
An Algebraic Formulation of the Division
Property: Revisiting Degree Evaluations, Cube

Attacks, and Key-Independent Sums ⋆

Kai Hu1,4, Siwei Sun2,5, Meiqin Wang1,4(�), and Qingju Wang3

1 School of Cyber Science and Technology, Shandong University, Qingdao, Shandong,
China. hukai@mail.sdu.edu.cn,mqwang@sdu.edu.cn

2 State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China. siweisun.isaac@gmail.com

3 SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
qingju.wang@uni.lu

4 Key Laboratory of Cryptologic Technology and Information Security, Ministry of
Education, Shandong University, Qingdao, Shandong, China

5 School of Cyber Security, University of Chinese Academy of Sciences, Beijing,
China.

Abstract. Since it was proposed in 2015 as a generalization of inte-
gral properties, the division property has evolved into a powerful tool
for probing the structures of Boolean functions whose algebraic normal
forms are not available. We capture the most essential elements for the
detection of division properties from a pure algebraic perspective, propos-
ing a technique named as monomial prediction, which can be employed
to determine the presence or absence of a monomial in any product of
the coordinate functions of a vectorial Boolean function f by counting
the number of the so-called monomial trails across a sequence of simpler
functions whose composition is f . Under the framework of the mono-
mial prediction, we formally prove that most algorithms for detecting
division properties in literature raise no false alarms but may miss. We
also establish the equivalence between the monomial prediction and the
three-subset bit-based division property without unknown subset pre-
sented at EUROCRYPT 2020, and show that these two techniques are
perfectly accurate.
The monomial prediction technique can be regarded as a purification
of the definitions of the division properties without resorting to exter-
nal multisets. This algebraic formulation gives more insights into division
properties and inspires new search strategies. With the monomial predic-
tion, we obtain the exact algebraic degrees of Trivium up to 834 rounds
for the first time. In the context of cube attacks, we are able to explore a
larger search space in limited time and recover the exact algebraic nor-
mal forms of complex superpolies with the help of a divide-and-conquer
strategy. As a result, we identify more cubes with smaller dimensions,
leading to improvements of some near-optimal attacks against 840-, 841-
and 842-round Trivium.

⋆ Due to page limits, all appendixes and some tables of this paper are provided in our
full version [11].

Keywords: Division Property, Monomial Prediction, Detection Algorithm, Al-
gebraic Degree, Cube Attack, Trivium

1 Introduction

The division property [25] was first proposed by Todo at EUROCRYPT 2015
to uncover and exploit the spectrum of properties hidden between the two ex-
tremes — the ALL and BLANCE properties in the traditional integral crypt-
analysis [6,16] targeting word-oriented primitives. Compared with the traditional
integral cryptanalysis, the division property presents a more refined way for
cryptanalysts to identify balanced output bits, where the algebraic degree infor-
mation of the local components of the target is fully utilized. Its powerfulness and
potential were undoubtedly demonstrated by the break of the full Misty1 [24].
Subsequently, by considering the division property at the bit level, Todo and
Morii [27] introduced the bit-based division property to find balanced bits of
the round-reduced Simon. Moreover, to capture also constant output bits and
some cancellation characteristics ignored by the conventional bit-based division
property, the so-called three-subset bit-based division property was proposed in
the same work [27].

This seemingly natural and obvious migration from words to bits (1-bit word)
not only makes division properties applicable to bit-oriented designs, but also
reveals the intimate relationship between division properties and the algebraic
normal forms (ANF) of the target [26], well-beyond merely the algebraic de-
gree. This relationship hints at how the division property can be employed to
probe the ANF of a complex Boolean function whose explicit formula is typi-
cally not available. As expected, the division property was shown to be useful
in (partially) determining the algebraic structures of the superpolies arising in
cube attacks [26,29,30,9]. Essentially, every cryptanalysis attempt based on the
division property employs some procedures which we call detection algorithms.

Detection algorithms. Given a Boolean function f , a detection algorithm for a
certain property P is a procedure used to determine whether P holds for f . The
property P can be as simple as “f is a constant” or as complicated as “the sum
of f over all possible values of certain variables is zero regardless of the values
of some other variables”. Given a Boolean function f and a detection algorithm
for P, four possibilities are in order:

• Hit: P holds and the output of the algorithm is positive;
• Miss: P holds but the output of the algorithm is negative;
• False alarm: P does not hold but the output of the algorithm is positive;
• Correct reject: P does not hold and the output of the algorithm is negative.

At this point, we remind the readers that a lot of research that has been done on
division property so far is about the construction of detection algorithms, loosely
speaking, for the balance (or more generally the key-independent constant) prop-
erty, or more essentially, the absence of certain monomials. A no-false-alarm al-
gorithm can be employed by an attacker (e.g., to find balanced output bits),

2

while a no-miss algorithm can be employed by a designer in security proofs. Our
ultimate goal is to devise a perfect and efficient detection algorithm that never
misses and never raises false alarms.

Our contributions. Capturing the algebraic essentials of many attempts to
make the detection of division properties more accurate, we propose a new tech-
nique called monomial prediction. This is a perfect detection algorithm for de-
tecting the presence and absence of any monomial xu in the product yv of any
output bits of a vectorial Boolean function y = f(x) by counting the num-
ber of the so-called monomial trails connecting xu and yv across a sequence
of simpler vectorial Boolean functions whose composition is f . We then estab-
lish an equivalence between the monomial prediction approach and the recently
proposed three-subset bit-based division property without unknown subset at
EUROCRYPT 2020 [9]. We also show that all the predecessors of [9] (except
the lazy propagation method [27]) can be categorized as no-false-alarm detection
algorithms.

The monomial prediction technique can be regarded as a new language for
describing the division properties. The original language for the division prop-
erties is somehow indirect and vague since a property (the division property)
of an object (a vectorial Boolean function) is defined via its effects on exter-
nal objects (multisets) rather than via its own intrinsic natures. The monomial
prediction delivers a definition of division properties fully getting rid of the ex-
ternal multisets. This new treatment not only gives us a unified view on the
two-subset bit-based division property, three-subset bit-based division property,
and three-subset division property without unknown subset, but also naturally
leads to new search strategies. We revisit several well-known applications of the
division property with the monomial prediction approach, and identify some
improvements over the state-of-the-art.

By showing the presence of monomials with a certain degree and the absence
of monomials with larger degrees, we obtain the exact algebraic degree of the
output bits of Trivium up to 834 rounds for the first time. Our results show
that the algebraic degree of 834-round Trivium is only 78, which is much lower
than the previous estimations by Liu at CRYPTO 2017 [18], where the upper
bound of 793-round Trivium has already reached 79. Along the way, we observe
and report on an interesting and somewhat counter-intuitive phenomenon: The
algebraic degree of Trivium can drop as the number of rounds grows. For ex-
ample, the degree of 807-round Trivium has been proven to achieve 71, but the
degree of the next round drops to 70.

For a Boolean function f , we can check the presence and absence of all mono-
mials that are divisible by the cube term to recover the superpoly in the cube
attack. With the help of a divide-and-conquer strategy, our algorithm achieves
high efficiency and scales well, making it possible to test many cubes in a limited
time. As a result, we are able to identify some cubes with smaller dimensions for
Trivium than the previous best works, for instance, in [8,9] all the cubes cho-
sen for 840-, 841- and 842-round Trivium are of dimension 78, which take 278

3

encryptions of Trivium to recover one bit information of the key, and take 279

Trivium encryption to recover the remaining key bits by exhaustive search. Thus
the total complexity of the key-recovery attack is estimated as 278+279 ≈ 279.6.
Using our technique, for 840-round Trivium, we can recover superpolies with
three different cubes that have dimension of only 75, which reduces the com-
plexity for recovering the key to 277.8 encryption. For 841-round Trivium, we
recover two superpolies with two different cubes of dimension 76, which reduces
the complexity for recovering the full key to 278.6 encryption. For 842-round
Trivium, with two different cubes of dimension 76 together with their super-
polies, we can recover the full key with time complexity 278.6. We summarize
our cube attacks on Trivium in Table 1.

Table 1: The complexity of cube attacks on 840-, 841- and 842-round Trivium mea-
sured by the encryption of Trivium. #Cube means the number of cubes used in the
offline phase of the cube attack.

#Round Offline Phase Online Phase Total Time Reference
#Cube Dimension #Key

840 1 78 1 279 279.6 [9]
3 75, 75, 75 3 277 277.8 Section 5.2

841 1 78 1 279 279.6 [9]
2 76, 76 2 278 278.6 Section 5.2

842 1 78 1 279 279.6 [8]
2 76, 76 2 278 278.6 Section 5.2

Remark. Before going any further, we would like to briefly discuss the rela-
tionship between the monomial prediction and division properties. When used
as detection algorithms for the key-independent sum property, both monomial
prediction and the three-subset bit-based division property without unknown
subsets are perfect. Originally, the division properties are defined over the mul-
tisets that the target cipher acts on, while the monomial prediction technique is
fully formulated via the algebraic structure of the cipher itself. Our philosophy is
that the effect of a cipher on multisets should be regarded as the manifestations
of the cipher’s intrinsic property, which should not be mixed with the definition
of this property. A unified view naturally emerges with the monomial prediction
technique for all previous division properties, since all of them are the manifesta-
tions of the properties of the ANFs of the target cipher. Finally, we would like to
mention that Hebborn et al. [10] show that the three-subset bit-based division
property without unknown subsets allows to decide whether or not a specific
monomial appears in the ANF with the help of the parity set proposed in [2].
So we say that the monomial prediction and the division properties achieve the
same goal through different routes.

Organization. In Section 2, we introduce necessary notations and preliminar-
ies. The principle of the monomial prediction approach is established in Sec-

4

tion 3. This leads to the applications to the degree evaluation in Section 4 and
to cube attacks in Section 5. In Section 6, we establish the equivalence between
the three-subset bit-based division property without unknown subsets and the
monomial prediction technique, and theoretically prove that they are perfect in
detecting the key-independent sum property. Also, we theoretically show that
other algorithms for division properties raise no false alarms. Section 7 concludes
and discusses potential future work.

2 Preliminaries

We use bold italic lowercase letters to represent bit vectors, and 0 represents a bit
vector with all elements being 0. For an n-bit vector u ∈ Fn

2 , its i-th coordinate
is denoted by ui, and thus u = (u0, · · · , un−1). The complementary vector of u
is denoted by ū where ui ⊕ ūi = 1 for 0 ≤ i < n. The Hamming weight of u is
wt(u) =

∑n−1
i=0 ui. For any n-bit vectors u and u′, we define u ⪰ u′ if ui ≥ u′

i

for all i, otherwise, u ⪰̸ u′ . Similarly, we define u ⪯ u′ if ui ≤ u′
i for all i,

u ≺ u′ if ui < u′
i for all i and u ≻ u′ if ui > u′

i for all i.
Let f : Fn

2 → F2 be a Boolean function in F2[x0, x1, . . . , xn−1]/(x
2
0− x0, x

2
1−

x1, . . . , x
2
n−1 − xn−1) whose algebraic normal form (ANF) is

f(x) = f(x0, x1, . . . , xn−1) =
⊕
u∈Fn2

au

n−1∏
i=0

xui
i ,

where au ∈ F2, and

xu = πu(x) =

n−1∏
i=0

xui
i with xui

i =

{
xi, if ui = 1,

1, if ui = 0,

is called a monomial. If the coefficient of xu in f is 1, we say xu is contained
by f , denoted by xu → f . Otherwise, xu is not contained by f , we denote it by
xu ↛ f . In the remaining paper, we will use xu and πu(x) interchangeably to
avoid using the awkward notation x(i)u

(j) when both x and u have superscripts.

Example 1. Let f(x0, x1) = x0x1 ⊕ x0 ⊕ 1, then we have x0x1 → f , x0 → f ,
1→ f , and x1 ↛ f .

Let y = (y0, · · · , ym−1) = f(x) = (f0(x), · · · , fm−1(x)) be a vectorial Boolean
function from Fn

2 to Fm
2 . For v = (v0, v1, . . . , vm−1) ∈ Fm

2 , a monomial yv of y
can be symbolically expressed as a polynomial of the variable x:

yv =

m−1∏
i=0

(fi(x))
vi =

⊕
u∈Fn2

aux
u, au ∈ F2.

In the following, we show how to determine whether xu → yv for a given
monomial xu.

5

3 Monomial Prediction

Let f : Fn
2 → Fm

2 be a vectorial Boolean function sending x = (x0, · · · , xn−1)
to y = (y0, · · · , ym−1) with yi = fi(x). By the monomial prediction we mean
the problem of determining the presence or absence of a particular monomial
xu in yv, that is, whether xu → yv. This is a trivial problem if the ANF of
f is available. However, in the context of the symmetric-key cryptography, in
most cases, the ANF of the targeted f is too complicated to be computed (or
even to be stored) in practice. Typically, the only fact we know is that f is built
by composition from a sequence of vectorial Boolean functions whose ANFs are
known, i.e.,

y = f(x) = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0)(x).

Now, how do we determine whether xu → yv ?

Let x(i) and x(i+1) be the input and output variables of f (i) : Fni
2 → Fni+1

2 ,
respectively. Then x(i+1) = f (i)(x(i)) for 0 ≤ i < r, and thus x(i) can be
represented as a vectorial Boolean function of x(j) with j < i:

x(i) = f (i−1) ◦ · · · ◦ f (j+1) ◦ f (j)(x(j)), for 1 ≤ i ≤ r.

Since the ANF of x(i+1) = f (i)(x(i)) is available, one can determine whether
πu(i)(x(i)) → πu(i+1)(x(i+1)) for any u(i) and u(i+1), which gives rise to the
concept of the monomial trail.

Definition 1 (Monomial Trail). Let x(i+1) = f (i)(x(i)) for 0 ≤ i < r.
We call a sequence of monomials (πu(0)(x(0)), πu(1)(x(1)), . . . , πu(r)(x(r))) an r-
round monomial trail connecting πu(0)(x(0)) and πu(r)(x(r)) with respect to the
composite function f = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0) if

πu(0)(x
(0))→ · · · → πu(i)(x

(i))→ · · · → πu(r)(x
(r)).

If there is at least one monomial trail connecting πu(0)(x(0)) and πu(r)(x(r)), we
write πu(0)(x(0))⇝ πu(r)(x(r)). Otherwise, πu(0)(x(0)) ̸⇝ πu(r)(x(r)).

Note that a monomial trail is always specified with respect to a given com-
position sequence f (r−1) ◦f (r−2) ◦ · · · ◦f (0). When this sequence is obvious from
the context, we will omit it to keep the presentation concise. Also, we always
assume in default that

x(r) = f (r−1)(x(r−1)) = f (r−1) ◦ f (r−2)(x(r−2)) = · · · = f (r−1) ◦ · · · ◦ f (0)(x(0)).

Example 2. Let z = (z0, z1) = f (1)(y0, y1) = (y0y1, y0 ⊕ y1), y = (y0, y1) =

f (0)(x0, x1, x2) = (x0 ⊕ x1 ⊕ x2, x0x1 ⊕ x0 ⊕ x2) and f = f (1) ◦ f (0).
Consider the monomial (x0, x1, x2)

(1,0,0) = x0. Since the ANF of f (0) is
available, we can compute all monomials of y, i.e.,

(y0, y1)
(0,0) = 1, (y0, y1)

(1,0) = y0 = x0 ⊕ x1 ⊕ x2, (y0, y1)
(0,1) = y1 = x0x1 ⊕ x0 ⊕ x2,

(y0, y1)
(1,1) = y0y1 = x0x1x2 ⊕ x0x1 ⊕ x1x2 ⊕ x0 ⊕ x2.

6

Then
x0 → y0, x0 → y1, x0 → y0y1

are all the three monomial trails of f (0) connecting x0 and monomials of y.
Similarly, we can compute all the monomials of z as follows,

(z0, z1)
(0,0) = 1, (z0, z1)

(1,0) = z0 = y0y1, (z0, z1)
(0,1) = z1 = y0 ⊕ y1,

(z0, z1)
(1,1) = z0z1 = 0.

There are three monomial trails of f connecting x0 and monomials of z:

x0 → y0 → z1, x0 → y1 → z1, x0 → y0y1 → z0.

Lemma 1. πu(0)(x(0)) ⇝ πu(r)(x(r)) if πu(0)(x(0)) → πu(r)(x(r)), and thus
πu(0)(x(0)) ̸⇝ πu(r)(x(r)) implies πu(0)(x(0)) ↛ πu(r)(x(r)).

Proof. We prove it by induction on r. Assuming this lemma holds for r < s, we
are going to show that it also holds for r = s. First, we expand πu(s)(x(s)) on
x(s−1) as

πu(s)(x(s)) =
⊕

π
u(s−1) (x(s−1))→π

u(s) (x(s))

πu(s−1)(x(s−1)).

Since πu(0)(x(0))→ πu(s)(x(s)), there is at least one πu(s−1)(x(s−1)) contained by
πu(s)(x(s)) satisfying πu(0)(x(0)) → πu(s−1)(x(s−1)). According to our assump-
tion, πu(0)(x(0))⇝ πu(s−1)(x(s−1)), then πu(0)(x(0))⇝ πu(s)(x(s)). ⊓⊔

According to Lemma 1, πu(0)(x(0))→ πu(r)(x(r)) is sufficient for πu(0)(x(0))⇝
πu(r)(x(r)). However, the conversion is not true in general. Considering Exam-
ple 2, although x0 ⇝ z1, we have x0 ↛ z1 since

z1 = y0 ⊕ y1 = x0 ⊕ x1 ⊕ x2 ⊕ x0x1 ⊕ x0 ⊕ x2 = x0x1 ⊕ x1.

The reason is that two x0’s (underlined in the above equation) cancel each other.
In the following, we will demonstrate that whether πu(0)(x(0)) → πu(r)(x(r)) is
determined by the number of monomial trails connecting them rather than the
existence of the monomial trail, which raises the definition below.

Definition 2 (Monomial Hull). For f with a specific composition sequence,
the monomial hull of πu(0)(x(0)) and πu(r)(x(r)), denoted by πu(0)(x(0)) 1 πu(r)(x(r)),
is the set of all monomial trails connecting them. The number of trails in the
monomial hull is called the size of the hull and is denoted by |πu(0)(x(0)) 1

πu(r)(x(r))|.

Example 3. Consider Example 2, the monomial hull of x0 and z1 is the set

x0 1 z1 = {x0 → y0 → z1, x0 → y1 → z1} .

Thus the size of x0 1 z1 is 2. Furthermore, since x0 ̸⇝ z0z1, x0 1 z0z1 = ∅ and
|x0 1 z0z1| = 0.

7

For i ≥ 1, if πu(0)(x(0)) ⇝ πu(i)(x(i)), |πu(0)(x(0)) 1 πu(i)(x(i))| can be
calculated recursively as follows,
Lemma 2. For i ≥ 1, if πu(0)(x(0))⇝ πu(i)(x(i)),

|πu(0)(x(0)) 1 πu(i)(x(i))| =

1, i = 1,∑

π
u(i−1) (x

(i−1))

→π
u(i) (x

(i))

|πu(0)(x(0)) 1 πu(i−1)(x(i−1))|, i ≥ 2.

The time has come to address the monomial prediction problem we mentioned
at the beginning of this section.
Proposition 1. πu(0)(x(0))→ πu(r)(x(r)) if and only if |πu(0)(x(0)) 1 πu(r)(x(r))|
is odd.
Proof. We prove it by induction on r. Assuming this proposition holds for r < s,
we are going to show that it also holds for r = s. First, we expand πu(s)(x(s))
on x(s−1) as

πu(s)(x(s)) =
⊕

π
u(s−1) (x(s−1))→π

u(s) (x(s))

πu(s−1)(x(s−1)).

Consequently, we have

|πu(0)(x(0)) 1 πu(s)(x(s))| =
∑

π
u(s−1) (x

(s−1))

→π
u(s) (x

(s))

|πu(0)(x(0)) 1 πu(s−1)(x(s−1))|.

Moreover, πu(0)(x(0)) → πu(s)(x(s)) if and only if there are odd number of
πu(s−1)(x(s−1)) contained by πu(s)(x(s)) such that πu(0)(x(0))→ πu(s−1)(x(s−1)),
or equivalently, according to the induction hypothesis we made at the begin-
ning, there are odd number of πu(s−1)(x(s−1)) contained by πu(s)(x(s)) such that
|πu(0)(x(0)) 1 πu(s−1)(x(s−1))| is odd. Finally, Proposition 1 is true for r = s
since |πu(0)(x(0)) 1 πu(s)(x(s))| is odd if and only if∑

π
u(s−1) (x(s−1))→π

u(s) (x(s))

|πu(0)(x(0)) 1 πu(s−1)(x(s−1))| is odd.

⊓⊔
3.1 Derived Function
When applying the monomial prediction technique to cryptanalysis, we may
consider functions that are derived from a vectorial Boolean function f by fixing
some variables of f to known constants. In this case, the derived function has
fewer variables than the original function f . Also, the remaining variables are
not treated equally. Some of them are public (IV bits, plaintext bits, tweak
bits, etc.), while some of them are secret (key bits). To highlight the semantic
difference of the variables and distinguish between the variables fixed to 0 and
those fixed to 1, we introduce the notion of variable masks. Together with the
original function f , these masks completely determine the derived function, and
tells us which variables of the derived function are public and which are secret.

8

Remark. The only purpose of introducing the concept of the derived function
is to have a unified approach to specify the functions to which our techniques
are applied. It has no theoretical significance and the readers who do not care
about the details of the attacks on concrete targets can safely skip this part to
avoid being overloaded by unnecessary notations. Actually, skipping this part is
encouraged and the readers can look back when necessary.

Variable masks and derived function. Let Γ 0, Γ 1, Γ p, and Γ s ∈ Fn
2

be constant vectors such that {0 ≤ i < n : Γ 0
i = 1}, {0 ≤ i < n : Γ 1

i = 1},
{0 ≤ i < n : Γ p

i = 1}, and {0 ≤ i < n : Γ s
i = 1} form a partition of {0, · · · , n−1},

which are called variable masks. For a vectorial Boolean function f(x) from Fn
2

to Fm
2 , we can derive a new function fd from f with the variable masks by

setting certain variables of f to constants according to the following rule for
i ∈ {0, 1, · · · , n− 1}: {

xi ← 0, if Γ 0
i = 1,

xi ← 1, if Γ 1
i = 1.

The remaining xi’s are still treated as variables but with different access per-
missions: xi’s with Γ p

i = 1 are public variables and can be manipulated by the
attackers, while xi’s with Γ s

i = 1 are secret variables. Although in practice secret
variables typically represent secret key bits and are actually fixed to unknown
constants, in our framework we still regard them as symbolic objects rather than
constants. The concept of the derived function should be best understood by a
concrete example.

Example 4. For y = f(x0, x1, x2, x3, k0, k1, k2, k3) where x0, x1, x2, x3 are four
public input bits and k0, k1, k2, k3 are four secret input bits. If we fix x0 to 0 and
x1 to 1, the resulting function mapping (0, 1, x2, x3, k0, k1, k2, k3) to

f(0, 1, x2, x3, k0, k1, k2, k3)

is a derived function from f with the following variable masks

Γ 0 = (1, 0, 0, 0, 0, 0, 0, 0), Γ 1 = (0, 1, 0, 0, 0, 0, 0, 0),

Γ p = (0, 0, 1, 1, 0, 0, 0, 0), Γ s = (0, 0, 0, 0, 1, 1, 1, 1).

In the following sections, we typically first give a function f which can be
directly obtained from the description of the targeted cipher, and then we specify
the associated variable masks. Finally, the techniques presented in this work are
applied to the corresponding derived function.

In the case of fd, we should note xv ≡ 1 for any v ⪯ Γ 1, then xu⊕v =
xu · xv = xu for any v ⪯ Γ 1 and the Proposition 1 can be converted to the
following proposition.

Proposition 2. Let fd be the derived function of f with Γ 0,Γ 1,Γ p,Γ s. For
x(r) = fd(x

(0)) and u(0) ⪯ Γ p ⊕ Γ s, πu(0)(x(0))→ πu(r)(x(r)) if and only if∑
v⪯Γ 1

|πu(0)⊕v(x
(0)) 1 πu(r)(x(r))| mod 2 = 1.

9

4 Application I: Degree Evaluation

Since the algebraic degree of a symmetric-key primitive significantly affects its
security against cryptanalytic techniques such as algebraic attacks [20], higher-
order differential attacks [17,15], interpolation attacks [14], and integral at-
tacks [6,16], methods and tools for degree evaluation have been an important
topic in the community all along. To put our approach into perspective, we high-
light several important works in this line of research. At EUROCRYPT 2002,
Canteaut and Videau developed a method for upper bounding the algebraic de-
gree of composite functions [5], which was improved by Boura et al. [3] at FSE
2011. In [1], the authors identified a simple closed formula bounding the num-
ber of rounds necessary to achieve full degree for the block ciphers with secret
components. At CRYPTO 2017, Liu presented a general framework known as
numeric mapping, which is exclusively used for estimating the algebraic degrees
of the cryptosystems based on the nonlinear feedback shift register (NFSR) [18].

Another approach for the degree evaluation is based on the division property.
The accuracy of this approach is determined by the accuracy of the “propagation
rules” of the underlying detection algorithms for division properties. When the
detection algorithm is perfect (The meaning of perfect will be more concrete in
Section 6), its estimation is exact. In the following, we show that the monomial
prediction technique achieves this exactness.

4.1 Compute Exact Algebraic Degree of a Boolean Function

The algebraic degree of a Boolean function f is defined as follows,

deg(f) = max
π
u(0) (x(0))→f

wt(u(0)). (1)

To determine the algebraic degree of f , we only need to prove the existence of a
monomial πu(0)(x(0)) such that πu′(x(0)) ↛ f for any u′ with wt(u′) > d, which
can be done in two steps:

1. Find a monomial πu(0)(x(0)) ⇝ f with wt(u) = d and prove πu′(x(0)) ↛ f
for any wt(u′) > d.

2. Compute |πu(0)(x(0)) 1 f | to confirm the presence of πu(0)(x(0)), if the value
is odd, then deg(f) = d, else, we need to repeat the process until we find a
desired monomial of f .

The Mixed Integer Linear Programming (MILP) approach has been exten-
sively used to probe the structure of Boolean functions in previous works such
as [31,22,26,28,29,30,9]. In this work, we also employ the MILP-based approach
to search for the monomials of f . In this MILP model, the objective function of
the model is to maximize wt(u(0)) according to Equation (1). One solution of
the MILP model is a sequence of (u(0),u(1), . . . ,u(r))6, such that

πu(0)(x(0))→ πu(1)(x(1))→ · · · → πu(r)(x(r)).

6 In this section, we focus on the Boolean function, so u(r) is always a unit vector.

10

To confirm the presence of πu(0)(x(0)) as in the above Step 2, we use the
PoolSearchMode of Gurobi to compute |πu(0)(x(0)) 1 f |.

PoolSearchMode of Gurobi. To judge whether the size of a monomial hull is an
odd number, we frequently need to find all solutions of a MILP model. Following
Hao et al.’s work at EUROCRYPT 2020 [9], we also employ the PoolSearchMode
of Gurobi7 to perform solution enumerations. The PoolSearchMode is a mode
implemented by Gurobi to systematically search for multiple solutions. Let M
be a MILP model, we use

M.PoolSearchMode← 1

to signal that the PoolSearchMode is turned on. All the source codes are available
at https://github.com/hukaisdu/MonomialPrediction.

4.2 Application to Trivium

Specification of Trivium. Trivium [4] is an NFSR-based stream cipher with
a 288-bit internal state x = (x0, x1, . . . , x287) divided into three registers (de-
noted as Reg 0, Reg 1 and Reg 2 in Figure 1). The 80-bit secret key K is loaded
to the first register (Reg 0), and the 80-bit initialization vector IV is loaded to
the second register. The other bits of the three registers are set to 0 except the
last three bits of the third register. Namely, we have

(x0, x1, . . . , x92)← (K[0],K[1], . . . ,K[79], 0, . . . , 0),

(x93, x94, . . . , x176)← (IV [0], IV [2], . . . , IV [79], 0, . . . , 0),

(x177, x178, . . . , x287)← (0, 0, . . . , 0, 1, 1, 1).

Let h : F5
2 → F2 be a Boolean function such that h(α0, α1, α2, α3, α4) = α0 ⊕

α1α2 ⊕ α3 ⊕ α4. The pseudo code of the update function is given by

t1 ← h(x65, x90, x91, x92, x170) = x65 ⊕ x90x91 ⊕ x92 ⊕ x170,

t2 ← h(x161, x174, x175, x176, x263) = x161 ⊕174 x175 ⊕ x176 ⊕ x263,

t3 ← h(x242, x285, x286, x287, x68) = x242 ⊕ x285x286 ⊕ x287 ⊕ x68.

The state of the next clock is computed as

(x0, x1, . . . , x92)← (t3, x0, . . . , x91),

(x93, x94, . . . , x176)← (t1, x93, . . . , x175),

(x177, x178, . . . , x287)← (t2, x177, . . . , x286).

During the initialization, the state is updated 1152 times without producing any
output. After the initialization, one bit key is produced per application of the
update function by the key stream generation function g : F288

2 → F2 as

z ← g(x0, x1, . . . , x287) = x65 ⊕ x92 ⊕ x161 ⊕ x176 ⊕ x242 ⊕ x287.
7 https://www.gurobi.com

11

https://github.com/hukaisdu/MonomialPrediction
https://www.gurobi.com

MILP model for a monomial trail of Trivium. Let x(0) denote the initial
state of Trivium and x(i+1) denote the state after the i-th update function f (i).
The output bit after r-round Trivium8 zr is a Boolean function of x(0) which is
denoted by zr = f(x(0)). Naturally, f is the composition of the update functions
and the key stream generation function as

zr = f(x(0)) = g ◦ f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0)(x(0))

= g(x(r)) = x
(r)
65 ⊕ x

(r)
92 ⊕ x

(r)
161 ⊕ x

(r)
176 ⊕ x

(r)
242 ⊕ x

(r)
287. (2)

To construct the MILP model for the monomial trail of Trivium, we should
study the ANFs of f (i) and g and model the monomial trail locally for them.

Reg 0

Reg 0

Reg 0

x(i)

y(i)

x(i+1)

h

92

930

Reg 1

Reg 1

Reg 1

h

176

177

Reg 2

Reg 2

Reg 2

h

287

≫ 1

1

Fig. 1: The illustration of f (i). In the first phase, if j /∈ {92, 176, 287}, y(i)j = x
(i)
j .

In the second phase, x(i+1)
(j+1) mod 288 = y

(i)
j .

According to Figure 1, f (i) can be represented by parallel bit-permutations
and three H functions such as

x
(i+1)
j+1 mod 288 = x

(i)
j , if j /∈ {65,90,91,92,170,161,174,175,176,263,242,285,286,287,68}, (3)

(x
(i+1)
66 , x

(i+1)
91 , x

(i+1)
92 , x

(i+1)
93 , x

(i+1)
171) = H(x

(i)
65 , x

(i)
90 , x

(i)
91 , x

(i)
92 , x

(i)
170) (4)

(x
(i+1)
162 , x

(i+1)
175 , x

(i+1)
176 , x

(i+1)
177 , x

(i+1)
264 = H(x

(i)
161, x

(i)
174, x

(i)
175, x

(i)
176, x

(i)
263) (5)

(x
(i+1)
243 , x

(i+1)
286 , x

(i+1)
287 , x

(i+1)
0 , x

(i+1)
69) = H(x

(i)
242, x

(i)
285, x

(i)
286, x

(i)
287, x

(i)
68) (6)

where H : F5
2 → F5

2 defined as follows,

(β0, β1, β2, β3, β4) = H(α0, α1, α2, α3, α4) = (α0, α1, α2, α0⊕α1α2⊕α3⊕α4, α4).

H can be decomposed into a sequence of smaller functions such as COPY, AND
and XOR, which is shown in Figure 2.

MILP Model for the monomial trail of f (i). The operations in Equation (3) are
simple bit-permutations which can be handled by directly changing the positions
of the variables, thus no inequalities are required for this condition. To model
8 When saying (reduced) r-round of Trivium, we mean the update function f is called
r times and then the key stream generation function g is finally performed.

12

α0 α1 α2 α3 α4

β0 β1 β2 β3 β4

Fig. 2: The decomposition of H function by COPY, AND and XOR.

H function, we generate inequalities to model the monomial trials of COPY, AND
and XOR. For COPY, consider x

COPY−−−→ (x, x) where x is a bit variable, we have
x0(= 1)→ x0 · x0(= 1), x0(= 1) ↛ x0 · x1(= x)

x0(= 1) ↛ x1 · x0(= x), x0(= 1) ↛ x1 · x1(= x)

x1(= x) ↛ x0 · x0(= 1), x1(= x)→ x0 · x1(= x)

x1(= x)→ x1 · x0(= x), x1(= x)→ x1 · x1(= x)

.

Then there are four valid monomial trails of COPY, i.e., (0, 0, 0), (1, 0, 1), (1, 1,
0) and (1, 1, 1). Similarly, AND has two monomial trials (0, 0, 0) and (1, 1, 1),
while XOR has three monomial trials (0, 0, 0), (1, 0, 1) and (0, 1, 1).

To generate inequalities for monomial trails of each function, we follow Sun
et al.’s approach in [23] to derive linear inequalities by Sage9 and then use the
greedy algorithm to simplify them. At last, a set of 15 inequalities L with 5
auxiliary variables (given in Appendix A of [11]) is sufficient to describe the
H function. Thus we need 45 linear inequalities and 15 auxiliary variables to
model f (i). In Appendix B (Ref. [11]), we provide an alternative method to
describe the monomial trails of H with less inequalities, where H is treated as
a whole. Note that Proposition 1 implies that the decomposition with different
granularity levels of the target Boolean function will not affect the parity of the
number of the monomial trails of the Boolean function.

MILP Model for the monomial trail of g. Since g is a simple Boolean function
that contains 6 monomials (Equation (2)), a set of simple constraints as{

u
(r)
65 + u

(r)
92 + u

(r)
161 + u

(r)
176 + u

(r)
242 + u

(r)
287 = 1,

u
(r)
j = 0, if j /∈ {65, 92, 161, 176, 242, 287}.

(7)

will complete our modeling.
In Algorithm 1, we demonstrate how to generate the MILP model for Triv-

ium, where L represents the inequalities for the model of H. Note in some cases
we may want to manipulate the first (e.g., line 16 of Algorithm 2) and last
9 https://www.sagemath.org

13

https://www.sagemath.org

terms (e.g., line 11 of Algorithm 3) of the monomial trail. Then the MILP model
in Algorithm 1 excludes the model of g, instead the variables representing the
first monomial πu(0)(x(0)) and the last monomial πu(r)(x(r)) are also returned
in order for later usage.

Algorithm 1: (M,u(0),u(r)) = GenerateTriviumModel(r)

Input: r, the targeted number of rounds of Trivium
Output: The MILP model M for r-round Trivium and the MILP variables

representing the initial state u(0)

1 Declare an empty MILP model M;
2 M.var ← u

(0)
0 , u

(0)
1 , . . . , u

(0)
287;

3 M.var ← u0, u1, . . . , u287;
4 u← u(0);
5 for i = 0; i < r; i← i+ 1 do
6 M.var ← v65, v90, v91, v92, v170, w0, w1, w2, w4, t;
7 M.con← L(u65, u90, u91, u92, u170, v65, v90, v91, v92, v170, w0, w1, w2, w4, t);
8 ui ← vi, i ∈ {65, 90, 91, 92, 170};
9 M.var ← v161, v174, v175, v176, v263, w0, w1, w2, w4, t;

10 M.con←
L(u161, u174, u175, u176, u263, v161, v174, v175, v176, v263, w0, w1, w2, w4, t);

11 ui ← vi, i ∈ {161, 174, 175, 176, 263};
12 M.var ← v242, v285, v286, v287, v68, w0, w1, w2, w4, t;
13 M.con←

L(u242, u285, u286, u287, u68, v242, v285, v286, v287, v68, w0, w1, w2, w4, t);
14 ui ← vi, i ∈ {242, 285, 286, 287, 68};
15 ui+1 mod 288 ← ui;

16 u(r) ← u;
17 return M,u(0),u(r);

Degree of Trivium. The output bit zr = f(x(0)) after r-round Trivium is
a Boolean function of the initial state x(0). If we regard the IV bits as public
variables and the key bits as secret variables, the initial setup of the state implies
the following derived function with four variable masks Γ 0,Γ 1,Γ p,Γ s:

Γ 0
i =

{
1, if 80 ≤ i ≤ 92 or 173 ≤ i ≤ 284,

0, otherwise.
Γ 1
i =

{
1, if 285 ≤ i ≤ 287,

0, otherwise.

Γ p
i =

{
1, if 93 ≤ i ≤ 172,

0, otherwise.
Γ s
i =

{
1, if 0 ≤ i ≤ 79,

0, otherwise.

In accordance, the derived function and its variable masks can be used to
modify the algebraic degree expression given in Equation (1), therefore the al-
gebraic degree of zr can be computed as

deg(zr) = max
u(0)⪯Γ p⊕Γ s

π
u(0) (x

(0))→zr

{ ∑
Γ p

i =1

u
(0)
i

}
= max

u(0)⪯Γ p⊕Γ s

π
u(0) (x

(0))→zr

{ ∑
93≤i≤172

u
(0)
i

}
.

14

By calling Algorithm 1, Algorithm 2 finds the monomial with the potential
maximum degree satisfying πu(0)(x(0)) ⇝ zr. Thereafter, |πu(0)(x(0)) 1 zr| is
computed under the PoolSearchMode to determine if πu(0)(x(0)) → zr holds.
Once πu(0)(x(0)) → zr is confirmed, we derive the exact algebraic degree of
r-round Trivium.

Our results. With the help of the monomial prediction we are able to evaluate
the exact algebraic degree of Trivium up to 834 rounds and the results are
listed in Table 5 in Appendix E (Ref. [11]). Interestingly, for the first time, we
notice a counter-intuitive phenomenon that the algebraic degree of Trivium
is not monotonously increasing with rounds. For example, the degrees of 806-,
807- and 808-round Trivium are 69, 71, 70, respectively. It implies that some
monomials with the maximum degree are canceled in the subsequent round. Such
degree drops are highlighted in Table 5.

A comparison of monomial prediction and the numeric mapping technique
for upper bounding the degree of NFSR ciphers [18] is illustrated in Figure 3.
As the number of iterated rounds gets larger, the gap between the upper bound
and the exact degree becomes more significant. For the degree of the 793-round
Trivium, the numeric mapping technique gives an upper bound of 79, while the
monomial prediction method tells us that the exact degree is only 67.

720 740 760 780 800 820 840

50

60

70

80

90

100

E
st
im

at
ed

d
eg
re
e

Numeric Mapping
Monimial Prediction

Fig. 3: The exact degree derived by monomial prediction and the upper bound
derived by numeric mapping [18].

We also perform the degree evaluations with the two-subset bit-based division
property [27] to estimate the upper bound of the degree of r-round Trivium.
The results show that the division property is quite precise. From 1- to 834-
round Trivium, there are only 14 cases where the division property fails to hit
the exact degrees, which are listed in Table 2.

15

Algorithm 2: deg = SearchDegree(r)

Input: r, the targeted number of rounds of Trivium
Output: The degree of r-round Trivium

/* Search For πu(0)(x(0))⇝ f */
1 (M0,u

(0),u(r))← GenerateTriviumModel(r)

2 for i = 0; i < 288; i← i+ 1 do
3 if Γ 0

i is 1 then
4 u

(0)
i ← 0

5 for i = 0; i < 288; i← i+ 1 do
6 if i /∈ {65, 92, 161, 176, 242, 287} then
7 M0.con← u

(r)
i = 0;

8 M0.con← u
(r)
65 + u

(r)
92 + u

(r)
161 + u

(r)
176 + u

(r)
242 + u

(r)
287 = 1;

9 M0.obj ← max(u
(0)
93 + u

(0)
94 + · · ·+ u

(0)
172);

10 while true do
11 M0.optimize();
12 if M0.status is OPTIMAL then

/* Compute |πu(0)(x(0)) 1 f | */
13 (M1,u

′(0),u′(r))← GenerateTriviumModel(r)
14 M1.SolutionPoolMode← 1;

15 for i = 0; i < 288; i← i+ 1 do
16 u

′(0)
i ← u

(0)
i .val;

17 for i = 0; i < 288; i← i+ 1 do
18 if i /∈ {65, 92, 161, 176, 242, 287} then
19 M1.con← u

′(r)
i = 0;

20 M1.con← u
′(r)
65 + u

′(r)
92 + u

′(r)
161 + u

′(r)
176 + u

′(r)
242 + u

′(r)
287 = 1;

21 M1.optimize();
22 if M1.status is OPTIMAL then
23 if M1.solnum is odd then
24 return M0.objval;
25 else

/* Note the values of the last 3 bits are all 1 */
26 M0.con← remove(u

′(0)
0 , u

′(0)
1 , . . . , u

′(0)
284)

27 M0.update();

5 Application II: Cube Attacks

The cube attack was proposed by Dinur and Shamir [7] at EUROCRYPT 2009.
Let f(x) be a Boolean function from Fn

2 to F2, and u ∈ Fn
2 be a constant vector.

16

Table 2: The gaps among the exact degree, the upper bound obtained by the two-
subset bit-based division property and the numeric mapping for several special
cases of Trivium up to 834-round. For the other cases, the result obtained by
the two-subset bit-based division property equals to the exact degree.
#Round 508 509 514 515 719 770 773 783 789 806 810 816 831 833

Exact Degree 13 13 15 15 51 59 59 62 63 69 71 72 78 78
Division Property 14 14 16 16 52 60 60 63 64 70 72 73 79 79
Numeric Mapping 16 16 16 17 55 72 72 76 76 >80 >80 >80 >80 >80

Then f(x) can be represented uniquely as

f(x) = xup(x) + q(x),

where each term of q(x) is not divisible by xu. Note that in our notations,
the set Iu = {0 ≤ i ≤ n − 1 : ui = 1} ⊆ {0, · · · , n − 1} and the monomial
xu correspond to the cube indices and cube term that are commonly used in
the literature of cube attacks10. If we compute the sum of f over the cube
Cu = {x ∈ Fn

2 : x ⪯ u}, we have⊕
x∈Cu

f(x) =
⊕

x∈Cu
(xup(x) + q(x)) = p(x),

where p(x) is called the superpoly of the cube Cu, and p(x) only involves variables
xj with j ∈ Iū = {0 ≤ i ≤ n− 1 : ui = 0}.

The superpoly recovery plays a critical role in the cube attack. The attacker
recovers the superpoly in the offline phase, and then in the online phase, he/she
queries the encryption oracle with the cube, and finally gets the value of the
superpoly. If the superpoly is a balanced Boolean function, a bit information of
the secret key can be obtained. The remaining key bits can be recovered by the
exhaustive search.

At the early stage in the applications of cube attacks, the superpoly recovery
is achieved experimentally by summing the outputs over certain “good” cubes,
and therefore the sizes of cubes are largely confined in a practical range. More-
over, superpolies derived from small cubes have to be extremely simple (typically
linear or quadratic functions [7,19]) in order to be recovered in a probabilistic
way.

In [26], the division property was first introduced to enhance cube attacks,
which allows us to identify the key bits that do not present in the superpoly.
This approach is deterministic and can be used to analyze cubes whose sizes
are beyond practical reach. By setting the key bits that are not involved in the
superpoly to arbitrary constants and varying the remaining l key bits, one can
obtain the truth table of the superpoly for a subsequent key-recovery attack with
complexity 2|I|+l. At CRYPTO 2018, Wang et al. proposed the flag technique
and term enumeration technique to recover directly all the monomials of the
10 When there is no ambiguity, we denote the cube indices as I and its size as |I|.

17

superpoly based on the two-subset bit-based division property, which further
lowers the complexity of the superpoly recovery and thus attacks of more rounds
on several targets are mounted [29].

However, in [26,29], it was assumed that every identified secret key vari-
able or the monomial must be involved in the superpoly. If such an assumption
does not hold, the superpoly can be much simpler than estimated, or even falls
into the extreme case: p(x) ≡ 0. In fact it has been reported in [32,30,8,9] that
some of previous key-recovery attacks are actually distinguishers. To get rid of
this assumption, Wang et al. for the first time proposed a systematic method
based on the three-subset bit-based division property to recover the exact super-
poly [30]. In [9], the method was refined as the three-subset bit-based division
property without unknown subsets and was modeled under the PoolSearchMode
of Gurobi. As a result, they recovered the exact superpolies for 840-, 841- and
842-round Trivium.

5.1 Apply Monomial Prediction to Superpoly Recovery

It is natural to apply the monomial prediction to the recovery of the the su-
perpoly. For f : Fn

2 → F2, we define a constant vector u ∈ Fn
2 and let the

corresponding cube term be xu. To recover the superpoly which is a polynomial
of xi’s with ūi = 1, we find all the possible monomials like xu⊕w = xu · xw

where w ⪯ ū satisfying xu⊕w → f . Then the superpoly of xu is

p(x) =
⊕
w⪯ū

xu⊕w→f

xw =
(⊕

w⪯ū
xu⊕w→f

xu⊕w
)
/xu.

To find all xu⊕w → f for w ⪯ ū, we could take the PoolSearchMode of Gurobi
solver to find all solutions satisfying xu⊕w ⇝ f . Next, we store all the xu⊕w into
a hash table which are indexed by (u,w), the size of each possible xu⊕w 1 f
for w ⪯ ū can be counted naturally.

Speedup and memory reduction: a divide-and-conquer strategy. In this
paper, we only study the composite function f , where

f = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0).

According to Lemma 2, if πu(0)(x(0))⇝ f , then for 0 < i < r,

|πu(0)(x
(0)) 1 f | ≡

∑
π
u(r−i) (x

(r−i))→f

|πu(0)(x
(0)) 1 πu(r−i)(x

(r−i))| (mod 2). (8)

Generally speaking, computing |πu(0)(x(0)) 1 πu(r−i)(x(r−i))| one by one is
much easier than computing |πu(0)(x(0)) 1 f | when i is significantly smaller
than r. In this paper, we always expand f firstly and then obtain the speedups
and memory reductions by the divide-and-conquer strategy.

18

5.2 Application to Trivium

Let zr = f(x(0)) be the output of the r-round Trivium with x(0) ∈ F288
2 . When

the cube attack is applied to Trivium, only the cube variables indexed by the
cube indices I and the secret key bits are regarded as symbolic variables in our
analysis, and all other input variables are fixed to constants. Therefore, we are
actually analyzing the derived function of f with the variable masks Γ 0, Γ 1,
Γ p, and Γ s given as follows:

Γ 0
i =

{
1, if xi ≡ 0,

0, otherwise.
Γ 1
i =

{
1, if xi ≡ 1,

0, otherwise.

Γ p
i =

{
1, if i ∈ I,

0, otherwise.
Γ s
i =

{
1, if 0 ≤ i ≤ 79,

0, otherwise.

(9)

To recover the superpoly corresponding to the cube indices I = {0 ≤ i ≤ 287 :
Γ p
i = 1}, we need to find all πΓp⊕w(x(0))→ f for all w ⪯ Γ s.

In practice, we take the divide-and-conquer strategy based on Equation (8) to
keep the consumption of computational resources under control. Let the internal
state of the i-th round Trivium be x(i). We first express zr as a polynomial of
x(r−r0) for some r0. According to Proposition 3, when r0 is not very large, the
expression of zr in x(r−r0) can be got by the monomial prediction technique 11.

Proposition 3. Let zr = f(x(0)), and

Ur−r0 = {u(r−r0) : |πu(r−r0)(x(r−r0)) 1 f | mod 2 = 1 }, then

f =
⊕

u(r−r0)∈Ur−r0

πu(r−r0)(x(r−r0)).

Based on Proposition 3, an algorithm to express r-round Trivium in x(r−r0) is
presented in Algorithm 4 in Appendix D (Ref. [11]).

Remark. We can also get the expression by symbolic computation. We choose the
monomial prediction technique because most variables and constraints needed
to complete this step are already presented in our model, which significantly
reduces the burden of extra coding efforts.

Algorithm 3 shows how we recover the superpoly of a certain cube based
on the divide-and-conquer strategy. The divide-and-conquer strategy leads to
remarkable speedups and memory reductions in practice, which makes it possible
to test more cubes with limited resources. As a result, we identify some cubes
with smaller dimensions for Trivium, and thus improve upon several currently
known best attacks on Trivium. We list our experimental results with different
smaller-dimension cubes in Table 3 (Ref. [11]). To verify our program, we re-
conduct the experiments in [9] using the same cube indices for 840- and 841-
round Trivium and obtain the same superpolies.
11 According to our experiments, a reasonable range of r0 is from 200 to 300.

19

Algorithm 3: Uk = ComputeSuperpoly(r,Γ 0,Γ 1,Γ p,Γ s)

Input: The targeted number of rounds r and the four variables masks for fd
Output: A set Uk for the monomials in superpoly like πΓp⊕w(x(0)) for w ⪯ Γ s

1 Allocate a hash table T ;
2 Ur−r0 ← ExpandTrivium(r, r0); // Practically, we set r0 = 200

3 for each u′(r−r0) ∈ Ur−r0 do
4 (M,u(0),u(r−r0))← GenerateModel(r − r0);
5 M.PoolSearchMode← 1;
6 for i = 0; i < 288; i← i+ 1 do
7 if Γ 0

i is 1 then
8 u

(0)
i ← 0;

9 if Γ p
i is 1 then

10 u
(0)
i ← 1;

11 u(r−r0) ← u′(r−r0);
12 M.optimize();
13 if M.status is OPTIMAL then

/* Store all the solutions in hash table and count */
14 for i = 0; i <M.solnum; i← i+ 1 do
15 M.SolutionNumber ← i;
16 T [(u

(0)
0 , u

(0)
1 , . . . , u

(0)
79)]← T [(u

(0)
0 , u

(0)
1 , . . . , u

(0)
79)] + 1;

17 for i = 0; i < H.linenumber; i← i+ 1 do
18 if T [i] mod 2 is 1 then
19 Uk ← Uk ∪ {i};

20 return Uk

Cube attack on 840-round Trivium. We find the superpolies pI1 , pI2 and
pI3 for three different cube indices I1, I2 and I3

12, whose dimensions are 75, 76,
and 76, respectively.

Taking the cube of dimension 75 as I1 = {0, 1, . . . , 69, 71, 73, 75, 77, 79} with

IV [70] = IV [72] = IV [74] = IV [76] = IV [78] = 0,

we recover a balanced superpoly for 840-round Trivium that has 41 terms and
of the algebraic degree 4. The independent monomial of the superpoly is labeled
by the red text.

12 For convenience, every element in the cube indices Ii, 0 ≤ i ≤ 11 in this subsection
is the index of IV , i.e. from 0 to 79.

20

pI1 = k79 ⊕ k77 ⊕ k78k77 ⊕ k76k75 ⊕ k76k63 ⊕ k75k74k63 ⊕ k73k63 ⊕ k72k63 ⊕ k71k63⊕
k72k71k63 ⊕ k71k70k63 ⊕ k70k69k63 ⊕ k63k61 ⊕ k63k60 ⊕ k61k60 ⊕ k63k59⊕
k63k59k58 ⊕ k61k59k58 ⊕ k63k57 ⊕ k63k57k56 ⊕ k52 ⊕ k50 ⊕ k63k50 ⊕ k63k49⊕
k63k46 ⊕ k63k45 ⊕ k63k44 ⊕ k63k33 ⊕ k61k33 ⊕ k63k32 ⊕ k63k31 ⊕ k63k26⊕
k71k63k12 ⊕ k70k69k63k12 ⊕ k63k59k12 ⊕ k63k58k12 ⊕ k63k57k12 ⊕ k63k58k57k12⊕
k63k50k12 ⊕ k63k44k12 ⊕ k63k26k12.

Taking the cube of dimension 76 as I2 = {0, 1, . . . , 71, 73, 75, 77, 79} with

IV [72] = IV [74] = IV [76] = IV [78] = 0,

we recover a balanced superpoly for 840-round Trivium that has 4 terms and
algebraic degree of 2, and give it as follows

pI2 = 1⊕ k64 ⊕ k63k62 ⊕ k37.

Taking the cube of dimension 76 as I3 = {0, 1, . . . , 69, 71, 72, 73, 75, 77, 79} with

IV [70] = IV [74] = IV [76] = IV [78] = 0,

we recover a balanced superpoly for 840-round Trivium that has 6 terms and
algebraic degree of 3 as below,

pI3 = 1⊕ k63 ⊕ k59 ⊕ k59k50 ⊕ k59k49k48 ⊕ k59k23.

Let CI = {x ∈ F288
2 : x ⪯ Γ p}, where Γ p is set as Equation (9). since I2 =

I1 ∪ {70},

pI2 =
⊕

x∈CI2

f(x) =
⊕

x∈CI1
,IV [70]=1

f(x)⊕
⊕

x∈CI1
,IV [70]=0

f(x),

and
pI1 =

⊕
x∈CI1

f(x) =
⊕

x∈CI1
,IV [70]=0

f(x),

then we can deduce that pI4 = pI1 ⊕ pI2 is the superpoly for the cube indices
I4 = {0, 1, . . . , 69, 71, 73, 75, 77, 79} with

IV [72] = IV [74] = IV [76] = IV [78] = 0, IV [70] = 1.

Similarly, we can deduce that pI5 = pI1⊕pI3 is the superpoly for the cube indices
I5 = {0, 1, . . . , 69, 71, 73, 75, 77, 79} with

IV [70] = IV [74] = IV [76] = IV [78] = 0, IV [72] = 1.

pI1 , pI4 and pI5 are balanced Boolean functions because there are monomials that
are independent of other monomials, respectively. Therefore, we can recover 3

21

bits of key information by using 3× 275 ≈ 276.6 time complexity. The dominant
part of the whole key recovery attack is the exhaustive search after the recovery
of the 3-bit key information, which is 277 time complexity. So in total, the time
complexity for this 840-round Trivium is 276.6 + 277 ≈ 277.8.

Cube attack on 841-round Trivium. We find the superpolies pI6 and pI7 for
the set of cube indices I6 and I7, whose dimensions are 76 and 77, respectively.
Taking the cube of dimension 76 as I6 = {0, 1, . . . , 69, 71, 73, 74, 75, 77, 79} with

IV [70] = IV [72] = IV [76] = IV [78] = 0,

we recover a balanced superpoly p6 for 841-round Trivium that has 3632 terms
and algebraic degree of 9. Since the number of terms in pI6 (and other super-
polies, e.g., pI7 , pI9and pI10 are too many, we provide them at https://github.
com/hukaisdu/MonomialPrediction/blob/master/superpoly.pdf.

Taking the cube of dimension 77 as I7 = {0, 1, . . . , 71, 73, 74, 75, 77, 79} with

IV [72] = IV [76] = IV [78] = 0,

we recover a balanced superpoly pI7 for 841-round Trivium that has 1400 terms
and algebraic degree of 8.

Similar with pI4 , pI8 = pI6 ⊕ pI7 is the superpoly for the cube indices I8 =
{0, 1, . . . , 69, 71, , 73, 7475, 77, 79} with

IV [72] = IV [76] = IV [78] = 0, IV [70] = 1.

Hence, we can recover 2 bits of the key information with time complexity 277 =
2× 276 . The dominant part of the whole key recovery attack is the exhaustive
search after 2-bit key recovery, which is 278 time complexity. Therefore, totally
the time complexity of the attack on the 841-round Trivium is 278+277 ≈ 278.6.
Cube attack on 842-round Trivium. We find the superpolies pI9 and pI10 for
the set of cube indices I9 and I10, whose dimensions are 76 and 77, respectively.

Taking the cube of dimension 76 as I9 = {0, 1, . . . , 71, 73, 75, 77, 79} with

IV [72] = IV [74] = IV [76] = IV [78] = 0,

we recover a balanced superpoly for 842-round Trivium that has 5147 terms
and algebraic degree of 8.

Taking the cube of dimension 77 as I10 = {0, 1, . . . , 73, 75, 77, 79} with

IV [74] = IV [76] = IV [78] = 0,

we recover a balanced superpoly p10 for 842-round Trivium that has 4174 terms
and algebraic degree of 8.

Similar with pI4 , pI11 = pI9 ⊕ pI10 is the superpoly of the cube indices I11 =
{0, 1, . . . , 71, 73, 75, 77, 79} with IV [74] = IV [76] = IV [78] = 0, IV [72] = 1.
Therefore, we can recover 2 bits of key information by using 277 = 2 × 276

time complexities. The dominant part of the whole key recovery attack is the
exhaustive search after 2-bit key recovery, which is 278 time complexity. Totally,
the time complexity is 278 + 277 ≈ 278.6.

22

https://github.com/hukaisdu/MonomialPrediction/blob/master/superpoly.pdf
https://github.com/hukaisdu/MonomialPrediction/blob/master/superpoly.pdf

6 Division Property from an Algebraic Viewpoint

Since 2015, various division properties together with their “propagation rules”
are proposed in the literature, including the word-based division property [25,21],
the two-subset bit-based division property [27] (a.k.a. the conventional bit-based
division property), the three-subset bit-based division property [27], and the
recent three-subset bit-based division property without unknown subset [30,9].
Based on these properties with their associated propagation rules, detection
algorithms or tools can be built. In a narrow sense, these detection algorithms
are used to detect whether the sum of an output bit of a symmetric-key primitive
over a carefully constructed input data set is key-independent, that is, the sum
is a constant (0 or 1) for any key.

We now look at the detection algorithms for the key-independent property
from an algebraic viewpoint. Before we go any further, ăwe would like to men-
tion that the first attempt to formulate the division property in an algebraic
way was made by Boura and Canteaut at CRYPTO 2016 [2]. However, they
only focused themselves on local components rather than on the global (keyed)
Boolean functions. Furthermore, Biryukov, Khovratovich, and Perrin proposed
the multiset-algebraic cryptanalysis which can also be seen as an algebraic treat-
ment of the division property [1]. But they focused more on the algebraic degree
only. Now, let us proceed to show the following conclusions:

• A perfect detection algorithm for the key-independent property can be con-
structed based on the monomial prediction (i.e., this algorithm never raises
false alarms and never misses).

• The word-based division property [25], two-subset bit-based division prop-
erty [27] and three-subset bit-based division property [27] together with their
propagation rules lead to no-false-alarm detection algorithms for the key-
independent property (however, these algorithms can miss).

• The three-subset bit-based division property without unknown subset with
its propagation rules [9] forms a perfect detection algorithm for the key-
independent property, and an equivalence between it and the monomial pre-
diction technique can be established.

6.1 A Perfect Detection Algorithm Based on Monomial Prediction

For a composite function f : Fn
2 → Fm

2 ,x(r) = f(x(0)), we define a constant
vector u ∈ Fn

2 then we derive a structure of the input values X = {x ∈ Fn
2 : x ⪯

u}. We want to detect whether

λ =
⊕
x∈X

πu(r)(f(x))

is independent of the variables xi’s with ūi = 1 denoted by ū-(in)dependent.
From the viewpoint of presence and absence of monomials, we have

λ =

{
ū-dependent, if πu⊕w(x(0))→ πu(r)(x(r)) for some 0 ≺ w ⪯ ū
ū-independent, if πu⊕w(x(0)) ↛ πu(r)(x(r)) for all 0 ≺ w ⪯ ū

23

Hence, for f , the monomial prediction can detect whether λ is independent
of xi with ūi = 1 precisely in theory by computing |πu⊕w(x(0)) 1 πu(r)(x(r))|
for every possible 0 ≺ w ⪯ ū.

Application to derived function. When applying the monomial prediction
to a practical cipher, some part of the public variables will be fixed as a constant
value. Let Γ 0,Γ 1,Γ p and Γ s be four constant vectors indicating the 0-constant
public variables, 1-constant public variables, the non-constant public variables
and the secret variables, respectively. Then we study the derived function fd of
f with Γ 0,Γ 1,Γ p,Γ s. In the integral attack, the chosen plaintext set is

X0 = {x⊕ Γ 1 ∈ Fn
2 : x ⪯ Γ p}. (10)

And we are interested in whether

Λ =
⊕
x∈X0

πu(r)(fd(x)).

is independent of the secret variables xi with Γ s
i = 1, denoted by key-(in)dependent.

Similarly,

Λ =

{
key-dependent, if πΓp⊕w(x(0))→ πu(r)(x(r)) for some 0 ≺ w ⪯ Γ s

key-independent, if πΓp⊕w(x(0)) ↛ πu(r)(x(r)) for all 0 ≺ w ⪯ Γ s

Hence, by computing |πΓp⊕w(x(0)) 1 πu(r)(x(r))| for every possible 0 ≺ w ⪯ Γ s,
we can predict whether Λ is or not key-independent.

6.2 No-False-Alarm Detection Algorithms

Although the monomial prediction can predict the key-independent property
precisely, computing the size of a monomial hull is commonly difficult, espe-
cially for a block cipher because the size of the monomial hull is usually huge.
Furthermore, for attackers, integral property of any bits (it is not necessary to
find all) is useful in distinguishing attacks. Therefore, some trade-off between
the efficiency and precision is necessary and reasonable.

Following this idea of trade-off, we show a simple observation. Recall Lemma 1,
if πu(x

(0)) ̸⇝ πu(r)(x(r)), we have πu(x
(0)) ↛ πu(r)(x(r)). Then if we are

able to make the claim that Λ is key-independent according to πΓp⊕w(x(0)) ̸⇝
πu(r)(x(r)) for any w ⪯ Γ s, the detection algorithm we employ will never raise
false alarms.

Definition 3 (No-False-Alarm Approximations). For two detection algo-
rithms A1 and A2, if A1 claims a certain property P holds, A2 must also claim
P holds, then we say A1 is a no-false-alarm approximation of A2.

Next we prove that the two-subset bit-based division property is a no-false-alarm
approximation of the monomial prediction.

24

Definition 4 (Two-Subset Bit-Based Division Property [27]). Let X be
a multiset whose elements are n-bit vectors and K be a set whose elements are
n-bit vectors. When the multiset X has the division property D1n

K , it fulfills the
following conditions:⊕

x∈X

πu(x) =

{
unknown, if there exist k ∈ K s.t. u ⪰ k,
0, otherwise.

Let fd be the derived function of f with Γ 0,Γ 1,Γ p,Γ s. Suppose the initially
chosen set (multiset) of the plaintext is X0 as defined in Equation (10) and the
multiset of the ciphertext is Xr = {y : y = fd(x),x ∈ X0}. Then we first
compute the division property of X0 as D1n

K0
, where

K0 = {k ∈ Fn
2 : k ⪰ Γ p}. (11)

To compute the division property of Xr, i.e., D1n

Kr
, we will trace all the propaga-

tion from the vectors in K0. The propagation rules for the two-subset bit-based
division property are listed in [27,31,13].

Proposition 4. The two-subset bit-based division property is a no-false-alarm
approximation of the monomial prediction in detecting the balance property,
therefore the two-subset bit-based division property claims

⊕
x(r)∈Xr

πk(r)(x(r)) ≡
0 without false alarms.

Proof. Firstly, for any k(0) ∈ K0, πk(0)(x(0)) = πΓp⊕w(x(0)) where w = Γ p ⊕
k(0) ⪯ Γ 1 ⊕ Γ s. Next, we consider the propagation from these vectors in K0.
Note all kinds of components of a cipher can be seen as an S-box: y = S(x),
and the propagation of the S-box for the two-subset bit-based division property
has been concluded as a rule: Let D1n

Kin
and D1n

Kout
be the input and output two-

subset bit-based division property of S, respectively. If u ∈ Kin can propagates
to v ∈ Kout, there must be u′ ⪰ u satisfying πu′(x)→ yv. Since the monomial
trail requires xu → yv, then from the same u, the two-subset bit-based division
property can propagate to a larger range of vectors v.

Hence, if k(r) /∈ Kr, we have πk(x
(0)) ̸⇝ πk(r)(x(r)) for all k ∈ K0. Therefore,

πk(r)(x(r)) does not contain any terms like πΓp⊕w(x(0)) = πw(x(0))πΓp(x(0)) for
w ⪯ Γ 1 ⊕ Γ s, naturally,⊕

x(r)∈Xr

πk(r)(x(r)) =
⊕

x(0)∈X0

πk(r)(fd(x
(0))) ≡ 0.

⊓⊔

According to the proof, it can be checked even if k(r) ∈ Kr, we cannot de-
termine whether πk(0)(x(0)) ⇝ πk(r)(x(r)) (let alone πk(0)(x(0)) → πk(r)(x(r))),
while the two-subset division property claims that the parity is an unknown
value, i.e., the two-subset bit-based division property may miss some balance
properties.

Similarly, we can prove that the three-subset bit-based division property and
the word-based division property are also no-false-alarm approximation of the
monomial prediction. The proofs are provided in Appendix C (Ref. [11]).

25

6.3 The Three-Subset Bit-Based Division Property without
Unknown Subset is Perfect

In [30], Wang et al. found that we can only focus on a part of the propagation
of the three-subset bit-based division property when processing a public-update
cipher. Later in [9], Hao et al. formulated this method to the three-subset bit-
based division property without unknown subset. In this subsection, we show it
is perfect in detecting the key-independent property.

Definition 5 (Three-Subset Bit-Based Division Property w/o Unknown
Subset [9,30]). Let X and L be two multisets whose elements are n-bit vec-
tors. When the multiset X has the three-subset bit-based division property without
unknown subset T 1n

L , it fulfills the following conditions:⊕
x∈X

πℓ(x) =

{
1, if there are odd-number ℓ in L,
0, if there are even-number ℓ in L.

Let fd be the derived function of f with Γ 0,Γ 1,Γ p,Γ s13. Suppose the initial
chosen set (multiset) of the plaintext is X0 in Equation (10), and the multiset
of the ciphertext is Xr = {y : y = fd(x),x ∈ X0}. Then we first compute the
division property of X0 as T 1n

L0
[30], where

L0 = {ℓ ∈ Fn
2 : Γ p ⪯ ℓ ⪯ Γ p ⊕ Γ 1}. (12)

To compute the division property of Xr, i.e., T 1n

Lr
, we will trace all the propa-

gation from the vectors in L0. The propagation rules for three-subset bit-based
division property without unknown subset are listed in [30,9].

Proposition 5. The three-subset bit-based division property without unknown
subset predicts

⊕
x(r)∈Xr

πℓ(r)(x
(r)) for any ℓ(r) perfectly.

Proof. Firstly, for any ℓ(0) ∈ L0, πℓ(0)(x
(0)) = πΓp⊕w(x(0)) where w = Γ p ⊕

ℓ(0) ⪯ Γ 1. Then πΓp⊕w(x(0)) = πΓp(x(0)). Next, we consider the propagation
from these vectors in L0. Since all kinds of components of a cipher can be seen
as an S-box: y = S(x) and the propagation of the S-box for the three-subset bit-
based division property without unknown subset has been concluded as a rule
that guarantees xu → yv [30], we can trace the propagation and compute out
Lr. Therefore, for every vector ℓ(r) ∈ Lr, there is a monomial trail connecting
πℓ(0)(x

(0)) and πℓ(r)(x
(r)) since xu → yv is also required by Definition 1. Let

ℓ(r) appears N times in Lr, then

N =
∑
ℓ∈L0

|πℓ(x
(0)) 1 πℓ(r)(x

(r))| =
∑

w⪯Γ 1

|πΓp⊕w(x(0)) 1 πℓ(r)(x
(r))|.

According to Proposition 2, πΓp(x(0))→ πℓ(r)(x
(r)), if and only if N mod 2 = 1.

⊓⊔
13 In [9], the definition of the three-subset division property without unknown subset

made no distinction between the public and secret variables, equivalently, Γ s = 0
and Γ p indicates all variables.

26

6.4 An Alternative Detection Algorithm for Division Property

The algebraic insights into the division property bring us much more flexibil-
ity in designing new detection algorithms for balance properties. Although the
three-subset bit-based division property is more accurate than the two-subset
bit-based division property [30], the latter is more MILP-friendly and needs
simpler programming, therefore the two-subset version is more efficient. Accord-
ing to the existing literature, the three-subset bit-based division property can
find several more balanced bits, but hardly surpass the two-subset version by
rounds. Hence, the two-subset bit-based division property is still the dominant
method in searching for the integral property.

Table 3: Some experimental results of our new detection algorithm compared
with the previous ones. All results are re-produced on the same platform.

Cipher #Data #Round #Constant Time Method

Simon32 231 15

–† – [31]
3 27 s [12]
3 120 s [30]
3 3 s Ours

Simon32 (102)
‡

231 20
1 3 s [31]
3 25 s [12]
3 3 s Ours

Simon48 (102) 247 28
3 8 s [31]
3 9 s [12]
3 8 s Ours

Simon64 (102) 263 36
1 23 s [31]
3 1.1 h [12]
3 30 s Ours

†
The two-subset bit-based division property cannot find the 15-round integral dis-
tinguisher for Simon32.

‡ Simon32 (102) means the rotation constants are (1,0,2) rather than (8,1,2), see [31].

From an algebraic viewpoint, we show how to design a new detection algo-
rithm of division property which surpasses the capability but achieves the similar
efficiency with the two-subset bit-based division property. For the derived func-
tion fd with Γ 0,Γ 1,Γ p,Γ s, if we want to determine whether

⊕
x∈X0

πu(r)(fd(x))

is key-independent or not, we only need to check whether πu(r)(x(r)) contains
any term in

S0 = {πΓp⊕w(x(0)) : 0 ≺ w ⪯ Γ s}.

Consider Sr = {πu(r)(x(r)) : πu(0)(x(0))⇝ πu(r)(x(r))}, if πu(r)(x(r)) /∈ Sr, then
we know fd does not contain any monomials in S0 since there is no monomial
trail. Therefore

⊕
x∈X0

πu(r)(fd(x)) is a key-independent value.

27

To detect it, firstly, we construct the model of πu(0)(x(0)) ⇝ πu(r)(x(r)) by
decomposing the target cipher like we do for Trivium. Secondly, we impose
another constraint on all the round key bits ki on the MILP model M as

M←
∑
i

ki ≥ 1.

Finally, we check the validity of this model. If the model is infeasible, then
πu(r)(x(r)) contains no monomial in S0 and

⊕
x∈X0

πu(r)(fd(x)) is key-independent.
Since we do not need to compute the size of the monomial hull, the model is
easy to solve. Some experiments are conducted to show the capibility of this
alternative detection algorithm, we list the results in Table 3.

7 Conclusion and Discussion

In this work, a pure algebraic treatment of the division property is presented, and
we propose the monomial prediction technique which determines the presence
or absence of a monomial by counting the number of monomial trails in the
corresponding monomial hull. Based on this technique, we manage to obtain the
exact algebraic degrees of Trivium up to 834 rounds and improved key-recovery
attacks on 840-, 841- and 842-round Trivium.

Moreover, we categorize existing detection algorithms for division proper-
ties into perfect, no-false-alarm, and no-missing classes. In particular, we prove
that the three-subset bit-based division property without unknown subset and
monomial prediction are perfect. At this point, a natural question arises. Can we
design an efficient no-missing detection algorithm for the division property that
does not raise too many false alarms, which would be very useful for designers
to theoretically determine the security bounds against attacks based on division
properties.

Acknowledgements. We thank the anonymous reviewers for their valuable
comments. This work is supported by the National Key Research and Develop-
ment Program of China (No. 2018YFA0704702, 2018YFA0704704), the Major
Scientific and Technological Innovation Project of Shandong Province, China
(No. 2019JZZY010133), the Chinese Major Program of National Cryptography
Development Foundation (MMJJ20180102), and the National Natural Science
Foundation of China (61772519). The work of Qingju Wang is funded by the
University of Luxembourg Internal Research Project (IRP) FDISC.

References

1. Alex Biryukov, Dmitry Khovratovich, and Léo Perrin. Multiset-algebraic crypt-
analysis of reduced Kuznyechik, Khazad, and secret SPNs. IACR Trans. Symmetric
Cryptol., 2016(2):226–247, 2016.

2. Christina Boura and Anne Canteaut. Another view of the division property. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, volume 9814 of
LNCS, pages 654–682. Springer, 2016.

28

3. Christina Boura, Anne Canteaut, and Christophe De Cannière. Higher-order differ-
ential properties of Keccak and Luffa. In Antoine Joux, editor, FSE 2011, volume
6733 of LNCS, pages 252–269. Springer, 2011.

4. Christophe De Cannière and Bart Preneel. Trivium. In Matthew J. B. Robshaw
and Olivier Billet, editors, New Stream Cipher Designs - The eSTREAM Finalists,
volume 4986 of LNCS, pages 244–266. Springer, 2008.

5. Anne Canteaut and Marion Videau. Degree of composition of highly nonlinear
functions and applications to higher order differential cryptanalysis. In Lars R.
Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 518–533.
Springer, 2002.

6. Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher Square. In
Eli Biham, editor, FSE ’97, volume 1267 of LNCS, pages 149–165. Springer, 1997.

7. Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials. In
Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 278–299.
Springer, 2009.

8. Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang. Mod-
eling for three-subset division property without unknown subset. IACR Cryptology
ePrint Archive, 2020:441, 2020.

9. Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang. Mod-
eling for three-subset division property without unknown subset - improved cube
attacks against Trivium and Grain-128AEAD. In Anne Canteaut and Yuval Ishai,
editors, EUROCRYPT 2020, volume 12105 of LNCS, pages 466–495. Springer,
2020.

10. Phil Hebborn, Baptiste Lambin, Gregor Leander, and Yosuke Todo. Lower bounds
on the degree of block ciphers. In Shiho Moriai and Huaxiong Wang, editors,
ASIACRYPT 2020. (to appear).

11. Kai Hu, Siwei Sun, Meiqin Wang, and Qingju Wang. An algebraic formulation
of the division property: Revisiting degree evaluations, cube attacks, and key-
independent sums. 2020. https://eprint.iacr.org/2020/1048.

12. Kai Hu and Meiqin Wang. Automatic search for a variant of division property
using three subsets. In Mitsuru Matsui, editor, CT-RSA 2019, volume 11405 of
LNCS, pages 412–432. Springer, 2019.

13. Kai Hu, Qingju Wang, and Meiqin Wang. Finding bit-based division property for
ciphers with complex linear layers. IACR Trans. Symmetric Cryptol., 2020(1):236–
263, 2020.

14. Thomas Jakobsen and Lars R. Knudsen. The interpolation attack on block ciphers.
In Eli Biham, editor, FSE ’97, volume 1267 of LNCS, pages 28–40. Springer, 1997.

15. Lars R. Knudsen. Truncated and higher order differentials. In Bart Preneel, editor,
FSE’94, volume 1008 of LNCS, pages 196–211. Springer, 1994.

16. Lars R. Knudsen and David A. Wagner. Integral cryptanalysis. In Joan Daemen
and Vincent Rijmen, editors, FSE 2002, volume 2365 of LNCS, pages 112–127.
Springer, 2002.

17. Xuejia Lai. Higher order derivatives and differential cryptanalysis. In Richard E.
Blahut, Daniel J. Costello, Ueli Maurer, and Thomas Mittelholzer, editors, Com-
munications and Cryptography, vol 276, pages 227–233. Springer, 1994.

18. Meicheng Liu. Degree evaluation of NFSR-based cryptosystems. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, volume 10403 of LNCS, pages
227–249. Springer, 2017.

19. Piotr Mroczkowski and Janusz Szmidt. The cube attack on stream cipher Trivium
and quadraticity tests. Fundam. Inform., 114(3-4):309–318, 2012.

29

https://eprint.iacr.org/2020/1048

20. Sean Murphy and Matthew J. B. Robshaw. Essential algebraic structure within
the AES. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 1–16.
Springer, 2002.

21. Bing Sun, Xin Hai, Wenyu Zhang, Lei Cheng, and Zhichao Yang. New observation
on division property. Sci. China Inf. Sci., 60(9):98102, 2017.

22. Ling Sun, Wei Wang, and Meiqin Wang. Automatic search of bit-based division
property for ARX ciphers and word-based division property. In Tsuyoshi Takagi
and Thomas Peyrin, editors, ASIACRYPT 2017, volume 10624 of LNCS, pages
128–157. Springer, 2017.

23. Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song. Au-
tomatic security evaluation and (related-key) differential characteristic search: Ap-
plication to simon, present, lblock, DES(L) and other bit-oriented block ciphers.
In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, volume 8873 of
LNCS, pages 158–178. Springer, 2014.

24. Yosuke Todo. Integral cryptanalysis on full MISTY1. In Rosario Gennaro and
Matthew Robshaw, editors, CRYPTO 2015, volume 9215 of LNCS, pages 413–
432, 2015.

25. Yosuke Todo. Structural evaluation by generalized integral property. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, volume 9056 of LNCS,
pages 287–314. Springer, 2015.

26. Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks on
non-blackbox polynomials based on division property. In Jonathan Katz and Ho-
vav Shacham, editors, CRYPTO 2017, volume 10403 of LNCS, pages 250–279.
Springer, 2017.

27. Yosuke Todo and Masakatu Morii. Bit-based division property and application to
Simon family. In Thomas Peyrin, editor, FSE 2016, volume 9783 of LNCS, pages
357–377. Springer, 2016.

28. Qingju Wang, Lorenzo Grassi, and Christian Rechberger. Zero-sum partitions of
PHOTON permutations. In Nigel P. Smart, editor, CT-RSA 2018, volume 10808
of LNCS, pages 279–299. Springer, 2018.

29. Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe, and Willi
Meier. Improved division property based cube attacks exploiting algebraic proper-
ties of superpoly. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO
2018, volume 10991 of LNCS, pages 275–305. Springer, 2018.

30. SenPeng Wang, Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi. Milp-aided method
of searching division property using three subsets and applications. In Steven D.
Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, volume 11923 of LNCS,
pages 398–427. Springer, 2019.

31. Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying MILP
method to searching integral distinguishers based on division property for 6
lightweight block ciphers. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASI-
ACRYPT 2016, volume 10031 of LNCS, pages 648–678. Springer, 2016.

32. Chendong Ye and Tian Tian. Revisit division property based cube attacks: Key-
recovery or distinguishing attacks? IACR Trans. Symmetric Cryptol., 2019(3):81–
102, 2019.

30

