
Tight Security Analysis of 3-Round
Key-Alternating Cipher with A Single

Permutation

Yusai Wu1, Liqing Yu1, Zhenfu Cao1,2,3(�), and Xiaolei Dong1

1 Shanghai Key Laboratory of Trustworthy Computing, East China Normal
University, Shanghai, China

yusaiwu@126.com, lqyups@126.com, zfcao@sei.ecnu.edu.cn,

dong-xl@sei.ecnu.edu.cn
2 Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen, China
3 Shanghai Institute of Intelligent Science and Technology, Tongji University, China

Abstract. The tight security bound of the KAC (Key-Alternating Ci-
pher) construction whose round permutations are independent from each
other has been well studied. Then a natural question is how the security
bound will change when we use fewer permutations in a KAC construc-
tion. In CRYPTO 2014, Chen et al. proved that 2-round KAC with a
single permutation (2KACSP) has the same security level as the clas-
sic one (i.e., 2-round KAC). But we still know little about the security
bound of incompletely-independent KAC constructions with more than
2 rounds. In this paper,we will show that a similar result also holds for
3-round case. More concretely, we prove that 3-round KAC with a sin-

gle permutation (3KACSP) is secure up to Θ(2
3n
4) queries, which also

caps the security of 3-round KAC. To avoid the cumbersome graphical
illustration used in Chen et al.’s work, a new representation is intro-
duced to characterize the underlying combinatorial problem. Benefited
from it, we can handle the knotty dependence in a modular way, and
also show a plausible way to study the security of rKACSP. Techni-
cally, we abstract a type of problems capturing the intrinsic randomness
of rKACSP construction, and then propose a high-level framework to
handle such problems. Furthermore, our proof techniques show some ev-
idence that for any r, rKACSP has the same security level as the classic
r-round KAC in random permutation model.

1 Introduction

In provable-security setting, the construction of a practical cipher is often ab-
stracted into a reasonable model with certain assumptions (e.g., the underly-
ing primitives are random functions/permutations and independent from each
other). Under those assumptions, we try to prove that the abstract construction
is immune to all (known or unknown) attacks executed by an adversary with spe-
cific abilities. Then the provable-security results provide some heuristic support
for the underlying design-criteria of the cipher, since the practical underlying
primitives do not satisfy the assumptions in general.

As aforementioned, the provable-security results are closely related to the ab-
stract assumptions. If the assumptions are closer to the actual implementations,
then the corresponding results will be more persuasive. For example, most of
the existing work reduces the security of SPN block ciphers to the classic KAC
construction (see Eq.(2)), in which the underlying round permutations as well
as the round keys are random and independent from each other. Unfortunately,
most KAC-based practical ciphers use the same round function and generate the
round keys from a shorter master-key (i.e., the underlying round permutations
and round keys are not independent from each other at all). Thus, there is still a
big gap between the existing provable-security results and the practical ciphers.

Opposite to the KAC construction with independent round permutations and
round keys (i.e., the classic KAC construction), we refer to the one whose round
permutations or round keys are not independent from each other as incompletely-
independent KAC or KAC with dependence. It is well known that r-round KAC is
Θ(2

r
r+1n)-secure in the random permutation model [CS14,HT16]. To characterize

the actual SPN block ciphers, we should abstract a natural KAC construction
(with dependence) satisfying two requirements: all the round permutations are
the same and the round keys are generated from a shorter master-key by a
certain deterministic algorithm. Hence, the ultimate question is whether there
exists such a r-round incompletely-independent KAC construction which can still
achieve Θ(2

r
r+1n)-security. In other words, we want to know whether the required

randomness of KAC construction can be minimized without a significant loss of
security.

Up to now, people know little about the incompletely-independent KAC con-
structions (even with very small number of rounds), since it becomes much more
complicated when either the underlying round permutations or round keys are
no longer independent. To our knowledge, the best work about the KAC with
dependence was given by Chen et al.[CLL+18]. They proved that several types
of 2-round KAC with dependence have almost the same security level as 2-round
KAC construction. However, it is still open about the security of incompletely-
independent KAC with more than 2 rounds in provable-security setting.

In this paper, we initiate the study on the incompletely-independent KAC with
more than 2 rounds. Here, we mainly focus on a special class of KAC, in which
all the round permutations are the same and the round keys are still independent
from each other, and refer to it as KACSP construction. Given a permutation
P : {0, 1}n → {0, 1}n, as well as r+1 round keys k0, . . . , kr, the r-round KACSP
construction rKACSP[P ; k0, . . . , kr] maps a message x ∈ {0, 1}n to

kr ⊕ P
(
kr−1 ⊕ P

(
· · ·P (x⊕ k0) · · ·

))
. (1)

Before turning into the results, we review the related existing work on classic
KAC and KAC with dependence, respectively.

Results on Classic KAC. KAC construction is the generalization of the Even-
Mansour construction [EM97] over multiple rounds. As one of the most popular

2

ways to construct a practical cipher, the KAC construction captures the high-
level structure of many SPN block ciphers, such as AES [DR02], PRESENT
[BKL+07], LED [GPPR11] and so on. Given r permutations P1, . . . , Pr: {0, 1}n →
{0, 1}n, as well as r + 1 round keys k0, . . . , kr, the r-round KAC construction
rKAC[P1, . . . , Pr; k0, . . . , kr] maps a message x ∈ {0, 1}n to

kr ⊕ Pr
(
kr−1 ⊕ Pr−1

(
· · ·P1(x⊕ k0) · · ·

))
. (2)

In the random permutation model, it was proved by Even and Mansour
[EM97] that an adversary needs roughly 2

n
2 queries to distinguish the 1-round

KAC construction from a true random permutation. Their bound was matched
by a distinguishing attack [Dae91] which needs about 2

n
2 queries in total. Many

years later, Bogdanov et al. [BKL+12] proved that r-round KAC is secure up to

2
2n
3 queries and the result is tight for r = 2 . Besides, they also conjectured that

the security for r-round KAC should be 2
rn
r+1 because of a simple generic attack.

After that, Steinberger [Ste12] improved the bound to 2
3n
4 queries for r ≥ 3 by

modifying the way to upper bound the statistical distance between two product
distributions. In the same year, Lampe et al. [LPS12] used coupling techniques
to show that 2

rn
r+1 queries and 2

rn
r+2 queries are needed for any nonadaptive

and any adaptive adversary, respectively. The first asymptotically tight bound
was proved by Chen et al. [CS14] through an elegant path-counting lemma. Re-
cently, Hoang and Tessaro [HT16] refined the H-coefficient technique (named as
the expectation method) and gave the first exact bound of KAC construction. At
this point, the security bound of the classic KAC construction is solved perfectly.

Results on KAC with dependence. The development in the field of
incompletely-independent KAC is much slower, since it usually becomes very
involved when the underlying components are no longer independent from each
other. Dunkelman et al. [DKS12] initiated the study of minimizing 1-round KAC
construction, and showed that several strictly simpler variants provide the same
level of security. After that, the best work was given by Chen et al. [CLL+14] in
CRYPTO 2014. They proved that several types of incompletely-independent 2-
round KAC have almost the same security level as the classic one. The result even
holds when only a single permutation and a n-bit master-key are used, where n
is the length of a plaintext/ciphertext. In their work, a generalized sum-capture
theorem 1 is used to upper bound the probability of bad transcripts. And the
probability calculation related to good transcripts is reduced to a combinatorial

1 Informally, the type of sum-capture theorems state that when choosing a random
subset A of Zn

2 of size q, the value

µ(A) = max
U,V⊆Zn

2
|U|=|V |=q

|{(a, u, v) ∈ A× U × V : a = u⊕ v}|

is close to the expected value q3/N . In the extended version of [CLL+18], the set A
can be produced by a set of query-answer pairs, and an automorphism transformation
is also allowed.

3

problem. Using the similar techniques, Cogliati and Seurin [CS18] obtained the
security bound of the single-permutation encrypted Davies-Meyer construction.
Nevertheless, their work is still limited in the scope of 2-round constructions.

Recently, Dai et al. [DSST17] proved that the 5-round KAC with a non-
idealized key-schedule is indifferentiable from an ideal cipher. The model em-
ployed in their work is however orthogonal to ours and hence the result is not
directly comparable.

Our Contributions. In this paper, we initiate the study on the incompletely-
independent KAC with more than 2 rounds and give a tight security bound
of 3KACSP construction. Our contributions are conceptually novel and mainly
two-fold:

1. We prove the tight security bound Θ(2
3n
4) queries of 3KACSP, which is an

open problem (proposed in [CLL+18]) for incompletely-independent KAC
with more than 2 rounds. That is, we can use only one instead of three
distinct permutations to construct 3-round KAC without a significant loss of
security. Notably, our proof framework is general and theoretically workable
for any rKACSP. Following the ideas of analyzing 3KACSP, we strongly
believe that rKACSP is also Θ(2

r
r+1n)-secure in random permutation model,

provided that the input/output size n is sufficiently large.

2. We develop a lot of general techniques to handle the dependence. Firstly, a
new representation (see Section 3.3) is introduced to circumvent the cum-
bersome graphical illustration used in [CLL+18]. Benefited from it, we can
handle the underlying combinatorial problem in a natural and intuitive way.
Secondly, we abstract a type of combinatorial problems (i.e., Problem 1) cap-
turing the intrinsic randomness of rKACSP, and also propose a high-level
framework (see Section 5.1) to solve such problems. To instantiate the frame-
work, we introduce some useful notions such as Core, target-path, shared-edge,
and so on (see Section 3.3). Combining with the methods for constructing
multiple shared-edges, we solve successfully the key problem in 3KACSP (see
Section 5.2). At last, we also develop some new tricks (see Section 6 in the
full version of this paper [WYCD20]) which are crucial in analyzing rKACSP
(r ≥ 3). Such tricks are not needed in 2KACSP, since it is relatively simple
and does not have much dependence to handle.

It is rather surprising that the randomness of a single random permutation
can provide such high level of security. From our proof, we can know an important
reason is that, the information obtained by adversary is actually not so much.
For instance, assume that n is big enough and an adversary can make Θ(2

3n
4)

queries to the random permutation, then the ratio of known points (i.e., roughly
2−

n
4) is still very small. Furthermore, our work means a lot more than simply

from 2 to 3, and we now show something new compared to Chen et al.’s work.

1. It is the first time to convert the analysis of rKACSP into a type of com-
binatorial problems, thus we can study the higher-round constructions in a

4

modular way. To solve such problems, we propose a general counting frame-
work, and also successfully instantiate it for a 3-round case which is much
more involved than the 2-round cases.

2. An important discovery is that we can adapt the tricks used in 2KACSP
to solve the corresponding subproblems in 3KACSP, by designing proper
assigning-strategy and RoCs(Range of Candidates, see Notation 5). We be-
lieve that the similar properties also hold in the analysis of general rKACSP.

3. A very big challenge in rKACSP(r ≥ 3) is to combine all the subproblems
together into a desired bound. We do not need to consider that problem
in the case of 2KACSP, since there is only one 2-round case in it. As a
result, we develop some useful techniques to handle the dependence between
the subproblems. Particularly, the key-points as shown at the beginning of
Section 6 in the full version [WYCD20] are also essential in rKACSP(r ≥ 4).

Combining all above findings together, we point out that a plausible way to an-
alyze rKACSP is by induction, and what’s left is only to solve a single r-round
case of Problem 1. That is, we actually reduce an extremely complex (maybe
intractable) problem into a single combinatorial problem, which can be solved by
our framework theoretically. From the view of induction, Chen et al. [CLL+18]
proved the basis step, while we have done largely the non-trivial work of the
inductive step. Besides the conceptually important results, the new notions and
ideas used in our proof are rather general and not limited in the rKACSP set-
ting. We hope that they can be applied to analyze more different cryptographic
constructions with dependence.

Outline of This Paper. We start in Section 2 by setting the basic notations,
giving the necessary background on the H-coefficient technique, and showing
some helpful lemmas. In Section 3, we state the main result of this paper and
introduce the new representation used throughout the paper. After that, the
main result is proved in Section 4 where we also illustrate the underlying com-
binatorial problem and give two technical lemmas. The core part is Section 5,
where we propose the general framework and also show the high-level technical
route to handle the key subproblem in 3KACSP. At last, we conclude and give
some extra discussion in Section 6.

2 Preliminaries

2.1 Basic Notations

In this paper, we use capital letters such as A,B, . . . to denote sets. If A is a
finite set, then |A| denotes the cardinality of A, and A denotes the complement
of A in the universal set (which will be clear from the context). For a finite set
S, we let x←$ S denote the uniform sampling from S and assigning the value to
x. Let A and B be two sets such that |A| = |B|, then we denote Bjt(A→ B) as
the set of all bijections from A to B. If g and h are two well-defined bijections,
then let g ◦ h(x) = h

(
g(x)

)
. Fix an integer n ≥ 1, let N = 2n, In = {0, 1}n,

5

and Pn be the set of all permutations on {0, 1}n, respectively. If two integers s,
t satisfy 1 ≤ s ≤ t, then we will write (t)s = t(t− 1) · · · (t− s+ 1) and (t)0 = 1
by convention.

Given Q = {(x1, y1), . . . , (xq, yq)}, where the xi’s (resp. yi’s) are pairwise
distinct n-bit strings, as well as a permutation P ∈ Pn, we say that the permu-
tation P extends the set Q, denoting P ` Q, if P (xi) = yi for i = 1, . . . , q. Let
X = {x ∈ In : (x, y) ∈ Q} and Y = {y ∈ In : (x, y) ∈ Q}. We call X and Y
respectively the domain and range of the set Q.

Definition 1 (Q′ is strongly-disjoint with Q). Let Q = {(x1, y1), . . . ,
(xm, ym)} and Q′ = {(x′1, y′1), . . . , (x′n, y

′
n)}. We denote X,Y ,X ′,Y ′ as the do-

mains and ranges of Q and Q′, respectively. Then we say that Q′Q′Q′ is strongly-
disjoint with QQQ if X ∩X ′ = Ø and Y ∩ Y ′ = Ø, and denote it as Q′ ⊥ QQ′ ⊥ QQ′ ⊥ Q.

2.2 Indistinguishability Framework

We will focus on the provable-security analysis of block ciphers in random per-
mutation model, which allows the adversary to get access to the underlying
primitives of the block ciphers. Consider the rKACSP construction (see Eq.(1)),
a distinguisher D can interact with a set of 2 permutation oracles on n bits
that we denote as (PO, PI). There are two worlds in terms of the instanti-
ations of the 2 permutation oracles. If P is a random permutation and the
round keys KKK = (k0, . . . , kr) are randomly chosen from I(r+1)n, we refer to
(rKACSP[P ;KKK], P) as the “real” world. If E is a random permutation indepen-
dent from P , we refer to (E,P) as the “ideal” world. We usually refer to the first
permutation PO (instantiated by rKACSP[P ;KKK] or E) as the outer permutation,
and to permutation PI (instantiated by P) as the inner permutation. Given a
certain number of the queries to the 2 permutation oracles, the distinguisher D
should distinguish whether the “real” world or the “ideal” world it is interacting
with. The distinguisher D is adaptive such that it can query both sides of each
permutation oracle, and also can choose the next query based on the query re-
sults it received. There is no computational limit on the distinguisher, thus we
can assume wlog that the distinguisher is deterministic (with a priori query which
maximizes its advantage) and never makes redundant queries (which means that
it never repeats a query, nor makes a query Pi(x) for i ∈ {I,O}, if it receives x
as an answer of a previous query P −1

i (y), or vice-versa).
The distinguishing advantage of the adversary D is defined as

Adv(D) =
∣∣∣Pr[DrKACSP[P ;KKK],P = 1]− Pr[DE,P = 1]

∣∣∣ , (3)

where the first probability is taken over the random choice of P and KKK, and the
second probability is taken over the random choice of P and E. D(·) denotes
that D can make both forward and backward queries to each permutation oracle
according to the random permutation model described before.

For non-negative integers qe and qp, we define the insecurity of rKACSP
against any adaptive distinguisher (even with unbounded computational source)

6

who can make at most qe queries to the outer permutation oracle (i.e., PO) and
qp queries to the inner permutation oracle (i.e., PI) as

AdvccarKACSP(qe, qp) = maxD Adv(D), (4)

where the maximum is taken over all distinguishers D making exactly qe queries
to the outer permutation oracle and qp queries to the inner permutation oracle.

2.3 The H-Coefficient Method

H-coefficient method [Pat08],[CS14] is a powerful framework to upper bound the
advantage of D and has been used to prove a number of results. We record all
interactions between the adaptive distinguisher D and the oracles as an ordered
list of queries which is also called a transcript. Each query in a transcript has the
form of (i, b, z, z′), where i ∈ {I,O} represents which permutation oracle being
queried, b is a bit indicating whether this is a forward or backward query, z is the
value queried and z′ is the corresponding answer. For a fixed distinguisher D,
a transcript is called attainable if exists a tuple of permutations (PO, PI) ∈ P 2

n

such that the interactions among D and (PO, PI) yield the transcript. Recall
that the distinguisher D is deterministic and makes no redundant queries, thus
we can convert a transcript into 2 following lists of directionless queries without
loss of information

QE = {(x1, y1), . . . , (xqe , yqe)},
QP = {(u1, v1), . . . , (uqp , vqp)}.

We can reconstruct the transcript exactly through the 2 lists, since D is
deterministic and each of its next action is determined by the previous oracle
answers (which can be known from those lists) it has received. As a side note,
the 2 lists contain the description of the deterministic distinguisher/algorithm D
implicitly. Therefore, the above two representations of an attainable transcript
are equivalent with regard to a fixed deterministic distinguisher D. Based on
Eq.(3), our goal is to know the values of the two probabilities. It can be veri-
fied that the first probability (i.e., the one related to the “real” world) is only
determined by the number of coins which can produce the above 2 directionless
lists, and the probability is irrelevant to the order of each query in the original
transcript. Thus, it seems that the adaptivity of D is “dropped” (More details
can be found in [CS14]). Through this conceptual transition, upper bounding
the advantage of D is often reduced to certain probability problems. That is
why the H-coefficient method works well in lots of provable-security problems,
especially for an information-theoretic and adaptive adversary.

As what [CS14],[CLL+18] did, we will also be generous with the distinguisher
D by giving it the actual key KKK = (k0, . . . , kr) when it is interacting with the
“real” world or a dummy key KKK ←$ I(r+1)n when it is interacting with the
“ideal” world at the end of its interaction. This treatment is reasonable since it
will only increase the advantage of D. Hence, a transcript τ we consider actually

7

is a tuple (QE ,QP ,KKK). We refer to τ̂ = (QE ,QP) as the permutation transcript
of τ and say that a transcript τ is attainable if its corresponding permutation
transcript τ̂ is attainable. Let T denote the set of attainable transcripts. We
denote Tre, resp. Tid, as the probability distribution of the transcript τ induced
by the “real” world, resp. the “ideal” world. It should be pointed out that the
two probability distributions depend on the distinguisher D, since its description
is embedded in the conversion between the aforementioned two representations.
And we also use the same notation to denote the random variable distributed
according to each distribution.

The H-coefficient method has lots of variants. In this paper, we will employ
the standard “good versus bad” paradigm. More concretely, the set of attainable
transcripts T is partitioned into a set of “good” transcripts T1 such that the
probability to obtain some τ ∈ T1 are close in the “real” world and in the “ideal”
world, and a set of “bad” transcripts T2 such that the probability to obtain any
τ ∈ T2 is small in the “ideal” world. Finally, a well-known H-coefficient-type
lemma is given as follows.

Lemma 1 (Lemma 1 of [CLL+18]). Fix a distinguisher D. Let T = T1 t T2

be a partition of the set of attainable transcripts. Assume that there exists ε1

such that for any τ ∈ T1, one has

Pr[Tre = τ]

Pr[Tid = τ]
≥ 1− ε1,

and that there exists ε2 such that Pr[Tid ∈ T2] ≤ ε2. Then Adv(D) ≤ ε1 + ε2.

2.4 An Useful Lemma

Lemma 2 (3KACSP version, Lemma 2 of [CLL+18]). Let τ =
(
QE ,QP ,KKK =

(k0, k1, k2, k3)
)
∈ T be an attainable transcript. Let p(τ) = Pr

[
P ←$ Pn :

3KACSP[P ;KKK] ` QE | P ` QP
]
. Then

Pr[Tre = τ]

Pr[Tid = τ]
= (N)qe · p(τ).

Following Lemma 2, it is reduced to lower-bounding p(τ) if we want to
determine the value of ε1 in Lemma 1. In brief, p(τ) is the probability that
3KACSP[P ;KKK] extends QE when P is a random permutation extending QP .

3 The Main Result and New Representation

3.1 3-Round KAC with A Single Permutation

Let n be a positive integer, and let P : In → In be a permutation on In. On
input x ∈ In and round keysKKK = (k0, k1, k2, k3) ∈ I4n, the block cipher 3KACSP

returns y = P
(
P
(
P (x⊕ k0)⊕ k1

)
⊕ k2

)
⊕ k3. See Fig.1 for an illustration of the

construction of 3KACSP.

8

x P

k0

P

k1

P

k2

y

k3

Fig. 1. Illustration of 3KACSP

3.2 Statement of the Result and Discussion

Since 3KACSP is a special case of 3-round KAC construction, its security is also
capped by a distinguishing attack with O(2

3n
4) queries. We will show that the

bound is tight by establishing the following theorem, which gives an asymptotical
security bound of 3KACSP. Following the main theorem, we also give some
comments. The proof of Theorem 1 can be found in Section 4, where we also
illustrate the underlying combinatorial problem and give two technical lemmas.

Theorem 1 (Security Bound of 3KACSP). Consider the 3KACSP con-
struction, in which the underlying round permutation P is uniformly random
sampled from Pn and the round keys KKK = (k0, k1, k2, k3) are uniformly random

sampled from I4n. Assume that n ≥ 32 is sufficiently large, 28(qe)2

N ≤ qp ≤ qe
5

and 2qp + 5qe ≤ N
2 , then for any 6 ≤ t ≤ N1/2

8 , the following upper bound holds:

Advcca3KACSP(qe, qp) ≤ 98t ·
(qe
N3/4

)
+ 10t2 ·

(qe
N

)
+ ζ(qe),

where ζ(qe) =

{
32
t2 , if qe ≤ t

6N
1/2

9N
q 2
e
, if qe ≥ 7t

6 N
1/2

.

Obtaining a concrete upper bound. Due to the special form of error term
ζ(qe), a single constant t cannot optimize the bound for all qe’s simultaneously.
The above result gives an upper bound for a range of qe’s once t is chosen, thus
different constants t will give different upper bounds for a fixed qe. That is, for
each qe, we can make the error term ζ(qe) be arbitrarily small by choosing a
proper t, as long as the n is big enough. In general, we prefer to choose a small t
to obtain the bound, since the first two terms in it are proportional to t. As an
explanatory example, we next will show how to choose the constant t, assume
that the threshold value of ζ(qe) is set to 0.01.

Firstly, we should determine the range of qe’s which are suitable for the
minimum t = 6. It is easy to verify that, for the range of big qe ≥ 30N1/2, it
must has ζ(qe) ≤ 0.01, since ζ(qe) = 9N

q2e
for qe ≥ 7N1/2 (when setting t = 6).

But for a small qe it needs a larger t, since we will use the function ζ(qe) = 32
t2

to obtain a desired ζ(qe). For simplicity, we can set t = 60 for each qe ≤ 10N1/2,
because it has ζ(qe) = 32

602 < 0.01. Now what’s left is to choose a proper t for

covering the remain range of 10N1/2 < qe < 30N1/2. Using again the function
ζ(qe) = 32

t2 , we can crudely set t = 180, which implies that ζ(qe) = 32
1802 < 0.001

9

for all qe ≤ 30N1/2. As a side note, a slightly better choice is to choose t = 6c
for qe = cN1/2, where 10 < c < 30.

From the above process, we obtain a concrete upper bound as follows.

Advcca3KACSP(qe,qp)≤


588
(

qe

N3/4

)
+360(qe

N)+0.01, for qe≥30N1/2 (Set t=6)

17640
(

qe

N3/4

)
+324000(qe

N)+0.001, for 10N1/2<qe<30N1/2 (Set t=180)

5880
(

qe

N3/4

)
+36000(qe

N)+0.01, for qe≤10N1/2 (Set t=60)

It is easy to see that t = 6 is available for almost all of the qe’s (i.e., except
the fraction of 30

N1/2). That is, the bound Adv ≤ 588
(

qe
N3/4

)
+ 360

(
qe
N

)
+ 9N

q2e
is

suitable for almost qe’s. We also stress here that Theorem 1 is an asymptotical
result (for sufficiently large n) and we are not focusing on optimizing param-
eters. The point is that it actually shows that Ω(N3/4) queries are needed to
obtain a significant advantage against 3KACSP. Combining with the well-known
matching attack, we conclude that the 3KACSP construction is Θ(2

3n
4)-secure.

Discussion about the result. It should be pointed out that the deviation
term ζ(qe) and the assumption on qp in Theorem 1 are artifacts of our proof,
and have no effect on the final result.

1. The ζ(qe) is simply caused by the inaccuracy of Chebyshev’s Inequality (i.e.,
Lemma 5), rather than our proof methods nor the intrinsic flaws of 3KACSP.
It is well-known that Chebyshev’s Inequality is rather coarse and there must
exist a more accurate tail-inequality (e.g., Chenoff Bound). The ζ(qe) and
t will disappear, as long as a bit more accurate tail-inequality is applied
during the computation of Eq.(95) in full version [WYCD20]. That is, just
by replacing with a better tail-inequality, our proof techniques actually can
obtain a concrete bound such like Adv ≤ 98

(
qe
N3/4

)
+ 10

(
qe
N

)
, i.e., t = 1 and

ζ(qe) = 0 in Theorem 1. But to our knowledge, there is no explicit expression
of the moment generating function for a hypergeometric distribution, hence
we now have no idea how to obtain a Chernoff-Type bound.

2. The assumption on qe and qp is determined by the assigning-strategy and all
the RoCs (there are dozens in total) designed in the formal proof. It means
that a better choice corresponds to a weaker assumption. Theoretically, there
exist choices which can eliminate the assumption without changing our proof
framework. However, optimizing such a choice is rather unrealistic, since it is
extremely hard to find even one feasible solution (as provided in our formal
proof).

In a word, our results and proof techniques are strong enough to show that
3KACSP is Θ(N3/4)-secure in random permutation model.

3.3 New Representation

In this subsection, we will propose a new representation which will be used
throughout the paper. The representation improves our understanding of the

10

underlying combinatorial problem, and is very helpful to handle the dependence
caused by the single permutation. From our proof, it can be found that this new
representation is natural to capture the intrinsic combinatorial problem, and the
complicated graphical illustration used in [CLL+18] can also be avoided. More
specifically, the new representation consists of several definitions.

Definition 2 (Directed-Edge). Let A denote a set and a, b ∈ A. If a permu-

tation Ψ on A maps a to b, then we denote it as a
Ψ−→ b and say that there is a

ΨΨΨ-directed-edge (or simply directed-edge if Ψ is clear from the context) from a

to b. We also use a
Ψ−→ b to denote the ordered query-answer pair (a, b) of the

permutation oracle Ψ . That is, if we make queries Ψ(a) (resp. Ψ−1(b)), then b
(resp. a) will be the answer.

For a directed-edge a
Ψ−→ b, we refer to a as the previous-point of b under

Ψ , and to b as the next-point of a under Ψ , respectively. Naturally, the notation

a
Ψ−→ means that the next-point of a under Ψ is undefined, and the notation
Ψ−→ b means that the previous-point of b under Ψ is undefined.

Definition 2 aims to view the binary relation under a permutation as a set
of directed-edges. Consider a permutation P ∈ Pn, the list of directionless
queries QP = {(u1, v1), . . . , (uq, vq)} can be written as the set of P -directed-

edges {u1
P−→ v1, . . . , uq

P−→ vq}. From now on, we will not distinguish the two
representations.

Definition 3 (Directed-Path and Core). Let ϕ[·] : Pn → Pn be a block-
cipher construction invoking one permutation P ∈ Pn. Fix an attainable tran-
script τ = (QE ,QP ,KKK), where QE and QP are the lists of directionless queries
of the outer and inner permutation oracle, respectively.

For a specific P ∈ Pn and a string a ∈ In, the steps related to P in the
calculation of ϕ[P](a) can be denoted as a chain of P -directed-edges and has

the form of 〈f(a)
P−→ a1, . . . , am

P−→ g−1(ϕ[P](a))〉, where f(·) and g(·) are
invertible operations before the first invocation of P and after the last invo-
cation of P in the construction ϕ[·], respectively.2 We refer to such a chain

as a
((

a, ϕ[P](a)
)
, ϕ[P]

)((
a, ϕ[P](a)

)
, ϕ[P]

)((
a, ϕ[P](a)

)
, ϕ[P]

)
-directed-path, where a and ϕ[P](a) are called as the

source and destination of the directed-path, respectively. We may simply say a
directed-path for convenience, if all things are clear from the context.

Let QE = {(x1, y1), . . . , (xq, yq)}, where xi’s (resp. yi’s) are pairwise distinct
n-bit strings. We say a permutation P ∈ Pn is ϕ[·]-correct with respect to
QE, if ϕ[P] ` QE. That is, the ϕ[P]-directed-path starting from xi must end
at yi (i.e., yi = ϕ[P](xi)) for a correct permutation P , where i = 1, · · · , q. We
refer to the set of P -directed-edges used in above q directed-paths as a ϕ[P]-Core
with respect to QE, and denote it as Core(ϕ[P] ` QE)Core(ϕ[P] ` QE)Core(ϕ[P] ` QE). In addition, we use the
notation Core(ϕ[·] ` QE) to denote a certain ϕ[P]-Core in general. And we may
simply say a Core for convenience, if ϕ[·] and QE are clear from the context.

2 In this paper, f(·) and g(·) are often the identity functions.

11

Definition 3 aims to highlight the steps related to P when calculating the
value of ϕ[P](a). In fact, the form of a directed-path is only determined by the
construction ϕ[·].3 That is, each

(
(∗, ∗), ϕ[P]

)
-directed-path consists of m P -

directed-edges, where m is the invoking number of P in the construction ϕ[·].
Thus, we often use the notation ϕ[·]-directed-path to denote a directed-path of
the form in general. In addition, the calculation steps independent of P (e.g., the
operations f(·) and g(·) in Def.3) are always omitted, since we only care about
the assignments of P . Of course, those omitted steps can still be inferred from
the directed-path since they are deterministic. For instance, the calculation of

P
(
P (x)�1

)
= y can be denoted as the directed-path 〈x P−→ P (x), P (x)�1

P−→ y〉,
in which the step from P (x) to P (x)� 1 is omitted but can still be known from
it. Next, we will give an explanatory example for the above definitions.

Example 1. Let P denote a permutation on Z5 = {0, 1, 2, 3, 4}, as well as QE =
{(0, 4), (1, 0)}, QP = Ø and ϕ[P](x) = P

(
P (x) � 1

)
, where � represents the

modulo-5 addition.
Case 1: If P = {0 P−→ 1, 1

P−→ 2, 2
P−→ 3, 3

P−→ 4, 4
P−→ 0}, then all directed-

paths constructed by ϕ[P] are 〈0 P−→ 1, 2
P−→ 3〉, 〈1 P−→ 2, 3

P−→ 4〉, 〈2 P−→ 3, 4
P−→

0〉, 〈3 P−→ 4, 0
P−→ 1〉, and 〈4 P−→ 0, 1

P−→ 2〉. That is, the permutation ϕ[P] maps
0 to 3, 1 to 4, 2 to 0, 3 to 1 and 4 to 2, respectively. Obviously, the P is not

ϕ[·]-correct with respect to QE , since the ϕ[P]-directed-path 〈0 P−→ 1, 2
P−→ 3〉

leads 0 to 3 which is inconsistent with the source-destination pair (0, 4) ∈ QE .

Case 2: If P = {0 P−→ 2, 1
P−→ 1, 2

P−→ 0, 3
P−→ 4, 4

P−→ 3}, then we have

ϕ[P] ` QE because the directed-paths 〈0 P−→ 2, 3
P−→ 4〉 and 〈1 P−→ 1, 2

P−→ 0〉 lead

0 to 4 and 1 to 0, respectively. Also, we can know that Core(P) = {0 P−→ 2, 1
P−→

1, 2
P−→ 0, 3

P−→ 4}, and thus |Core(P)| = 4.

Case 3: If P = {0 P−→ 3, 1
P−→ 0, 2

P−→ 1, 3
P−→ 2, 4

P−→ 4} , then it is easily

to verify that ϕ[P] ` QE , as well as Core(P) = {0 P−→ 3, 1
P−→ 0, 4

P−→ 4} and
|Core(P)| = 3.

Case 4: Similarly, if P = {0 P−→ 0, 1
P−→ 4, 2

P−→ 1, 3
P−→ 2, 4

P−→ 3}, then

ϕ[P] ` QE . Furthermore, it has Core(P) = {0 P−→ 0, 1
P−→ 4} and |Core(P)| = 2.

Statement. For convenience, we will simply use the terms edge and path in-
stead of directed-edge and directed-path, respectively. In addition, if xβα denotes
the source of a path (where α and β are some symbols), then the notation yβα
always denotes the corresponding destination of the path and vice-versa, and
the correspondence can be easily inferred from the context.

We have known that a path can be used to denote a complete calculation given
the construction, source and P . In fact, we often confront an incomplete path

3 Recall that the adversary can obtain the keys after the querying phrase in our proof
setting.

12

whose source and destination are fixed, provided that the permutation P is
partially defined.4 Namely, there are some edges missing in such a path. Par-
ticularly, we most interest in a special form of incomplete path which is called
target-path.

Definition 4 (Target-Path). Assume that P is partially defined, then a
(
(a, b),
(
(a, b),
(
(a, b),

ϕ[P]
)

ϕ[P]
)

ϕ[P]
)
-target-path is a ϕ[·]-path in which all the inner-nodes are undefined while

the source a and the destination b are fixed. Thus, a target-path always has the
form of 5

〈a P−→ ,
P−→ , · · · , P−→ ,

P−→ b〉.

In essence, the proof of main result is reduced to the task of completing a group
of target-paths (i.e., Problem 1). That is why we refer to such type of paths as
target-paths. In general, it is convenient to consider a group of (target-)paths
having the same form. Then, the notion of shared-edge can also be introduced
naturally.
Definition 5 (Group of Paths and Shared-Edge). Fix a permutation P ,
which can be partially defined.

We call the paths
(
(x1, y1), ϕ[P]

)
-path, . . . ,

(
(xq, yq), ϕ[P]

)
-path as a group of

ϕ[·]-paths, and denote it as (QE , ϕ[P])(QE , ϕ[P])(QE , ϕ[P])-paths, where QE = {(x1, y1), . . . , (xq, yq)}
is the set of source-destination pairs. Also, we may simply use the notation QE-
paths if ϕ[P] is clear from the context.

Similarly, we call the target-paths
(
(a1, b1), ϕ[P]

)
-target-path, . . . ,

(
(aq, bq),

ϕ[P]
)
-target-path as a group of ϕ[·]-target-paths, and denote it as (Q, ϕ[P])(Q, ϕ[P])(Q, ϕ[P])-

target-paths, where Q = {(a1, b1), . . . , (aq, bq)} is the set of source-destination
pairs.

If an edge is used in at least 2 different paths, then we refer to it as a shared-
edge.

From now on, we can use Definition 5 to denote a group of (target-)paths con-
veniently. And it should be pointed out that the shared-edge is a key primitive
in our proof, though the concept is rather simple and natural. Moreover, the
notion of partial-P will be useful, since P is often partially defined.

Definition 6 (Partial-PPP and Partially-Sample). Let P be a permutation on

In, and let A be a subset of In. Then we refer to the set of edges {xi P−→ P (xi) :
xi ∈ A} as the partial-P from A to P (A).

Let S and T be two sets of elements whose next-points and previous-points
are undefined under P , respectively. If |S| = |T |, then we can sample randomly

a bijection f ←$ Bjt(S → T) and define x
P−→ f(x) for each x ∈ S. We refer

to the above process as sample partial-P randomly from S to T , or P is
partially-sampled randomly from S to T .

4 Informally, we say a permutation P is partially defined, if the correspondence of some
points are undefined.

5 For simplicity, we assume here that the operations f(·) and g(·) in construction ϕ[·]
are both identity functions.

13

It should be pointed out that a partial-P is a subset of P , and also a set of
P -edges. Now let’s reconsider the sampling P ←$ Pn conditioned on P ` QP ,

where QP = {u1
P−→ v1, . . . , uq

P−→ vq}. If we denote S = In \ {u1, . . . , uq} and
T = In \ {v1, . . . , vq}, then the above sampling is equivalent to sample partial-
P randomly from S to T . Furthermore, it is natural to view QP as the priori
information of P . That is, we can fix the q edges of QP in advance, and then
sample partial-P randomly from S to T .

4 Proof of Theorem 1

In this section, we will use the standard H-Coefficient method (i.e., Lemma 1) to
prove our main result. That is, all attainable transcripts T should be partitioned
into two disjoint parts: a set of “good” transcripts denoted as T1 and a set of
“bad” transcripts denoted as T2. Determining the partition is often a subtle task,
since it is intrinsically a trade-off between ε1 and ε2. If we add more conditions on
good transcripts to make they have better property (i.e., with smaller ε1), then
the set of bad transcripts becomes larger accordingly (i.e., ε2 becomes larger),
or vice-versa.

Intuitively, the chance to obtain any τ ∈ T1 in “real” world should be very
close to the chance in “ideal” world, and it should be very rare to obtain any
τ ∈ T2 in the “ideal” world. For an attainable transcript τ =

(
QE ,QP ,KKK =

(k0, k1, k2, k3)
)
, we know that (from Lemma 2) the quotient of Pr[Tre = τ] and

Pr[Tid = τ] is determined by the value of

p(τ) = Pr
[
P ←$ Pn : 3KACSP[P ;KKK] ` QE | P ` QP

]
. (5)

That is, a transcript τ is whether “good” or not, can also be determined by the
value of p(τ).

Therefore, we firstly illustrate the meaning of p(τ) through our new repre-
sentation, and then give the definition of “bad” transcripts. In fact, it is also a
good example to show that the knotty dependence can be sorted out if we use
a proper representation. At the end of this section, we will prove Theorem 1
directly by combining two technical lemmas together.

4.1 Transcripts and p(τ)

In this subsection, we firstly expound the meaning of p(τ) for a fixed transcript
τ , and then give the concrete definition of “bad” transcripts. To reduce the com-
plexity of notations, we now rewrite the p(τ) into another equivalent form.

A Conceptual Transformation. For an attainable transcript τ = (QE ,QP ,KKK),
we modify the inner permutation P and its permutation transcript τ̂ = (QE ,QP)
as follows:

P ′ = P ⊕ k1,

14

Q′E = {(x⊕ k0, y ⊕ k1 ⊕ k3) : (x, y) ∈ QE},
Q′P = {(u, v ⊕ k1) : (u, v) ∈ QP }.

Let

X = {x′ ∈ In : (x′, y′) ∈ Q′E}, Y = {y′ ∈ In : (x′, y′) ∈ Q′E},
U = {u′ ∈ In : (u′, v′) ∈ Q′P }, V = {v′ ∈ In : (u′, v′) ∈ Q′P }

denote the domains and the ranges of Q′E and Q′P , respectively. Thus, |QE | =
|Q′E | = |X| = |Y | = qe, and |QP | = |Q′P | = |U | = |V | = qp.

Accordingly, we also transform the 3KACSP construction into the 3KACSP′

construction (as shown in Fig.2), i.e., P ′ ◦ P ′ ◦ (⊕k1 ⊕ k2) ◦ P ′. The above
modification is reasonable, since we show the actual key used in 3KACSP after
the distinguisher D finishing the query phase (i.e., after obtaining QE and QP).
Thus, it is simply a conceptual transformation and only the notations should be
changed. That is, we can consider that the distinguisher D is querying the outer
permutation and inner permutation oracles instantiated by 3KACSP′ and P ′,
respectively. Then the resulting transcript is τ ′ = (Q′E ,Q′P ,KKK). From now on,
we will not distinguish the transcripts τ and τ ′, since they can transform from
each other easily. Thus, we have

p(τ) = p(τ ′) = Pr[P ′ ←$ Pn : 3KACSP′[P ′;KKK] ` Q′E |P ′ ` Q′P]. (6)

x′ P ′ P ′ P ′

k1
⊕
k2

y′

Fig. 2. 3KACSP′: A Conceptual Transformation of 3KACSP

Notation 1 (Abbreviation) Let A be a set of n-bit strings, and a be an ele-
ment of A. From now on, we will abbreviate the expression a⊕ k1⊕ k2 as a⊕ for
convenience. Similarly, we also denote that A⊕ = {a⊕ : a ∈ A}.
Illustration of p(τ ′). Next, we will show the underlying combinatorial prob-

lem of p(τ ′) intuitively. Fix arbitrarily a transcript τ ′ = (Q′E ,Q′P ,KKK), the event
3KACSP′[P ′;KKK] ` Q′E means that for each pair (x′, y′) ∈ Q′E , the 3KACSP′-
path starting from x′ ends exactly at y′. A complete 3KACSP′-path consists of
3 P ′-edges, and has the form of

〈x′ P
′
−→ ∗1, ∗1 P ′−→ ∗2, (∗2)⊕

P ′−→ y′〉, (7)

where ∗1 and ∗2 are the 2 inner-nodes should be assigned.
Before turning into the value of p(τ ′), we consider a simpler case thatQ′P = Ø

as first. Since no edge of the Q′E-paths has been fixed in advance, our task is sim-
ply to complete all the (Q′E , 3KACSP′)-target-paths, by sampling P ′ uniformly

15

random from Pn. In fact, we will see that it is exactly the Problem 1 instantiated
by ϕ[P ′] = P ′ ◦ P ′⊕ ◦ P ′, Q1 = Q′E , Q2 = Ø, and can be solved directly by a
general framework6.

Unfortunately, it becomes much more complex when Q′P 6= Ø, since some
3KACSP′-target-paths will be “damaged”. More specifically, a path will turn
into “some other construction”-target-path, when some edges in it are fixed by
Q′P . We now give some intuition about those paths. Assume that qe and qp
are O(N3/4) and KKK is uniformly random sampled from I4n, then there are at
most 4 types of paths. On average, there are O(1) paths containing 3 fixed edges.
Similarly, we know that there exist O(N1/4) (resp. O(N1/2)) paths whose 2 edges
(resp. 1 edge) are fixed in advance. And there are O(N3/4) paths containing
no fixed edge (i.e., they are 3KACSP′-target-paths). It can be found that the
circumstances are more involved than before, since the constructions of missing-
edges are no longer uniform. In other words, there may exist several different
constructions of target-paths to be completed. Thus, we should analyze each of
the constructions and complete them in turns.

In fact, we judge a transcript τ ′ is whether “good” or not, according to the
Q′E-paths and the edges fixed by Q′P . Firstly, a transcript will be classified into
the set of “bad” transcripts, if there exists some Q′E-path containing 3 fixed
edges. Otherwise, we should further study the circumstances of paths and fixed
edges determined by the transcript. More specifically, for such a transcript, we
can classify the qe paths between Q′E into three groups (see Fig.3 as an illustra-
tion) according to the number of fixed edges.

IGroup-2. The paths containing 2 fixed edges belong to Group-2. More specif-
ically, there are 3 subcases of such paths according to the position of fixed edges.
Recall that U and V denote the domain and range of Q′P , respectively.

- Group-2.1: The paths whose first two edges are fixed. That is, Group-2.1
consists of the paths starting from the subset XII ⊂ X, where

XII ⊂ U
∧
Q′P (XII) ⊂ U

∧ (
Q′P

(
Q′P (XII)

))
⊕
∩ U = Ø

⇐⇒ ∀x ∈ XII ,∃ w1, w2, s.t. (x,w1), (w1, w2) ∈ Q′P ∧ (w2)⊕ 6∈ U.
- Group-2.2: The paths whose last two edges are fixed. That is, Group-2.2

consists of the paths ending at the subset YB ⊂ Y , where

YB ⊂ V
∧ (

Q′−1
P (YB)

)
⊕ ⊂ V

∧
Q′−1

P

((
Q′−1

P (YB)
)
⊕

)
∩ V = Ø

⇐⇒ ∀y ∈ YB ,∃ w1, w2, s.t. (w1, w2),
(
(w2)⊕, y

)
∈ Q′P ∧ w1 6∈ V.

- Group-2.3: The paths whose first and third edges are fixed. That is, Group-
2.3 consists of the paths starting from the subset DX ⊂ X to the corresponding
DY = Q′E(DX) ⊂ Y , where

DX ⊂ U
∧

DY ⊂ V
∧ (
Q′P (DX)

)
∩ U = Ø

∧ (
(Q′P)−1(DY)

)
⊕ ∩ V = Ø

6 The framework and the technical route can be found in Section 5.1 and 5.2, respec-
tively.

16

〈x1
Q′P−−→ Q′P (x1), Q′P (x1)

Q′P−−→ Q′P (Q′P (x1)),
P ′−→ y1〉

· · ·

〈xα2

Q′P−−→ Q′P (xα2
), Q′P (xα2

)
Q′P−−→ Q′P (Q′P (xα2

)),
P ′−→ yα2

〉

〈xα2+1
P ′−→ Q′P

−1
((
Q′P
−1

(yα2+1)
)
⊕

)
Q′

P−−→
(
Q′P
−1

(yα2+1)
)
⊕
, Q′P−1(yα2+1)

Q′
P−−→ yα2+1〉

· · ·

〈xα2+β2
P ′−→ Q′P

−1
((
Q′P
−1

(yα2+β2
)
)
⊕

)
Q′

P−−→
(
Q′P
−1

(yα2+β2
)
)
⊕
, Q′P−1(yα2+β2)

Q′
P−−→ yα2+β2〉

〈xα2+β2+1
Q′

P−−→ Q′P (xα2+β2+1),
P ′−→ Q′P

−1
(yα2+β2+1)

Q′
P−−→ yα2+β2+1〉

· · ·

〈xδ2
Q′P−−→ Q′P (xδ2), P ′−→ Q′P−1(yδ2)

Q′
P−−→ yδ2〉

〈xδ2+1

Q′
P−−→ Q′P (xδ2+1),

P ′−→ P ′−→ yδ2+1〉

· · ·

〈xδ2+α1

Q′
P−−→ Q′P (xδ2+α1),

P ′−→ P ′−→ yδ2+α1
〉

〈xδ2+α1+1
P ′−→ P ′−→ Q′P

−1
(yδ2+α1+1)

Q′
P−−→ yδ2+α1+1〉

· · ·

〈xδ2+δ1
P ′−→ P ′−→ Q′P−1(yδ2+δ1)

Q′
P−−→ yδ2+δ1〉

〈xδ2+δ1+1
P ′−→ P ′−→ P ′−→ yδ2+δ1+1〉

· · ·

〈xqe
P ′−→ P ′−→ P ′−→ yqe〉

XII

YB

DX DY

XI

YA

Group-2

Group-1

Group-0

Fig. 3. Illustration of the Missing-Edges in Q′E-Paths

⇐⇒ ∀x ∈ DX ,∃ w1, w2, s.t. (x,w1),
(
w2,Q′E(x)

)
∈ Q′P ∧ w1 /∈ U ∧ (w2)⊕ 6∈ V.

Notation 2 (Group-2) We denote |XII | = α2, |YB | = β2, |DX | = |DY | = γ2,
and δ2 = α2 +β2 + γ2. Thus, Group-2 contains δ2 paths in total, where α2 paths
belong to Group-2.1, β2 paths belong to Group-2.2 and the other γ2 paths belong
to Group-2.3. For convenience, we assume wlog that XII = {x1, . . . , xα2}, YB =
{yα2+1, . . . , yα2+β2

}, DX = {xα2+β2+1, . . . , xδ2} and DY = {yα2+β2+1, . . . , yδ2}.

I Group-1. The paths containing 1 fixed edge belong to Group-1. More specif-
ically, there are 2 subcases of such paths according to the position of fixed edge.
Recall that U and V denote the domain and range of Q′P , respectively.

- Group-1.1: The paths whose first edge is fixed. That is, Group-1.1 consists
of the paths starting from the subset XI ⊂ X, where

XI ⊂ U
∧
Q′P (XI) ∩ U = Ø

17

⇐⇒ ∀x ∈ XI ,∃ w1, s.t. (x,w1) ∈ Q′P ∧ w1 6∈ U.

- Group-1.2: The paths whose third edge is fixed. That is, Group-1.2 consists
of the paths ending at the subset YA ⊂ Y , where

YA ⊂ V
∧ (

Q′−1
P (YA)

)
⊕ ∩ V = Ø

⇐⇒ ∀y ∈ YA,∃ w1, s.t. (w1, y) ∈ Q′P ∧ (w1)⊕ 6∈ V.

Notation 3 (Group-1) We denote |XI | = α1, |YA| = β1 and δ1 = α1 + β1.
Namely, Group-1 contains δ1 paths in total, where α1 paths belong to Group-1.1
and the other β1 paths belong to Group-1.2. For convenience, we assume wlog
that XI = {xδ2+1, . . . , xδ2+α1

} and YA = {yδ2+α1+1, . . . , yδ2+δ1}.

I Group-0. Each path belongs to Group-0 contains no fixed edge.

Notation 4 (Group-0) We denote δ0 = qe − δ2 − δ1. Thus, Group-0 contains
δ0 paths in total. Let X0 and Y0 denote the sets of sources and destinations
of Group-0, respectively. For convenience, we assume wlog that X0 = {xi :
δ2 + δ1 + 1 ≤ i ≤ qe} and Y0 = {yi : δ2 + δ1 + 1 ≤ i ≤ qe}.

For a fixed transcript τ ′, its circumstances of Q′E-paths and fixed edges can be
illustrated as Fig.3, where the missing-edges are the ones marked with a colored
square. At this point, it is clear that p(τ ′) (see Eq.(6)) represents the probability
that, all missing-edges are filled by sampling P ′ uniformly random from the set
of permutations extending Q′P . Furthermore, the above problem becomes more
straightforward if we use the notion of target-path (see Def.4).

Definition 7 (Structure of Missing-Edges).
Let E2 denote the event that the δ2 paths of Group-2 are completed (i.e., the

δ2 missing-edges in Group-2 are filled).
Let E11 denote the event that the

(
Q′E11

, ϕ11[·]
)
-target-paths are completed

(i.e., the 2α1 missing-edges in Group-1.1 are filled), where Q′E11
=
{(
Q′P (xi), yi

)
:

xi ∈ XI

}
and ϕ11[P ′] = P ′⊕ ◦ P ′.

Let E12 denote the event that the
(
Q′E12

, ϕ12[·]
)
-target-paths are completed

(i.e., the 2β1 missing-edges in Group-1.2 are filled), where Q′E12
=
{(
xi,Q′−1

P (yi)
)

:

yi ∈ YA
}

and ϕ12[P ′] = P ′ ◦ P ′⊕.

Let E0 denote the event that the
(
Q′E0

, ϕ0[·]
)
-target-paths are completed (i.e.,

the 3δ0 missing-edges in Group-0 are filled), where Q′E0
= {(xi, yi) : xi ∈

X0} and ϕ0[P ′] = P ′ ◦ P ′⊕ ◦ P ′.

Immediately, we can know that

p(τ ′) = Pr[P ′ ←$ Pn : E2 ∧ E11 ∧ E12 ∧ E0|P ′ ` Q′P]. (8)

Obviously, lower-bounding the value of p(τ ′) is reduced to several subproblems
which can be applied directly with the counting framework (proposed in Section

18

5.1). For a “good” transcript, we can successfully obtain an appropriate lower
bound for each subproblem.7

Definition of Bad Transcripts. Now, we will give the concrete definition
of “bad”/“good” transcripts. From the formal proof, it will be seen that each
attainable permutation transcript τ̂ can be extended to a “good” transcript
by adding a “good” key KKK. Thus, it is equivalent to study the properties of
“bad”/“good” keys for a fixed permutation transcript τ̂ .

Definition 8 (Bad Transcripts and Bad Keys). Fix arbitrarily a permu-
tation transcript τ̂ = (QE ,QP). If the extended transcript τ ′ = (Q′E ,Q′P ,KKK)
satisfies KKK ∈ BadK =

⋃
1≤i≤9 BadKi, then we say the τ = (QE ,QP ,KKK) is

a “bad” transcript and the KKK is a “bad” key for τ̂ . Otherwise, we say the τ
is a “good” transcript and the KKK is a “good” key for τ̂ . More specifically, the
definitions of BadKi (1 ≤ i ≤ 9) are shown as follows.

KKK ∈ BadK1 ⇐⇒ There exists a Q′E-path containing 3 fixed edges.

KKK ∈ BadK2 ⇐⇒ α2 >
qe
N1/2

∨
β2 >

qe
N1/2

∨
γ2 >

qe
N1/2

∨
α1 >

qe
N1/4

∨
β1 >

qe
N1/4

KKK ∈ BadK3 ⇐⇒ U,
(
Q′P
(
Q′P (XII)

))
⊕
, Q′ −1

E (YB) and Q′P (DX) are not

pariwise disjoint
∨

V, Q′E(XII), Q′ −1
P

((
Q′ −1
P (YB)

)
⊕

)
and

(
Q′ −1
P (DY)

)
⊕ are not pairwise disjoint

KKK ∈ BadK4 ⇐⇒ |Q′P (XI) \ (T11)⊕| >
α1

N1/4

∨
|Q′E(XI) \ (S11)⊕| >

α1

N1/4

when α2, β2, γ2 ≤
qe
N1/2

and α1, β1 ≤
qe
N1/4

KKK ∈ BadK5 ⇐⇒ |Q′P (XI) ∩
(
Q′E(XI)

)
⊕| >

α1

N1/4
when α2, β2, γ2 ≤

qe
N1/2

and α1, β1 ≤
qe
N1/4

KKK ∈ BadK6 ⇐⇒ |Q′−1
E (YA) \ T12| >

β1

N1/4

∨
|Q′−1

P (YA) \ (S12)⊕| >
β1

N1/4

when α2, β2, γ2 ≤
qe
N1/2

and α1, β1 ≤
qe
N1/4

KKK ∈ BadK7 ⇐⇒ |Q′−1
E (YA) ∩

(
Q′−1

P (YA)
)
⊕| >

β1

N1/4
when α2, β2, γ2 ≤

qe
N1/2

and α1, β1 ≤
qe
N1/4

KKK ∈ BadK8 ⇐⇒ |X0 \ T0| >
δ0
N1/4

∨
|X0 \ (T0)⊕| >

δ0
N1/4

7 In fact, as shown in proof sketch of Lemma 3, we will handle each subproblem with
an additional restriction.

19

∨
|Y0 \ S0| >

δ0
N1/4

∨
|Y0 \ (S0)⊕| >

δ0
N1/4

when α2, β2, γ2

≤ qe
N1/2

and α1, β1 ≤
qe
N1/4

KKK ∈ BadK9 ⇐⇒ |X0 ∩ Y0| >
δ0
N1/4

∨
|(X0)⊕ ∩ Y0| >

δ0
N1/4

when α2, β2, γ2

≤ qe
N1/2

and α1, β1 ≤
qe
N1/4

,

where Si (resp. Ti) are the sets of n-bit strings whose next-points (resp. previous-
points) are undefined when considering the subproblem related to Ei, for i ∈
{11, 12, 0}. 8

It should be pointed out that the conditions for “bad” keys are not designed
only for the “real” world. In fact, all discussion in Section 4.1 depends only on
the relation between permutation transcript τ̂ and KKK (which is dummy in the
“ideal” world), and is irrelevant to which world we consider.

4.2 Two Technical Lemmas

In this subsection, we give two technical lemmas to upper-bound the values
of ε1 and ε2 in Lemma 1, respectively. More specifically, Lemma 3 considers
arbitrarily an attainable permutation transcript τ̂ , and lower-bounds the value of
Pr[Tre = (τ̂ ,KKK)])/(Pr[Tid = (τ̂ ,KKK)] for any “good” keyKKK. This is the major task
in our formal proof. And Lemma 4 upper-bounds the value of Pr[KKK is bad for τ̂]
in “ideal” world, where τ̂ can be any attainable permutation transcript.

Lemma 3. Consider the 3KACSP construction, and fix arbitrarily an attainable
permutation transcript τ̂ = (QE ,QP), where |QE | = qe and |QP | = qp. Assume

that n ≥ 32, 6 ≤ t ≤ N1/2

8 , 28(qe)2

N ≤ qp ≤ qe
5 and 2qp + 5qe ≤ N

2 . Following the
Definition 8, if KKK is a good key for τ̂ , then we have the bound

Pr[Tre = (τ̂ ,KKK)]

Pr[Tid = (τ̂ ,KKK)]
≥ 1− 97t ·

(qe
N3/4

)
− 10t2 ·

(qe
N

)
− ζ(qe).

Outline of the Proof. From Lemma 2 and the equation (8), we know that

Pr[Tre = (τ̂ ,KKK)]

Pr[Tid = (τ̂ ,KKK)]
= (N)qe · Pr[P ′ ←$ Pn : E2 ∧ E11 ∧ E12 ∧ E0|P ′ ` Q′P]

≥ (N)qe · Pr[P ′ ←$ Pn : E2 ∧ Ẽ11 ∧ Ẽ12 ∧ Ẽ0|P ′ ` Q′P]

= (N)qe

× Pr[P ′ ←$ Pn : E2|P ′ ` Q′P] (9)

8 For completeness, we give directly the concrete definition here. A more natural way
is showing some intuition on “good” transcripts before such a rigorous definition.
The interested readers can refer to the Definitions 9 and 13 in full version [WYCD20]
for more interpretations about the properties of “bad”/“good” keys.

20

× Pr[P ′ ←$ Pn : Ẽ11|P ′ ` Q′P ∧ E2] (10)

× Pr[P ′ ←$ Pn : Ẽ12|P ′ ` Q′P ∧ E2 ∧ Ẽ11] (11)

× Pr[P ′ ←$ Pn : Ẽ0|P ′ ` Q′P ∧ E2 ∧ Ẽ11 ∧ Ẽ12], (12)

where Ẽ11 denotes the event E11

∧ |Core(ϕ11[P ′] ` Q′E11
)| ≥ (2− 1

N1/4)α1, Ẽ12

denotes the event E12

∧ |Core(ϕ12[P ′] ` Q′E12
)| ≥ (2− 1

N1/4)β1, and Ẽ0 denotes

the event E0

∧ |Core(ϕ0[P ′] ` Q′E0
)| ≥ (3− 2t

N1/2)δ0.
We will see that it is easy to calculate the value of (9) whenKKK is a “good” key

for τ̂ . Hence what’s left is to lower-bound the values of (10)–(12) for any “good”
transcript, respectively. Intrinsically, the 3 probabilities belong to the same type
of combinatorial problems (i.e., the Problem 1). That means we can view equa-
tions (10)–(12) as a 2-round, 2-round and 3-round instantiation of Problem 1,
respectively. Interestingly, we find that the techniques used in [CLL+18] can be
tailored to obtain desired values of the 2-round cases. Nonetheless, our 2-round
cases are more involved and there are some new non-trivial tasks should be
solved. Furthermore, the 3-round case is a whole new challenge, and is much
more difficult than the 2-round ones. To handle it, we introduce a general frame-
work in Section 5, where we also give the high-level technical route.

However, knowing how to solve (9)–(12) individually is still far from enough.
It is a very big challenge to combine all the lower bounds together to obtain
an appropriate result, since those subproblems affect each other by sharing the
same resource of permutation P . There are numerous technical specifics should
be handled, and we defer the formal proof of Lemma 3 to Section 6 of the full
version [WYCD20].

Lemma 4. Consider the “ideal” world, and fix arbitrarily an attainable permu-
tation transcript τ̂ = (QE ,QP), where |QE | = qe and |QP | = qp. Following the
Definition 8, if qp ≤ qe

5 , then it has

Pr[KKK ←$ I4n : KKK is bad for τ̂] ≤ 6 ·
(qe
N3/4

)
.

The formal proof of Lemma 4 is deferred to Section 7 of the full version [WYCD20].

4.3 Concluding the Proof of Theorem 1.

At this point,we are ready to complete the proof of Theorem 1. It can be inferred
that ε1 = 97t ·

(
qe
N3/4

)
+ 10t2 ·

(
qe
N

)
+ ζ(qe) and ε2 = 6 ·

(
qe
N3/4

)
from Lemma 3

and Lemma 4, respectively. Following the H coefficient method and Lemma 1,
we finally obtain

Advcca3KACSP(qe, qp) ≤ ε1 + ε2

≤ 97t ·
(qe
N3/4

)
+ 10t2 ·

(qe
N

)
+ ζ(qe) + 6 ·

(qe
N3/4

)

≤ 98t ·
(qe
N3/4

)
+ 10t2 ·

(qe
N

)
+ ζ(qe),

where we use the fact that t ≥ 6 for the last inequality.

21

5 A Type of Combinatorial Problem

It is known that the proof of Lemma 3 can be reduced to several subproblems
having a similar form. In fact, the analysis of rKACSP can also be reduced to
the same type of problems. That is a key perspective to simplify the task of
studying the security of rKACSP.

In this section, we will only study how to solve such type of problems individ-
ually, while the tricks of balancing all the subproblems are deferred to the formal
proof. More specifically, a general framework which can theoretically solve such
problems is proposed. For the reason of space, we here only instantiate it for the
3-round case and the full version [WYCD20] also gives the 2-round instance as
a warm-up.

First of all, the general definition of aforementioned problems is given as fol-
lows.

Problem 1 (Completing A Group of Target-Paths). Consider a group of (Q1, ϕ[·])-
target-paths, where Q1 is the set of source-destination pairs. Let Q2 denote the
set of fixed edges, and it has Q1 ⊥ Q2. Then, how to lower-bound the value of

p = Pr[P ←$ Pn : ϕ[P] ` Q1|P ` Q2]. (13)

It should be pointed out that each target-path in the group has the same
construction, and hence the same number of missing-edges. This number of
missing-edges is the principal character of Problem 1. In addition, we do not
care about the specific values of the source-destination pairs in Q1, as long as
they satisfy some “good” properties and Q1 ⊥ Q2. More importantly, our work
shows some evidence that, the problems with the same number of missing-edges
can be solved by similar techniques.

Compared to Chen et al’s ad-hoc work, our techniques stand in a higher
level and unearth something more intrinsic. In a very high level, our method
is reduced to constructing a certain number of shared-edges by assigning inner-
nodes.

Statement. For simplicity, we assume that all edges defined in this section
are well-defined and compatible from each other.

5.1 Counting Framework

In this subsection, we will study how to handle the Problem 1 with at least
2 missing-edges, since the case of 1 missing-edge is trivial. More specifically, a
counting framework will be proposed based on the notions of Core (see Definition
3) and shared-edge (see Definition 5). Before that, we will give some intuition
about the framework.

Intuition. Let U and V denote the domain and range of Q2, respectively.
Then, the sets S = In \ U and T = In \ V denote the sets of the strings whose

22

next-points and previous-point are undefined, respectively. In fact, we will only
use the edges from S to T to complete all the target-paths. Namely, the Cores
we construct must be strongly-disjoint with Q2. The reason why we can still
construct enough Cores is that, the number of known edges (i.e., |Q2|) is rela-
tively rather small. For example, |QP | = O(N3/4) is far more smaller than N
(i.e., roughly 1 out of N1/4) when n is big enough.

Let PC = {P ∈ Pn : ϕ[P] ` Q1 ∧ P ` Q2} denote the set of all correct per-

mutations extending Q2, and C = {C̃ : C̃ ⊥ Q2

∧ ∃ P ∈ PC s.t. C̃ =
Core(ϕ[P] ` Q1)} denote the set of all possible Cores strongly-disjoint with
Q2. From the definition, we know that each correct permutation P ∈ PC must
determine a Core(ϕ[P] ` Q1). On the other side, for a specific C̃ ∈ C, there

exist exactly (N − |Q2| − |C̃|)! different correct permutations P ∈ PC such that

Core(ϕ[P] ` Q1) = C̃. That is because such P must contain the |Q2| edges fixed

in Q2 and the |C̃| edges fixed in C̃, while the rest of edges can be defined freely.

We can know that the above (|Q2|+ |C̃|) edges are distinct and have no conflict,

since it has C̃ ⊥ Q2. Additionally, it is easy to know that the size of the sample
space is equal to (N − |Q2|)!, thus we have

(13) =
|PC |

(N − |Q2|)!

≥
∑
C̃∈C

∣∣{P ∈ PC : Core(ϕ[P] ` Q1) = C̃}
∣∣

(N − |Q2|)!

=

∑
C̃∈C(N − |Q2| − |C̃|)!

(N − |Q2|)!

=

∑
m

∑
C̃∈C:|C̃|=m(N − |Q2| −m)!

(N − |Q2|)!

=
∑

m

∣∣∣
{
C̃ ∈ C : |C̃| = m

}∣∣∣
(N − |Q2|)m

. (14)

Intrinsically, we classify the correct permutations according to the cardinality
of the corresponding Core. In fact, we only interest in the Cores strongly-disjoint
with Q2, since they are easier to be counted. From equation (14), it is known
that the value of p can be lower-bounded, if we can count the number of Cores
with a specific cardinality and also know how to sum all the related terms up.

The Counting Framework. Based on the above intuition, a 4-step counting
framework is proposed in Fig.4. Roughly, the first 3 steps aim to lower-bound
the number of Cores with a specific cardinality, and the last step will handle the
calculation of a summation. As shown in Fig.4, our first task is to instantiate
the Problem 1 with specific parameters (i.e., Step 1). Then, we should propose
an appropriate assigning strategy for constructing a specific number of shared-
edges, and hence obtain the Cores with the specific cardinality (i.e., Step 2). Also,
we should count the number of possible assignments which can be constructed

23

from the above strategy (i.e., Step 3). Thus, we actually establish a lower bound
for the number of Cores with a specific cardinality. At last, we should calculate
a summation to obtain the final result (i.e., Step 4).

Step 1: Modeling the problem


Determine the group of target-paths

Determine the set of fixed edges

Step 2: Constructing Cores


Study the method(s) for constructing 1 shared-edge

Propose an assigning strategy for multiple shared-edges

Step 3: Counting Cores


Study the underlying samplings

Determine each range of candidates (RoC)

Step 4: Calculating


Use an appropriate tail inequality

Use an appropriate combinatorial inequality

Fig. 4. Illustration of the Counting Framework

5.2 The Key Subproblem in 3KACSP

In this subsection, we will instantiate the counting framework for the 3-round
case to show how it works. For brevity, we here only give the high-level technical
route, and all the details will be completed in the formal proof. First of all, we
abstract the 3-round subproblem in 3KACSP as follows.

Problem 2 (A Problem with 3 Missing-Edges). Let QE = {(x1, y1), . . . , (xq, yq)}
be the set of source-destination pairs of ϕ2[·]-target-paths, and QP = {(u1, v1),
. . . , (up, vp)} be the set of known edges, where ϕ2[P] = P ◦P⊕◦P and QP ⊥ QE .
Then, how to lower-bound the value of

p2 = Pr[P ←$ Pn : ϕ2[P] ` QE |P ` QP]. (15)

Modeling The Problem. Following the counting framework in Fig.4, our first
task is to make clear the group of target-paths (including the construction and
source-destination pairs) and the set of fixed edges. Obviously, Problem 2 is
exactly the Problem 1 instantiated by ϕ[·] = ϕ2[·], Q1 = QE and Q2 = QP .
We denote X and Y as the domain and range of QE , respectively. And let
S = In \ {u1, . . . , up} and T = In \ {v1, . . . , vp} denote the sets of strings whose
next-points and previous-points are undefined, respectively. Then, it has |S| =
|T | = N − p.

As shown in (16), there are 2 inner-nodes (i.e., ∗i,1 and ∗i,2) to be assigned
in each (QE , ϕ2[·])-target-path. We refer to the 2 inner-nodes in such a target-
path as 1th-inner-node and 2nd-inner-node, respectively. Since a well-defined

24

assignment of all the inner-nodes (i.e., the tuple of (∗1,1, ∗1,2, . . . , ∗q,1, ∗q,2)) is
equivalent to a Core(ϕ2[·] ` QE), we will not distinguish them from now on.
Moreover, we will count the number of assignments of all the inner-nodes, to
lower-bound the value of (15).

(QE , ϕ2[·])-target-paths





〈x1
P−→ ∗1,1, ∗1,1 P−→ ∗1,2, (∗1,2)⊕

P−→ y1〉
. . .

〈xq P−→ ∗q,1, ∗q,1 P−→ ∗q,2, (∗q,2)⊕
P−→ yq〉

(16)

Constructing Cores. In essence, constructing Cores with a specific cardinality
is equivalent to constructing a specific number of shared-edges. Our goal is to
construct Cores with 3q − k − h edges, where k and h are variables of positive
integers. It means that k + h shared-edges (each of them is used exactly in
2 paths) should be constructed. Naturally, we study 2 assigning methods for
constructing such shared-edges at first, and then use them to save k edges and
h edges, respectively. In addition, we also need to know how to construct the
edges, which are used exclusively in only 1 target-path (i.e., the ones are not
shared-edges).

Definition 9 (Exclusive-Element). We say an inner-node is assigned by an
exclusive-element, if it not creates any new shared-edge at this moment. In this
paper, we always use a notation related to w (e.g., wi) to denote an exclusive-
element.

Consider the (QE , ϕ2[·])-target-paths in (16), we will only focus on the shared-
edge involved exactly in 2 paths (i.e., each such shared-edge will save 1 edge).
It is easy to verify that a shared-edge is established once a 1th-inner-node is
assigned by an element from X or Y . Similarly, a shared-edge is also established
once a 2nd-inner-node is assigned by an element from X⊕ or Y . Therefore, for
constructing a shared-edge, we choose a target-path at first, and then assign a
proper value to its 1th-inner-node or 2nd-inner-node. In either case, the chosen
value determines the other path sharing an edge with the former one. To dis-
tinguish them, we refer to the later determined target-path as a negative-path
(denoted as path−), since it is determined passively by the assigning. Accord-
ingly, we call the former path as a positive-path (denoted as path+).

Next, we will further interpret the above process. Since both of the 2 inner-
nodes can be used to establish shared-edges, we discuss the 2 cases separately. At
first, we will show how to construct shared-edges by assigning 1th-inner-nodes.

I 1th1th1th-Inner-Node. In fact, we will construct exactly 1 shared-edge for each
path+. That is, the 2nd-inner-node of a path+ must be assigned by an exclusive-
element. According to the position of the shared-edge(s) in path−, there are 3
cases as follows.

- Case 1: Fix a target-path from x to y as the path+ at first. If we assign ẍ ∈ X
as its 1th-inner-node (i.e., the one with box), then the target-path from ẍ to

25

ÿ becomes the corresponding path− whose first edge (i.e., the bold one) is
the shared-edge. That is, the 1th-inner-node (i.e., the underline one) in path−

must be the same exclusive-element (i.e., w) as the 2nd-inner-node in path+.
Additionally, if ÿ is not assigned to the 1th- nor 2nd- inner-node of any target-
path, then we can assign an exclusive-element (i.e., w̃) to the 2nd-inner-node
of path−. As a result, we obtain a Type1a sharing-gadget (as shown in (17))
containing 2 paths, 1 shared-edge and 2 exclusive-elements. And we refer to
the 2 paths as a Type1a-path+ and a Type1a-path−, respectively.

Type1a

sharing-gadget




〈x P−→ ẍ , ẍ

P−→ w, w⊕
P−→ y〉 (path+)

〈ẍ P−→ w, w
P−→ w̃, w̃⊕

P−→ ÿ〉 (path−)
(17)

- Case 2: Fix a target-path from x to y as the path+ at first. If we assign ÿ ∈ Y
as its 1th-inner-node (i.e., the one with box), then the target-path from ẍ to
ÿ becomes the corresponding path− whose third edge (i.e., the bold one) is
the shared-edge. That is, the 2th-inner-node (i.e., the underline one) in path−

must be assigned by x⊕. Additionally, if ẍ is not assigned to the 1th-inner-node
of any target-path and ẍ⊕ is not assigned to the 2nd-inner-node of any target-
path, then we can assign an exclusive-element (i.e., w̃) to the 1th-inner-node
of path−. As a result, we obtain a Type1b sharing-gadget (as shown in (18))
containing 2 paths, 1 shared-edge and 2 exclusive-elements. And we refer to
the 2 paths as a Type1b-path+ and a Type1b-path−, respectively.

Type1b

sharing-gadget




〈x P−→ ÿ , ÿ

P−→ w, w⊕
P−→ y〉 (path+)

〈ẍ P−→ w̃, w̃
P−→ x⊕, x

P−→ ÿ〉 (path−)
(18)

- Case 3: Interestingly, a path− can share edges with 2 different paths+ simul-
taneously. Fix the target-path from x1 to y1 as path+

1 , and fix the target-
path from x2 to y2 as path+

2 . If we assign ẍ (resp. ÿ) as the 1th-inner-node
of path+

1 (resp. path+
2) (i.e., the ones with box), then the target-path from

ẍ to ÿ becomes the path− of path+
1 and path+

2 simultaneously. That is, the
1th-inner-node in path− must be the same exclusive-element (i.e., w) as the
2nd-inner-node in path+

1 , and the 2nd-inner-node in path− must be assigned
by (x2)⊕. As a result, we obtain a Type1c sharing-gadget (as shown in (19))
containing 3 paths, 2 shared-edge and 2 exclusive-elements. And we refer to the
3 paths as a Type1c-path+

1 , a Type1c-path+
2 and a Type1c-path−, respectively.

Type1c

sharing-gadget





〈x1
P−→ ẍ , ẍ

P−→ w, w⊕
P−→ y1〉 (path+

1)

〈x2
P−→ ÿ , ÿ

P−→ w̃, w̃⊕
P−→ y2〉 (path+

2)

〈ẍ P−→ w, w
P−→ (x2)⊕, x2

P−→ ÿ〉 (path−)

(19)

At this point, we have known how to construct a shared-edge for a path+ by
assigning its 1th-inner-node. Naturally, we can establish k such shared-edges if k

26

paths+ are considered. It is easy to verify that the following Method 1 actually
establishes k shared-edges for the involved paths+ and paths−.9

Method 1 for constructing kkk shared-edges:

−Step 1 Choose k proper target-paths as the paths+, and then choose
k proper elements from X ∪ Y as their 1th-inner-nodes, respec-
tively. Namely, we choose a Type1a/Type1b/Type1c-path− for
each of the k paths+.

−Step 2 For the paths+ and paths− determined in Step 1, we assign in
turn each undefined inner-node with an exclusive-element.

We can see that Method 1 allows the paths− to be a mixture of Type1a-,
Type1b- and Type1c- paths−. This is a key point to obtain an appropriate lower
bound in our proof, since it enlarge the number of candidates for paths− (i.e.,
roughly double the one involved in 2-round case10). It should be pointed out that
the number of paths− is determined by the 1th-inner-nodes of the k paths+, and
is not necessarily equal to k. In a sense, the k paths+ with their 1th-inner-nodes
determine almost “everything” about the involved paths+ and paths−.

I 2nd2nd2nd-Inner-Node. It is similar to construct a shared-edge by assigning the
2nd-inner-node of a path+. We will also construct exactly 1 shared-edge for each
path+. That is, the 1th-inner-node of a path+ must be assigned by an exclusive-
element. According to the position of the shared-edge(s) in path−, there are also
3 cases. For reason of the space, we omit the explanation here, and defer the
details to the corresponding part of full version [WYCD20].

- Case 1:

Type2a

sharing-gadget




〈x P−→ w, w

P−→ ẍ⊕ , ẍ
P−→ y〉 (path+)

〈ẍ P−→ y, y
P−→ w̃, w̃⊕

P−→ ÿ〉 (path−)
(20)

- Case 2:

Type2b

sharing-gadget




〈x P−→ w, w

P−→ ÿ , ÿ⊕
P−→ y〉 (path+)

〈ẍ P−→ w̃, w̃
P−→ w⊕, w

P−→ ÿ〉 (path−)
(21)

- Case 3:

Type2c

sharing-gadget





〈x1
P−→ w, w

P−→ ẍ⊕ , ẍ
P−→ y1〉 (path+

1)

〈x2
P−→ w̃, w̃

P−→ ÿ , (ÿ)⊕
P−→ y2〉 (path+

2)

〈ẍ P−→ y1, y1
P−→ w̃⊕, w̃

P−→ ÿ〉 (path−)

(22)

9 In brief, Step 1 establishes k shared-edges, while Step 2 produces no shared-edge.
10 More details can be found in the corresponding part of the full version [WYCD20],

in which we also give the assigning strategy of 2-round case.

27

At this point, we have known how to construct a shared-edge for a path+ by
assigning its 2nd-inner-node. Naturally, we can establish h such shared-edges if h
paths+ are considered. It is easy to verify that the following Method 2 actually
establishes h shared-edges for the involved paths+ and paths−.

Method 2 for constructing hhh shared-edges:

−Step 1 Choose h proper target-paths as the paths+, and then choose h
proper elements from X⊕ ∪ Y as their 2nd-inner-nodes, respec-
tively. Namely, we choose a Type2a/Type2b/Type2c-path− for
each of the h paths+.

−Step 2 For the paths+ and paths− determined in Step 1, we assign in
turn each undefined inner-node with an exclusive-element.

Similarly, the number of paths− is determined by the 2nd-inner-nodes of the
h paths+, and is not necessarily equal to h. In a sense, the h paths+ with their
2nd-inner-nodes determine almost “everything” about the involved paths+ and
paths−.

Combing the Method 1 and Method 2, we propose the assigning strategy for
constructing a Core with 3q− k−h edges. As shown in Fig.5, Step 1 (resp. Step
2) establishes k (resp. h) shared-edges, and Step 3 produces no shared-edge.
In brief, we fix k paths+ and their 1th-inner-nodes firstly, then other h paths+

and their 2nd-inner-nodes. At last, we assign all the undefined inner-nodes with
proper exclusive-elements.

Assigning Strategy:

−Step 1 Choose k proper target-paths as the paths+, and then choose k proper
elements from X ∪ Y as their 1th-inner-nodes, respectively.

−Step 2 Apart from the paths involved in Step 1, we choose h proper target-
paths as the paths+, and then choose h proper elements from X⊕∪Y
as their 2nd-inner-nodes, respectively.

−Step 3 Assign in turn each undefined inner-node with an exclusive-element.

Fig. 5. Assigning Strategy for Constructing a Core(ϕ2[·] ` QE) with 3q − k − h Edges

Counting Cores. Intrinsically, the assigning strategy consists of several sam-
plings such as the paths+, paths−, and so on. To lower-bound the number of
Cores constructed by Fig.5, we should know how many elements can be chosen
for each sampling. For convenience, we introduce the notation RoC to denote
the range of candidates for a sampling.

Notation 5 (Range of Candidates) Let A denote a finite set to be sampled,
then we write RoC(A) as a set of elements which can be chosen into A.

28

That is, we should determine the size of each RoC to count the number of
possible assignments. The analysis is rather cumbersome, and we defer it to the
formal proof. Here, we can just assume that the lower bound of the number of
Cores with 3q − k − h edges is given as follows.

#Cores3q−k−h ≥ LB(k, h), (23)

where #Cores3q−k−h denotes the number of Cores with 3q − k − h edges, and
LB(k, h) is a function of k and h.

Calculating the lower bound. At this point, we are ready to calculate a
lower bound of (15). Since |S| = |T | = N − p, and from the equations (14) and
(23), we finally obtain that

p2 ≥
∑

k,h

LB(k, h)

(N − p)3q−k−h

≥
∑

0≤k≤M
0≤h≤M

LB(k, h)

(N − p)3q−k−h

=
∑

0≤k≤M
0≤h≤M

MHypN,a,b,c(k, h)

︸ ︷︷ ︸
Use Lemma 5 to obtain
a proper lower bound

· (Major Terms)︸ ︷︷ ︸
Use Lemma 6 to obtain

a proper lower bound
independent of k and h

· (Minor Terms)︸ ︷︷ ︸
Obtain directly a

proper lower bound
independent of k and h

,

where MHypN,a,b,c is a multivariate hypergeometric distribution random vari-
able. It can be seen that a tail inequality (i.e., Lemma 5) and a combinatorial
inequality (i.e., Lemma 6) will be used during the calculation.

Lemma 5 (Chebyshev’s Inequality). Let X ∼ HypN,a,b be a hypergeometric

distribution random variable, that is, Pr[X = k] =
(b
k)(

N−b
a−k)

(N
a)

= (a)k(b)k(N−b)a−k

k!(N)a
.

Then we have

Pr[X > λ] ≤ ab(N − a)(N − b)
(λN − ab)2 (N − 1)

. (24)

Lemma 6. Let N, a, b, c, d be positive integers such that c+d = 2b and 2a+2b ≤
N . Then

(N)a (N − 2b)a
(N − c)a (N − d)a

× (N − b
2)a

(N − b)a
≥ 1− 8ab3

N3
. (25)

6 Conclusion and Discussion

The practical block-ciphers often iterate the same round function and use a
key-schedule algorithm to produce round-keys, while there are a few theoretical
results supporting such designing philosophy. Particularly, only a little provable-
security work considers the dependence between components, since it always
becomes very complicated.

29

In this paper, we study a family of KAC construction with dependence, and
finally prove that 3KACSP construction has the same security level as the classic
3KAC construction. It means that the randomness of one random permutation
and a random 4n-bit string is enough to make the 3KAC construction achieve
the ideal security. To our knowledge, it is the first time to obtain a tight bound
about an incompletely-independent KAC construction with more than 2 rounds.

Besides the tight security analysis of 3KACSP, our most valuable contribu-
tions are the insights into the general rKACSP. Before our work, there is no
proof method handling the knotty dependence in a high level. Compared to
Chen et al.’s techniques, ours are more general and highly modular so that they
can be easily generalized. More concretely, we abstract a type of combinatorial
problems capturing the intrinsic randomness of rKACSP construction. To solve
such problems, we also propose a general counting framework and successfully
apply it to the cases with 2 and 3 missing-edges. Following the proof ideas in
this work, we give some intuition on the analysis of rKACSP.

Intuition on rKACSP. Intuitively, when handling a “good” transcript, the
paths between QE can be classified into r groups according to the number of
fixed edges. Similar to 3KACSP, we denote the Group-i as the group of paths
whose i edges are fixed by QP , where 0 ≤ i ≤ r−1. The subproblem of complet-
ing the paths in Group-i can be instantiated by Problem 1 with r − i missing-
edges. Inspired by the analysis of 3KACSP, the tricks used in (r− i)KACSP can
be tailored to solve the corresponding subproblems related to Group-i, where
1 ≤ i ≤ r−2. By induction, what’s left is only to solve a single r-round instance
of Problem 1. Our counting framework, as well as the notions of shared-edges
and assigning strategy can still work, but the circumstances of analysis would
be very complicated.

To our conjecture, rKACSP construction is also Θ(2
r

r+1n)-secure in the ran-
dom permutation model, which is a well-known result for classic rKAC construc-
tion.

Conjecture 1. Consider the rKACSP construction (see Eq.(1)), if P is a ran-
dom permutation, as well as the round keys KKK = (k0, . . . , kr) are random and
independent from each other, then rKACSP is Θ

(
2

r
r+1n

)
-secure in the random

permutation model.

In fact, the bottleneck of pushing our work to higher-round case is simply the
computational power. Following our ideas, the technical roadmap for analyzing
rKACSP is rather clear, and one can solve it given sufficient energy. Honestly, we
consider that the complexity of proof specifics will increase very fast (maybe ex-
ponentially) so that the proof may not be explicitly written out, but we strongly
believe that Conjecture 1 is intrinsically correct. If the conjecture is true, then
it is exactly a powerful support for the aforementioned broadly-used designing
philosophy. Moreover, the proof complexity may just reveal the reason why there
often exist gaps between the practical and theoretical results.

Open Problems. Currently, our results only apply when the round keys are

30

random and independent from each other. Thus, it is unknown that whether we
can reduce the randomness of round keys without a significant loss of security.
Another challenging open problem is of course to generalize our results to larger
number of rounds. In addition, the new representation and counting framework
are rather generic, therefore we hope that they can be used in more scenarios.

Acknowledgements. This work has been submitted to several conferences suc-
cessively, we would like to thank all the anonymous reviewers for their valuable
comments which helped to improve the presentation of this paper.

This work was supported in part by the National Natural Science Founda-
tion of China (Grant No.61632012 and 61672239), in part by the Peng Cheng
Laboratory Project of Guangdong Province (Grant No. PCL2018KP004), and
in part by “the Fundamental Research Funds for the Central Universities”.

References

BKL+07. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In Cryptographic Hardware
and Embedded Systems - CHES 2007, 9th International Workshop, Vienna,
Austria, September 10-13, 2007, Proceedings, pages 450–466, 2007. https:
//doi.org/10.1007/978-3-540-74735-2 31.

BKL+12. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, François-Xavier
Standaert, John P. Steinberger, and Elmar Tischhauser. Key-alternating
ciphers in a provable setting: Encryption using a small number of pub-
lic permutations - (extended abstract). In Advances in Cryptology - EU-
ROCRYPT 2012 - 31st Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Cambridge, UK, April
15-19, 2012. Proceedings, pages 45–62, 2012. https://doi.org/10.1007/
978-3-642-29011-4 5.

CLL+14. Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and John P.
Steinberger. Minimizing the two-round even-mansour cipher. In Advances
in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, pages 39–56,
2014. https://doi.org/10.1007/978-3-662-44371-2 3.

CLL+18. Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and John P.
Steinberger. Minimizing the two-round even-mansour cipher. J. Cryptology,
31(4):1064–1119, 2018. https://doi.org/10.1007/s00145-018-9295-y.

CS14. Shan Chen and John P. Steinberger. Tight security bounds for key-
alternating ciphers. In Advances in Cryptology - EUROCRYPT 2014 - 33rd
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceed-
ings, pages 327–350, 2014. https://doi.org/10.1007/978-3-642-55220-5 19.

CS18. Benôıt Cogliati and Yannick Seurin. Analysis of the single-permutation en-
crypted davies-meyer construction. Des. Codes Cryptography, 86(12):2703–
2723, 2018. https://doi.org/10.1007/s10623-018-0470-9.

Dae91. Joan Daemen. Limitations of the even-mansour construction. In Advances
in Cryptology - ASIACRYPT ’91, International Conference on the Theory

31

https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-642-29011-4_5
https://doi.org/10.1007/978-3-642-29011-4_5
https://doi.org/10.1007/978-3-662-44371-2_3
https://doi.org/10.1007/s00145-018-9295-y
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/s10623-018-0470-9

and Applications of Cryptology, Fujiyoshida, Japan, November 11-14, 1991,
Proceedings, pages 495–498, 1991. https://doi.org/10.1007/3-540-57332-1
46.

DKS12. Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in cryptog-
raphy: The even-mansour scheme revisited. In Advances in Cryptology -
EUROCRYPT 2012 - 31st Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Cambridge, UK, April
15-19, 2012. Proceedings, pages 336–354, 2012. https://doi.org/10.1007/
978-3-642-29011-4 21.

DR02. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptography.
Springer, 2002. https://doi.org/10.1007/978-3-662-04722-4.

DSST17. Yuanxi Dai, Yannick Seurin, John P. Steinberger, and Aishwarya Thiru-
vengadam. Indifferentiability of iterated even-mansour ciphers with non-
idealized key-schedules: Five rounds are necessary and sufficient. In
Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017,
Proceedings, Part III, pages 524–555, 2017. https://doi.org/10.1007/
978-3-319-63697-9 18.

EM97. Shimon Even and Yishay Mansour. A construction of a cipher from a single
pseudorandom permutation. J. Cryptology, 10(3):151–162, 1997. https:
//doi.org/10.1007/s001459900025.

GPPR11. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw.
The LED block cipher. In Cryptographic Hardware and Embedded Systems
- CHES 2011 - 13th International Workshop, Nara, Japan, September 28
- October 1, 2011. Proceedings, pages 326–341, 2011. https://doi.org/10.
1007/978-3-642-23951-9 22.

HT16. Viet Tung Hoang and Stefano Tessaro. Key-alternating ciphers and key-
length extension: Exact bounds and multi-user security. In Advances in
Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part
I, pages 3–32, 2016. https://doi.org/10.1007/978-3-662-53018-4 1.

LPS12. Rodolphe Lampe, Jacques Patarin, and Yannick Seurin. An asymptotically
tight security analysis of the iterated even-mansour cipher. In Advances in
Cryptology - ASIACRYPT 2012 - 18th International Conference on the
Theory and Application of Cryptology and Information Security, Beijing,
China, December 2-6, 2012. Proceedings, pages 278–295, 2012. https://doi.
org/10.1007/978-3-642-34961-4 18.

Pat08. Jacques Patarin. The ”coefficients h” technique. In Selected Areas in
Cryptography, 15th International Workshop, SAC 2008, Sackville, New
Brunswick, Canada, August 14-15, Revised Selected Papers, pages 328–345,
2008. https://doi.org/10.1007/978-3-642-04159-4 21.

Ste12. John P. Steinberger. Improved security bounds for key-alternating ciphers
via hellinger distance. IACR Cryptology ePrint Archive, 2012:481, 2012.
http://eprint.iacr.org/2012/481.

WYCD20. Yusai Wu, Liqing Yu, Zhenfu Cao, and Xiaolei Dong. Tight security anal-
ysis of 3-round key-alternating cipher with a single permutation. Cryptol-
ogy ePrint Archive, Report 2020/1073, 2020. https://eprint.iacr.org/2020/
1073.

32

https://doi.org/10.1007/3-540-57332-1_46
https://doi.org/10.1007/3-540-57332-1_46
https://doi.org/10.1007/978-3-642-29011-4_21
https://doi.org/10.1007/978-3-642-29011-4_21
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-319-63697-9_18
https://doi.org/10.1007/978-3-319-63697-9_18
https://doi.org/10.1007/s001459900025
https://doi.org/10.1007/s001459900025
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-642-34961-4_18
https://doi.org/10.1007/978-3-642-34961-4_18
https://doi.org/10.1007/978-3-642-04159-4_21
http://eprint.iacr.org/2012/481
https://eprint.iacr.org/2020/1073
https://eprint.iacr.org/2020/1073

	Tight Security Analysis of 3-Round Key-Alternating Cipher with A Single Permutation

