC protocol information-theoretically. The compiler churns out a 5-
round and a 3-round BoBW protocol in the plain model and in the presence of a
CRS respectively, when plugged with appropriate ua-secure dishonest-majority
protocol in the respective setting. Since the constructions of the known 4-round
dishonest-majority MPC relying on polynomial-time assumptions [16,17,34] pro-
vide only sa security, we transform them to achieve ua for our purpose which
invokes non-triviality for [16]. With CRS, the known constructions of [30,31]
achieve unanimity and readily generate 3-round BoBW protocols.

Our compiler motivated by [47] uses the underlying r-round protocol to com-
pute authenticated secret sharing of the output y with a threshold ¢(< n/2) en-
abling the output reconstruction to occur in the last round. Fairness is ensured
given the unanimity of the underlying protocol and the fact that the adversary
(controlling ¢ corrupt parties) has no information about the output y from the
t shares he owns. However, using pairwise MACs for authentication defies una-
nimity in case of arbitrary corruptions because a corrupt party can choose to
provide a verified share to a selected set of honest parties enabling their out-
put reconstruction while causing the rest to abort. To address this, a form of
authentication used in the Information Checking Protocol (ICP) primitive of
[48,49] and unanimously identifiable commitments (UIC) of [50] can be used.
This technique maintains unanimity amongst the honest parties during output
reconstruction.

(god|ua)-BoBW. The non-trivial lower bound for this class is for the CRS setting.
The other bounds imply from the dishonest-majority case. In the CRS setting,
we prove a lower bound of 3 rounds. We start with assuming a 2 round BoBW
protocol 7 for a specifically articulated 4-party function f. Next, we consider a
sequence of executions of 7, with different adversarial strategies in the order of
their increasingly malicious behaviour such that the views of a certain party stays
the same between the executions. This sequence finally leads us to a strategy
where the adversary is able to learn the input of an honest party breaching
privacy, hence coming to a contradiction. The crux of the lower bound argument
lies in the design of the adversarial strategies that shuffle between the honest
and dishonest majority setting encapsulating the challenge in designing BoBW
protocols. This is in contrast to existing lower bounds in traditional models that
deal with a fixed setting and single security notion at a time.

In the presence of a CRS, we build a 3-round protocol in two steps: a) we
provide a generic compiler that transforms a broadcast-only ua-secure 2-round
semi-malicious protocol such as [30,31] to a 3-round broadcast-only BoBW pro-
tocol of this class against a semi-malicious adversary (that follows the protocol
honestly but can choose bad random coins for each round which are available to
the simulator) b) then, the round-preserving compiler of [51] (using NIZKs) is
applied on the above protocol to attain malicious security. The first compiler, in
spirit of [11], ensures god against ¢ non-cooperating corrupt parties in the last
round, via secret-sharing the last-round message of the underlying protocol dur-
ing the penultimate round of the compiled protocol. This is achieved by means
of a garbled circuit sent by each party outputting its last-round message of the
underlying protocol and the shares of the encoded labels with a threshold of s
so that s+ 1 parties (in case of honest majority) can come together in the final
round to construct the last-round message of the corrupt parties. This garbled
circuit of a party P; also takes into account the case when some other parties
abort in the initial rounds of the protocol by taking the list of aborting parties
as input and hard-coding their default input and randomness such that P;’s last
round message is computed considering default values for parties who aborted.
The compiler is made round-preserving with additional provision of pairwise-

private channels or alternately, PKI. The latter (with PKI) just like its 3-round
avatar can be compiled to a malicious protocol via the compiler of [51].

In the plain model, we provide a 5-round construction which is substantially
more involved than our other upper bounds. To cope up with the demands of
(god|ua)-BoBW security in the plain model, we encountered several roadblocks
that were addressed by adapting some existing techniques combined with new
tricks. The construction proceeds in two steps: a) we boost the security of our
broadcast-only 3-round semi-malicious BoBW protocol to a stronger notion of
delayed-semi-malicious security (where the adversary is required to justify his
messages by giving a valid witness only in the last but one round) and b) we
plug this 3-round BoBW protocol in the compiler of [31] with some additional
modifications to obtain a 5-round BoBW protocol secure against a malicious
adversary. The compiler of [31] takes as input a (k — 1)-round protocol secure
with abort against a delayed-semi-malicious adversary and churns out a k-round
protocol secure with abort against a malicious adversary for any k > 5. The
major challenges in our construction surface in simulation, where we cannot
terminate in the honest-majority case even if the adversary aborts on behalf of
a corrupt party (unlike the compiler of [31] that achieves abort security only).
Furthermore, we observed that the natural simulation strategy to retain the
BoBW guarantee suffered from a subtle flaw, similar to the one pointed in the
work of [52], which we resolve with the help of the idea suggested therein. To
bound the simulation time by expected polynomial-time, we further needed to
introduce two ‘dummy’ rounds (rounds which do not involve messages of the
underlying protocol being compiled) in our compiler as opposed to one as in
[31]. This does not inflate the round complexity as our underlying delayed-semi-
malicious protocol only consumes 3 rounds (instead of 4 as in the case of [31]).
As a step towards resolving the question left open in this work (namely proving
the impossibility or alternately constructing a 4-round (god|ua)-BoBW protocol
under polynomial-time assumption), we present a sketch of a 4-round (god|ua)-
BoBW protocol based on sub-exponentially secure trapdoor permutations and
ZAPs. This construction builds upon the work of [53]. The pictorial roadmap to
obtain the upper bounds is given in the figure below.

2-round 3-round 5-round
Semi-malicious Delayed Semi- i\)i (lu)
(god|ua)-BoBW Malicious Sec 5.2.2 (2d1|cul;(|))%?30BW
Broadcast + (god|ua)-BoBW Bgroadcm"t—Onl
private channel Broadcast-Only o s Y
y2 7| no setup no setup 1o setup
o- S
Ny <
2-round 3-round 3-round
Semi-malicious . - .
ua-dishonest- Soc 5.1.1_| Semi-malicious Sec 5.1.3 Malicious
majority ——— > (god|ua)-BoBW — (god|ua)-BoBW
Broadcast-only Broadcast-only Broadcast-only
no setup CRS
no setup See N
S,
2-round 2-round
Semi-malicious Sec 5.1.3 Malicious
(god|ua)-BoBW (god|ua)-BoBW
Broadcast-only Broadcast-only
PKI CRS + PKI

1.4 Related works on BoBW MPC

An orthogonal notion of BoBW security is considered in [55,56,28] where
information-theoretic and computational security is the desired goal in honest
and dishonest majority setting respectively. Avoiding the relaxation to computa-
tional security in dishonest-majority setting, the work of [57] introduces the best
possible information-theoretic guarantee achievable in the honest and dishonest
majority settings simultaneously; i.e. the one that offers standard information-
theoretic security in honest majority and offers residual security (the adversary
cannot learn anything more than the residual function of the honest parties’
inputs) in dishonest-majority setting. A more fine-grained graceful degradation
of security is dealt with in the works of [28,58,59,60,42] considering a mixed
adversary that can simultaneously corrupt in both active and semi-honest style.
Lastly, [61] studies the communication efficiency in the BoBW setting.

1.5 Our Model

Before moving onto the technical section, we detail our model here. We consider
a set of n parties P = {P,... P,} connected by pairwise-secure and authentic
channels and having access to a broadcast channel. A few protocols in our work
that are referred to as being broadcast-only do not assume private channels. Each
party is modelled as a probabilistic polynomial time (PPT) Turing machine. We
assume that there exists a PPT adversary A, who can corrupt a subset of these
parties. We denote the set of indices corresponding to parties controlled by A
and the honest parties with C and H respectively. We denote the cryptographic
security parameter by x. A negligible function in x is denoted by negl(k). A
function negl(-) is negligible if for every polynomial p(-) there exists a value
N such that for all m > N it holds that negl(m) < ﬁ. Lastly, we denote
the ideal functionalities for unanimous abort, fairness and guaranteed output
delivery with Fia, Frir and Fgod respectively (details appear in full version [54]).

Roadmap. Our lower and upper bounds for (fn|ua)-BoBW appear in Section 2-
3. Our lower and upper bounds for (god|ua)-BoBW appear in Section 4-5. Our
protocols are proven in real-world and ideal-world paradigm. The detailed secu-
rity definitions, complete security proofs and formal definitions of the primitives
used in our upper bounds are described in the full version [54].

2 Lower Bounds for (fn|ua)-BoBW

In this section, we show two lower bounds concerning (fn|ua)-BoBW protocols—
one with no setup and the other with private setup. In the plain model, we show
that it is impossible to design a 4-round (fn|ua)-BoBW protocol (with black-
box simulation). In the CRS setting, the 3-round lower bound for (fn|ua)-BoBW
protocols follows directly from the impossibility of 2-round protocol achieving fn
[40,37,38]. However, they do not hold in the presence of PKI. While the argument

of [40] crucially relies on the adversary being able to eavesdrop communication
between two honest parties (which does not hold in the presence of PKI), the
lower bounds of [37,38] also do not hold if PKI is assumed (as acknowledged /
demonstrated in [37,41]). In the setting with CRS and PKI, we show impossibility
of a 2-round protocol. The proof of both our lower bounds relies on the following
theorem, which we formally state and prove below.

Theorem 1. An n-party r-round (fnua)-BoBW protocol implies a 2-party (r —
1)-round maliciously-secure oblivious transfer (OT).

Proof. We prove the theorem for n = 3 parties with ¢t = 1 and s = 2 which can
be extended for higher values of n in a natural manner (elaborated in the full
version). Let P = {P1, P2, P3} denote the 3 parties and the adversary A may
corrupt at most two parties. As per the hypothesis, we assume that there exists
a r-round (fnjua)-BoBW protocol protocol 7y that can compute the function f
defined as f((mog, m1), (¢, R2), R3) = ((mc+ R2 + R3), m¢, mc) which simultane-
ously achieves fn when ¢ = 1 parties are corrupt and ua when s = 2 parties are
corrupt. At a high-level, we transform the r-round 3-party protocol 7; among
{Py, Py, P;} into a (r — 1)-round 2-party OT protocol between a sender Pg with
inputs (mg,m1) and a receiver Pr with input c.

Let g = 1 —negl(k) denote the overwhelming probability with which security
of m¢ holds, where the probability is defined over the choice of setup (in case a
setup is assumed) and the random coins used by the parties. Before describing
the transformation, we present the following lemma:

Lemma 1. Protocol my must be such that the combined view of {P», Ps} at
the end of Round (r — 1) suffices to compute their output, with overwhelming
probability.

Proof. Consider an adversary A who corrupts only a minority of the parties (¢ =
1). A controls party P; with the following strategy: P; behaves honestly in the
first (r —1) rounds while he simply remains silent in Round r (last round). Since
P, receives all the desired communication throughout the protocol, it follows
directly from correctness of my (which holds with overwhelming probability q)
that A4 must be able to compute the output with probability q. Since 7 is
assumed to be fair (with probability q) for the case of ¢ = 1, it must hold that
when P; learns the output, the honest parties P, and P3 must also be able to
compute the output with overwhelming probability q x q = q2%; without any
communication from P; in Round r. This implies that the combined view of
{P2, Ps} at the end of Round (r — 1) must suffice to compute the output with
overwhelming probability q2. a
Our transformation from 7; to a (r — 1)-round OT protocol mot between a
sender Pg with inputs (mg,m1) and a receiver Pr with input ¢ goes as follows.
Pg emulates the role of P; during 7y while Pr emulates the role of both parties
{P,, P3} during 7y using random inputs Ra, Rs respectively. In more detail,
let mj_,,; denote the communication from P; to P; in round r of 7s. Then for
r € [r — 1], the interaction in round r of protocol mot is the following: Pg sends

10

m'_,, and m|_ 5 to Pr while Pr sends m§_,; and mj_,; to Ps. Pr computes the
output m, using the combined view of {Pe, P3} at the end of Round (r —1). Pg
outputs nothing. Recall that the output of the OT between (Ps, Pg) is (L, m.)
respectively. We now argue that mot realizes the OT functionality.

Lemma 2. Protocol moT realizes the OT functionality.

Proof. We first prove that moT is correct. By Lemma 1, it follows that Pg
emulating the role of both {P, P3} of my must be able to compute the correct
output m, with overwhelming probability by the end of Round (r — 1). We
now consider the security properties. First, we consider a corrupt Pg (emulating
the roles of {P5, P3} in my). Since by assumption, 7y is a protocol that should
preserve privacy of P;’s input even in the presence of an adversary corrupting
{P2, P5} (s = 2 corruptions), the input m;_. of Pg must remain private against
a corrupt Pgr. Next, we note that privacy of 7y against a corrupt P, (t = 1
corruption) guarantees that P; does not learn anything beyond the output (m.+
Ry + R3) in the protocol 7y which leaks nothing about c. It thus follows that a
corrupt Pg in moT emulating the role of P, in my will also not be able to learn
anything about Pgr’s input c¢. More formally, we can construct a simulator for
the OT protocol moT for the cases of corrupt Pg and corrupt Pg by invoking the
simulator of 7y for the case of dishonest majority (s = 2) and honest majority
(t = 1) respectively. In each case, it follows from the security of m; (which
holds with overwhelming probability) that the simulator of my would return a
view indistinguishable from the real-world view with overwhelming probability;

directly implying the security of the OT protocol 7woT. O
Thus, we can conclude that a (r — 1)-round 2-party OT protocol moT can be
derived from r-round 7y. This concludes the proof of Theorem 1. a

Theorem 2. There exists a function f for which there is no 4-round (resp.
2 round) protocol computing f in the plain model (resp. with CRS and PKI)
that simultaneously realises— (1) Feair when t < n/2 parties are corrupted (2)
Fua when s < n parties are corrupted. In the former setting (plain model), we
assume black-box simulation.

Proof. We start with the proof in the plain model, followed by the proof with
CRS and PKI. We assume for contradiction that there exists a 4-round (fn|ua)-
BoBW protocol (with black-box simulation) in the plain model. Then, it follows
from Theorem 1 that there must exist a 3-round 2-party maliciously-secure OT
protocol with black-box simulation in the plain model. We point that this OT
derived as per the transformation of Theorem 1 is a bidirectional OT, where each
round consists of messages from both the OT sender and the receiver. Using the
round-preserving transformation from bidirectional OT to alternating-message
OT (where each round consists of a message from only one of the two parties)
[34], we contradict the necessity of 4 rounds for alternating OT in the plain
model with black-box simulation [33]. This completes the proof for plain model.

Next, we assume for contradiction that there exists a 2-round (fn|ua)-BoBW
MPC protocol in the presence of CRS and PKI. Then, it follows from Theorem

11

1 that there exists 1-round OT protocol in this model. We have arrived at a
contradiction since non-interactive OT is impossible to achieve in a model with
input-independent setup that includes CRS and PKI (notably 1-round OT con-
structions which use an input-dependent PKI setup such as [62] exist). To be
more specific, a 1-round OT protocol would be vulnerable to the following resid-
ual attack by a corrupt receiver Pgr: Pgr can participate in the OT protocol with
input ¢ and get the output m. at the end of the 1-round OT protocol (where
(mg, m1) denote the inputs of sender Pg). Now, since the Round 1 messages of
Ps and Pg are independent of each other, Pg can additionally plug in his input
as being (1 — ¢) to locally compute m;_. as well which is a violation of sender’s
security as per the ideal OT functionality. O

3 Upper Bounds for (fn|ua)-BoBW

In this section, we construct two upper bounds for the (fn|ua)-BoBW class.

Our upper bounds take 5 and 3 rounds in the plain model and in the CRS set-
ting respectively, tightly matching the lower bounds presented in Section 2. We
begin with a general compiler that transforms any n-party r-round actively-
secure MPC protocol achieving ua in dishonest majority into an (r + 1)-round
(fnJua)-BoBW protocol.

3.1 The Compiler

At a high-level, our compiler uses the compiler of [47] and a form of authentica-
tion used in the Information Checking Protocol (ICP) primitive of [48,49] and
unanimously identifiable commitments (UIC) of [50]. Drawing motivation from
the compiler of [47] from ua to fn in the honest majority setting, our compiler
uses the given r-round protocol achieving ua security to compute an “authenti-
cated” secret sharing with a threshold of ¢ of the output y and reconstruct the
output y during the (r 4+ 1)*® round. The correct reconstruction is guaranteed
thanks to unanimity offered by the underlying protocol and the authentication
mechanism that makes equivocation of a share hard. Alternatively termed as
error-correcting secret sharing (ECSS) [47], the authenticated secret sharing was
instantiated with pairwise information-theoretic or one-time MAC as a form of
authentication. This, when taken as is in our case, achieves fairness in the hon-
est majority setting as in the original transformation. The sharing threshold ¢
ensures that the shares of the honest set, consisting of at least ¢ + 1 parties, dic-
tate the reconstruction of the output, no matter whether the corrupted parties
cooperate or not. The pairwise MAC, however, makes it challenging to maintain
unanimity in the dishonest majority case of the transformed protocol, where a
corrupt party may choose to verify its share to selected few enabling their output
reconstruction. This seems to call for a MAC that cannot be manipulated part-
wise to keep the verifiers on different pages. A possible approach to achieve the
property of public verifiability is by means of digital signatures i.e. each party
obtains a signed output share which it broadcasts during reconstruction and can

12

be verified by remaining parties using a common public verification key (that
the parties obtain as part of the output of the r-round protocol achieving ua).
Alternately, if the form of authentication used in the ICP of [48,49] and UIC of
[50] is used, then digital signatures can be avoided and the compiler (transform-
ing any n-party r-round actively-secure MPC protocol achieving ua in dishonest
majority into an (r + 1)-round (fn|ua)-BoBW protocol) achieves the desirable
property of being information-theoretic (i.t).

Achieving i.t security is a worthwhile goal, as substantiated by its extensive
study in various settings including those where achieving this desirable security
notion demands additional tools. For instance, there are well-known results cir-
cumventing the impossibility of achieving i.t security in dishonest majority by
relying on additional assistance such as tamper-proof hardware tokens [63,50]
and Physically Uncloneable Functions (PUFs) [64,65]. Having an i.t compiler
opens up the possibility of achieving i.t BoBW MPC by plugging in an i.t. se-
cure dishonest majority protocol (say, that uses hardware tokens / PUFs or other
assistance) in the compiler. The details of the i.t compiler appear in [54].

3.2 The Upper Bounds

Building our round-optimal (fn|ua)-BoBW protocols in the plain and CRS model
involves constructing 2 and 4 round protocols that achieve ua security against
dishonest majority in the respective models. Such protocols when plugged in our
compiler of Section 3.1 would directly yield the round-optimal (fn|ua)-BoBW
protocols.

In the CRS setting, the known 2-round protocols of [30,31] achieve ua and
thereby lead to a 3-round (fn|ua)-BoBW protocol, matching the lower bound.
Unfortunately, the existing 4-round MPC protocols in the plain model relying on
polynomial-time assumptions [16,17,34], in spite of convenient use of broadcast,
only satisfy the weaker notion of sa. We demonstrate how the protocol of [16]
and [17,34] can be tweaked to achieve ua in the full version [54]. With respect
to the above mentioned ua protocols, our (fnjua)-BoBW MPC protocols rely on
the assumption of 2-round OT in the common random/reference string model
and 4-round OT in the plain model.

Theorem 3. Assuming the existence of a 4 (resp., 2) round MPC protocol that
realizes Fyua for upto n—1 malicious corruptions in the plain (resp., CRS) model,
there exists a 5 (resp., 3)-round MPC protocol in the plain (resp., CRS) model
that simultaneously realises— (1) Feair when t < n/2 parties are corrupted (2) Fya
when s < n parties are corrupted.

A minor observation regarding the use of broadcast in our compiler is that
we can replace it with point-to-point communication at the expense of relaxing
ua to sa security in the dishonest majority setting.

Security with Identifiability. Our compiler preserves the property of identifia-

bility. Since the underlying dishonest-majority protocols [30,31] can be boosted
to achieve identifiable abort (as shown by [66]), the upper bound in the CRS

13

model achieves identifiable fairness and abort in the honest and dishonest major-
ity setting respectively. With respect to the plain model, we show how security
of [17] can be boosted to achieve identifiable abort with minor tweaks, in the full
version. This variant, when compiled using our compiler of Section 3.1 would
achieve identifiable fairness and abort in the honest and dishonest majority set-
ting respectively.

4 Lower Bounds for (god|ua)-BoBW

In this section, we prove that it is impossible to design a 2-round (god|ua)-
BoBW protocol with ¢ + s < n in the CRS model. Note that the necessity of
3 rounds for (god|ua)-BoBW protocol for most values of (n,s,t) follows from
the 2-round impossibility of fair MPC for honest majority in the CRS model
[40,38,37]. Accounting for the fact that these existing results do not rule out the
possibility of 2-round (god|ua)-BoBW MPC for (¢t =1,s > t,n > 4), we present
a unified proof that works even for s > ¢, for all values of ¢ (including ¢t = 1). Our
proof approach deals with adversarial strategies that shuffle between the honest
and dishonest majority setting, highlighting the challenge of designing protocols
that simultaneously provide different guarantees for different settings. This is in
contrast to the existing lower bounds of [40,38,37] which deal only with honest
majority setting and single security notion of fn. Lastly, we demonstrate why
our proof breaks down in the presence of PKI. Indeed, we construct a 2-round
(god|ua)-BoBW protocol assuming CRS and PKI in this work.

Theorem 4. Let n,t,s be such that t + s < n and t < n/2. There exist func-
tions f for which there is no two-round protocol in the CRS model computing f
that simultaneously realizes— (1) Fgoa when t < n/2 parties are corrupted (2)
Fua when s < n parties are corrupted.

Proof. We prove the theorem for n = 4 parties with ¢t = 1 and s = 2. The result
then can be extended for higher values of n in a natural manner (elaborated in
the full version). Let P = { Py, Py, P5, Py} denote the set of 4 parties and .4 may
corrupt at most two among them. We prove the theorem by contradiction. We
assume that there exists a 2-round (god|ua) BoBW protocol 7 in the CRS model
that can compute the function f(z1, 22, x3,24) defined below for P;’s input x;:
f(z1, o, x3,24) =1 if &1 =29 = 1;0 otherwise. By assumption, 7 achieves god
when ¢t = 1 parties are corrupt and ua security when s = 2 parties are corrupt
(satisfying feasibility criteria ¢t + s < n).

At a high level, we discuss three adversarial strategies A;, As and Az of A.
While both A; and As deal with ¢ = 1 corruption with the adversary corrupt-
ing P, Ay involves s = 2 corruptions where the adversary corrupts {Ps, Py }.
We consider A; strategy as being launched in execution X; (i € [3]) of m. The
executions are assumed to be run for the same input tuple (x1,x2, L, 1) and
the same random inputs (rq,r2,73,74) of the parties. (Same random inputs are
considered for simplicity and without loss of generality. The same arguments

14

hold for distribution ensembles as well.) Our executions and adversarial strate-
gies are sequenced in the order of increasingly more non-cooperating malicious
adversaries. Yet, keeping the views of a certain party between two consecutive
executions same, we are able to conclude the party would output the correct
value even in the face of stronger malicious behaviour. Finally, we reach to the
final execution X5 where we show that a party can deduce the output in the end
of Round 1 itself. Lastly, we show a strategy for the party to explicitly breach
the input privacy of one of the input-contributing parties.

We assume that the communication done in the second round of 7 is via
broadcast alone. This holds without loss of generality since the parties can
perform point-to-point communication by exchanging random pads in the first
round and then use these random pads to unmask later broadcasts. We use the
following notation: Let p} _,; denote the pairwise communication from F; to P; in
round 1 and b} denote the broadcast by P; in round r, where r € [2], {¢,5} € [4].
These values may be function of CRS as per the working of the protocol. V£
denotes the view of party P; at the end of execution X, (¢ € [3]) of 7. Below we
describe the strategies Aj, A and As.

Ai: A corrupts P; here. P; behaves honestly towards P, in Round 1, i.e. sends
the messages pi_,,, b} as per the protocol. However P; does not communicate
privately to {Ps, P4} in Round 1. In Round 2, P; behaves honestly as per
the protocol.

As: A corrupts {Ps, Py} here. {Ps, Py} behave honestly in Round 1 of the pro-
tocol. In Round 2, Py, (k € {3,4}) acts as per the protocol specification when
no private message from P; is received in Round 1. Specifically, suppose P
did not receive pj_,, in Round 1. Let b? denote the message that should be
sent by Py as per the protocol in Round 2 in such a scenario. Then as per
Ay, corrupt Py sends bi in Round 2.

Ajs: Same as in A; and in addition— during Round 2, P; simply remains silent i.e.
waits to receive the messages from other parties, but does not communicate
at all.

_ Next we present the views of the parties in Xy, Xy and X5 in Table 2. Here,
b? (k € {3,4}) denotes the message that should be sent by P, according to the
protocol in Round 2 in case P}, did not receive any private communication from
P; in Round 1.

| 21 | X | X3

MM M MM MM M M v M ™
Input|(z1,71) (w2,72) r3 T4 (21,71) (w2,72) 73 T4 (21,71) (w2,72) 73 T4

P31 p%al P%az: Piso:| s Phoas | Phoas |P3oas Phoa|Plses P%az- Pioa: Phoss|Ploas p%a:{' P3o1s Phoa|Plses P:L»Q-, s p%aﬁ' s p%a.i'
Bl e R € TR Y Y TP AR TP e SRR RN o TP T O

by, bz, by |bj. b3, by |by, b3, bj|b], by, bz|bs, b, by |by, by, b} |bj. by, by |by, by, by |bj, bj, by |bj, bj. b} |bj. by, bj|by, bj, by
R2 |b3, B3] (b3 BT 6] |bi, b3, BI|o%, b3, bA|b3 B3, b7 5% b3, 5% [b%. 03,63 |b% b3 B3 |63 B3, B |- BR.B |- b3 B b3 B3

Table 2: Views of Pl,PQ,Pg,P4 in 21, 227 23

We now prove a sequence of lemmas to complete our proof. Let y denote the
output computed as per the inputs (z1,z2) provided by the honest P; and Ps.

15

Let g = 1 — negl(x) denote the overwhelming probability with which security of
7 holds, where the probability is defined over choice of setup and the random
coins used by the parties.

Lemma 3. The view of Py is the same in Xy and Xy and it outputs y in both
with overwhelming probability.

Proof. We observe that as per both strategies A; and A, P, receives com-
munication from P;, Ps, P, as per honest execution in Round 1. In Round 2,
according to A;, corrupt P; did not send private messages to P3 and P; who
therefore broadcast b3 and b? respectively as per protocol specification. On the
other hand, according to As, corrupt Ps and corrupt Py send the same messages
respectively as per protocol specification for case when Pj, P, receive no private
message from P; in Round 1. It is now easy to check (refer Table 2) that V} = V3.
Now, since Xy involves ¢t = 1 corruption, by assumption, 7 must be robust (with
overwhelming probability q) and Vi must lead to output computation, say of
output 3. Due to view equality, P, in X must also output y’ with probability
g. In Y5, P; and P» are honest and their inputs are x; and x5 respectively. Due
to correctness of m (which holds with overwhelming probability q) during X5, it
must then hold that ¢’ = y i.e. the output computed based on V3 is according to
honest P;’s input z; during X, with overwhelming probability q x q =q2. O

Lemma 4. The view of Py is the same in Yo and X3 and it outputs y in both,
with overwhelming probability.

Proof. An honest P, has the same view in both ¥; and X5 and outputs y with
overwhelming probability as per Lemma 3. As 7 achieves ua (with probability q)
in the presence of s = 2 corruptions, when P, learns the output in X5, P; must
learn y in ¥, with overwhelming probability q% x q = 3. We now show that Py’s
view in Y5 and X3 are the same and so it outputs y in X3 with overwhelming
probability q*. First, it is easy to see that the Round 1 communication towards
P, is as per honest execution in both X5, ¥5. Next, recall that as per As, both
corrupt { P, P4} send messages in Round 2 according to the scenario when they
didn’t receive any private communication from P; in Round 1. A similar message
would be sent by honest {Ps, P4} in X5 who did not receive private message from
corrupt P; as per Ajs. Finally, since corrupt P; behaved honestly to P> in Round
1 of X5 as per Ajz, the Round 2 communication from P, is similar to that in
execution Y. It is now easy to verify (refer Table 2) that VZ = V3 from which
output y can be computed. a

Lemma 5. P, in X3 should learn the output y by the end of Round 1, with
overwhelming probability.

Proof. Firstly, it follows directly from Lemma 4 and the assumption that protocol
7 is robust against ¢ = 1 corruption that all parties including P, must learn
output y at the end of ¥ with overwhelming probability q® x q = q*. Next,
we note that as per strategy Az, P; only communicates to P, in Round 1. We
argue that the second round communication from P3, Py does not impact P5’s

16

output computation as follows: we observe that the output y depends only on
(21, x2). Clearly, Round 1 messages of Ps, P, does not depend on z;. Next, since
there is no private communication to P3, Py from P; as per strategy As, the
only communication that can possibly hold information on z; and can impact
the round 2 messages of P3, P, is bl. However, since this is a broadcast message,
P; also holds this by the end of Round 1 itself. Thus, P, must be able to compute
the output y at the end of Round 1.

In more detail, P, can choose randomness r3, 74 on behalf of P3, P, to locally
emulate their following Round 1 messages {p3 .5, Pi_ o, P34, Pi_,3, b3, bi}. Next,
Py can now simulate P3’s Round 2 message b3 which is a function of its view
comprising of {p3_,5, pi_,3, b1, b3, bi} (all of which are available to P, where b}
was broadcast by P; in Round 1). Similarly, P> can locally compute P,’s Round
2 message b3. We can thus conclude that Py’s view at the end of X3 comprising
of {p}_ o, Ps_2,Pia2,bl,bs, bl b2 b2} can be locally simulated by him at the
end of Round 1 itself from which the output y can be computed. O

Lemma 6. A corrupt P violates the privacy property of .

Proof. The adversary corrupting P, participates in the protocol honestly by
fixing input zo2 = 0. Since P, can get the output at the end of Round 1 with
overwhelming probability (Lemma 5), it must be true that P can evaluate f
locally by plugging in any value of x5. Now a corrupt P, can plug in x5 = 1
locally and learn z7 (via the output x1 A z2) with overwhelming probability. In
the ideal world, corrupt P, must learn nothing beyond the output 0 as it has
participated in the protocol with input 0. But in the execution of 7 (in which P,
participated honestly with input zo = 0), P, has learnt z; with overwhelming
probability. This is a breach of privacy as P learns x; regardless of his input. O
Hence, we have arrived at a contradiction, completing proof of Theorem 4.
O
We draw attention to the fact that Lemma 5 would not hold in the pres-
ence of any additional setup such as PKI. With additional setup, P5, Py may
possibly hold some private information (such as their secret key in case of PKI
used to decode P;’s broadcast message in Round 1) that is not available to Ps.
Due to this reason, we cannot claim that P, can emulate Round 2 messages of
{Ps, P4} locally at the end of Round 1. However, this holds in case of CRS as the
knowledge of CRS is available to all parties at the beginning of the protocol.

5 Upper Bounds for (god|ua)-BoBW

In this section, we present three (god|ua)-BoBW MPC protocols, assuming t+s <
n which is the feasibility condition for such protocols ([20]) consuming— a) 3-
rounds with CRS b) 2-rounds with an additional PKI setup ¢) 5-rounds in plain
model. The first two are round-optimal in light of the lower bound of Section 4
and [32] respectively. The third construction is nearly round-optimal (falls just
one short of the 4-round lower bound of [33]). Among our upper bounds, the

17

construction in the plain model is considerably more involved and uses several
new tricks in conjugation with existing techniques.

5.1 (god|ua)-BoBW MPC with Public and Private Setup

To arrive at the final destination, the roadmap followed is: (i) A 2-round MPC
achieving ua security is compiled to a 3-round (god|ua)-BoBW MPC protocol,
both against a weaker semi-malicious adversary. With the additional provision
of PKI, this compiler can be turned to a round-preserving one. (ii) The semi-
malicious (god|ua)-BoBW MPC protocols are compiled to malicious ones in CRS
setting via the known round-preserving compiler of [51] (using NIZKs). All the
involved and resultant constructions are in broadcast-only setting. The protocol
just with CRS tightly upper bounds the 3-round lower bound presented in Sec-
tion 4, which accounts for both pair-wise and broadcast channels. The protocol
with additional PKI setup works in 2 rounds, displaying the power of PKI and
that our lower bound of 3-rounds in Theorem 4 breaks down in the presence of
PKI. Yet, this construction is round optimal, in light of the known impossibility
of 1-round MPC [32].

5.1.1 3-round (god|ua)-BoBW MPC in semi-malicious setting. Here,
we present a generic compiler that transforms any 2-round MPC protocol mya.sm
achieving ua security into a 3-round broadcast-only (god|ua)-BoBW MPC pro-
tocol Thw.god.sm assuming ¢ 4+ s < n. Our compiler borrows techniques from the
compiler of [11] which is designed for the honest majority setting and makes
suitable modifications to obtain BoBW guarantees. Recall that a semi-malicious
adversary needs to follow the protocol specification, but has the liberty to decide
the input and random coins in each round. Additionally, the parties controlled by
the semi-malicious adversary may choose to abort at any step. The underlying
and the resultant protocol use broadcast as the only medium of communication.

To transform 7y, sm to guarantee BoBW security, the compiler banks on the
idea of giving out the Round 2 message of 7 ,sm in a way that ensures god in
case of honest majority. The dishonest majority protocols usually do not provide
this feature even against a single corruption, let alone a minority. Mimicking the
Round 1 of my5.sm as iS, Mpw.god.sm achieves this property by essentially giving out
a secret sharing of the Round 2 messages of 7, sm with a threshold of s. When
at most t parties are corrupt, the set of s + 1 honest parties pool their shares to
reconstruct Round 2 messages of my,.sm and compute the output robustly as in
Tua.sm- This idea is enabled by encoding (i.e. garbling) the next message functions
of the second round of 7, sm and secret-sharing their encoding information using
a threshold of s in Round 2 and reconstructing the appropriate input labels in
the subsequent round. The next-message circuit of a party P; hard-codes Round
1 broadcasts of 7y3.sm, P;’s input and randomness and the default input and ran-
domness of all the other parties. It takes n flags as input, the j® one indicating
the alive/non-alive status of P;. P; turning non-alive (aborting) translates to
the j'"' flag becoming 0 in which case the circuit makes sure P;’s default input

18

is taken for consideration by internally recomputing P;’s first round broadcast
and subsequently using that to compute the Round 2 message of P;. Since the
flag bits become public by the end of Round 2 (apparent as broadcast is the only
mode of communication), the parties help each other by reconstructing the cor-
rect label, enabling all to compute the garbled next-message functions of all the
parties and subsequently run the output computation of 7,5 ¢m- The agreement
of the flag bits further ensures output computation is done on a unique set of
inputs. The transfer of the shares in broadcast-only setting is enabled via setting
up a (public key, secret key) pair in the first round by every party. Broadcast-
ing the encrypted shares emulates sending the share privately. This technique
of garbled circuits computing the augmented next-message function (taking the
list of alive (non-aborting) parties as input) followed by reconstruction of the
appropriate input label was used in the work of [11] for the honest majority
setting. The primary difference in our compiler is with respect to the threshold
of the secret-sharing of the labels, to ensure BoBW guarantees. The formal de-
scription of protocol mpw god.sm, its security and correctness proofs appear in the
full version. We only state the theorems for correctness and security below.

Theorem 5. Protocol myy.god.sm 5 correct, except with negligible probability.

Theorem 6. Let (n,s,t) be such that s+t < n. Let myasm realises Fua for upto
n—1 semi-malicious corruptions. Then protocol Ty god.sm Tealises— (i) Feod when
at most t < n/2 parties are corrupt and (ii) Fya when at most s < n parties are
corrupt, semi-maliciously in both cases. It takes 3 rounds, assuming that Tya.sm
takes 2 rounds.

5.1.2 2-round (god|ua)-BoBW MPC in semi-malicious setting. The
compiler of the previous section can be made round preserving by assuming
pair-wise channels or alternately, PKI. The main difference lies in preponing
the actions of Round 2 of Tpw god.sm to Round 1, by exploiting the presence of
private channels or PKI. We describe these extensions that can be used to ob-
tain a 2-round semi-malicious (god|ua)-BoBW MPC assuming pair-wise channels
(protocol Puw god.sm) or alternately, PKI (protocol pw.god.sm) int the full version.

5.1.3 The upper bounds with public and private setup The 2-round
semi-malicious broadcast-only protocol of [30,31] can be plugged in as Tya.sm
in our compilers from previous sections to directly yield a 3-round broadcast-
only protocol Tpw.god.sms 2-round protocol ¢guw.god.sm that uses both broadcast
and pairwise-private channels and 2-round broadcast-only protocol 1bw.god.sm
assuming PKI, all in the semi-malicious setting. Next, the compiler of [51] that
upgrades any broadcast-only semi-malicious protocol to maliciously-secure by
employing NIZKs, can be applied on mhy.god.sm and ¥pw god.sm to yield a 3-round
(god|ua)-BoBW protocol in the CRS model and a 2-round (god|ua)-BoBW pro-
tocol given both CRS and PKI. Note that the compiler of [51] works only for
broadcast-only protocols and cannot be used to boost security of ¢pw.god.sm to ma-
licious setting (details appear in full version). Assumption wise, our upper bound

19

constructions rely on 2-round semi-malicious oblivious transfer and NIZK in the
common random/reference string model upon using the protocols of [30,31] to
realize Ty5.sm- The formal description of the (god|ua)-BoBW upper bounds with
public and private setup appear in the full version. We state the theorem below.

Theorem 7. Let (n,s,t) be such that s+t < n. Assuming the existence of a 3-
round (resp., 2-round with PKI) broadcast-only semi-malicious (god|ua)-BoBW
MPC and NIZKs, there exists a 3 (resp., 2)-round MPC protocol in the presence
of CRS (resp., CRS and PKI) that simultaneously achieves (i) Fgoq when at
most t < n/2 parties are corrupt and (i) Fua when at most s < n parties are
corrupt, maliciously in both cases.

Security with Identifiability. Since the compiler of [51] uses NIZKs to prove
correctness of each round, it offers identifiability. Thus our maliciously-secure
(god|ua)-BoBW protocols achieve the stronger notion of identifiable abort in
case of dishonest majority, with no extra assumption. A minor observation is
that we can replace the last round broadcast with point-to-point communication
at the expense of relaxing ua to sa security in the dishonest majority setting.

5.2 Upper Bound for (god|ua)-BoBW MPC in Plain Model

In this section, we present a 5-round (god|ua)-BoBW protocol in the plain model.
For our construction, we resort to the compiler of [31] that transforms any generic
(k—1)-round delayed-semi-malicious MPC protocol to a k-round malicious MPC
protocol for any k > 5. Our 5-round construction comes in two steps: a) first, we
show that our 3-round semi-malicious protocol Thw.god.sm (described in Section
5.1.1) is delayed-semi-maliciously secure (refer full version for proof) and then b)
we plug in this 3-round BoBW protocol in a modified compiler of [31] that carries
over the BoBW guarantees, while the original compiler works for security with
abort. Our final 5-round compiled protocol faces several technical difficulties in
the proof, brought forth mainly by the need to continue the simulation in case
the protocol must result in god, which needs deep and non-trivial redressals.
The techniques we use to tackle the challenges in simulation are also useful
in constructing a 4-round (god|ua)-BoBW protocol based on sub-exponentially
secure trapdoor permutations and ZAPs. We give a sketch of this construction in
the full version (built upon the protocol of [53]) as a step towards resolving the
open question of proving the impossibility or alternately constructing a 4-round
(god|ua)-BoBW protocol under polynomial-time assumptions.

5.2.1 The compiler of [31]. Substituting k = 5, we recall the relevant details
of the compiler of [31] that transforms a 4-round delayed-semi-malicious protocol
®dsm to a H-round maliciously-secure protocol 7 achieving security with abort.
The tools used in this compiler appears in Fig 1. Each party commits to her input
and randomness using a 2-round statistically binding commitment scheme Com
in the first two rounds. The four rounds of the delayed-semi-malicious protocol

20

¢dsm are run as it is in Round 1,2, 4 and 5 respectively (Round 3 is skipped) with
two additional sets of public-coin delayed-input witness indistinguishable proofs
(WI). The first set of proofs (WI') which is completed by Round 4, is associated
with the first 3 rounds of ¢gsm. In addition to proving honest behaviour in these
rounds, this set of proofs enables the simulator of the malicious protocol to
extract the inputs of the corrupt parties, in order to appropriately emulate the
adversary for the delayed-semi-malicious simulator in the last but one round.
The second set of proofs (WI2) which is completed by Round 5, is associated
with proving honest behaviour in all rounds of ¢gsm. To enable the simulator to
pass the WI proofs without the knowledge of the inputs of the honest parties,
it is endowed with a cheat route (facilitated by the cheating statement of the
WI proof, while the honest statement involves proving honest behaviour wrt
inputs committed via Com) which requires the knowledge of the trapdoor of the
corrupt parties; which the simulator can obtain by rewinding the last 2 rounds
of a trapdoor-generation protocol (Trap) run in the first 3 rounds of the final
construction. To enable this cheat route of the simulator, the compiler has an
additional component, namely 4-round non-malleable commitment NMCom run
in Rounds 1 - 4. We refer to the full version for further details of the compiler.

Tools used in the compiler [31]

- A (k — 1)-round delayed-semi-malicious protocol ¢gsm for computing a function
f.
- A 2-message statistically binding commitment scheme Com from one-way func-
tions.
- A 3-round protocol Trap to set up a trapdoor between a sender (S) and a receiver
(R) as the following sequence of rounds:
R1: S samples a signing and verification key pair (sk, vk) of a signature scheme
and sends vk to R.
R2: R sends a random message m + {0,1}* to S.
R3: S computes a signature o on m using sk and sends o to R who accepts
if (m, o) is valid w.r.t. vk.
A wvalid trapdoor td w.r.t. a verification key vk constitutes of (m,o,m’,o")
such that m’ # m and ¢ and ¢’ are valid signatures of messages m and m’
respectively corresponding to vk.
- A 4-round non-malleable commitment scheme NMCom.
- A 4-round public-coin delayed-input witness indistinguishable proof WI.

Fig. 1: Tools used in the compiler of [31]

Next, we give an overview of the simulator S (details appear in [31]) for the 5-
round compiled protocol 7 that uses the simulator Sy of the underlying 4-round
protocol ¢gsm. To emulate the ideal-world adversary corrupting parties in set C,
S invokes the malicious adversary A, and simulates a real execution of 7 for A,
by acting on behalf of the honest parties in set H. Recall that the delayed-semi-
malicious security of ¢qsm guarantees that it is secure against an adversary A
who can choose to behave arbitrarily in the protocol as long as it writes a valid
witness (which consists of an input randomness pair ({z;,7;}icc) on behalf of

21

all corrupt parties) on the witness tape of the simulator Sy in the penultimate
round such that the witness (z,7) can justify all the messages sent by him. In
order to avail the services of Sy, S needs to transform the malicious adversary
A, to a delayed-semi-malicious adversary Ay i.e. it needs a mechanism to write
(x,7) on the witness tape of S,. This is enabled via extraction of witness i.e.
{zi,7i}icc from the wit proofs sent by A as the prover via rewinding its last
two rounds (Round 3,4 of 7).

Apart from the above set of rewinds for extraction of corrupt parties’ inputs,
another set of rewinds is required for the following reason: Consider messages of
honest parties simulated by Sy that are used by S to interact with A, during the
execution of 7. Here, S cannot convince A, in the two sets of WI proofs that these
messages are honestly generated. Hence, he opts for the route of the cheating
statement of the WI proofs which requires the knowledge of the trapdoor of the
corrupt parties. The trapdoor of a party, say P; consists of two valid message-
signature pairs with respect to the verification key of P; (described in Fig 1).
The simulator extracts the trapdoor of parties in C by rewinding the adversary
A in Rounds 2 and 3 till he gets an additional valid message-signature pair. The
trapdoor has been established this way to ensure that only the simulator (and
not the adversary) is capable of passing the proofs via the cheating statement.

Finally, we point that the two sets of rewinds (Round 2-3 and Round 3-4
of m) can be executed by S while maintaining that the interaction with Sy is
straight-line since Round 3 of the compiled protocol is ‘dummy’ i.e. does not
involve messages of ¢gsm. This ‘dummy’ round is crucial to avoid rewinding of
messages in ¢gsm. Since there are no messages of ¢gsm being sent in Round 3, &
can simply replay the messages of ¢dgsm (obtained via Sy) to simulate Round 2
and Round 4 of m during the rewinds.

5.2.2 Owur 5-round BoBW construction. Our final goal of a (god|ua)-
BoBW protocol T god.plain 1S Obtained by applying the compiler of [31] to our
delayed-semi-malicious-secure (god|ua)-BoBW protocol Ty god.sm (described in
Section 5.1.1) with slight modifications. Broadly speaking, to preserve the BoBW
guarantees from semi-malicious to malicious setting upon applying the compiler,
the malicious behaviour of corrupt P; in the compiled protocol is translated to an
analogous scenario when semi-malicious P; aborts (stops communicating) in the
underlying protocol T god.sm- Towards this, we make the following modification:
Recall from the construction of Ty god.sm that each party P; is unanimously as-
signed a boolean indicator i.e. flag; by the remaining parties which is initialized
to 1 and is later set to 0 if P; aborts (stops) in the first two rounds. Accounting
for malicious behavior, we now require the value of flag, to be decided based
on not just P;’s decision to abort in a particular round but also on whether he
misbehaves in the publicly-verifiable Trap protocol or WI proofs. Specifically, if
P; misbehaves in Trap or the first set of proofs WI' with P; as prover fails, flag;
is set to 0 (analogous to P; aborting in Round 1 or 2 of Thw.god.sm). Further, if
the second set of proofs WI? with P; as prover fails, then the last round message
of P; is discarded (analogous to P; aborting in last round of mpw god.sm)-

22

Next, we point that in our compiled protocol, the 3 rounds of the un-
derlying semi-malicious protocol Thw.god.sm are run in Rounds 1, 4 and 5 re-
spectively. As opposed to compiler of [31] which needed a single ‘dummy’
round on top of the delayed-semi-malicious protocol, we face an additional
simulation technicality (elaborated in the next section) that demands two
‘dummy’ rounds. This could be enabled while maintaining the round complex-
ity of 5, owing to our 3 (and not 4) round delayed semi-malicious protocol.
Furthermore, as described earlier, in order to

simulate the WI proofs on behalf of an hon- o god.2m| Com|Trap| NMCom|WI'[Wi%
est prover towards some corrupt verifier P;, Round1 R1 |R1|R1| Rl |RI|
the simulator requires the knowledge of the Round 2| |R2|R2| R2 |R2|RI
trapdoor of P; which would be possible only Round 3| | |R3| R3 |R3|R2
if P; is alive (has not aborted) during the Round4 R2 | | | R4 |R4|R3
rounds in which trapdoor extraction occurs Rownd5 R3 | | | | |R4
i.e. Round 2 and Round 3. While the simu- Table 3: Thw.god.plain

lator of [31] simply aborts incase any party

aborts, the simulator of our BoOBW protocol cannot afford to do so as god must
be achieved even if upto ¢ < n/2 parties abort. We handle this by adding a sup-
plementary condition in our construction, namely, a prover needs to prove the
WI proofs only to verifiers who have been alive until the round in consideration.
This completes the description of the modifications of our compiler over [31].
The round-by-round interplay of the different components is given in Table 3.
We present our 5-round (god|ua)-BoBW MPC protocol Thw.god.plain (incorporat-
ing the above modifications) in the plain model in Fig 2-3.

5.2.3 Proof-sketch for 5-round (god|ua)-BoBW protocol. The simula-
tor for the compiler of [31] runs in different stages. Plugging it for our 5-round
(god|ua)-BoBW construction with appropriate modifications, we present a high-
level overview of the simulation. Let Spw god.plain @0d Spw.god.sm denote the sim-
ulators corresponding to Thw.god.plain @nd the underlying delayed semi-malicious
protocol Thw.god.sm respectively. Stage 1 involves running the first three rounds
with the following changes compared to the real-execution of the protocol: a)
Commit to 0 in Com instances (run in Round 1, 2) involving honest party as
committer. b) Invoke the simulator for the semi-malicious protocol, Spw.god.sm tO
generate the first message of T god.sm in Round 1 on behalf of honest parties.
The rest of the actions in Round 1 - 3 on behalf of honest parties are emulated
by Sbw.god.plain @8 per protocol specifications. Note that the simulator wrt com-
piler in [31] proceeds beyond the first stage only when the adversary did not
cause an abort on behalf of any corrupt party in Stage 1. Else, it aborts. This
works out because their protocol promises security with abort and hence, simply
terminates if a party aborts. However our protocol, in case of honest majority,
promises god with the output being computed on the actual input of the parties
who have been alive till last but one round. To accommodate this, Spw.god.plain
cannot simply afford to terminate in case a corrupt party aborts. It needs to
continue the simulation with respect to corrupt parties who are alive, which de-

23

5-round Malicious (god|ua)-BoBW MPC Protocol Tuw.god.phin from
3-round delayed-semi-malicious BoBW protocol ¢4sm

Primitives: Tools mentioned in Fig 1 with ¢g¢sm instantiated with mpw.god.sm (de-
scribed in Section 5.1.1).
Round 1. Each party P;,i € [n] does the following with P;,j € [n]\ {i}:
- Execute Round 1 of ¢gsm. Initialize flag, = 1 for all k € [n] as per @dsm.
- Run Round 1 of Com;_,; to commit to his input and randomness (x;,7;) to
Pj. Let the commitment be denoted by c¢;—;. Run Round 1 of Com;_;
(where P; acts as committer) as receiver.
- Run Round 1 of Trap,_, ; as sender, with vk;—,; denoting the verification key.
- Run Round 1 of NMCom;_,; as committer and Round 1 of NMCom;_; as
receiver (with P; as committer).
- Run Round 1 of WI%HJ- as prover and Round 1 of lel-ﬂi as verifier (with P;
as prover).
Round 2. Each party P;,i € [n] does the following with P;, j € [n] \ {i}:
- Run Round 2 of Com;_,; and Com;_;;.
- Run Round 2 of Trap;_,; (as receiver).
- Run Round 2 of NMCom;_,; and NMComj_,;.
- Run Round 2 of WI}ﬁj and WIJI-HZ-. Also, run Round 1 of Wlfﬁj as prover
and Round 1 of WI?_,; as verifier (with P; as prover).
- Set flag; = 0 if P; aborts in Round 1 or Round 2.
Round 3. Each party P;, i € [n] does the following with Pj,j € [n] \ {i}:
- Run Round 3 of Trap,_,; (as sender).
- Run Round 3 of NMCom;_,; and NMComj_,;.
- Run Round 3 of WI%H]- and WIJI-H,L-. Also, run Round 2 of Wlfﬁ,j and WI?HZ-.
- Set flag; = 0 if either P; aborts in Round 3 or if there exists a k € [n], k # j
such that the message-signature pair (m, o) in Trap;_,; is not valid w.r.t.
vk;j_%. Broadcast enables everyone to agree on this.

Fig.2: The Modified Compiler for (god|ua)-BoBW MPC (Part 1)

mands rewinding. It can thus be inferred that Spw.god.plain must always proceed
to rewinds unless all the corrupt parties are exposed by adversary in Stage 1.

The second and the fourth stage, in particular, are concerned with rewinding
of the adversary to enable Spwy.god.plain t0 extract some information. In Stage 2, the
adversary is reset to the end of Round 1 and Rounds 2, 3 are rewound in order to
enable Spy god.plain t0 extract trapdoor of corrupt parties. In more detail, consider
Trap,_,; executed between corrupt sender P; and honest P; wrt verification key
VK;j—si. NoW, Spw.god.plain acting on behalf of P; computes the trapdoor of P; wrt
vkji to be two message-signature pairs constituted by one obtained in Stage
1 and the other as a result of rewinding in Stage 2 (note that both signatures
are wrt vk;j_,; sent in Round 1 of Trap;_,,; rewinds involve only Round 2, 3). To
enable continuation of the simulation after Stage 2, which requires the knowledge
of the trapdoors of corrupt parties who are alive, the logical halt condition for
the rewinds is: stop when you have enough! This translates to- stop at the ¢t"
rewind if a valid trapdoor has been obtained for the set of corrupt parties alive
across the £ rewind. Since the ¢*! (last) rewind is expected to provide one valid
(m, o) pair (i.e. message, signature pair) out of two required for the trapdoor,

24

5-round Malicious (god|ua)-BoBW MPC Protocol Tuw.god.phin from
3-round delayed-semi-malicious BoBW protocol ¢4sm

Round 4. Each party P;,i € [n] does the following with P;, j € [n] \ {i}:

- Execute Round 2 of ¢dsm-

- Run Round 4 of NMCom;_,; in order to commit to a random string s?_w'. Run
Round 4 of NMComj_,; as receiver. Additionally, send another random
string szlﬂj on clear to P;.

- Run Round 4 of lel-_)i as verifier. If flag; = 1, run Round 4 of WI}_”-
to prove to P; the correctness of the first 2 messages of ¢gsm. In detail,
lelﬂj proves correctness of one of the following statements: (1) Honest
Statement: P; has correctly generated the first 2 messages of ¢gsm using
the input and randomness committed in ¢;— ;. (2) Cheating Statement:
XOR of the share s?ﬁ,j committed to in NMCom;_,; and the share s}ﬁ,j is
a valid trapdoor td;_,; w.r.t. verification key vk;_;.

- Run Round 3 of WI7,; and WI3_,,.

Set flag; = 0 if either P; aborts in Round 4 or if there exists a k € [n], k # j
such that WIJI- _ 1 leads to reject. Public verifiability of WI proofs enables
this.

Round 5. Each party P;,¢ € [n] does the following Pj, j € [n] \ {i}:

- Execute Round 3 of ¢gsm-

- Run Round 4 of WI?HZ- as verifier. If flag; = 1, run Round 4 of Wlfﬁj to
prove to P; the correctness of all messages of ¢gsm that he broadcasted.
In detail, Wlfﬁj proves correctness of one of the following statements: (1)
Honest Statement: P; has correctly generated all messages of ¢gsm using
the input and randomness committed in c;—; (2) Cheating Statement:
XOR of the share s?ﬂ. committed to in NMCom;_,; and the share S,}*}j is
a valid trapdoor td;_,; w.r.t. verification key vk;_s;.

- Output Computation: If any proof WI?H,C is not accepting for any k €
[n], k # 7, discard the message from P;. Compute the output as per dgsm.

Fig.3: The Modified Compiler for (god|ua)-BoBW MPC (Part 2)

all that is required is for the corrupt party to have been alive across at least
one previous rewind. Let the set of parties alive across i*" rewind be denoted by
A;y1 (Aq represents the set of parties that were alive in the execution preceeding
the rewinds i.e. after Stage 1), then the condition formalizes to: halt at rewind
Y4 ing+1 CAU---UA,.

While this condition seems appropriate, it leads to the following subtle issue.
The malicious adversary can exploit this stopping condition by coming up with
a strategy to choose the set of aborting and the alive parties (say, according
to some unknown distribution D pre-determined by the adversary) such that
the final set of alive parties A in the transcript output by the simulator (when
the rewinds halt) will be biased towards the set of parties that were alive in
the earlier rewinds. (Ideally the distribution of the set of alive parties when
simulator halts should be identical to D). This would lead to the view output
by the simulator being distinguishable from the real view. A very similar subtle
issue appears in zero-knowledge (ZK) protocol of [52] - While the details of this
issue of [52] appear in the full version, we give a glimpse into how their scenario is

25

analogous to ours below. Consider a basic 4-round ZK protocol with the following
skeleton: the verifier commits to a challenge in Round 1 which is subsequently
decommitted in Round 3. The prover responds to the challenge in Round 4. At a
very high-level, the protocol of [52] follows a cut-and-choose paradigm involving
N instances of the above basic protocol. Here, the verifier chooses a random
subset S C [N] of indices and decommits to the challenges made in those indices
in Round 3. Subsequently, the prover completes the ZK protocol for instances
with indices in S. The simulator for the zero-knowledge acting on behalf of the
honest prover involves rewinds to obtain ‘trapdoors’ corresponding to the indices
in S. However, note that the verifier can choose different S in different rewinds.
Therefore, the simulator is in a position to produce an accepting transcript and
stop at the £*" rewind only when it has trapdoors corresponding to all indices in
S chosen by the adversary during the ¢! rewind. However, if the simulation is
stopped at the execution where the above scenario happens for the ‘first’ time,
their protocol suffers an identical drawback as ours. In particular, the malicious
verifier can choose the set of indices S in a manner that the distribution of
the views output by the simulator is not indistinguishable from the real view.
Drawing analogy in a nutshell, the set of indices chosen by the malicious verifier
is analogous to the set of alive corrupt parties in our context (details in full
version). We thereby adopt the solution of [52] and modify our halting condition
as: halt at rewind ¢ if App; C Ay U---UAyand Apy & Ay U---UA_q. [52]
gives an elaborate analysis showing why this simulation strategy results in the
right distribution. With this change in simulation of Stage 2, the simulation of
Stage 3 can proceed identical to [31] which involves simulating the WI' proofs
via the fake statement using the knowledge of trapdoor.

Proceeding to simulation of Stage 4, we recall that the simulator of [31]
involves another set of rewinds in Stage 4 which requires to rewind Round 3
and 4 to extract the witness i.e. the inputs and randomness of the corrupt
parties from WI'. Similar to Stage 2, two successful transcripts are sufficient
for extraction. Thus, the simulator is in a position to halt at ¢** rewind if all
the corrupt parties that are alive in Stage 4 have been alive across at least one
previous rewind. Next, following the same argument as Stage 2, it seems like the
halting condition for Stage 2 should work, as is, for Stage 4 too.

With this conclusion, we stumbled upon another hurdle elaborated in this
specific scenario: Recall that the trapdoors extracted for corrupt parties in Stage
2 are used here to simulate the WI' proofs (as described in Stage 3). It is thereby
required that Spw.god.plain already has the trapdoors for the corrupt parties that
are alive in Stage 4. Let T be the set of trapdoors accumulated at the end of
Stage 2. Consider a party, say P;, which stopped participating in Round 3 of the
last rewind £ of Stage 2 (P; was alive till Round 2 of £*® rewind). Spw.god.plain Still
proceeds to Stage 4 without being bothered about the trapdoor of P; (as the
halting condition is satisfied). However in Stage 4, when the adversary is reset
to the end of Round 2 of /! rewind, P; came back to life again in Round 3. The
simulation of WI' proofs with P; as a verifier will be stuck if T does not contain
the trapdoor for P;. Hence, it is required to accommodate the knowledge of set

26

T during Stage 4. Accordingly Spw.god.plain does the following in Stage 4: During
each rewind, if a party (say P;) whose trapdoor is not known becomes alive
during Round 3, store the signature sent by P; in Round 3 (as part of Trap)
and go back to Stage 2 rewinds (if P;’s trapdoor is still unknown). Looking
ahead, storing the signature of P; ensures that the missing trapdoor of P; in
T can cause Spw.god.plain 1O revert to Stage 2 rewinds at most once (if the same
scenario happens again i.e. P; becomes alive in Round 3 during Stage 4 rewinds,
then another (message, signature) pair wrt verification key of P; is obtained
in this rewind by Sbw.god.plain; totaling upto 2 pairs which suffices to constitute
valid trapdoor of P; which can now be added to T). Else, if T comprises of the
trapdoor of all the corrupt parties that are alive during the rewind of Stage 4,
then adhere to the same halting condition as Stage 2. This trick tackles the above
described problematic scenario, while ensuring that the simulation terminates in
polynomial time and maintains indistinguishability of views.

Before concluding the section, we highlight two important features regarding
the simulation of 7w god.plain: Despite the simulator Spwy.god.plain Teverting to Stage
2 rewinds in some cases (unlike the simulation of [31]), the simulation terminates
in polynomial-time since this can occur at most once per corrupt party (as
argued above). Lastly, since there is a possibility of reverting back to simulation
of Round 2 after simulation of Round 4, we keep an additional ‘dummy’ Round 2
as well (on top of ‘dummy’ Round 3 as in [31]) in our construction. This allows us
to maintain the invariant that Spw. god.sm is never rewound. To be more specific, as
there are no messages of underlying semi-malicious protocol being sent in Round
2, 3; even if Spw.god.plain Needs to return to Stage 2 from Stage 4 (after Round 4 has
been simulated by obtaining the relevant message from Spw.god.sm) and resume
the simulation from Stage 2 onwards, the message of Tpy.god.sm sent in Round 4
can simply be replayed. We are able to accommodate two dummy rounds while
maintaining the round complexity of 5 owing to the privilege that our delayed-
semi-malicious protocol is just 3 rounds. This completes the simulation sketch.
Assumption wise, our construction relies on 2-round semi-malicious oblivious
transfer (a building block of our 3-round delayed-semi-malicious BoBW MPC
Thw.god.sm). We state the formal theorem below.

Theorem 8. Let (n,s,t) be such that s+t < n. Let Tpw god.sm Tealises— (i) Fgod
when at most t < n/2 parties are corrupt and (ii) F,a when at most s < n
parties are corrupt, delayed-semi-maliciously in both cases. Then Tpw.god.plain 1
the plain model realises— (i) Fgoq when at most t < n/2 parties are corrupt and
(1i) Fua when at most s < n parties are corrupt, maliciously in both cases. It
takes 5 rounds, assuming that Tpy.god.sm takes 3 rounds.

Proof. The proof which includes the complete description of the simulator, a
discussion about its indistinguishability to the real view and its running time
appears in the full version [54]. O

Ezxtension to Identifiability. We additionally point that the publicly-verifiable
WI proofs render identifiability to our construction. Thus our maliciously-secure

27

(god|ua)-BoBW protocol achieves the stronger notion of identifiable abort in case
of dishonest majority, with no extra assumption. A minor observation is that we
can replace the last round broadcast with point-to-point communication in our
(god|ua)-BoBW protocol Thw.god.plain 8t the expense of relaxing ua to sa security
in the dishonest-majority setting.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game or A
completeness theorem for protocols with honest majority,” in ACM STOC, 1987.
D. Chaum, I. Damgard, and J. Graaf, “Multiparty computations ensuring privacy
of each party’s input and correctness of the result,” in CRYPTO, 1987.

A. C. Yao, “Protocols for secure computations (extended abstract),” in FOCS,
1982.

R. Cleve, “Limits on the security of coin flips when half the processors are faulty
(extended abstract),” in ACM STOC, 1986.

M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract),” in
ACM STOC, 1988.

D. Chaum, C. Crépeau, and I. Damgard, “Multiparty unconditionally secure pro-
tocols (extended abstract),” in ACM STOC, 1988.

T. Rabin and M. Ben-Or, “Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract),” in ACM STOC, 1989.

D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure protocols
(extended abstract),” in ACM STOC, 1990.

D. Beaver, “Efficient multiparty protocols using circuit randomization,” in
CRYPTO, 1991.

I. Damgard and J. B. Nielsen, “Scalable and unconditionally secure multiparty
computation,” in CRYPTO, 2007.

P. Ananth, A. R. Choudhuri, A. Goel, and A. Jain, “Round-optimal secure multi-
party computation with honest majority,” in CRYPTO, 2018.

I. Damgard and C. Orlandi, “Multiparty computation for dishonest majority: From
passive to active security at low cost,” in CRYPTO, 2010.

S. Garg, C. Gentry, S. Halevi, and M. Raykova, “Two-round secure MPC from
indistinguishability obfuscation,” in TCC, 2014.

Z. Brakerski, S. Halevi, and A. Polychroniadou, “Four round secure computation
without setup,” in TCC, 2017.

P. Ananth, A. R. Choudhuri, and A. Jain, “A new approach to round-optimal
secure multiparty computation,” in CRYPTO, 2017.

S. Halevi, C. Hazay, A. Polychroniadou, and M. Venkitasubramaniam, “Round-
optimal secure multi-party computation,” in CRYPTO, 2018.

S. Badrinarayanan, V. Goyal, A. Jain, Y. T. Kalai, D. Khurana, and A. Sa-
hai, “Promise zero knowledge and its applications to round optimal MPC,” in
CRYPTO, 2018.

Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrank, “On combining privacy with
guaranteed output delivery in secure multiparty computation,” in CRYPTO, 2006.
J. Katz, “On achieving the ”"best of both worlds” in secure multiparty computa-
tion,” in ACM STOC, 2007.

28

20

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

. Y. Ishai, J. Katz, E. Kushilevitz, Y. Lindell, and E. Petrank, “On achieving the
"best of both worlds” in secure multiparty computation,” SIAM J. Comput., 2011.
J. Katz, S. Myers, and R. Ostrovsky, “Cryptographic counters and applications to
electronic voting,” in EUROCRYPT, 2001.

D. G. Nair, V. P. Binu, and G. S. Kumar, “An improved e-voting scheme using
secret sharing based secure multi-party computation,” CoRR, 2015.

I. Damgard, M. Geisler, and M. Krgigaard, “Efficient and secure comparison for
on-line auctions,” in ACISP, 2007.

K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel,
D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation for privacy-
preserving machine learning,” in ACM CCS, 2017.

P. Mohassel and P. Rindal, “Aby3: A mixed protocol framework for machine learn-
ing,” in ACM CCS, 2018.

P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-preserving
machine learning,” in IEFESP, 2017.

D. Bogdanov, R. Talviste, and J. Willemson, “Deploying secure multi-party com-
putation for financial data analysis - (short paper),” in FC, 2012.

C. Lucas, D. Raub, and U. M. Maurer, “Hybrid-secure MPC: trading information-
theoretic robustness for computational privacy,” in PODC, 2010.

A. Beimel, Y. Lindell, E. Omri, and I. Orlov, “1/p-secure multiparty computation
without honest majority and the best of both worlds,” in CRYPTO, 2011.

S. Garg and A. Srinivasan, “Two-round multiparty secure computation from min-
imal assumptions,” in EUROCRYPT, 2018.

F. Benhamouda and H. Lin, “k-round multiparty computation from k-round obliv-
ious transfer via garbled interactive circuits,” in FUROCRYPT, 2018.

S. Halevi, Y. Lindell, and B. Pinkas, “Secure computation on the web: Computing
without simultaneous interaction,” in CRYPTO, 2011.

S. Garg, P. Mukherjee, O. Pandey, and A. Polychroniadou, “The exact round
complexity of secure computation,” in FEUROCRYPT, 2016.

A. R. Choudhuri, M. Ciampi, V. Goyal, A. Jain, and R. Ostrovsky, “Round opti-
mal secure multiparty computation from minimal assumptions.” Cryptology ePrint
Archive, Report 2019/216, 2019.

P. Mukherjee and D. Wichs, “T'wo round multiparty computation via multi-key
FHE,” in EUROCRYPT, 2016.

S. Garg and A. Srinivasan, “Garbled protocols and two-round MPC from bilinear
maps,” in FOCS, 2017.

R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin, “On 2-round secure multiparty
computation,” in CRYPTO, 2002.

A. Patra and D. Ravi, “On the exact round complexity of secure three-party com-
putation,” in CRYPTO, 2018.

Y. Ishai, R. Kumaresan, E. Kushilevitz, and A. Paskin-Cherniavsky, “Secure com-
putation with minimal interaction, revisited,” in CRYPTO, 2015.

S. D. Gordon, F. Liu, and E. Shi, “Constant-round MPC with fairness and guar-
antee of output delivery,” in CRYPTO, 2015.

A. Patra and D. Ravi, “On the exact round complexity of secure three-party com-
putation.” Cryptology ePrint Archive, Report 2018/481, 2018.

A. Patra and D. Ravi, “Beyond honest majority: The round complexity of fair and
robust multi-party computation,” in ASTACRYPT, 2019.

S. Badrinarayanan, A. Jain, N. Manohar, and A. Sahai, “Threshold multi-key
fhe and applications to round-optimal mpc.” Cryptology ePrint Archive, Report
2018/580, 2018.

29

44

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

5.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

. Y. Ishai, E. Kushilevitz, and A. Paskin, “Secure multiparty computation with
minimal interaction,” in CRYPTO, 2010.

C. Peikert, V. Vaikuntanathan, and B. Waters, “A framework for efficient and
composable oblivious transfer,” in CRYPTO, 2008.

A. D. Santis, G. D. Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai, “Robust
non-interactive zero knowledge,” in CRYPTO, 2001.

Y. Ishai, E. Kushilevitz, M. Prabhakaran, A. Sahai, and C. Yu, “Secure protocol
transformations,” in CRYPTO, 2016.

A. Patra, A. Choudhary, and C. P. Rangan, “Simple and efficient asynchronous
byzantine agreement with optimal resilience,” in PODC, 2009.

A. Patra and C. P. Rangan, “Communication and round efficient information
checking protocol,” CoRR, 2010.

Y. Ishai, R. Ostrovsky, and H. Seyalioglu, “Identifying cheaters without an honest
majority,” in TCC, 2012.

G. Asharov, A. Jain, A. Lépez-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs,
“Multiparty Computation with Low Communication, Computation and Interac-
tion via Threshold FHE,” in EUROCRYPT, 2012.

C. Hazay and M. Venkitasubramaniam, “Round-optimal fully black-box zero-
knowledge arguments from one-way permutations,” in T'CC, 2018.

M. Ciampi and R. Ostrovsky, “Four-round secure multiparty computation from
general assumptions.” Cryptology ePrint Archive, Report 2019/214, 2019.

A. Patra, D. Ravi, and S. Singla, “On the exact round complexity of best-of-both-
worlds multi-party computation.” Cryptology ePrint Archive, Report 2020/1050,
2020. https://eprint.iacr.org/2020/1050.

D. Chaum, “The spymasters double-agent problem: Multiparty computations se-
cure unconditionally from minorities and cryptographically from majorities,” in
CRYPTO, 1989.

M. Hirt, U. M. Maurer, and V. Zikas, “MPC vs. SFE : Unconditional and compu-
tational security,” in ASIACRYPT, 2008.

S. Halevi, Y. Ishai, E. Kushilevitz, and T. Rabin, “Best possible information-
theoretic MPC,” in TCC, 2018.

M. Hirt, C. Lucas, U. Maurer, and D. Raub, “Graceful degradation in multi-party
computation (extended abstract),” in ICITS, 2011.

M. Hirt, C. Lucas, U. Maurer, and D. Raub, “Passive corruption in statistical
multi-party computation - (extended abstract),” in ICITS, 2012.

M. Hirt, C. Lucas, and U. Maurer, “A dynamic tradeoff between active and passive
corruptions in secure multi-party computation,” in CRYPTO, 2013.

D. Genkin, S. D. Gordon, and S. Ranellucci, “Best of both worlds in secure com-
putation, with low communication overhead,” in ACNS, 2018.

M. Bellare and S. Micali, “Non-interactive oblivious transfer and spplications,” in
CRYPTO, 1989.

V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia, “Founding cryptogra-
phy on tamper-proof hardware tokens,” in T'CC, 2010.

R. Ostrovsky, A. Scafuro, I. Visconti, and A. Wadia, “Universally composable
secure computation with (malicious) physically uncloneable functions,” in EURO-
CRYPT, 2013.

C. Brzuska, M. Fischlin, H. Schréder, and S. Katzenbeisser, “Physically unclone-
able functions in the universal composition framework,” in CRYPTO, 2011.

R. Cohen, J. A. Garay, and V. Zikas, “Broadcast-optimal two-round MPC,” in
EUROCRYPT, 2020.

30

https://eprint.iacr.org/2020/1050

	On the Exact Round Complexity of Best-of-both-Worlds Multi-party Computation

