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Abstract. Algebraically simple PRFs, ciphers, or cryptographic hash
functions are becoming increasingly popular, for example due to their
attractive properties for MPC and new proof systems (SNARKs, STARKs,
among many others).
In this paper, we focus on the algebraically simple construction MiMC,
which became an attractive cryptanalytic target due to its simplicity,
but also due to its use as a baseline in a competition for more recent
algorithms exploring this design space.
For the first time, we are able to describe key-recovery attacks on all
full-round versions of MiMC over F2n , requiring half the code book. In
the chosen-ciphertext scenario, recovering the key from this data for the
n-bit full version of MiMC takes the equivalent of less than 2n−log2(n)+1

calls to MiMC and negligible amounts of memory.
The attack procedure is a generalization of higher-order differential crypt-
analysis, and it is based on two main ingredients. First, we present a
higher-order distinguisher which exploits the fact that the algebraic degree
of MiMC grows significantly slower than originally believed. Secondly, we
describe an approach to turn this distinguisher into a key-recovery attack
without guessing the full subkey. Finally, we show that approximately
dlog3(2 ·R)e more rounds (where R = dn · log3(2)e is the current number
of rounds of MiMC-n/n) can be necessary and sufficient to restore the
security against the key-recovery attack presented here.
The attack has been practically verified on toy versions of MiMC. Note
that our attack does not affect the security of MiMC over prime fields.
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1 Introduction

The design of symmetric cryptographic constructions exhibiting a clear and
ideally low-degree algebraic structure is motivated by many recent use cases,
for example the increasing popularity of new proof systems such as STARKs
[8], SNARKs (e.g., Pinocchio [44]), Bulletproofs [19], and other concepts like
secure multi-party computation (MPC). To provide good performance in these
new applications, ciphers and hash functions are designed in order to minimize
specific characteristics (e.g., the total number of multiplications, the depth, or
other parameters related to the nonlinear operations). In contrast to traditional
cipher design, the size of the field over which these constructions are defined has
only a small impact on the final cost. In order to achieve this new performance
goal, some crucial differences arise between these new designs and traditional
ones. For example, we can consider the substitution (S-box) layer, that is, the
operation providing nonlinearity in the permutation: In these new schemes, the
S-boxes composing this layer are relatively large compared to the ones used in
classical schemes (e.g., they operate over 64 or 128 bits instead of 4 or 8 bits)
and/or they can usually be described by a simple low-degree nonlinear function
(e.g., x 7→ xd for some d). Examples of these schemes include LowMC [4], MiMC
[3], Jarvis/Friday [6], GMiMC [2], HadesMiMC [31], Vision/Rescue [5], and
Starkad/Poseidon [30].

The structure of these schemes has a significant impact on the attacks that
can be mounted. While statistical attacks (including linear [42] and differential
[11] ones) are among the most powerful techniques against traditional schemes,
algebraic attacks turned out to be especially effective against these new primitives.
In other words, these constructions are naturally more vulnerable to algebraic
attacks than those which do not exhibit a clear and simple algebraic structure.
For example, this has been shown in [1], in which algebraic strategies covering
the full-round versions of the attacked primitives are described. Although the
approaches can be quite different, most of them exploit the low degree of the
construction.

In this paper, we focus on MiMC [3]. The MiMC design constructs a crypto-
graphic permutation by iterated cubing, interleaved with additions of random
constants to break any symmetries. A secret key is added after every such round
to obtain a block cipher. The design of MiMC is very flexible and can work with
binary strings as well as integers modulo some prime number. Security analysis by
the designers rules out various statistical attacks, and the final number of rounds
is derived from an analysis of attack vectors that exploit the simple algebraic
structure. We remark that the designers chose the number of rounds with a
minimal security margin for efficiency. For a more detailed specification and a
summary of previous analysis, we refer to Section 2.3.

Since its publication in 2016, MiMC has become the preferred choice for
many use cases that benefit from a low multiplication count or algebraic simplic-
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Table 1: Various attacks on MiMC. In this representation, n denotes the block
size (and key size). The unit for the attack complexity is usually the cost of
a single encryption (number of multiplications over F2n necessary for a single
encyption). The SK and KR attacks can be implemented using chosen plaintexts
CP and/or chosen ciphertexts CC. The memory complexity is negligible for all
approaches listed.
Type n Rounds Time Data Source
KR? 129 38 265.5 260.2 CP [41]

SK 129 80 2128 XOR 2128 CP/CC Section 4.1
SK n dlog3(2n−1 − 1)e − 1 2n−1 XOR 2n−1 CP/CC Section 4.1

KK 129 160 (≈ 2 × full) – 2128 Section 4.3
KK n 2 · dlog3(2n−1 − 1)e − 2 – 2n−1 Section 4.3

KR 129 82 (full) 2122.64 2128 CC Section 5
KR 255 161 (full) 2246.67 2254 CC Section 5
KR n dn · log3(2)e (full) ≤ 2n−log2(n)+1 2n−1 CC Section 5

KR ≡ Key-Recovery, KR? ≡ attack on a variant of MiMC proposed in a low-memory
scenario, SK ≡ Secret-Key Distinguisher, KK ≡ Known-Key Distinguisher

ity [32,45]. It also serves as a baseline for various follow-up designs evaluated in
the context of the public “STARK-Friendly Hash Challenge” competition5.

1.1 Our Contribution

As the main results in this paper, we present

(1) a new upper bound for the algebraic degree growth in key-alternating ciphers
with low-degree round functions,

(2) a secret-key higher-order distinguisher on almost full MiMC over F2n ,
(3) a known-key zero-sum distinguisher on almost double the rounds of MiMC,
(4) the first key-recovery attack on full-round MiMC over F2n .

We also show that the technique we use for MiMC is sufficiently generic to apply
to any permutation fulfilling specific properties, which we will define in detail.
Our attacks and distinguishers on MiMC, as well as other attacks in the literature,
are listed in Table 1.

Secret-Key Higher-Order Distinguishers. After recalling some preliminary
facts about higher-order differentials, in Section 3 we analyze the growth of
the algebraic degree for key-alternating ciphers whose round function can be
described as a low-degree polynomial over F2n .

For an SPN cipher over a field F where each round has algebraic degree δ,
the algebraic degree of the cipher is expected to grow essentially exponentially in
5 https://starkware.co/hash-challenge/
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δ. Several analyses made in the literature [20,18,17] confirm this growth for most
ciphers, except when the algebraic degree of the function is close to its maximum.
As a result, the number of rounds necessary for security against higher-order
differential attacks generally grows logarithmically in the size of F. Different
behaviour has been observed for certain non-SPN designs, such as some designs
with partial nonlinear layers where the algebraic degree grows exponentially in
some (not necessarily integer) value smaller than δ [26].

In Section 3, we show that if the round function can be described as an
invertible low-degree polynomial function in F2n , then the algebraic degree grows
linearly with the number of rounds, and not exponentially as generally expected.
More precisely, let d denote the exponent of the power function x 7→ xd used to
define the S-boxes. Then, we show that in the case of key-alternating ciphers
over F2n , the algebraic degree δ(r) as a function in the number of rounds r is

δ(r) ∈ O(log2(dr)) = O(r).

As an immediate consequence, our observation implies that roughly n · logd(2)
rounds are necessary to provide security against higher-order differential attacks,
much more than the expected ≈ logδ(n− 1) rounds.

Distinguishers on MiMC over F2n . Our new bounds on the number of rounds
necessary to provide security against higher-order differential cryptanalysis have
a major impact on key-alternating ciphers with large S-boxes. A concrete example
for this class of ciphers is MiMC [3], a key-alternating cipher defined over F2n (for
odd n ∈ N), where the round function is simply defined as the cube map x 7→ x3.
Since any cubic function over F2n has algebraic degree 2, one may expect that
approximately log2(n) rounds are necessary to prevent higher-order differential
attacks. Our new bound implies that a much larger number of rounds is required
to provide security, namely approximately n · log3(2).

As a concrete example, in Section 4 we show that MiMC-n/n has a security
margin of only 1 or 2 rounds against (secret-key) higher-order distinguishers
(depending on n), which is much smaller than expected by the designers. Moreover,
we can set up a known-key distinguisher for approximately double the number of
rounds of MiMC, by showing that the same number of rounds is necessary to
reach the maximum degree in the decryption direction. Our findings have been
practically verified on toy versions.

We remark that the designers presented other non-random properties (includ-
ing GCD and interpolation attacks) that can cover a similar number of rounds.
The number of rounds proposed by the designers were chosen in order to provide
security against key-recovery attacks based on these properties. As we are going
to show, the number of rounds is not sufficient against our new attack based on
a higher-order differential property.

Results using the Division Property. For completeness, in Section 4.5 we search
for higher-order distinguishers for MiMC-n/n with the division property [46]
proposed by Todo at Eurocrypt 2015, a powerful tool for finding the best integral
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distinguishers for block ciphers. By modeling the most recently proposed variant
of the bit-based division property, which is called three-subset bit-based division
property without unknown subset in [34], we are able to reproduce exactly the same
higher-order distinguishers for cases with small n-bit S-boxes, where n ∈ {5, 7, 9}.
However, as far as we know, it is an open problem to model the three-subset
bit-based division property for a larger S-box of size bigger than 9 in practical
time. Therefore, we conclude that the division property is unlikely to help us for
the ciphers we focus on.

Key-Recovery Attack on MiMC-n/n and on Generic Ciphers. A trivial
way to extend an r-round distinguisher to an (r + 1)-round key-recovery attack
is based on guessing the last round key, partially decrypting/encrypting, and
finally exploiting the distinguisher to filter wrong key guesses. Unfortunately,
this strategy does not work for MiMC, since guessing the full last round key
required to invert the large S-box is equivalent to exhaustive key search. Another
key-recovery approach that has been combined with integral distinguishers is
based on interpolating the Boolean polynomials that define the final rounds.
However, this strategy requires evaluating the distinguisher several times to
collect enough equations, which is not feasible for our distinguisher due to its
large data complexity.

In Section 5, we show how to solve this problem. Instead of guessing the last
round key, we set up an equation over F2n with the master key as a variable.
To obtain this equation, we symbolically express the zero sum at the input to
the last round as a polynomial function of the key, whose coefficients depend on
the queried ciphertexts. We show how the resulting polynomial equation can be
solved efficiently to recover the key. As a result, in the chosen-ciphertext case
only, recovering the key from this data for the full n-bit version of MiMC takes
the equivalent of less than 2n−log2(n)+1 calls to MiMC, 2n−1 chosen ciphertexts,
and negligible amounts of memory. Moreover, we show that approximately
dlog3(2 · R)e more rounds (where R = dn · log3(2)e is the current number of
rounds of MiMC-n/n) can be necessary and sufficient to restore the security
against the key-recovery attack presented here. This would, for example, imply
that we need to add 5 more rounds for the most used version MiMC-129/129
(which currently has 82 rounds).

A Generic Strategy. Our strategy is an instance of a broader class of algebraic
key-recovery approaches based on solving equations in the key variables. As such,
it shares some ideas with other algebraic approaches like optimized interpolation
attacks. However, while most algebraic key-recovery approaches of the last years
construct and solve systems of many Boolean linear equations, we use a single
univariate equation of higher degree that can be solved with polynomial factoring
algorithms such as Berlekamp’s algorithm. In Section 6, we outline a more
detailed and generic procedure for such an attack. It is interesting to note that a
comparatively old technique which basically disappeared for the cryptanalysis of
AES-like ciphers turns out to be very competitive for schemes with large S-boxes.
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2 Preliminaries

In this section, we recall the most important results about polynomial represen-
tations of Boolean functions and summarize the currently best known results
regarding the growth of the algebraic degree in the context of SP networks.
We also provide the specification of MiMC and give an overview of previous
cryptanalytic results.

We emphasize that in general it is only possible to give a lower bound
regarding the number of rounds which we can attack using higher-order differential
techniques, in the following denoted as “necessary number of rounds to provide
security”. While upper-bounding the algebraic degree is more important from an
adversary’s point of view, lower bounds on the degree are much more relevant
when arguing about security against algebraic attacks (such as e.g. [40,38,49,24])
from a designer’s viewpoint. However, at the current state of the art and to the
best of our knowledge, it seems hard to find such a lower bound for a given cipher
without investigating concrete instances experimentally – which, of course, limits
the scope of any analysis.

2.1 Polynomial Representations over Binary Extension Fields

We denote addition (and subtraction) in binary extension fields by the symbol
⊕. For n ∈ N, every function F : F2n → F2n can be uniquely represented by an
n-tuple (F1, F2, . . . , Fn) of polynomials over F2 in n variables with a maximum
degree of 1 in each variable. In this representation, Fi is of the form

Fi(X1, . . . , Xn) =
⊕

u=(u1,...,un)∈{0,1}n

ϕi(u) ·Xu1
1 · · · · ·X

un
n , (1)

where the coefficients ϕi(u) can be computed by the Moebius transform.
As is common, we denote functions F : Fn2 → F2 as Boolean functions and

functions of the form F : Fn2 → Fm2 , for n,m ∈ N, as vectorial Boolean functions.

Definition 1. The algebraic normal form (ANF) of a Boolean function F :
Fn2 → F2, as given in Eq. (1), is the unique representation as a polynomial over
F2 in n variables and with a maximum univariate degree of 1. The algebraic degree
δ(F ) of F – or δ for simplicity – is the degree of the above representation of F as
a multivariate polynomial over F2. If G : Fn2 → Fn2 is a vectorial Boolean function
and (G1, . . . , Gn) is its representation as an n-tuple of multivariate polynomials
over F2, then its algebraic degree δ(G) is defined as δ(G) := max1≤i≤n δ(Gi).

The link between the algebraic degree and the univariate degree of a vectorial
Boolean function is well-known, and is for example established in [22]: the
algebraic degree of F : F2n → F2n can be computed from its univariate polynomial
representation, and is equal to the maximum hamming weight of the 2-ary
expansion of its exponents.
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Lemma 1. Let F : F2n → F2n be a function and let F (X) =
∑2n−1
i=0 ϕi · Xi

denote the corresponding univariate polynomial description over F2n . The alge-
braic degree δ(F ) of F as a vectorial Boolean function is the maximum hamming
weight6 of its exponents, i.e., it is δ(F ) = max0≤i≤2n−1 {hw(i) |ϕi 6= 0} .

2.2 Higher-Order Differential Cryptanalysis

Higher-order differential attacks [40,38] form a prominent class of attacks exploit-
ing the low algebraic degree of a nonlinear transformation such as a classical
block cipher. If this degree is sufficiently low, an attack using multiple input
texts and their corresponding output texts can be mounted. In more detail, if
the algebraic degree of a Boolean function f is δ, then, when applying f to all
elements of an affine vector space V ⊕ c of dimension greater than δ and taking
the sum of these values, the result is 0, i.e.,

⊕
v∈V⊕c f(v) = 0.

Security Against Higher-Order Differential Attacks – State of the Art.
To prevent higher-order differential attacks against iterated block ciphers, one
would usually want the maximum algebraic degree to be reached (well) within
the suggested number of rounds. To achieve this goal, and to assess the security
margins, it is crucial to estimate how the algebraic degree grows with the number
of rounds.

The algebraic degree of composing two functions, F,G : Fn2 → Fn2 , can be
generically bounded by

deg(F ◦G) ≤ deg(F ) · deg(G), (2)

and hence an upper bound is found by iterative use of this on the round function.
The resulting bound does, however, fail to reflect the real growth of the algebraic
degree for many cryptosystems, and the problem of estimating the growth has
been widely studied in the literature. After the initial work of Canteaut and
Videau [20], a tighter upper bound was presented by Boura, Canteaut, and De
Cannière [18] at FSE’11. There, the authors show how to deduce a new bound
for the algebraic degree of iterated permutations for a special category of SP
networks over (F2n)t, which includes functions that have a number t ≥ 1 of
balanced S-boxes as their nonlinear layer. Specifically, the authors show that the
algebraic degree of the considered SP network grows almost exponentially, except
when it is close to its maximum.

Proposition 1 ([18]). Let F be a function from FN2 to FN2 corresponding to
the concatenation of t smaller S-boxes S1, . . . , St defined over Fn2 . Then, for any
function G from FN2 to FN2 , we have

deg(G ◦ F (·)) ≤ min
{

deg(F ) · deg(G), N − N − deg(G)
γ

}
, where (3)

6 Given x =
∑χ

i=0 xi · 2
i for xi ∈ {0, 1}, the hamming weight of x is hw(x) =

∑χ

i=0 xi.
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Fig. 1: The MiMC encryption function with r rounds.

γ = max
i=1,...,n−1

n− i
n− δi

≤ n− 1, (4)

and where δi is the maximum degree of the product of any i coordinates of any of
the smaller S-boxes.

Thus, the number of rounds necessary to prevent higher-order differential
attacks is in general bigger than the one obtained using the trivial bound in
Eq. (2).

2.3 Specification and Previous Analysis of MiMC

MiMC [3] is a key-alternating n-bit block cipher, where in each round the same
n-bit key is added to the state. The nonlinear component of the construction is
the evaluation of the cube function f(x) = x3 over F2n . Additionally, a different
round constant is added in each round to break symmetries, where the first round
constant is 0. The total number of rounds is then

r = dn · log3(2)e ,

and we refer to Fig. 1 for a graphical representation of the encryption function.
MiMC is defined to work over prime fields and binary fields. In this paper,

we focus on the binary field versions of MiMC7, for which the block size n has to
be odd in order for the S-box to be a permutation.

MiMC: Related Attacks in the Literature. The designers recommend MiMC with
dn·log3(2)e rounds [3]. They derive this number of rounds by considering a variety
of different key-recovery attacks on MiMC. According to their analysis, the most
powerful attacks are interpolation [36] and GCD attacks. About higher-order
differential attacks, the authors claim that “the large number of rounds ensures
that the algebraic degree of MiMC in its native field will be maximum or almost
maximum. This naturally thwarts higher-order differential attacks [...]”.

The first attack on MiMC-n/n [41], presented at SAC 2019, targets a reduced-
round version of MiMC proposed by the designers for a scenario in which the
attacker has only limited memory, but it does not affect the security claims of
7 Since the only subspaces of Fp, where p is a prime number, are {0} and Fp itself, our
attack does not affect the security of MiMC over prime fields.
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full-round MiMC. The Feistel version of MiMC was attacked shortly after, by
using generic properties of the used Feistel construction instead of exploiting
properties of the primitive itself [16]. Finally, a specific attack on MiMC using
Gröbner bases was considered in [1]. The authors state that by introducing
a new intermediate variable in each round, the resulting multivariate system
of equations is already a Gröbner basis and thus the first step of a Gröbner
basis attack is for free. However, recovering univariate polynomials from this
representation and then applying techniques like the GCD attack will result in a
prohibitively large computational complexity, since the recovered polynomials
will be of degree ≈ 3r after r rounds. Hence, the authors conclude that MiMC
cannot be attacked directly by using known Gröbner basis techniques.

3 Higher-Order Differentials of Key-Alternating Ciphers

Our bound on the growth of the algebraic degree does not depend on the cubing
of the round function in MiMC, so we introduce the following generalization of
the result on MiMC from Section 2.3.

3.1 Setting

Let Erk : F2n → F2n be a key-alternating cipher defined by

Erk(x) := kr ⊕R(· · ·R(k1 ⊕R(k0 ⊕ x)) · · · ) (5)

over r ≥ 1 rounds, where k0, k1, . . . , kr ∈ F2n are derived from a master key
k ∈ F2n using a key schedule. Each round function R : F2n → F2n is defined as
some invertible univariate polynomial function

R(x) := ρ0 ⊕
d⊕
i=1

ρi · xi (6)

of univariate degree d ≥ 3, where ρi ∈ F2n and ρd 6= 0. We will, without loss of
generality, assume d ≤ dinv, where dinv denotes the degree of the compositional
inverse of R (otherwise, an attacker would target the decryption function instead).
Furthemore, we assume that the round function has low univariate degree, i.e.,
low compared to the size of F2n . In other words, we work with d� 2n − 1.

3.2 Growth of the Degree

In this section, we show that the algebraic degree δ of a key-alternating cipher
Erk grows much slower than commonly presented in the literature. More precisely,
in some cases it can grow linearly in the number of rounds and not exponentially.

Proposition 2. Let Erk be a an r-round key-alternating block cipher with a
round function R of degree d, as defined in Eq. (5). If r ≤ Rlin − 1, where

Rlin =
⌈
logd

(
2n−1 − 1

)⌉
≈ (n− 1) · logd(2), (7)
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then the algebraic degree δ of Erk is at most n−2. Then, a (secret-key) higher-order
distinguisher using at most 2n−1 data can be applied to Erk.8

Proof. Due to the relation between the word-level degree and the algebraic degree,
Erk reaches its maximum algebraic degree of n− 1 if at least one monomial with
the exponent 2n−2j−1 (for 0 ≤ j < n) appears in the polynomial representation.
Indeed, note that all these monomials have an algebraic degree of n− 1. Since
the smallest exponent of this form is 2n − 2n−1 − 1 = 2n−1 − 1, and since the
degree of Erk after r rounds is at most dr, we require dr ≥ 2n−1 − 1 to make
x2n−1−1 appear, or equivalently,

r ≥ dlogd(2n−1 − 1)e.

Hence, the degree is not maximal for r < dlogd(2n−1 − 1)e and a higher-order
distinguisher using at most 2n−1 data can be applied.

The Difficulty of Lower-Bounding the Growth of the Degree. We point
out that it is always possible to set up a (secret-key) higher-order distinguisher if
the number of rounds is smaller than Rlin. However, a number of rounds greater
than or equal to Rlin does not necessarily provide security.

One of the main problems in order to derive a sufficient condition for the
number of rounds that provides security is the difficulty of analyzing the non-
vanishing coefficients in the polynomial representation of Erk. Note, in general it
is not easy to give a condition guaranteeing that a particular monomial appears,
since many factors (including the secret key, the constant addition, and the
details of the S-box) influence the result.

Without going into the details, we consider the influence of the S-box in some
concrete examples. Working with R(x) = xd for a certain 3 ≤ d ≤ 2n − 2 (where
d 6= 2d′ for d′ ∈ N), we focus for simplicity only on two extreme cases d = 2d′ ± 1.
By exploiting Lucas’s Theorem9:

– If d = 2d′ + 1 for some d′ ∈ N, then the output of a single round is sparse:

(x⊕ y)2d′+1 = x2d′+1 ⊕ x2d′

· y ⊕ y2d′

· x⊕ y2d′+1

(note that it contains only 4 terms instead of d+ 1 = 2d′ + 2).
– If d = 2d′ − 1 for some d′ ∈ N, then the output of a single round is full, since

(x⊕ y)2d′−1 =
2d′−1⊕
i=0

xi · y2d′−1−i.

8 We denote our bound by Rlin to indicate the almost linear growth of the algebraic
degree for this specific class of constructions.

9 By Lucas’s Theorem,
(
n
m

)
≡
∏k

i=0

(
ni
mi

)
(mod 2), it follows that where n =

∑k

i=0 ni ·
2i and m =

∑k

i=0 mi · 2i is the 2-ary expansion of n and m, respectively.
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Even if a single round is not sparse, the output of several combined rounds is
not guaranteed to be full (even if it is in general dense). As a concrete example,
while the output of (x⊕ k0)3 ⊕ k1 is full, the same is not true for

((x⊕ k0)3⊕k1)3 ⊕ k2 = x9 ⊕ x8 · k0 ⊕ x6 · k1 ⊕ x4 · k2
0 · k1 ⊕ x3 · k2

1

⊕ x2 · (k0 · k2
1 ⊕ k2

0 · k2
1 ⊕ k4

0 · k1)⊕ x · k8
0 ⊕ c(k0, k1, k2),

(8)

where both x5 and x7 are missing, and where c(k0, k1, k2) is a function that
depends only on the keys. This simple example emphasizes the difficulty of
analyzing the sparsity of the polynomial that defines Ek.

3.3 Comparison with Other Bounds

We now compare the new number of rounds necessary to provide security against
secret-key higher-order distinguishers with other possible bounds. An alternative
strategy is to apply generic bounds focusing on the algebraic degree of the round
function, as recalled in Proposition 1. Recall that Rlin is the number of rounds
from Proposition 2, and we will denote the number of round based on generic
bounds by Rgen. The comparison will make use of δlin(r), the upper bound on
the algebraic degree after r rounds following Proposition 2. The upper bound
from Eq. (3) will be denoted by δgen(r). Note that δgen(r) can, for example, take
advantage of a slower growth in the algebraic degree, as in Eq. (8) by considering
two rounds instead of one. Despite this, the overall trend of δgen(r) will still be
exponential. On the other hand, if the round function can be described by a
polynomial of low univariate degree d over F2n , we expect a linear behaviour in
δlin(r):

δlin(r) ≤ blog2(dr + 1)c ≈ r · log2(d).
As a result, the round numbers Rlin and Rgen necessary to provide security grow
respectively linearly and logarithmically in the size n of the field, namely

Rlin ∈ O(n) and Rgen ∈ O(logδ(n)).

A concrete comparison of δlin(r) and δgen(r) for MiMC-129/129 is given in
Fig. 2. In this setting we have δlin(r) = blog2(3r + 1)c, and δgen(r) has been
derived using the observation that two rounds of MiMC have algebraic degree
two (see [28, App. A] for more details). In particular, we find Rgen = 13 and
Rlin = 81.

Remark. We emphasize that every (invertible) S-box/round function in Fn2 can
be rewritten as a polynomial over F2n . The crucial point here is that given a
“random” S-box/round function over Fn2 , the corresponding polynomial over F2n

has in general a high univariate degree (e.g., d ≈ 2n− ε for some small ε). In such
a case, even if our argument still holds, the final result becomes meaningless, since
logd(2n − 1) ≈ log2n−ε(2n − 1) ≈ 1 is basically constant (i.e., it does not grow
linearly with n). Hence, our results turn out to be relevant only for S-boxes/round
functions for which the corresponding polynomial over F2n has “small” degree
(namely, small compared to the field size, i.e., d� 2n).
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Fig. 2: Different upper bounds of the growth of the algebraic degree for MiMC-
129/129. The trivial bound is 2r. A tighter bound, δgen(r), exploits the observation
that 2 rounds only have degree 2 (see Eq. (8)). Our new bound, δlin(r), is linear
in the number of rounds.

4 Distinguishers for Reduced-Round and Full MiMC

Exploiting the previous result, we now discuss the possibility to set up higher-order
differential distinguishers and attacks on MiMC [3]. We show that

(1) MiMC has a security margin of only 1 or 2 round(s) against (secret-key)
higher-order distinguishers, depending on n, and that

(2) a zero-sum known-key distinguisher can be set up for approximately double
the number of rounds of MiMC.

4.1 Secret-Key Higher-Order Distinguisher for MiMC

The results just presented allow to set up a nontrivial (secret-key) higher-order
distinguisher on dlog3(2n−1−1)e−1 rounds of MiMC, where dlog3(2n−1−1)e−1 <
dn · log3(2)e for all n. Consequently, the security margin is reduced to

1 ≤ dn · log3(2)e −
(
dlog3(2n−1 − 1)e − 1

)
≤ 2

rounds. To give some concrete examples, MiMC has 1 round of security margin
for n ∈ {33, 63, 255}, and 2 rounds of security margin for n ∈ {31, 65, 127, 129}.

4.2 Practical Results

In this section we compare the results from Proposition 2 with practical results
from scaled-down versions of MiMC. The tests10 have been performed in the
following way: Instead of computing the ANF of a keyed permutation (which
10 The source code for the attacks and the tests is available on https://github.com/

IAIK/mimc-analysis.
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Table 2: Theoretical and practical round numbers necessary to prevent higher-
order distinguishers for MiMC over F2n .

Param. Theoretical Practical
n Rlin Rgen R
7 4 5 5
9 6 5 6
11 7 7 7
13 8 7 9
15 9 7 10
17 11 7 11
33 21 9 21
65 41 11 -
129 81 13 -

is expensive even for small field sizes), we evaluate the higher-order differential
zero-sum property (as given in Section 2.2) for a specific input vector space.
Namely, for random keys, random constants, and an input subspace of dimension
n− 1, we look for the minimum number of rounds r for which the corresponding
sum of the ciphertexts is different from zero. Such a number corresponds to the
number of rounds necessary to prevent higher-order distinguishers. In order to
avoid the influence of weak keys or round constants, we repeated the tests multiple
times (with new random keys and round constants). The practical number of
rounds we give in each row is the smallest number of rounds among all tested
keys and round constants necessary to prevent higher-order distinguishers. This
means that a potentially higher number of rounds can be attacked by choosing
the keys and round constants in a particular way.

The results, denoted R, are given in Table 2. We also present Rlin (from
Proposition 2) and Rgen (see [28, App. A]) for comparison. We emphasize that
the theoretical values predicted by Rlin match the practical results in about half
of the cases, and are off by at most one.

4.3 Known-Key Zero-Sum Distinguisher for MiMC

A known-key distinguisher is a scenario introduced in [39] where the attacker
knows the key, and it is important in all settings in which no secret material is
present. To succeed, the attacker has to discover some property of the attacked
cipher that holds with a probability higher than for an ideal cipher, or is believed
to be hard to exhibit generically. The goal of a known-key zero-sum distinguisher
is to find a set of plaintexts and ciphertexts whose sums are equal to zero. To do
this, the idea is to exploit the inside-out approach. By choosing a subspace of
texts V, one simply defines the plaintexts as the rdec-round decryption of V and
the ciphertexts as the renc-round encryption of V. Such a distinguisher can then
cover renc + rdec rounds. Examples of this approach are given in the literature
for Keccak [18,7,10], Luffa [18,7], or PHOTON [50].
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In the case of MiMC, the idea is to choose V as a subspace of F2n of dimension
n− 1. The maximum number of encryption rounds renc for which it is possible
to guarantee a zero sum has been given in the previous paragraph. Based on
Section 4.2, we can set up a known-key distinguisher on (more than) full MiMC-
n/n. For our distinguisher on MiMC, we first recall the following result from [17].

Proposition 3 (Corollary 3 of [17]). Let F be a permutation of Fn2 . Then,
deg(F−1) = n− 1 if and only if deg(F ) = n− 1.

Corollary 1. Let renc be the number of rounds necessary for MiMC over F2n

to reach its maximum algebraic degree in the encryption direction. The same
number of rounds is necessary for reaching the maximum algebraic degree in the
decryption direction, i.e., rdec = renc = dlog3(2n−1 − 1)e.

It follows that, given a subspace V ⊆ F2n of dimension n − 1, the sums of
the corresponding texts after rdec − 1 decryption rounds and renc − 1 encryption
rounds are always equal to zero, i.e.,⊕

w∈V⊕v
R−(rdec−1)(w) = 0︸ ︷︷ ︸

Zero sum

R−(rdec−1)

←−−−−−−− V ⊕ v Rrenc−1

−−−−−→ 0 =
⊕

w∈V⊕v
Rrenc−1(w)︸ ︷︷ ︸

Zero sum

for each v ∈ F2n . Hence, a known-key zero-sum distinguisher can be set up for

2 · (dlog3(2n−1 − 1)e − 1) ≈ 2(n− 1) · log3(2)− 2 =
= n · log3(2)︸ ︷︷ ︸

= full MiMC

+ [(n− 2) · log3(2)− 2]

rounds of MiMC-n/n, which is much more than full MiMC-n/n.

4.4 Impact of the Known-Key Distinguisher on Full MiMC

Sponge Function. In [3], the authors propose a hash function by instantiating
a sponge construction with MiMCπ, a fixed-key version of MiMC. The sponge
hash function is indifferentiable from a random oracle up to 2c/2 calls to the
internal permutation P (where c is the capacity) if P is modeled as a randomly
chosen permutation [9]. Thus, even if it is not strictly necessary, it is desirable
that MiMC is resistant against known-key distinguishers.

For completeness, we mention that even if there is a way to distinguish
a permutation from a random one, it seems difficult to exploit a zero-sum
distinguisher of the internal permutation of a sponge construction in order to
attack the hash function. To give a concrete example, consider the case of
Keccak: As a consequence of the zero-sum distinguisher found on 18-round
Keccak-f [1600], the number of rounds has been increased from 18 to 24 in the
second round of the SHA-3 competition in order to avoid “non-ideal” properties
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(see [18,10] for more details). However, the best known attack on the Keccak
hash function can only be set up when using 6-/7-round Keccak-f [33].

In any case, we remark that such distinguishers based on zero sums cannot be
set up for an arbitrary number of rounds, and they do indeed exploit the internal
properties of a primitive using the inside-out approach found in this paper and
in other literature. Hence, they cannot be considered meaningless.

Other Approaches. Even though the original MiMC paper only specifies a
sponge-based hash function using MiMC, there are various applications and/or
specific considerations that would make a block-cipher-based approach more
advantageous (like, for example, being forced to use a block size which is too
small for a sponge-based approach). Another way to turn a block cipher into a
hash function is to use a compression function like the Davies–Meyer one together
with something like the Merkle–Damgård construction. Similar to the case of
sponge constructions, the security of such an algorithm is proven in the ideal
cipher model [12]. This choice is, however, not supported by the MiMC designers,
who use our results to support their advice against using a block-cipher-based
approach (even though such implementations can still be found11). It follows
that, since the attacker has control of the key in such scenarios, it is desirable for
MiMC to be resistant against known- and chosen-key distinguishers, even if it
does not seem to be strictly necessary.

4.5 Results Using the Division Property

Finally, in [28, App. C] we present our practical results obtained using “Mixed
Integer Linear Programming (MILP)”, which models the propagation of the
(conventional) bit-based division property.

The (conventional) bit-based division property [48] was proposed to investigate
integral characteristics of block ciphers at a bit level. With this approach, the
integral property of each bit is studied independently. Naturally, this strategy
allows to capture more information of the propagation than the word-level
version, and thus integral characteristics for more rounds can be found with this
new technique. For example, the integral distinguishers of SIMON32 have been
improved from 10 rounds [46] (the current best result at word level) to 14 rounds
[52] (obtained by the experimental method cited before).

Instead of separating the parity into the two cases “0” and “unknown” as for
the (conventional) bit-based division property, three-subset bit-based division
property [48] was introduced to enhance the accuracy of the conventional one,
where the parity is separated into three sets, i.e., “0”, “1”, and “unknown”. It
shows that the three-subset bit-based division property can indeed be more
accurate than the two-subset bit-based division property for some ciphers [35,53].
However, it becomes harder to efficiently model the three-subset division property
propagation even for ciphers with simple structures. Recently, [34] pointed out
11 https://github.com/HarryR/ethsnarks/blob/master/src/gadgets/mimc.hpp
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that the three-subset division property has a couple of known problems when
applied to cube attacks, and proposed a modified three-subset bit-based division
without the “unknown” set to overcome these problems. By modeling this modified
version of the three-subset bit-based division property for our cases with small
n-bit S-boxes, where n ∈ {5, 7, 9}, we confirm the practical results given in
Table 2.

However, as far as we know, it is still an open problem to model the (modified)
three-subset bit-based division property for a larger S-box of size bigger than
9. The S-boxes we focus on in this paper can be described as a (low-degree)
polynomial function in F2n , where n is much larger than 9. Therefore, the division
property, which is commonly believed as the most efficient tool to find the best
integral distinguishers, might not help us as much for the ciphers we focus on.

5 Key-Recovery Attack on MiMC

Since the security margin of MiMC with respect to a (secret-key) higher-order
distinguisher is of only 1 or 2 round(s) depending on n, it is potentially possible to
extend a distinguisher to a key-recovery attack. Given a subspace V of plaintexts
whose sum is equal to zero after r rounds, we can consider r+ 1 rounds, partially
guess the last subkey and decrypt, and filter wrong key guesses that do not satisfy
the zero sum:

V ⊕ v Rr(·)−−−→
⊕

w∈V⊕v

Rr(w) = 0︸ ︷︷ ︸
Higher-order distinguisher

R−1(·)←−−−−−−−−
Key guessing

{Rr+1(w) | w ∈ V ⊕ v}︸ ︷︷ ︸
Ciphertexts

.

However, since the subkeys of MiMC are equal to the master key plus constants,
and due to the single full-state S-box, even a (partial) decryption of a single
round requires guessing the full key. As a result, a key-recovery attack on full
MiMC based on this strategy seems infeasible.

In this section, we present an alternative strategy that allows to break full-
round MiMC. Since a trivial key-guessing approach is inefficient, our idea is to
construct a polynomial of low degree, which we can then try to solve.

5.1 Strategy of the Attack

From Proposition 2 and Proposition 3, a zero sum can be set up for at least
d(n− 1) log3(2)e − 1 = dn log3(2)e − ε rounds in the encryption and decryption
direction with a vector space V⊕v of dimension n−1, where ε ∈ {1, 2}. Recalling
that dn · log3(2)e is the number of rounds of full MiMC, we define rZS, rKR as

rZS = d(n− 1) log3(2)e − 1 and rKR = 1 + (dn log3(2)e − d(n− 1) log3(2)e) ,

where rZS is the number of rounds that we can cover with a zero sum, rKR =
dn · log3(2)e − rZS ∈ {1, 2}.

Let fr(x,K) be the function corresponding to r rounds of MiMCk(·) (and
f−r(x,K) be r rounds of decryption, MiMC−1

k (·)), where x is the input text and
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K is a symbolic variable that represents the secret key k. We intend to use these
functions to create a polynomial from which we can deduce k. More precisely, for
a fixed vector space V ⊕ v, we consider the equations⊕

x∈MiMC−1
k

(V⊕v)

frKR(x,K)

︸ ︷︷ ︸
=F (K)

= 0 and
⊕

x∈MiMCk(V⊕v)

f−rKR(x,K)

︸ ︷︷ ︸
=G(K)

= 0. (9)

After having received all x values from an oracle, the attacker can construct
one of the polynomials F (K) = 0 or G(K) = 0. The secret key k can now be
determined by finding the roots of either of these polynomials.

In the case of MiMC, the degree of a single encryption round is 3, while the
degree of a single decryption round is (2n+1 − 1)/3 (which is significantly larger
than 3 for large n). Due to the slow degree growth in the encryption direction of
MiMC, we will focus on finding the roots of F (K) given in Eq. (9).

Finding the Roots of Univariate Polynomials. Let F (X) ∈ F2n [X]/〈X2n +
X〉 be a univariate polynomial of degree D. Furthermore, let M(D) denote a
number such that multiplying two polynomials of degree ≤ D over F2n requires
O(M(D)) operations in F2n . For instance, a straightforward method would yield
M(D) = D2, whereas M(D) = D · log(D) · log log(D) holds for methods based
on fast Fourier transforms [21]. The Berlekamp algorithm for determining the
roots of F is then expected to require C ∈ O (M(D) log(D) log (2nD)) operations
in F2n (see [29, Chapter 14.5]).

5.2 Details of the Attack

Assume V ⊕ v is a coset of a subspace V of dimension n− 1. We define

W = MiMC−1
k (V ⊕ v) ≡ {MiMC−1

k (x) ∈ F2n |x ∈ V ⊕ v}

under a fixed secret key k. Here, we present the details of the attack for the cases
rKR = 1 and rKR = 2, and we analyze the computational cost. We introduce the
following notation:

∀d ∈ N : Pd :=
⊕
x∈W

xd, (10)

and whenever possible we will make use of the fact that squaring is a linear
operation over F2n . More specifically, computing P2d only requires a single
squaring operation once Pd is calculated:

P2d :=
⊕
x∈W

x2d =
(⊕
x∈W

xd

)2

= P2
d . (11)

This allows to reduce the total number of XOR operations.
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Algorithm 1: Attack on MiMC – Case: rKR = 1.
Input: Vector subspace V of ciphertexts of dimension dim(V) = n− 1.
Output: Secret key k.

1 P1,P2,P3 ← 0.
2 for x ∈ V ⊕ v do
3 p← MiMC−1

k (x) from the decryption oracle.
4 P1 ←P1 ⊕ p.
5 q ← p2.
6 P3 ←P3 ⊕ q · p.
7 P2 ← (P1)2.
8 F (K) = P1 ·K2 ⊕P2 ·K ⊕P3.
9 Find a solution k of F (K) = 0 – see Section 5.1 (filter multiple solutions by

brute force).
10 return k.

Case: rKR = 1. Since a single round of MiMC is described by (x ⊕ k)3 =
k3 ⊕ k2 · x⊕ k · x2 ⊕ x3, the function F (K) is given by

F (K) = K2 ·P1 ⊕K ·P2 ⊕P3.

A complete pseudo code of the attack can be found in Algorithm 1, which makes
it easy to see that the cost of the attack is well approximated by

– |V| = 2n−1 multiplications,
– |V| = 2n−1 + 1 squarings,
– 2 · |V|+ 1 = 2n + 1 n-bit XOR operations,
– cost of finding the roots of a univariate polynomial of degree 2.

Case: rKR = 2. The attack for the case rKR = 2 is similar. From Eq. (8) (using
k0 = k, k1 = k ⊕ c1 and k2 = 0), the function F (K) is described by

F (K) = K8 ·P1 ⊕K5 ·P2 ⊕K4 · (P2 · c1 ⊕P1)⊕K3 · (P4 ⊕P2)
⊕K2 · (P4 · c1 ⊕P3 ⊕P1 · c2

1)⊕K · (P8 ⊕P6 ⊕P2 · c2
1)⊕ (P9 ⊕P6 · c1 ⊕P3 · c2

1),

where c1 is the round constant of the first round. As also noted in Section 3.2,
while P9 is the largest Pd in this expression, both P5 and P7 are missing, and
hence do not need to be computed. A complete pseudo code of the attack can be
found in Algorithm 2. Again, it is easy to see that the cost of the attack is well
approximated by

– 2 · |V|+ 6 = 2n + 6 multiplications,
– 2 · |V|+ 4 = 2n + 4 squarings,
– 3 · |V|+ 8 = 3 · 2n−1 + 8 n-bit XOR operations,
– cost of finding the roots of a univariate polynomial of degree 8.
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Algorithm 2: Attack on MiMC – Case: rKR = 2.
Input: Vector subspace V of ciphertexts of dimension dim(V) = n− 1.
Output: Secret key k.

1 P1,P2,P3, . . . ,P9 ← 0.
2 for x ∈ V ⊕ v do
3 p← MiMC−1

k (x) from the decryption oracle.
4 P1 ←P1 ⊕ p.
5 q2 ← p2.
6 q3 ← q2 · p.
7 P3 ←P3 ⊕ q3.
8 q6 ← q2

3 .
9 P9 ←P9 ⊕ q6 · q3.

10 P2 ← (P1)2.
11 P4 ← (P2)2.
12 P6 ← (P3)2.
13 P8 ← (P4)2.
14 F (K) = K8 ·P1 ⊕K5 ·P2 ⊕K4 · (P2 · c1 ⊕P1)⊕K3 · (P4 ⊕P2)⊕K2 ·

(P4 · c1 ⊕P3 ⊕P1 · c2
1)⊕K · (P8 ⊕P6 ⊕P2 · c2

1)⊕ (P9 ⊕P6 · c1 ⊕P3 · c2
1).

15 Find a solution k of F (K) = 0 (filter multiple solutions by brute force).
16 return k.

5.3 Complexity Estimation

As we have just seen, our attack requires half of the code book (namely, 2n−1

chosen ciphertexts). Here we show that our attacks are better than exhaustive
search (from the computational point of view). In order to do this, we measure
the time complexities in equivalent encryption operations.

A single encryption round in MiMC requires one addition, one squaring
operation, and one multiplication in the extension field. Since the cost of a single
n-bit XOR operation is much smaller than the cost of a multiplication over F2n ,
and since the number of XOR operations is similar to the number of multiplications,
in the following we do not consider XOR operations. After this simplification, we
find that the time complexity of rKR = 1 is dominated by 2n−1 squaring and
multiplication operations or, equivalently, 2n−1 encryption rounds. A similar line
of reasoning reveals that rKR = 2 is comparable to 2n encryption rounds.

Since the cost of solving a single low-degree equation is negligible, and one
unit of encryption contains dn · log3(2)e rounds, it follows that the cost of our
attacks is about

rKR · 2n−1

dn · log3(2)e

encryptions for rKR ∈ {1, 2}. That is, the computational cost of the key-recovery
part of our attacks is upper-bounded by 2n−log2(n)+1, and hence the total cost is
smaller than that of a brute-force attack (namely, 2n encryptions) for each n ≥ 3.
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5.4 Practical Verification

We implemented Algorithm 1 and Algorithm 2 in the computer algebra system
Magma, and verified both algorithms for all odd integers n ∈ [5, 35]. We note that
Algorithm 1 (rKR = 1) yields the correct answer for all the tested 5 ≤ n ≤ 35,
even if dn log3(2)e 6= d(n− 1) log3(2)e. Namely, in practice it is possible to cover
one more round with a zero sum than what we theoretically expect. In other
words, d(n− 1) log3(2)e rounds of the decryption function of MiMC fail to obtain
the maximum algebraic degree for these parameters, which is reached after
d(n− 1) log3(2)e + 1 rounds (see [28, App. B] for more details on the degree
growth of MiMC−1). Since we are not able to prove this behavior for larger values
of n, we leave it as an open question whether Algorithm 1 can be applied to
MiMC for odd integers n > 35.

Considerations on Data and Computational Costs of this Attack. A
possible drawback of our attack is the cost. Since we are not able to provide
an estimation of the growth of the degree in the decryption direction, we can
only exploit the fact that a certain number of rounds are necessary in order to
achieve maximum degree. It follows that the attacker is forced to use half of
the code book in order to set up the attack, which also has an impact on the
computational cost.

Even if our attack is not practical, we believe it provides valuable theoretical
insight. It is also in line with several other attacks found in the literature, which
are set up under a similar assumption on the data and/or computational cost. To
give some concrete examples, consider the case of zero-correlation attacks [14],
which exploit linear approximations that hold with probability 1

2 . The crucial
limitation for basic zero-correlation linear cryptanalysis is that it requires half
of the code book. Only follow-up works have been able to reduce this data
requirement, including the more powerful distinguisher called multiple zero-
correlation (MPZC) linear distinguisher proposed in [15], which exploits the fact
that there are numerous zero-correlation linear approximations in susceptible
ciphers. While needing (close to) the full code book is an inherent property of
zero-correlation attacks, the reason for the high data complexity in our case is
purely due to the specification of MiMC and the attacked number of rounds, and
not due to an inherent property of our attack.

Splice-and-cut meet-in-the-middle attacks and biclique attacks are other
examples of attacks that often come with time complexities relatively close to
exhaustive search. Indeed, an extension of the biclique approach first described
in [13] has a brute-force phase for a number of rounds as part of the attack. It
can in principle work for any number of rounds and is hence best described as a
particular optimization of brute-force key guessing. However, later variants then
showed examples where the gain over brute force was in the order of millions [37].
Still, we note that the complexity of biclique attacks scales differently than our
attack, whose runtime cost depends strongly on the details of the target cipher
MiMC.
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Finally, we point out that any attack that is better than brute force is relevant,
even if it requires unrealistic amounts of data or storage. Indeed, the main goal
of cryptanalysis is finding a “certificated weakness”, that is, an evidence that the
cipher does not perform as advertised. In other words, in academic cryptography,
a weakness or a break in a scheme is usually defined quite conservatively: It may
require impractical amounts of time, memory, or data.

The Number of Rounds Needed for Security. It may be of interest to
estimate the number of rounds needed for MiMC to be resistant against this
attack. To this end, we bound the operations needed to compute all monomials
of odd degree, up to a maximum degree D.

Lemma 2. Let 1 ≤ D ≤ 2n − 1 and x ∈ F2n . The overall number of operations
needed to compute all odd powers xi for i ∈ [3, D] is given by 1 squaring and⌊
D−1

2
⌋
multiplications.

Proof. From x, calculate and store q := x2. The odd powers of x can now be
successively computed as xi+2 = xi · q for all odd integers i in the interval
[1, D − 2]. This yields a total of 1 squaring and

⌊
D−1

2
⌋
multiplications.

Assume for simplicity that dn · log3(2)e − 1 rounds can be covered by a zero
sum, and that the cost of solving the final polynomial equation is negligible.
As before, we expect the time complexity to be dominated by the number of
operations needed to construct the polynomial F (K). Since the degree of this
polynomial is upper-bounded by 3rKR , by Lemma 2 at most [(3rRK − 1)/2] · 2n−1

multiplications are required to compute all monomials with odd exponents in
F (K) (where all monomials with even exponents are computed via Eq. (11)).

Since one encryption of MiMC costs dn · log3(2)e multiplications, the number
of extra rounds ρ for MiMC must satisfy

(3ρ+1 − 1) · 2n−2 ≥ 2n · (dn · log3(2)e+ ρ)

in order to provide security against the attack just presented. This would, for
example, require at least ρ = 5 extra rounds for n = 129 (more generally, if R
is the number of rounds of MiMC-n/n, then ρ ≈ dlog3(2 ·R)e more rounds are
sufficient to restore the security12). We remark that this rough estimation is not
intended to replace the number of rounds proposed by the designers.

6 An Algebraic Attack on Ciphers with Low-Degree
Round Functions

Here we generalize the key-recovery attack on MiMC described in Section 5 and
discuss a generic attack strategy for any block cipher working over (F2n)t, where
n, t ∈ N, t ≥ 2 and n ≥ 3.
12 In more details, ρ ≥ log3(4 · (R+ ρ) + 1)− 1. The previous estimation is obtained by

assuming ρ ≤ R/2.
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6.1 Setting

We consider an r-round block cipher Erk : (F2n)t → (F2n)t with

Erk(x) = (Rr ◦Rr−1 ◦ · · · ◦R1)(x⊕ k),

and where R,Ri : (F2n)t → (F2n)t are defined by Ri(x) = R(x)⊕ k(i). Here, R
denominates the (nonlinear) round function. Since Erk consists of t components,
we can write

Erk(x) = (Erk,1(x), . . . , Erk,t(x)),

where Erk,i : (F2n)t → F2n . We denote the compositional inverse of Erk by E−rk .
We assume that

(1) the i-th round key k(i) ∈ (F2n)t is derived from the master key k =
(k1, . . . , kt) ∈ (F2n)t by some low-degree (e.g., linear) key schedule,

(2) the round function R can be described by a polynomial

R(x = (x1, . . . , xt)) =
⊕

j=(j1,...,jt)∈{0,1,...,2n−1}t

j1+···+jt≤d

αj · xj1
1 · · · · · x

jt

t

of low-degree d with coefficients αj ∈ (F2n)t.

Our attack requires the symbolic evaluation of the encryption function Er′k for a
small number of rounds r′ to be relatively easy, which motivates the requirements
of a low-degree round function R and a low-degree key schedule. This ensures
that the polynomial representation of Er′k can be computed efficiently. In both
cases, low-degree means low compared to the size of the field F2n , i.e., d� 2n− 1.
A cipher in the literature that satisfies above assumptions and does indeed use
low-degree round functions is, e.g., HadesMiMC [31].

6.2 Strategy of the Attack

The idea of our generic attack is to recover the secret master key k of a cipher
Erk by exploiting a given higher-order distinguisher over the subset X ⊆ (F2n)t
covering 1 ≤ rZS < r rounds in the encryption or the decryption direction. For the
sake of simplicity, we follow the approach of the attack on MiMC in Section 5 and
assume that the higher-order distinguisher covers rZS rounds in the decryption
direction.

In our attack, we symbolically evaluate ErKR
k (y) with respect to the remaining

rKR := r − rZS rounds in the encryption direction and obtain polynomials
(1 ≤ i ≤ t)

ErKR
(K1,...,Kt),i(Y ) ∈ F2n [K1, . . . ,Kt, Y1, . . . , Yt]

over F2n with the master key words Kj and plaintext variables (Y1, . . . , Yt) =: Y
as indeterminates – in short, one polynomial for each of the t components of
ErKR
k (y). In general, we work with rKR � rZS , since the symbolic evaluation of

ErKR
k (y) is expensive.
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Algorithm 3: Attack on a generic cipher Erk over (F2n)t.
Input: Number of rounds r of the cipher Erk, number of rounds rZS in the

decryption direction and a subset X ⊆ (F2n )t satisfying the zero sum⊕
x∈X E

−rZS
k (x) = 0.

Output: Secret key k = (k1, . . . , kt).
1 rKR ← r − rZS.
2 for each 1 ≤ i ≤ t do
3 Compute the symbolic evaluation

fi = fi(Y1, . . . , Yt,K1, . . . ,Kt) = ErKR
(K1,...,Kt),i(Y1, . . . , Yt) of word i in the

encryption direction for rKR rounds.
4 for each monomial Y i11 . . . Y itt ·K

j1
1 . . .Kjt

t in fi with i1 + · · ·+ it ≥ 1 do
5 Pi1,...,it ← 0.
6 for each x ∈ X do
7 y = (y1, . . . , yt)← E−rk (x), via the decryption oracle.
8 Pi1,...,it ←Pi1,...,it

⊕
yi11 · · · · · y

it
t .

9 Replace Y i11 . . . Y itt ·K
j1
1 . . .Kjt

t with Pi1,...,it ·K
j1
1 · · · · ·K

jt
t .

10 Fi(K1, . . . ,Kt)← fi(K1, . . . ,Kt).
11 Find a solution k = (k1, . . . , kt) of F1(k1, . . . , kt) = · · · = Ft(k1, . . . , kt) = 0.
12 return k = (k1, . . . , kt).

Having a zero sum after rZS rounds in the decryption direction with respect
to the subset X ⊆ (F2n)t means that⊕

x∈X
E−rZS
k (x) = 0.

The main observation behind our attack is the following: We exploit the relation13

0 =
⊕
x∈X

E−rZS
k (x) =

⊕
x∈X

(
ErKR
k ◦ E−rk

)
(x) =

⊕
y∈E−r

k
(X )

ErKR
k (y) (12)

to set up the following equations (1 ≤ i ≤ t) over F2n in the variables k1, . . . , kt:

Fi(k1, . . . , kt) :=
⊕

y∈E−r
k

(X )

ErKR
(k1,...,kt),i(y) = 0. (13)

Again, ErKR
(k1,...,kt),i(y) denotes the symbolic evaluation of the i-th word after

rKR rounds in the encryption direction with the master key words as variables
k1, . . . , kt and evaluated at y ∈ F2n . Once we have set up the equation system
arising from Eq. (13), we apply Gröbner basis techniques to solve this system
over F2n for the key variables k1, . . . , kt.

In Algorithm 3 we summarize the approach of our generic attack and present
a pseudo code of the attack procedure. For completeness, a rough complexity
estimation of the attack is derived in [28, App. E].
13 Note that in this representation, Erk = ErZS

k ◦ ErKR
k and E−rZS

k = ErKR
k ◦ E−rk .
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6.3 Comparison with Related Work

Interpolation Attacks. Originally introduced as a standalone attack, interpola-
tion attacks [36] are algebraic attacks that express the (potentially round-reduced)
cipher as a polynomial equation with unknown, key-dependent coefficients, and
recover these coefficients from known inputs and outputs. More recently, this
approach has been combined as a key-recovery approach together with integral
distinguishers.

Attack on CAST. In an attack [43] on the CAST cipher the authors use a
higher-order differential distinguisher to set up an equation system and finally
solve this systems for the key variables. In contrast to our attack, the authors of
[43] work with linear equation systems over F2. While this is sufficient for CAST,
working at bit level is in general more expensive than working on word level
when analyzing ciphers that are natively defined at word level.

Optimized Interpolation Attacks. One type of optimized interpolation attacks
was described in [23], where the authors find attacks on reduced-round versions
of LowMC which are more efficient than previous attacks based on key guessing
[25]. A similar attack was also used to break the full-round version of the
Frit permutation in an Even–Mansour setting [26]. The overall strategy of this
interpolation attack is to find a distinguisher (for example a constant sum in
the encryption direction in the case of LowMC) with which one attacks the
construction by finding the unknown monomials of the sums of the symbolic
representations in the inverse direction. By determining these (key-dependent)
monomials, the full key can eventually be found. Since the approach in [23] shares
some similarities with our proposal, we describe the differences between these
two strategies in detail.

The main difference regarding the two strategies concerns the way in which
the system of equations Fi(K) = 0 is constructed and consequently solved:

– In [23], the idea is to construct the function using a “standard” interpolation
technique. Specifically, the attacker does not care about the specification of
the monomials of F , which are simply considered as unknowns. Hence, the
idea is to recover (interpolate) the unknown coefficients of FK(C), and then
use various ad-hoc techniques (which are not part of the framework described
in this section) in order to recover the actual secret key.

– In our case, we heavily exploit the simple algebraic structure of the round
function in order to construct the system of equations Fi(K) = 0. In other
words, the system of equations is constructed by using a symbolic evaluation
and not by interpolation techniques.

We emphasize that the possibility to set up one of the two attacks does
not imply the possibility to set up the other one. For example, it seems hard
to use the attack presented in [23] against full-round MiMC, while we show
that our strategy can break it. Indeed, since we already need 2n−1 data for the
distinguishing property (i.e., half of the code book), we do not see how to apply
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the approach from [23] to MiMC without further increasing the data complexity
due to data needed for the interpolation step.

Attack on Pyjamask. Only recently, a similar attack on Pyjamask, competing
in the ongoing NIST call for lightweight authenticated encryption, has been
presented [27]. The authors propose an attack on the full block cipher Pyjamask-
96 by combining higher-order differentials with an in-depth ad-hoc analysis of
the system of equations obtained for 2.5 rounds of Pyjamask-96. As is the case
for CAST, the attack is set up at bit level.

Cube Attacks. Although our attack and cube attacks [24] exploit low degrees in
the polynomial description of a cipher, they are quite different from a conceptual
point of view and can be regarded as two different cryptanalytic methods. To
justify this conclusion, we briefly present the idea behind cube attacks and
contrast them with our attack ideas.

Given a cipher with input variables x0, . . . , xn−1 as the public variables (IV
bits, plaintext bits, tweak bits, etc.), and xn, . . . , xn+m−1 as the secret variables
(key bits), the output of the cipher can be regarded as a polynomial f = f(x)
in x = (x0, . . . , xn+m−1). For every set I ⊂ {0, . . . , n − 1}, f can be uniquely
decomposed into

f = tI · fS(I) + q,

where tI :=
∏
i∈I xi denotes the product of all variables indexed by elements in I,

the polynomial fS(I) does not contain any variables from tI , and where q misses
at least one variable from tI . The polynomial fS(I) is also called the superpoly
with respect to I. For any subset I ⊆ {0, . . . , n − 1} of size |I|, the authors of
[24] call the set CI of 2|I| vectors, where all the |I| variables indexed by I range
over all possible combinations of elements in F2 and the remaining n+m− |I|
variables remain undetermined, a |I|-dimensional Boolean cube. Then the sum of
f over all values in the cube CI yields the equation of polynomials⊕

v∈CI

f(v) = fS(I).

Cube attacks consist of two steps. First, attackers recover the superpoly in the
offline phase. In this phase, the attacker might need to try sufficiently many cubes
and assignments for the remaining public variables such that the superpoly fS(I)
is a balanced function of the secret variables. Moreover, determining the actual
coefficients of fS(I) requires the additional assumption that the attacker is allowed
to tweak both public and secret variables. Then, with this usable superpoly, during
the online phase, the attacker leaves the secret variables undetermined and queries
the encryption oracle with every value c ∈ CI and gets f(c) ∈ F. Eventually, the
attacker computes

fI :=
⊕
c∈CI

f(c).

The secret key information can be recovered by solving the corresponding equation
system fI = fS(I).
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Compared with our attack, cube attacks involve an initial step of finding
balanced superpolies that contain independent secret variables. Apart from that,
cube attacks do not exploit the algebraic structure of a cipher, since they rely on
the assumption of tweakable black box polynomials. In this sense, our attack is
different, since it makes heavy use of the algebraic structure of a cipher when
symbolically evaluating a certain number of rounds. Furthermore, cube attacks
use the assumption that both key and plaintext variables are tweakable, while we
rely on the assumption that some rounds of the cipher can be efficiently evaluated
symbolically (which is why we work with low-degree round functions).

7 Concluding Remarks and Future Work

Reducing the Cost of the Attack. As shown in [28, App. E], two steps – namely,
(1st) the construction of the system of equations Fi(k1, . . . , kt) = 0 for 1 ≤ i ≤ t
and (2nd) solving such a system – mainly constitute the cost of the attack. In
general, it could make sense to balance the costs of the two steps in order to
either minimize the total cost of the attack or maximize the number of rounds
that can be broken.

In more detail, consider the case in which the cost of the attack is well
approximated by the cost of constructing the system of equations Fi(K) = 0.
Since this cost grows with the size of the subspace V, one strategy could be to
consider a smaller subset X .14 Obviously, this implies in general the possibility
to cover fewer rounds rZS using a higher-order distinguisher, which means that
more rounds rKR must be covered in general. However, the overall cost of the
attack may benefit from this strategy. On the other hand, the case in which the
attack cost is well approximated by the cost of solving the system of equations
Fi(K) = 0 requires the opposite strategy.

Moreover, we point out that the attacks can be improved by exploiting the
details of the cipher. To give a concrete example, consider the case of MiMC
given in Algorithm 1: The attack and its computational complexity benefit from
the fact that F (K) does not depend on P5 or P7. As another example, consider
the case of an SPN cipher where the round function is defined as

R(x = (x1, . . . , xt)) = M × (S(x1), S(x2), . . . , S(xt)),

where M ∈ (F2n)t×t and S : F2n → F2n (here, ‘×’ denotes matrix-vector
multiplication). The cost of the attack can potentially be reduced by taking into
account the fact that all monomials in the polynomial representation R depend
only on a single variable xi.

Further Generalization: Ciphers over Fp. Finally, the attack strategy can be
generalized to include ciphers over (Fp)t for a prime p. This is of particular
14 We note that we cannot adopt this strategy for MiMC since we are not able to

predict the growth of the degree of MiMC−1. With such an estimation, the strategy
proposed here can potentially reduce the cost of the attack.
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importance since many of the new applications named in the introduction (e.g.,
STARKs and MPC) natively work over Fp, which means that many of the
recently proposed primitives are natively constructed over Fp. We remark that
the strategy of the attack does not depend on the details of the field F. Hence, the
only thing that seems to preclude this possibility seems to be a lack of knowledge
regarding efficient distinguishers over (Fp)t. Indeed, while it is well-known how to
find a higher-order distinguisher over Boolean fields (e.g., by exploiting division
property tools present in the literature [47,51,53]), the same is not yet true for
prime fields.
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