
MoniPoly—An Expressive q-SDH-Based
Anonymous Attribute-Based Credential System

Syh-Yuan Tan and Thomas Groß

School of Computing, Newcastle University, UK
{syh-yuan.tan, thomas.gross}@newcastle.ac.uk

Abstract Modern attribute-based anonymous credential (ABC) sys-
tems benefit from special encodings that yield expressive and highly
efficient show proofs on logical statements. The technique was first pro-
posed by Camenisch and Groß, who constructed an SRSA-based ABC
system with prime-encoded attributes that offers efficient AND, OR and
NOT proofs. While other ABC frameworks have adopted constructions in
the same vein, the Camenisch-Groß ABC has been the most expressive
and asymptotically most efficient proof system to date, even if it was
constrained by the requirement of a trusted message-space setup and
an inherent restriction to finite-set attributes encoded as primes. In this
paper, combining a new set commitment scheme and an SDH-based sig-
nature scheme, we present a provably secure ABC system that supports
show proofs for complex statements. This construction is not only more
expressive than existing approaches, but it is also highly efficient under
unrestricted attribute space due to its ECC protocols only requiring a
constant number of bilinear pairings by the verifier; none by the prover.
Furthermore, we introduce strong security models for impersonation and
unlinkability under adaptive active and concurrent attacks to allow for
the expressiveness of our ABC as well as for a systematic comparison
to existing schemes. Given this foundation, we are the first to compre-
hensively formally prove the security of an ABC with expressive show
proofs. Specifically, building upon the the q-(co-)SDH assumption, we
prove the security against impersonation with a tight reduction. Besides
the set commitment scheme, which may be of independent interest, our
security models can serve as a foundation for the design of future ABC
systems.

1 Introduction

An anonymous attribute-based credential (ABC) system allows a user to obtain
credentials, that is, certified attribute set A from issuers and to anonymously

This work was supported in part by the European Research Council Starting
Grant “Confidentiality-Preserving Security Assurance (CASCAde)” under Grant GA
n◦716980.

prove the possession of these credentials as well as properties of A. Anonymous
credentials were first proposed by Chaum [?] but it does draw much attention un-
til Brands [?] constructed a pragmatic single-show ABC system and Camenisch
and Lysyanskaya (CL) [?] presented a practical multi-show ABC system. CL-
ABC system uses the signer’s signature on a committed, and therefore blinded,
attribute as the user credential. The proof of possession of a valid credential is
a zero-knowledge proof of knowledge on the validity of the signature and the
wellformedness of the commitment. This commit-and-sign technique has been
employed by ABC systems from RSA-based signature scheme [?] and pairing-
based signature schemes [? ? ? ? ? ? ? ? ? ?] on blocks of messages in which
the i-th attribute is fixed as the exponent to the i-th base. Therefore, the show
proofs have a computational complexity linear to the number of attributes in the
credential, in terms of the modular exponentiations and scalar multiplications,
respectively.

In contrast to the technique above which is termed as traditional encoding by
Camenisch and Groß [? ?], they suggested a prime encoding for the SRSA-CL
signature scheme [?] to offer show proofs on AND, OR and NOT statements
with constant complexity for the prime-encoded attributes. Specifically, the
Camenisch-Groß (CG) construction separates the unrestricted attribute space S
into string attributes space and finite-set attributes space such that S = SS∪SF .
The CG encoding uses a product of prime numbers to represent a finite-set at-
tribute set AF ∈ SF in a single exponent, a technique subsequently applied to
graphs as complex data structures [? ?]. Prime encoding results in highly effi-
cient show proofs: each execution only requires a constant number of modular
exponentiations. However, the construction constrains SF to a set of pre-certified
prime numbers and increases the public key size1. Furthermore, the security of
the CG ABC system was only established on the properties of its show proofs
and not formally on the overall properties of the ABC system. Despite these
drawbacks, to the best of our knowledge, CG ABC system [? ?] is the only
ABC system in the standard model that has show proof for AND, OR, and NOT
statements with constant complexity.

Related Works. The SDH-CL signature scheme [? ? ?] is a popular candidate
for the ABC system based on the traditional encoding. It is also referred as the
BBS+ signature scheme [? ? ? ? ? ?] or the Okamoto signature scheme [? ?]. Au
et al. [?] and Akagi et al. [?] constructed provably secure ABC systems on this
foundation while Camenisch et al. [?] integrated a pairing-based accumulator
to yield an ABC system that supports revocation. Later, Sudarsono et al. [?
] applied the accumulator on SF as in prime encoding and showed that the
resulting ABC system can support show proofs for AND and OR statements
with constant complexity. Yet, the accumulator requires a large public key size:
|SF | finite-set attributes plus the corresponding |SF | signatures. Inspired by
the concept of attribute-based signature, Zhang and Feng [?] solved the large

1 If the prime numbers are not pre-certified by a signature each, the show proofs have
to include expensive interval proofs.

2

public key problem, while additionally supporting threshold statements (ANY) in
show proofs, at the cost of having the credential size linear to |AF |. Comparing
the traditional encoding-based ABC systems to the accumulator-based ABC
systems, the latter require more bilinear pairing operations in the show proofs,
while having either large public key or credential sizes.

There were some attempts to apply Camenisch et al.’s accumulator [?] and
its variants on P-signatures [?], LRSW-CL signature [?] and structure preserv-
ing signatures [? ? ?] to support complex non-interactive zero-knowledge (NIZK)
show proofs. Among all, Sadiah et al.’s ABC system [?] offers the most expressive
show proofs. Considering only S = SF , their ABC system allows constant-size
and constant-complexity NIZK show proofs for monotone formulas at the cost
of issuing |P(AF)| credentials to every user where P(AF) is the power set of the
user attribute set AF . Instead of performing this expensive process during the
issuing protocol, Okishima and Nakanishi’s ABC system [?] generates P(SF)
during key generation and inflates the public key size with |P(SF)| signatures
to enable constant-size non-interactive witness-indistinguishable (NIWI) show
proofs for conjunctive composite formulas. There are also ABC systems [? ?]
that were built on Pointcheval and Sanders’ signature [?]. The ABC system
proposed by Bemmann et al. [?] combines both traditional encoding and accu-
mulator [?] to support monotone formulas under the non-interactive proof of
partial knowledge protocol [?]. Although it has significantly shorter credential
and supports unrestricted attribute space compared to that of Sadiah et al.’s [?
], its show proofs complexity is linear to the number of literals in the monotone
formula.

The findings on the use of accumulator in constructing ABC system cor-
respond to the observations in the ABC transformation framework proposed
by Camenisch et al. [?]. They discovered that the CL signatures are not able
to achieve constant-size NIZK show proofs without random oracle. The frame-
work takes in a structure-preserving signature scheme and a vector commit-
ment scheme to produce a UC-secure ABC system. Their instantiation supports
constant-size NIZK show proofs on subset statements and provably secure under
the common reference string model. Using the similar ingredients, Fuchsbauer et
al. [?] constructed an ABC system that offers constant-size NIZK show proofs
on subset statement. The security models in the two works, however, are not de-
signed to cover expressive show proofs. Other frameworks [? ?] that formalized
the commit-and-sign technique and even those [? ? ?] support show proofs on
complex statements also fall short in this aspect.

Research Gap. Existing constructions yield considerable restrictions when ex-
pressive show proofs are concerned: The SRSA-based CG scheme [?] as well
as accumulator-based schemes [? ? ? ? ? ?] constrain the attribute space to
finite-set attributes (AF ∈ SF) and require a trusted setup that inflates either
the public-key size or the credential size. Their expressiveness and the compu-
tational complexity are no better than the pairing-based constructions [? ? ? ?
?] and the general ABC frameworks [? ? ?] alike, when only string attributes
(AS ∈ SS) are considered. Expressive proofs for large attribute set are desirable

3

in privacy-preserving applications such as direct anonymous attestation [? ? ?
? ? ?]. Also, we observe a need for a systematic canonicalization of security
models for all mentioned schemes. In short, an ideal ABC system should have:

1. strong security assurance, and
2. appropriate public key size, and
3. expressive show proofs with low complexity regardless of the attribute space.

Our Contribution. We present a perfectly hiding and computationally binding
set commitment scheme, called MoniPoly, which supports set membership proofs
and disjointness proofs on the committed messages. Following the commit-and-
sign methodology, we combine the MoniPoly commitment scheme tracing back
to Kate et. al.’s work [?] with SDH-based Camenisch-Lysyanskaya signature
scheme [? ?] to present an efficient ABC system that support expressive show
proofs for AND, OR and k-out-of-n threshold (ANY) clauses as well as their
respective complements (NAND, NOR and NANY). Our ABC system is the most
efficient construction for the unrestricted attribute space to-date. And it is at
least as expressive as the existing constructions specially crafted for the restricted
attribute space.

To the best of our knowledge, neither the constructions nor security models
of existing ABC systems allow for complex interactive show proofs. As an im-
mediate contribution, we rigorously define the necessary and stronger security
notions for ABC systems. Our notions for security of impersonation resilience
and unlinkability under adaptive active and concurrent attacks are stronger than
those of the state-of-the-art ABC systems [? ? ? ?]. We prove the security of our
construction with respect to the security against impersonation and linkability
in the standard model, especially offering a tight reduction for impersonation
resilience under the q-(co-)SDH assumption.

Organization. We organize the paper as follows. In Section 2, we briefly intro-
duce the underlying SDH-based CL signature scheme. In Section 3, we present
the MoniPoly commitment scheme. We present our ABC system which is a com-
bination of the MoniPoly commitment scheme with SDH-based CL signatures [?
?] in Section 4. Section 5 offers an evaluation of the MoniPoly ABC in terms
of security properties, expressivity as well as computational complexity in com-
parison to other schemes in the field.

2 Preliminaries

The MoniPoly commitment and ABC schemes are based on standard mathe-
matical foundations in elliptic curves and bilinear maps as well as notions on
signature schemes and proof systems. Readers may refer to the full version [?]
for this information.

4

2.1 The SDH-based CL Signature Scheme

Camenisch and Lysyanskaya [?] introduced a technique to construct secure
pairing-based signature schemes which support signing on committed messages.
They also showed that their technique can extract an efficient SDH-based sig-
nature scheme from Boneh et al.’s group signature [?] scheme but no security
proof was provided. This scheme was later proven to be seuf-cma-secure with a
tight reduction [?] to the SDH assumption in the standard model. We describe
the SDH-CL signature scheme [? ? ?] as follows:

KeyGen(1k): Construct three cyclic groups G1,G2,GT of order p based on an
elliptic curve whose bilinear pairing is e : G1 × G2 → GT . Select random gen-
erators a, b, c ∈ G1, g2 ∈ G2 and a secret value x ∈ Z∗p. Output the public key
pk = (e,G1,G2,GT , p, a, b, c, g2, X = gx2) and the secret key sk = x.

Sign(m, pk, sk): On input m, choose the random values s, t ∈ Z∗p to compute
v = (ambsc)

1
x+t . In the unlikely case in which x+ t = 0 mod p occurs, reselect

a random t. Output the signature as sig = (t, s, v).

Verify(m, sig, pk): Given sig = (t, s, v), output 1 if the equation:

e(v,Xgt2) = e((ambsc)
1

x+t , gx+t
2)

= e(ambsc, g2).

holds and output 0 otherwise.

Theorem 1. [?] SDH-based CL signature scheme is seuf-cma-secure in the
standard model if the Strong Diffie-Hellman problem is (tsdh, εsdh)-hard.

3 MoniPoly Set Commitment Scheme

The key idea of set commitment scheme traces back to the polynomial commit-
ment scheme [?] which can commit to a polynomial and support opening at
indexes of the polynomial. Inheriting this nature, our MoniPoly set commitment
scheme and similar ones [? ?] transform a message m ∈ Zp into (x′ +m) where
x′ ∈ Zp is not known to the user and multiple messages form a monic polyno-
mial f(x′) =

∏n
i=1(x′ + mi). This monic polynomial, in turn, can be rewritten

as f(x′) =
∑n
i=0 mix

′i. Its coefficients mi ∈ Z∗p can be efficiently computed, for
instance, using the encoding algorithm MPEncode() : Znp → Zn+1

p described in
the full version [?].

Our commitment scheme’s unique property is that it treats the opening value
as one of the roots in the monic polynomial. Hence, the name MoniPoly. Fold-
ing the opening value into the monic polynomial yields compelling advantages,
especially, enabling a greater design space for presentation proofs.

While related schemes [? ? ?] realize subset opening, our scheme supports the
opening of intersection sets and difference sets, in addition. Thus, MoniPoly is

5

more expressive. Furthermore, the presentation proofs created on MoniPoly are
more efficient than other commitment-based frameworks. Finally, treating the
opening value as a root of the monic polynomial yields a scheme that is closely
aligned with well-established commitment scheme paradigms, which, in turn,
fits into a range of popular signature schemes and enables signing committed
messages.

3.1 Interface

We define the MoniPoly set commitment scheme as the following algorithms:

MoniPoly = (Setup,Commit,Open,OpenIntersection,

VerifyIntersection,OpenDifference,VerifyDifference)

1. Setup(1k, n)→ (pk, sk). A pair of public and secret keys (pk, sk) are gener-
ated by a trusted authority based on the security parameter input 1k. The
message domain D is defined and n − 1 is the maximum messages allowed.
If n is fixed, sk is not required in the rest of the scheme.

2. Commit(pk,A, o)→ (C). On the input of pk, a message set A ∈ Dn−1 and a
random opening value o ∈ D, output the commitment C.

3. Open(pk, C,A, o) → b. Return b = 1 if C is a valid commitment to A with
the opening value o under pk, and return b = 0 otherwise.

4. OpenIntersection(pk,C,A, o, (A′, l)) → (I,W) or ⊥. If |A′ ∩ A| ≥ l holds,
return an intersection set I = A′ ∩ A of length l with the corresponding
witness W , and return an error ⊥ otherwise.

5. VerifyIntersection(pk, C, (I,W), (A′, l)) → b. Return b = 1 if W is a witness
for S being the intersection set of length l for A′ and the set committed to
in C, and return b = 0 otherwise.

6. OpenDifference(pk,C,A, o, (A′, l̄)) → (D,W). If |A′ − A| ≥ l̄ holds, return
the difference set D = A′−A of length l̄ with the corresponding witness W ,
and return ⊥ otherwise.

7. VerifyDifference(pk,C, (D,W), (A′, l̄))→ b. Return b = 1 if W is the witness
for D being the difference set of length l̄ for A′ and the set committed to in
C, and return b = 0 otherwise.

3.2 Security Requirements

Definition 1. A set commitment scheme is perfectly hiding if every commit-
ment C = Commit(pk,A, o) is uniformly distributed such that there exists an
o′ 6= o for all A′ 6= A where Open(pk,C,A′, o′) = 1.

Definition 2. An adversary A is said to (tbind, εbind)-break the binding security
of a set commitment scheme if A runs in time at most tbind and furthermore:

Pr[Open(pk, C,A1, o1) = Open(pk,C,A2, o2) = 1] ≥ εbind.

for a negligible probability εbind and any two pairs (A1, o1), (A2, o2) output by A.
We say that a set commitment scheme is (tbind, εbind)-secure wrt. binding if no
adversary (tbind, εbind)-breaks the binding security of the set commitment scheme.

6

3.3 Construction

We describe the MoniPoly commitment scheme as follows:

Setup(1k). Construct three cyclic groups G1,G2,GT of order p based on an
elliptic curve whose bilinear pairing is e : G1 × G2 → GT . Select random gen-
erators a ∈ G1, g2 ∈ G2 and a secret values x′ ∈ Z∗p. Compute the values
a0 = a, a1 = ax

′
, . . . , an = ax

′n
, X0 = g2, X1 = gx

′

2 , . . . , Xn = gx
′n

2 to output the
public key pk = (e,G1,G2,GT , p, {ai, Xi}0≤i≤n) and the secret key sk = (x′).
Note that sk can be discarded by the authority if the parameter n is fixed.

Commit(pk,A, o). Taking as input a message set A = {m1, . . . ,mn−1} ∈ Z∗p and
the random opening value o ∈ Z∗p, output the commitment as

C = a
(x′+o)

∏n−1
j=1 (x′+mj)

0 =

n∏
j=0

a
mj

j

where {mj} = MPEncode(A ∪ {o}).

Open(pk, C,A, o). Return 1 if C =
∏n
j=0 a

mj

j holds where {mj} = MPEncode(A∪
{o}) and return 0 otherwise.

OpenIntersection(pk,C,A, o, (A′, l)). If |A′ ∩ A| ≥ l holds, return an intersection
set I = A′ ∩A of length l and a witness such that:

W = a
(x′+o)

∏
mj∈(A−I)(x

′+mj)

0

=

n−l∏
j=0

a
wj

j

where {wj} = MPEncode((A ∪ {o})− I). Otherwise, return a null value ⊥. The
correctness can be verified as follows:

C = W
∏

mj∈I
(x′+mj)

=

(
a

(x′+o)
∏

mj∈(A−I)(x
′+mj)

0

)∏
mj∈I

(x′+mj)

= a
(x′+o)

∏
mj∈A

(x′+mj)

0 .

VerifyIntersection(pk,C, I,W, (A′, l)). Return 1 if

e

C |A′|∏
j=0

a
m1,j

j , X0

 = e

W |A′|−l∏
j=0

a
m2,j

j ,

l∏
j=0

X
ij
j



7

holds and return 0 otherwise, where {ij} = MPEncode(I), {m1,j} = MPEncode(A′)
and {m2,j} = MPEncode(A′ − I). The correctness is as follows:

e

C |A′|∏
j=0

a
m1,j

j , X0


= e (C,X0) e

|A′|∏
j=0

a
m1,j

j , X0


= e

(
a

(x′+o)
∏

mj∈A
(x′+mj)

0 , X0

)
e

(
a

∏
mj∈A′

(x′+mj)

0 , X0

)
= e

(
a

(x′+o)
∏

mj∈(A−I)(x
′+mj)

0 , X

∏
mj∈I

(x′+mj)

0

)
e

(
a

∏
mj∈(A′−I)(x

′+mj)

0 , X

∏
mj∈I

(x′+mj)

0

)

= e

W, l∏
j=0

X
ij
j

 e

|A′|−l∏
j=0

a
m2,j

j ,

l∏
j=0

X
ij
j


= e

W |A′|−l∏
j=0

a
m2,j

j ,

l∏
j=0

X
ij
j



OpenDifference(pk, C,A, o, (A′, l̄)). If |A′ ∩ A| ≥ l̄ holds, return a difference set
D = A′ − A of length l̄ and the witness (W =

∏n−l̄
j=0 a

wj

j , {rj}
l̄−1
j=0). The val-

ues ({wj}, {rj}) = MPEncode(A)/MPEncode(D) are computed using expanded
synthetic division such that {wj} are the coefficients of quotient q(x′) and {rj}
are the coefficients of remainder r(x′). Specifically, let the polynomial divisor be
d(x′) =

∑l̄
j djx

′j where {dj} = MPEncode(D), the monic polynomial f(x′) in

the commitment C = a
f(x′)
0 can be rewritten as f(x′) = d(x′)q(x′) + r(x′). Note

that
∏l̄−1
j=0 a

rj
j 6= 1G1

whenever d(x′) cannot divide f(x′), i.e., the sets A and D
are disjoint. The correctness can be verified from the following:

C = a
(x′+o)

∏
mj∈A

(x′+mj)

0

= a
q(x′)

∏
mj∈D

(x′+mj)

0 a
r(x′)
0

=

n−l̄∏
j=0

a
wj

j

d(x′)

a

∏
mj∈D

(x′+mj)

0

= W d(x′)
l̄−1∏
j=0

a
rj
j .

8

VerifyDifference(pk,C,D, (W, {rj}l̄−1
j=0), (A′, l̄)). Return 1, if the following holds:

e

C l̄−1∏
j=0

a
−rj
j

|A′|∏
j=0

a
m1,j

j , X0

 = e

W |A′|−l̄∏
j=0

a
m2,j

j ,

l̄∏
j=0

X
dj
j

 ,

l̄−1∏
j=0

a
rj
j 6= 1G1

and return 0 otherwise, where {dj} = MPEncode(D), {m1,j} = MPEncode(A′)
and {m2,j} = MPEncode(A′ −D). The correctness is as follows:

e

C l̄−1∏
j=0

a
−rj
j

|A′|∏
j=0

a
m1,j

j , X0


= e

C l̄−1∏
j=0

a
−rj
j , X0

 e

|A′|∏
j=0

a
m1,j

j , X0


= e

(
a
d(x′)q(x′)+r(x′)
0 a

−r(x′)
0 , X0

)
e

(
a

∏
mj∈A′

(x′+mj)

0 , X0

)
= e

(
a
d(x′)q(x′)
0 , X0

)
e

(
a

∏
mj∈(A′−D)(x

′+mj)

0 , X

∏
mj∈D

(x′+mj)

0

)

= e

(
a
∑n−l̄

j=0 w1,jx
′j

0 , X
d(x′)
0

)
e

|A′|−l̄∏
j=0

a
m2,j

j , X
d(x′)
0


= e

W |A′|−l̄∏
j=0

a
m2,j

j ,

l̄∏
j=0

X
dj
j

 .

Remark 1. In the security analysis of MoniPoly, we will take a different approach
compared to the previous constructions [? ? ?]. We consider the perfectly hiding
property and the conventional computational binding property [?] that only
requires an adversary cannot present two pairs (A1, o1) and (A2, o2) such that
Commit(pk,A1, o1) = Commit(pk,A2, o2). We will show in Section 3.4 that this
conventional binding property is a superset of formers’ subset binding properties.

3.4 Security Analysis

Theorem 2. The MoniPoly commitment scheme is perfectly hiding.

Proof. Given a commitment C = a
(x′+o)

∏n−1
j=1 (x′+mj)

0 , there are |Z∗p| − 1 possible
pairs of ((m′1, . . . ,m

′
n−1), o′) 6= ((m1, . . . ,mn−1), o) which can result in the same

C. Furthermore, for every committed message set {m1, . . . ,mn−1}, there is a
unique o such that:

dloga0
(C) = (x′ + o)

n−1∏
j=1

(x′ +mj) mod p

o =
dloga0

(C)∏n−1
j=1 (x′ +mj)

− x′ mod p

9

Since o is chosen independently of the committed messages {m1, . . . ,mn−1}, the
latter are perfectly hidden. ut

The following theorem considers an adversary which breaks the binding prop-
erty by finding two different message sets A and A∗ which can be of different
lengths such that |A| ≥ |A∗|. The proof is in the full version [?].

Theorem 3. The MoniPoly commitment scheme is (tbind, εbind)-secure wrt. the
binding security if the co-SDH problem is (tcosdh, εcosdh)-hard such that:

εbind = εcosdh, tbind = tcosdh + T (n)

where T (n) is the time for dominant group operations in G1 to extract a co-SDH
solution where n is the total of committed messages plus the opening value.

4 Attribute-Based Anonymous Credential System

Table 1: Syntax and semantics for an access policy φ.
(a) BNF grammar

BNF

attr ::= <attribute>=<value>
set ::= attr,set | attr
con ::= AND | NAND | OR | NOR
cont ::= ANY | NANY
clause ::= con(set) | cont(l,set)
stmt ::= clause ∧ stmt | clause
policy ::= stmt(set) | ⊥

(b) Truth table with respect to input A

Clause Truth Condition

OR(A′) |A′ ∩A| > 0
ANY(1 < l < |A′|, A′) |A′ ∩A| ≥ l
AND(A′) |A′ ∩A| = |A′|
NOR(A′) |A′ ∩ Ā| > 0
NANY(1 < l < |A′|, A′) |A′ ∩ Ā| ≥ l
NAND(A′) |A′ ∩ Ā| = |A′|

Note: con = connective, cont = connective with threshold

Before presenting the formal definition of ABC system, we briefly define the
attribute set A and the access policy φ in our proposed ABC system which are
closely related to MoniPoly’s opening algorithms. Informally, we view a relation
between two attribute sets as a clause. Clauses can be accumulated using the
logical ∧ operator in building the composite statement for an access policy.

Attribute We view a descriptive attribute set A = {m1, . . . ,mn} as a user’s
identity. To be precise, an attribute m is an attribute-value pair in the format
attribute=value and A is a set of attributes. For instance, the identity of a user can
be described as: A = {“gender = male”, “name = bob”, “ID = 123456”, “role =
manager”, “branch = Y”}.

10

Access Policy An access policy φ as defined by the BNF grammar in Table 1
expresses the relationship between two attribute sets A and A′. An access pol-
icy φ is formed by an attribute set A as well as a statement stmt that spec-
ifies the relation between A and A′. We have some additional rules for the φ
where we require |A| = n > 1 and |A′| ≤ n. Besides, in the special case of
|A′| = 1, the connective must be either AND or NAND. An access policy φ
outputs 1 if the underlying statement is evaluated to true and outputs 0 oth-
erwise. Taking the attribute set A above as an example, we have φstmt(A) =
φAND(A′1)∧OR(A′2)(A) = 1 for the attribute sets A′1 = {“role = manager”} and
A′2 = {“branch = X”, “branch = Y”, “branch = Z”}. Note that the attribute set
A′ has been implicitly defined by stmt and we simply write φstmt in the subse-
quent sections when the reference to the attribute set A′ is clear.

4.1 Interface

We define an attribute-based anonymous credential system by five algorithms
ABC = {KeyGen,Obtain, Issue,Prove,Verify} as follows:

1. KeyGen(1k, 1n) → (pk, sk): This algorithm is executed by the issuer. On
the input of the security parameter k and the attributes upper bound n, it
generates a key pair (pk, sk).

2. (Obtain(pk,A), Issue(pk, sk))→ (cred or ⊥): These two algorithms form the
credential issuing protocol. The first algorithm is executed by the user with
the input of the issuer’s public key pk and an attribute set A. The second
algorithm is executed by the issuer and takes as input the issuer’s public
key pk and secret key sk. At the end of the protocol, Obtain outputs a valid
credential cred produced by Issue or a null value ⊥ otherwise.

3. (Prove(pk, cred, φstmt),Verify(pk, φstmt))→ b: These two algorithms form the
credential presentation protocol. The second algorithm is executed by the
credential verifier which takes as input the issuer’s public key pk and has
the right to decide the access policy φstmt. The first algorithm is executed
by the credential prover which takes as input the issuer’s public key pk,
user’s credential cred and an access policy φstmt such that φstmt(A) = 1.
If φstmt(A) = 0, the credential holder aborts and Verify outputs b = 0. If
φ = ⊥, prover and verifier complete a proof of possession which proves the
validity of credential only instead of a show proof which additionally proves
the relation between A and A′. At the end of the protocol, Verify outputs
b = 1 if it accepts prover and outputs b = 0 otherwise.

In the following, we define the key security requirements for an anonymous
credential system in the form of impersonation resilience and unlinkability.

4.2 Security Requirements

4.2.1 Impersonation Resilience. The security goal of an ABC system re-
quires that it is infeasible for an adversary to get accepted by the verifier in

11

the show proof. The security against impersonation under active and concur-
rent attacks is described in the following game between an adversary A and a
challenger C.

Game 1 (imp− aca(A, C))

1. Setup: C runs KeyGen(1k, 1n) and sends pk to A.
2. Phase 1: A is able to issue concurrent queries to the Obtain, Prove and

Verify oracles where he plays the role of user, prover and verifier, respectively,
on any attribute set Ai of his choice in the i-th query. A can also issue queries
to the IssueTranscript oracle which takes in Ai and returns the corresponding
transcripts of issuing protocol.

3. Challenge: A outputs the challenge attribute set A∗ and its corresponding
access policy φ∗stmt such that φ∗stmt(Ai) = 0 and φ∗stmt(A

∗) = 1 for every Ai
queried to the Obtain oracle during Phase 1.

4. Phase 2: A can continue to query the oracles as in Phase 1 with the restric-
tion that it cannot query an attribute set Ai to Obtain such that φ∗stmt(Ai) = 1.

5. Impersonate: A completes a show proof as the prover with C as the verifier
for the access policy φ∗stmt(A

∗) = 1. A wins the game if C outputs 1.

Definition 3. An adversary A is said to (timp, εimp)-break the imp-aca security
of an ABC system if A runs in time at most timp and wins in Game 1 such that:

Pr[(A,Verify(pk, φ∗stmt)) = 1] ≥ εimp

for a negligible probability εimp. We say that an ABC system is imp-aca-secure if
no adversary (timp, εimp)-wins Game 1.

Note that we reserve the term unforgeability of the signature scheme in con-
trast to some contributions in the literature [? ? ? ? ? ?]. One can view our
impersonation resilience notion as the stronger version of the misauthentication
resistance from the ABC systems with expressive show proofs [? ? ?] which
does not cover the active and concurrent adversary besides disallowing adaptive
queries. We also introduce a new oracle, namely, IssueTranscript that covers the
passive adversary for the issuing protocol. This makes our security definition
more comprehensive than that by related works [? ? ? ?].

4.2.2 Unlinkability. Unlinkability requires that an adversary cannot link
the attributes or instances among the issuing protocols and the presentation
protocols. We consider two types of unlinkability notions, namely, full attribute
unlinkability and full protocol unlinkability. We require that an adversary, after
being involved in the generation of a list of credentials, cannot differentiate the
sequence of two attribute sets in the full attribute unlinkability. The security
model for full attribute unlinkability under active and concurrent attacks (aunl-
aca) is defined as a game between an adversary A and a challenger C.

Game 2 (aunl− aca(A, C))

12

1. Setup: C runs KeyGen and sends pk, sk to A.
2. Phase 1: A is able to issue concurrent queries to the Obtain, Issue, Prove

and Verify oracles where he plays the role of user, issuer, prover and verifier,
respectively, on any attribute set Ai of his choice in the i-th query. A can
also issue queries to an additional oracle, namely, Corrupt which takes in a
transcript of issuing protocol or show proofs whose user or prover, respec-
tively, is C and returns the entire internal state, including the random seed
used by C in the transcript.

3. Challenge: A decides the two equal-length, non-empty attribute sets A0, A1

and the access policy φ∗stmt which he wishes to challenge such that φ∗stmt(A0) =
φ∗stmt(A1) = 1. A is allowed to select A0, A1 from the existing queries to
Obtain in Phase 1. C responds by randomly choosing a challenge bit b ∈ {0, 1}
and interacts as the user with A as the issuer to complete the protocols:

(Obtain(pk,Ab), Issue(pk, sk))→ credb,

(Obtain(pk,A1−b), Issue(pk, sk))→ cred1−b.

Subsequently, C interacts as the prover with A as the verifier for polynomially
many times as requested by A to complete the protocols in the same order:

(Prove(pk, credb, φ
∗
stmt),Verify(pk, φ∗stmt))→ 1,

(Prove(pk, cred1−b, φ
∗
stmt),Verify(pk, φ∗stmt))→ 1.

4. Phase 2: A can continue to query the oracles as in Phase 1 except querying
the transcripts of the challenged issuing and show proofs to Corrupt.

5. Guess: A outputs a guess b′ and wins the game if b′ = b.

Definition 4. An adversary A is said to (taunl, εaunl)-break the aunl-aca-security
of an ABC system if A runs in time at most taunl and wins in Game 2 such that:

|Pr[b = b′]− 1

2
| ≥ εaunl

for a negligible probability εaunl. We say that an ABC system is aunl-aca-secure
if no adversary (taunl, εaunl)-wins Game 2.

Our full attribute unlinkability is more generic than that in Camenisch et al.’s
ABC transformation frameworks [?] where we assume the challenged attribute
sets A0, A1 are not equivalent such that A0 6= A1. Besides, unlike Ringers et
al.’s unlinkability notion [?], ours covers both issuing and show proofs as in
Camenisch et al.’s privacy notions [?], though the latter does not have a Corrupt
oracle while the former does.

On the other hand, as far as we know, the full protocol unlinkability has not
been considered before. This notion requires that an adversary, after being in-
volved in the generation of a list of credentials, cannot link an instance of issuing
protocol and an instance of a show proof that are under the same credential.
The full protocol unlinkability under active and concurrent attacks (punl-aca) is
defined as a game between an adversary A and a challenger C:

13

Game 3 (punl− aca(A, C))

1. Setup: Same to that of Game 2.
2. Phase 1: Same to that of Game 2.
3. Challenge: A decides the two equal-length, non-empty attribute sets A0, A1

and the access policy φ∗stmt which he wishes to challenge such that φ∗stmt(A0) =
φ∗stmt(A1) = 1. A is allowed to select A0, A1 from the existing queries to
Obtain in Phase 1. C responds by randomly choosing two challenge bits
b1, b2 ∈ {0, 1} and interacts as the user with A as the issuer to complete
the protocols in the order

(Obtain(pk,Ab1), Issue(pk, sk))→ credb1 ,

(Obtain(pk,A1−b1), Issue(pk, sk))→ cred1−b1 .

Subsequently, C interacts as the prover with A as the verifier for polynomially
many times as requested by A to complete the protocols in the order

(Prove(pk, credb2 , φ
∗
stmt),Verify(pk, φ∗stmt))→ 1,

(Prove(pk, cred1−b2 , φ
∗
stmt),Verify(pk, φ∗stmt))→ 1.

4. Phase 2: Same to that of full attribute unlinkability game.
5. Guess: A outputs a guessed pair of issuing protocol transcript π(O,I) and

show proof transcript π(P,V) and wins the game if the pair is under the same
credential such that credπ(O,I)

= credπ(P,V)
.

Definition 5. An adversary A is said to (tpunl, εpunl)-break the punl-aca-security
of an ABC system if A runs in time at most tpunl and wins in Game 3 such that:

|Pr[credπ(O,I)
= credπ(P,V)

]− 1

2
| ≥ εpunl

for a negligible probability εpunl. We say that an ABC system is punl-aca-secure
if no adversary (tpunl, εpunl)-wins Game 3.

For the completeness of the security notion, we define a security notion weaker
than unlinkability, namely, full anonymity in the full version [?] and show that
Fuchsbauer et al.’s ABC system [?] cannot achieve this weaker security notion.
Furthermore, we prove that the full attribute unlinkability implies full anonymity
in an ABC system but the opposite does not hold. We also show that there is
no reduction between full attribute unlinkability and full protocol unlinkability.
Therefore, we only prove the security against the full attribute unlinkability and
the full protocol unlinkability for our proposed ABC system.

4.3 Construction

Concisely, a user credential cred is an SDH-CL signature sig on the MoniPoly
commitment C of his attribute set A. Next, the show proofs of our ABC system

14

is proving the validity of sig and C such that:

PK{(· · ·) :1 = SDH-CL.Verify(C, sig, pk) ∧
1 = MoniPoly.VerifyPred(pk,C,A,W, (A′, l))}

where Pred = {Intersection,Difference}. The commitment verification algorithms
are the main ingredient that form the access policy for our ABC system. We de-
scribe the proposed ABC system as follows:

KeyGen(1k): Construct three cyclic groups G1,G2,GT of order p based on an
elliptic curve whose bilinear pairing is e : G1 ×G2 → GT . Select random gener-
ators a, b, c ∈ G1, g2 ∈ G2 and two secret values x, x′ ∈ Z∗p. Compute the values
a0 = a, a1 = ax

′
, . . . , an = ax

′n
, X = gx2 , X0 = g2, X1 = gx

′

2 , . . . , Xn = gx
′n

2

to output the public key pk = (e,G1,G2,GT , p, b, c, {ai, Xi}0≤i≤n, X) and the
secret key sk = (x, x′).

(Obtain(pk,A), Issue(pk, sk)): User interacts with verifier as follows to generate
a user credential cred on an attribute set A = {m1, . . . ,mn−1}.

1. User chooses a random opening value o ∈ Z∗p to compute C =
∏n
j=0 a

mj

j =
Commit(pk,A, o). Subsequently, user selects random s1 ∈ Z∗p to initialize the
issuing protocol by completing the protocol with the issuer:

PK

{
(α0, . . . , αn, σ) : M =

n∏
j=0

a
αj

j b
σ

}

where σ = s1 and {α0, . . . , αn} = {m0, . . . ,mn}.
2. Issuer proceeds to the next step if the protocol is verified. Else, issuer outputs
⊥ and stops.

3. Issuer generates the SDH-CL signature forM as sig = (t, s2, v = (Mbs2c)1/(x+t)).
4. If sig is not a valid signature on A ∪ {o}, user outputs ⊥ and stops. Else,

user outputs the credential as cred = (t, s, v, A = A ∪ {o}) where:

s = s1 + s2, v =
(
a
∏n

j=1(x′+mj)

0 bsc
)1/(x+t)

.

4.3.1 Proof of Possession. This protocol proves the ownership of a valid
credential cred and the wellformedness of the committed attribute set A =
{m1, . . . ,mn} without disclosing any attribute. The Prove and Verify algorithms
interact as follows.
(Prove(pk, cred,⊥),Verify(pk,⊥)):

1. Verifier requests for a proof of possessions protocol by sending an empty
access policy φ = ⊥.

2. Prover chooses random r, y ∈ Z∗p to randomize the credential as cred′ = (t′ =

ty, s′ = sr2, v′ = vr
2y−1

).

15

3. Setting v′,W =
∏n−1
j=0 a

w′j
j as the public input where {w′j}0≤j≤n−1 = r ×

MPEncode(A − {o}), prover runs the zero-knowledge protocol below with
the verifier:

PK

{
(ρ, τ, γ, α0, α1, σ) :e(Cρbσcρv′−τ , X0) = e(v′γ , X) ∧

e(Cρ, X0) = e(W,Xα1
1 Xα0

0)

}
where ρ = r2, τ = t′, γ = y, {αj} = r×MPEncode({o}), σ = s′. The protocol
above can be compressed as:

PK

{
(ρ, τ, γ, α0, α1, σ) : e(W,Xα1

1 Xα0
0)e

(
bσcρv′−τ , X0

)
= e(v′γ , X)

}
to realize a more efficient proof.

4. Verifier outputs 1 if the protocol is verified and 0 otherwise.

4.3.2 Show Proofs. A show proof proves the relation between the attribute
set A in cred and the queried set A′ chosen by the verifier. Using the same com-
pression technique from the proof of possession, we describe the single clause
show proofs by the following presentation protocols.

AND proof. This protocol allows prover to disclose an attribute set A′ =
{m1, . . . ,mk} ⊆ A upon the request from verifier and proves that his credential
cred contains A′. The showing protocol for AND proof is as follows.

(Prove(pk, cred, φAND(A′)),Verify(pk, φAND(A′))):

1. Verifier requests an AND proof for the attribute set A′ = {m1, . . . ,mk}.
2. If A′ 6⊆ A, prover aborts and the verifier outputs 0.
3. Else, prover chooses random r, y ∈ Z∗p to randomize the credential as cred′ =

(t′ = ty, s′ = sr, v′ = vry
−1

, {w′j}0≤j≤n−k = r ×MPEncode(A−A′)).

4. Setting v′,W =
∏n−k
j=0 a

w′j
j as the public input, prover runs the zero-knowledge

protocol below with the verifier:

PK

{
(ρ, τ, γ, σ) : e

W, k∏
j=0

X
mj

j

 e(bσcρv′−τ , X0) = e(v′γ , X)

}

where
∏k
j=0X

mj

j and {mj} = MPEncode(A′) are computed by the verifier
and ρ = r, τ = t′, γ = y, σ = s′.

5. Verifier outputs 1 if the protocol is verified and 0 otherwise.

ANY and OR proofs. This is the show proof for the threshold statement, and
it is an OR proof when the threshold is equal to one. Consider the scenario where

16

the prover is given an attribute set A′ = {m1, . . . ,mk} and he needs to prove that
he has l attributes {mj}1≤j≤l ∈ (A′ ∩A) without the verifier knowing which at-
tributes he is proving. The showing protocol for the ANY statement is as follows.

(Prove(pk, cred, φANY(l,A′)),Verify(pk, φANY(l,A′))):

1. Verifier requests an ANY(l, A′) proof for the attribute set A′ = {m1, . . . ,mk}.
2. Prover randomly selects l-attribute intersection set I ⊆ (A′ ∩A). If no such
I can be formed, the prover aborts and the verifier outputs 0.

3. Else, prover chooses random r, y ∈ Z∗p to randomize the credential as cred′ =

(t′ = ty, s′ = sr2, v′ = vr
2y−1

, {w′j}0≤j≤n−l = r ×MPEncode(A− I)).

4. Setting v′,W =
∏n−l
j=0 a

w′j
j ,W

′ =
(∏k−l

j=0 a
m2,j

j

)r−1

as the public input where
{m2,j}0≤j≤k−l = MPEncode(A′−I), prover runs the zero-knowledge protocol
below with the verifier:

PK

{
(ρ, τ, γ, ι0, . . . , ιl, σ) :

e

W ′W, l∏
j=0

X
ιj
j

 e

 k∏
j=0

a
−m1,j

j bσcρv′−τ , X0

 = e(v′γ , X)

}

where
∏k
j=0 a

−m1,j

j and {m1,j}0≤j≤k = MPEncode(A′) are computed by the
verifier and ρ = r2, τ = t′, γ = y, {ιj}0≤j≤l = r ×MPEncode(I), σ = s′.

5. Verifier outputs 1 if the protocol is verified and 0 otherwise.

NAND and NOT proofs. This is the showing protocol for the NAND statement
which allows a prover to show that an attribute set A′ = {m1, . . . ,mk} is disjoint
with the set A in his credential. Note that is a NOT proof when |A′| = 1. The
showing protocol on the NAND statement is as below.

(Prove(pk, cred, φNAND(A′)),Verify(pk, φNAND(A′))):

1. Verifier requests a NAND proof for the attribute set A′ = {m1, . . . ,mk}.
2. If |A′ −A| < k, prover aborts and the verifier outputs 0.
3. Else, prover chooses random r, y ∈ Z∗p to randomize the credential as cred′ =

(t′ = ty, s′ = sr, v′ = vry
−1

, {w′j = rwj}0≤j≤n−k, {r′j = rrj}0≤j≤k−1) where
({wj}0≤j≤n−k, {rj}0≤j≤k−1) = MPEncode(A)/MPEncode(A′).

4. Setting v′,W =
∏n−k
j=0 a

w′j
j as the public input, prover runs the zero-knowledge

protocol with the verifier:

PK

{
(ρ, τ, γ, µ0, . . . , µk−1, σ) :

k−1∏
j=0

a
µj

j 6= G1∧

e

W, k∏
j=0

X
mj

j

 e

k−1∏
j=0

a
µj

j b
σcρv′−τ , X0

 = e(v′γ , X)

}

17

where
∏k
j=0X

mj

j and {mj} = MPEncode(A′) are computed by the verifier
and {µj} = {r′j}, ρ = r, τ = t′, γ = y, σ = s′.

5. Verifier outputs 1 if the protocol is verified and 0 otherwise.

NANY proof. This is the showing protocol for the negated threshold state-
ment. Consider the scenario where the prover is given an attribute set A′ =
{m1, . . . ,mk} and he needs to prove that an l-attribute set D ⊆ (A′ − A) are
not in the credential without the verifier knowing which attributes he is proving.
The showing protocol on the NANY statement is as below.

(Prove(pk, cred, φNANY(l̄,A′)),Verify(pk, φNANY(l̄,A′))):

1. Verifier requests a NANY proof for the attributes A′ = {m1, . . . ,mk}.
2. Prover randomly selects an l-attribute difference set D ∈ (A′−A). If no such
D can be formed, prover aborts and the verifier outputs 0.

3. Else, prover chooses random r, y ∈ Z∗p to randomize the credential as cred′ =

(t′ = ty, s′ = sr2, v′ = vr
2y−1

, {w′j = rwj}0≤j≤n−l̄, {r′j = r2wj}0≤j≤l̄−1)
where ({wj}0≤j≤n−l̄, {rj}0≤j≤l̄−1) = MPEncode(A)/MPEncode(D).

4. Setting v′,W =
∏n−l̄
j=0 a

w′j
j ,W

′ =
(∏k−l̄

j=0 a
m2,j

j

)r−1

as the public input where
{m2,j}0≤j≤k−l = MPEncode(A′−D), prover runs the zero-knowledge proto-
col with the verifier:

PK

{
(ρ, τ, γ, δ0, . . . , δl̄, µ0, . . . , µl̄−1, σ) :

l̄−1∏
j=0

a
µj

j 6= G1∧

e

W ′W, l̄∏
j=0

X
δj
j

 e

 k∏
j=0

a
−m1,j

j

l̄−1∏
j=0

a
µj

j b
σcρv′−τ , X0

 = e(v′γ , X)

}

where
∏k
j=0 a

−m1,j

j and {m1,j}0≤j≤k = MPEncode(A′) are computed by the
verifier and {µj} = {r′j}, ρ = r2, τ = t′, γ = y, {δj}0≤j≤l̄ = r×MPEncode(D), σ =
s′.

5. Verifier outputs 1 if the protocol is verified and 0 otherwise.

4.4 Efficiently Enabling Composite Statements

Composite statements, such as, composed of multiple high-level conjunctions,
can be realized with MoniPoly efficiently. For that, we propose an efficient strat-
egy instead of naively repeating the show proofs multiple times for an access
policy with a composite statement.

The prover runs a proof of possession protocol followed by a proof to show
that the committed attributes from every clause in the composite statement is
part of the committed attributes in the credential. For instance, given the com-
posite statement stmt = AND(A′1) ∧ ANY(l, A′2) where k1 = |A′1|, k2 = |A′2|, a

prover can run the showing protocol as follows. LetWA′1
=
∏n−k1

j=0 a
w′

A′1,j

j ,WA′2
=

18

∏n−l
j=0 a

w′
A′2,j

j ,W ′A′2
=
∏k2−l
j=0 a

m′
A′2,2,j

j where {w′A′1,j}0≤j≤n−k1 = r2×MPEncode(A−
A′1), {w′A′2,j}0≤j≤n−l = r × MPEncode(A − I), {m′A′2,2,j}0≤j≤k2−1 = r−1 ×
MPEncode(A′2 − I) for a randomly selected r ∈ Z∗p. Setting v′,M1,M2, W̄ as
public inputs, the prover runs the showing protocol on φstmt as follows:

PK

{
(ρ, τ, γ, ι0, . . . , ιl, σ) :

e

WA′1
,

k∏
j=0

X
mA′1,j

j

 e

W ′A′2WA′2
,

l∏
j=0

X
ιj
j

 e

 k2∏
j=0

a
−mA′2,1,j

j (bσcρv′−τ)2, X0


= e(v′2γ , X)

}
where

∏k1

j=0X
mA′1,j

j ,
∏k2

j=0 a
mA′2,2,j

j , {mA′1,1,j
}0≤j≤k1 = MPEncode(A′1), {mA′2,1,j

}0≤j≤k2
=

MPEncode(A′2) are computed by the verifier and ρ = r2, τ = t′, γ = y, {ιj}0≤j≤l =
r×MPEncode(I), σ = s′. It is thus obvious that for any composite statement of
k clauses, we can run the protocol above in a similar way using k+2 pairings. In
precise, the k+ 1 pairings on the left-hand side correspond to the k clauses and
a credential. Lastly, the corresponding credential elements in the pairings at the
left-hand side and right-hand side are brought up to the power of k, respectively.
Note that the complexity of k + 2 parings does not change even when negation
clauses are involved.

4.5 Security Analysis

4.5.1 Impersonation Resilience. We establish the security of the MoniPoly
ABC system by constructing a reduction to the (co-)SDH problem. To achieve
tight security reduction, we make use of Multi-Instance Reset Lemma [?] as the
knowledge extractor which requires the adversary A to run N parallel instances
of impersonation under active and concurrent attacks. The challenger C can fulfill
this requirement by simulating the N − 1 instances from its given SDH instance
which is random self-reducible [?]. Since this is obvious, we describe only the
simulation for a single instance of impersonation under active and concurrent
attacks in the security proofs.

Theorem 4. If an adversary A (timp, εimp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which
(tcosdh, εcosdh)-breaks the co-SDH problem such that:

εcosdh
tcosdh

=
εimp

timp
,

or an algorithm C which (tsdh, εsdh)-breaks the SDH problem such that:

εimp ≤ N

√√
εsdh − 1 +

1 + (q − 1)!/pq−2

p
+ 1,

timp ≤ tsdh/2N − T (q2).

19

where N is the total adversary instance, q = Q(O,I) + Q(P,V) is the total query
made to the Obtain and Verify oracles, while T (q2) is the time parameterized by
q to setup the simulation environment and to extract the SDH solution. Consider
the dominant time elements timp and tsdh only, we have:(

1−
(

1− εimp +
1 + (q − 1)!/pq−2

p

)N)2

≤ εsdh, 2Ntimp ≈ tsdh.

Let N = (εimp− 1+(q−1)!/pq−2

p)−1, we get εsdh ≥ (1−e−1)2 ≥ 1/3 and the success
ratio is:

εsdh
tsdh
≥ 1

3 · 2Ntimp

6εsdh
tsdh

≥ εimp

timp
− 1 + (q − 1)!/pq−2

timpp

which gives a tight reduction.

To modularize the proof for Theorem 4, we categorize the way an adver-
sary impersonates in Table 2. This is like the approach in the tight reduction
proof for the SDH-CL signature scheme proposed by Schäge [?]. Subsequently,
we differentiate A into A = {Abind,A1,A2,A3} corresponding to four differ-
ent simulation strategies by C. We omit the proof for the binding property of
MoniPoly commitment scheme Abind which has been described in Theorem 3
and can be trivially applied here.

In each of the simulation strategy, we consider only the success probability
of breaking the SDH problem which is weaker than the DLOG problem such
that εsdh ≥ εdlog. Let M∗ =

∏n
j=1(x′ + m∗j) and Mi =

∏n
j=1(x′ + mi,j) where

A∗ = {m∗j} and Ai = {mj}, respectively, the DLOG problem can be solved
whenever the forgery v∗ produced by A equals to a vi which has been generated
by C such that:

∵ v∗ ≡ vi

(aM
∗

0 bs
∗
c)

1
x+t∗ ≡ (aMi

0 bsic)
1

x+ti

(aM
∗+s∗β+γ

0)
1

x+t∗ ≡ (aMi+siβ+γ
0)

1
x+ti

∴
M∗ + s∗β + γ

x+ t∗
≡ Mi + siβ + γ

x+ ti
mod p

which leads to:

x ≡ t∗Mi − tiM∗ + β(t∗si − tis∗) + γ(t∗ − ti)
M∗ −Mi + β(s∗ − si)

mod p

where C can solve the SDH problem using x. Following the equation, the Type 14
impersonation (A∗, v∗, s∗) = (Ai, vi, si) will not happen as it causes a division
by zero. On the other hand, Type 16 represents the impersonation using the

20

Table 2: Types of impersonation and the corresponding assumptions.
Type A MPEncode(A) s t v Adversary Assumption Lemmas

0 0 1 * * * Abind co-SDH Theorem 3
1 0 0 0 0 0 A1 SDH 1
2 0 0 0 0 1 A1 DLOG 1
3 0 0 0 1 0 A2 SDH 2
4 0 0 0 1 1 A2 DLOG 2
5 0 0 1 0 0 A1 SDH 1
6 0 0 1 0 1 A1 DLOG 1
7 0 0 1 1 0 A3 SDH 3
8 0 0 1 1 1 A3 DLOG 3
9 1 1 0 0 0 A1 SDH 1
10 1 1 0 0 1 A1 DLOG 1
11 1 1 0 1 0 A2 SDH 2
12 1 1 0 1 1 A2 DLOG 2
13 1 1 1 0 0 A1 SDH 1
14 1 1 1 0 1 A1 N/A 1
15 1 1 1 1 0 A3 SDH 3
16 1 1 1 1 1 A3 N/A 3

Note: * = 1 or 0, 1 = equal, 0 = unequal, N/A = not available

uncorrupted cred generated by C when it answers A’s IssueTranscript queries
or Verify queries. If A’s view is independent of C’s choice of (ti, si), we have
(t∗, s∗) 6= (ti, si) with probability 1−1/p. This causes Type 16 impersonation to
happen with a negligible probability of 1/p at which point our simulation fails.

We present Lemma 1, 2 and 3 corresponding to the adversaries A1, A2 and
A3 as follows. The proofs for the lemmas are in the full version [?].

Lemma 1. If an adversary A1 (timp, εimp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which
(tsdh, εsdh)-solves the SDH problem such that:

εimp ≤ N

√√
εsdh − 1 +

1 + (q − 1)!/pq−2

p
+ 1,

timp ≤ tsdh/2N − T (q2).

where N is the total of adversary instances, q = Q(O,I) + Q(P,V) is the number
of queries made to the Obtain and Verify oracles, while T (q2) is the time pa-
rameterized by q to setup the simulation environment and to extract the SDH
solution.

Lemma 2. If an adversary A2 (timp, εimp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which

21

(tsdh, εsdh)-solves the SDH problem such that:

εimp ≤ N

√√
εsdh − 1 +

1 + (q − 1)!/pq−2

p
+ 1,

timp ≤ tsdh/2N − T (q2).

where N is the total of adversary instances, q = Q(O,I) + Q(P,V) is the number
of queries made to the Obtain and Verify oracles, while T (q2) is the time pa-
rameterized by q to setup the simulation environment and to extract the SDH
solution.

Lemma 3. If an adversary A3 (timp, εimp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which
(tsdh, εsdh)-solves the SDH problem such that:

εimp ≤ N

√√
εsdh − 1 +

(q − 1)!/pq−2

p
+ 1,

timp ≤ tsdh/2N − T (q2).

where N is the total of adversary instances, q = Q(O,I) + Q(P,V) is the number
of queries made to the Obtain and Verify oracles, while T (q2) is the time pa-
rameterized by q to setup the simulation environment and to extract the SDH
solution.

Combining Theorem 3, Lemmas 1, 2, and 3 gives Theorem 4 as required.

4.5.2 Unlinkability. Next, we prove the unlinkability of the proposed ABC
system. It is sufficient to show that the witnesses, the committed attributes
and the randomized credential in the issuing protocol and presentation protocol,
respectively, are perfectly hiding. Then, we demonstrate that every instance
of the protocols is uniformly distributed due to the random self-reducibility
property. This implies that even when A is given access to the Obtain, Issue,
Prove, Verify and Corrupt oracles, it does not has advantage in guessing the
challenged attribute sets. The proofs for Lemma 5 and 7 are in the full version [?
].

Lemma 4. The committed attributes and the corresponding witness in the issu-
ing protocol of the ABC system are perfectly hiding.

Proof. By Theorem 2, the MoniPoly commitment C =
∏n
j=0 a

mj

j in the issuing
protocol is perfectly hiding. Subsequently, the value M = Cbs1 is a Pedersen
commitment which is also perfectly hiding. The same reasoning is applicable on
the commitment value in the zero-knowledge protocol R =

∏n
j=0 a

m̃j

j bs̃1 which
has the same structure as that of M . ut

Lemma 5. The initialization of the issuing protocol in the ABC system has
random self-reducibility.

22

Lemma 6. The randomized credential in the presentation protocol of the ABC
system are perfectly hiding.

Proof. Given a user’s randomized credential v′ = vry
−1

in the show proof, there
are |Z∗p| − 1 possible pairs of (r′, y′) 6= (r, y) which can result in the same v′.
Besides, for each r, there is a unique y such that:

dloga0
(v′) = dloga0

(v)ry−1

y =
dloga0

(v)

dloga0
(v′)
· r

Since r, y are chosen independently from each other, and of the credential element
v, the latter is perfectly hidden. The same reasoning applies on the randomized
credential v′ = vr

2y−1

. ut
Lemma 7. The presentation protocol of the ABC system offers random self-
reducibility.

Theorem 5. If the initialization of the issuing protocol and the presentation
protocol have random self-reducibility, and their witnesses, committed attributes
as well as the randomized credential are perfectly hiding, the ABC system is
aunl-aca-secure.

Using the similar approach, we show that the security of full protocol unlink-
ability also holds for the proposed ABC system.

Theorem 6. If the initialization of the issuing protocol and the presentation
protocol have random self-reducibility, and their witnesses, committed attributes
as well as randomized credential are perfectly hiding, the ABC system is punl-
aca-secure.

5 Evaluation

5.1 Security

We offer a general overview of security properties in comparison with other
schemes here and offer the tightness analysis of our own scheme in the full
version [?].

We summarize the security properties of ABC systems in either SDH or
alternative paradigms in Table 3. The table shows that the relevant schemes
vary significantly in their fulfilled security requirements. MoniPoly is the only
ABC system that achieves the full range of security requirements. At the same
time, it is proven secure in the standard model with a tight security reduction.

5.2 Expressivity and Computational Complexity

In Table 4, we compare the MoniPoly ABC system to relevant popular ABC
systems with respect to their realized show proofs and asymptotic computational
complexities. Table 4 is normalized in that it considers only the asymptotic
complexity for the most expensive operations (e.g., the scalar multiplication,
modular exponentiation, or pairing).

23

Table 3: Security properties of related ABC systems.
ABC System Impersonation

Resilience
Anonymity Unlinkability Security

Model
Hard

Problem
Tight

ReductionIssuing Possession Issuing Possession I↔P

ASM [?] # # # RO SDH, DDHI #
TAKS [?] # # # # RO SDH, DDH #
AMO [?] # # # Standard SDH, DLIN #
CKS [?] # # # # # Standard DHE, HSDHE #

SNF [?] # # # # # Standard SDH, DHE,
HSDH, TDH #

ZF [?] # # # Standard SDH, HPDH,
HSDH, TDH #

BNF [?] G# # G# # # # Standard DLIN, SFP, DHE #
CKLMNP [?] # # # Standard SRSA, DLOG #
BBDT [?] # # # # Standard SDH #
RVH [?] # # # # Standard whLRSW #
SNBF [?] # # # # Standard DLIN, SFP, DHE #
ON [?] G# # G# # # # Standard DLIN, SFP, DHE #
CDDH [?] # # # # Standard SCDHI #
BB [?] # # # # Generic SDH, MSDH-1 #
BBBB+ [?] G# G# # # # RO SDH, MSDH-1 #
BBDE [?] # # # Standard SDH, MSDH-1 #
CG [? ?] # # # # # Standard SRSA #

CDHK [?] # # # CRS

SXDH, RootDH,
BSDH, SDH,

XDLIN, co-CDH,
DBP

#

FHS [?] # G# # Generic DDH, co-DLOG,
co-SDH #

This Work Standard SDH, co-SDH

Note: : proof provided, G#: claim provided, #: no claim, I: Issue, P: Possession
in Issuing: only weak anonymity or unlinkability / trusted issuer / no blind issuing

5.2.1 Expressivity over Unrestricted Attribute Space. The MoniPoly
ABC system is the first scheme that can efficiently support all logical statements
in the show proofs regardless of the types of attribute space (cf. Table 4). That
is, MoniPoly operates on arbitrary attributes while offering a wide range of
statements in its expressiveness.

We note that the traditional encoding can achieve the same expressiveness,
in principle, in an unrestricted attribute space S as well as string attribute space
SS . However, traditional encoding will yield inefficient proofs.

5.2.2 Expressivity over Finite-Set Attribute Space. Let us now consider
the comparison with schemes with only finite-set attribute space SF . Most of
the accumulator-based ABC systems [? ?] are restricted to finite-set attributes
only. While MoniPoly supports negation statements in terms of expressivity,
their show proofs do not. The restriction to finite-set attributes and monotone
(non-negative) formula affords them a low asymptotic complexity in show proofs.
However, their setup and issuing protocols are prohibitively expensive with ex-
ponential computational and space complexity (O(2nF) [?] and O(2

√
nF) [?]),

in turn, restricting the number of attributes that can be feasibly encoded.
The latest ABC system in this line of work [?] proposes a workaround on

the negated forms of attributes separately. In this scheme, each of its show proof
has O(L) complexity where L is the maximum number of ∧ operators permitted

24

Table 4: Asymptotic complexity for show proofs in related ABC systems.
Property ABC System

Attribute Space SF SS + SF S

Technique Accumulator Trad. Encd. Accumulator Prime Encd. Trad. Encd. Comm. MoniPoly

Setup O(nF) O(2nF) O(n) O(n) O(n) O(n) O(n) O(n)

Issuing Protocol Prover O(1) O(1) O(1) O(nS) O(n) O(n) O(n) O(n)

Verifier O(2
√
nF) O(nF) O(n) O(nS) O(n) O(n) O(n) O(n)

Sh
ow

P
ro
of
s

Possession Prover O(nF) O(L) O(nS) + O(N) O(nS) + O(1) O(n) + O(1) O(n) O(n) O(n)
Verifier O(nF) O(L) O(nS) + O(N) O(nS) + O(1) O(n) + O(1) O(n) O(n) O(1)

AND(A′)
Prover O(kF) O(L) O(nS − kS) + O(N) O(nS − kS) + O(1) O(nS − kS) + O(1) O(n− k) O(n− k) O(n− k)
Verifier O(kF) O(L) O(nS) + O(N) O(nS) + O(1) O(nS) + O(1) O(n) O(k) O(k)

OR(A′)
Prover O(kF) O(L) O(nSkS) + O(N) O(nSkS) + O(1) O(nSkS) + O(1) 7 7 O(n + k)
Verifier O(kF) O(L) O(nSkS) + O(N) O(nSkS) + O(1) O(nSkS) + O(1) 7 7 O(k)

ANY(l, A′)
Prover O(kF) O(L) O(nS !) + O(N) 7 7 7 7 O(n− l + k)
Verifier O(kF) O(L) O(nS !) + O(N) 7 7 7 7 O(k + l)

NAND(A′)
Prover 7 O(L) 7 7 O(nS − kS) + O(1) 7 7 O(n)
Verifier 7 O(L) 7 7 O(nS) + O(1) 7 7 O(2k)

NOR(A′)
Prover 7 O(L) 7 7 7 7 7 O(n + k)
Verifier 7 O(L) 7 7 7 7 7 O(k)

NANY(l̄, A′)
Prover 7 O(L) 7 7 7 7 7 O(n + k)
Verifier 7 O(L) 7 7 7 7 7 O(k + 2l̄)

Constant Size Proofs 3 3 7 3 3 7 3 3

Flexible Attribute Indexing 7 7 7 7 7 7 3 3

Schemes [?] [?] [?] [?] [?] [? ? ? ? ?] [? ?] This Work
Note: S: attribute space, k = |A′| ≤ n = |A| = nS + nF , S: string attributes, F : finite-attributes, L: maximum allowed ∧ in CNF,
N : maximum attributes allowed in a statement, 3: realized, 7: not realized

in a composite conjunctive formulae. Moreover, the additional negated finite-set
attributes double the credential size and the already massive public key size.

5.2.3 Comparison to Commitment-Based Schemes. MoniPoly bears
similarities in terms of computational and communication complexity to other
commitment-based ABC systems [? ?]. Although MoniPoly does not have con-
stant asymptotic complexity, the verifier is required to compute only three pair-
ings for a single-clause show proof. This makes our scheme the most efficient
construction of its kind in this comparison. At the same time, apart from having
constant size AND proof similarly to the relevant commitment-based schemes [?
?], MoniPoly has constant size possession proof as well as NAND proof.

5.2.4 Parametric Complexity Analysis. We estimate the computational
complexity of the schemes listed in Table 4 and present in Figure 1 the complexity
for each ABC system at 128-bit security level. While schemes especially crafted
for a restricted finite-set attribute space are the fastest schemes in the field,
Monipoly is the most efficient ABC system based on commitment schemes and
outperforms most schemes in the field, overall. If strength in terms of security
properties is a prerequisite, our ABC system outperforms all listed in Table 4
while having efficient constant size show proofs.

This estimation is based on the following relative computation costs in equiv-
alents of scalar multiplications in G1:
BLS-12 curve at 128-bit security: for a scalar multiplication in G2, an ex-

ponentiation in GT and a pairing, respectively, is about the same as comput-
ing 2, 6 and 9 scalar multiplications (M1) in G1. The modular exponentiation
of RSA-3072 on the other hand is equivalent to 5M1.

25

(a) Proof of possession (128-bit).

0

2500

5000

7500

10000

0 250 500 750 1000

#Attributes n

#M
od

E
xp

(b) AND proof (128-bit).

0

1000

2000

3000

0 250 500 750 1000

#Attributes n

#M
od

E
xp

(c) Scheme

0

2500

5000

7500

10000

0 250 500 750 1000

#Attributes n

#M
od

E
xp

Scheme
ASM

SNF

ZF

SNBF

ON

CG

CDHK

FHS

BBBB

This Work

Figure 1: Asymptotic complexity of ABC systems (scalar multiplications in G1)

We also assume the computational cost in Type-1 pairing friendly curve is equiv-
alent to that of Type-3 as well as L = 1 and N = 1. The details of the estimation
can be found in the full version [?].

26

