
Adaptively Secure Inner Product Encryption
from LWE

Shuichi Katsumata1, Ryo Nishimaki2, Shota Yamada1, and Takashi Yamakawa2

1 AIST, Tokyo, Japan
{shuichi.katsumata,yamada-shota}@aist.go.jp

2 NTT Secure Platform Laboratories, Tokyo, Japan
{ryo.nishimaki.zk, takashi.yamakawa.ga}@hco.ntt.co.jp

Abstract. Attribute-based encryption (ABE) is an advanced form of
encryption scheme allowing for access policies to be embedded within
the secret keys and ciphertexts. By now, we have ABEs supporting
numerous types of policies based on hardness assumptions over bilinear
maps and lattices. However, one of the distinguishing differences between
ABEs based on these two breeds of assumptions is that the former can
achieve adaptive security for quite expressible policies (e.g., inner-products,
boolean formula) while the latter can not. Recently, two adaptively secure
lattice-based ABEs have appeared and changed the state of affairs: a
non-zero inner-product (NIPE) encryption by Katsumata and Yamada
(PKC’19) and an ABE for t-CNF policies by Tsabary (CRYPTO’19).
However, the policies supported by these ABEs are still quite limited and
do not embrace the more interesting policies that have been studied in
the literature. Notably, constructing an adaptively secure inner-product
encryption (IPE) based on lattices still remains open.
In this work, we propose the first adaptively secure IPE based on the
learning with errors (LWE) assumption with sub-exponential modulus size
(without resorting to complexity leveraging). Concretely, our IPE supports
inner-products over the integers Z with polynomial sized entries and
satisfies adaptively weakly-attribute-hiding security. We also show how to
convert such an IPE to an IPE supporting inner-products over Zp for a
polynomial-sized p and a fuzzy identity-based encryption (FIBE) for small
and large universes. Our result builds on the ideas presented in Tsabary
(CRYPTO’19), which uses constrained pseudorandom functions (CPRF)
in a semi-generic way to achieve adaptively secure ABEs, and the recent
lattice-based adaptively secure CPRF for inner-products by Davidson
et al. (CRYPTO’20). Our main observation is realizing how to weaken
the conforming CPRF property introduced in Tsabary (CRYPTO’19) by
taking advantage of the specific linearity property enjoyed by the lattice
evaluation algorithms by Boneh et al. (EUROCRYPT’14).

1 Introduction

An attribute-based encryption (ABE) [44] is an advanced form of public-key
encryption (PKE) that allows the sender to specify in a more general way about
who should be able to decrypt. In an ABE for predicate P : X × Y → {0, 1},
decryption of a ciphertext associated with an attribute y is only possible by a

secret key associated with an attribute x such that P(x,y) = 1. For instance,
identity-based encryption (IBE) [9,22] is a special form of ABE where an equality
predicate is considered.

Over the past decade and a half, we have seen exciting progress in the design
and security analysis of ABEs. Each subsequent work provides improvements
in various aspects including security, expressiveness of predicates, or underlying
assumptions. While the earlier constructions were mainly based on bilinear maps,
e.g., [8,44,32,11,45,34], by now we have plenty of constructions based on lattices as
well, e.g., [25,1,19,3,28,10]. Some of the types of ABEs that have attracted more
attention than others in the literature include (but not limited to), fuzzy IBE
[44,2], inner-product encryption (IPE) [36,3,34], ABE for boolean formulae [32,36],
and ABE for P/poly circuits [28,10]. Regarding the expressiveness of predicates,
lattice-based ABEs seem to achieve stronger results than bilinear map-based
ABEs since the former allows for predicates expressible by P/poly circuits, whereas
the latter is restricted to boolean formulae.

Adaptive Security. While lattice-based ABEs have richer expressiveness, bilin-
ear map-based ABEs can realize stronger security. Specifically, they can address
adaptive security (in the standard model) for quite expressive predicates. Here,
adaptive security states that, even if an adversary can obtain polynomially many
secret keys for any attribute x and adaptively query for a challenge ciphertext
associated with an attribute y∗ such that P(x,y∗) = 0, it still cannot learn
the message encrypted within the challenge ciphertext. This clearly captures
the real-life scenario where an adversary can adaptively choose which attributes
to attack. In some cases, we may consider the much weaker selective security,
where an adversary must declare which attribute y∗ it will query as the challenge
at the beginning of the security game. In general, we can convert a selectively
secure scheme to an adaptively secure scheme by employing complexity lever-
aging, where the reduction algorithm simply guesses the challenge attribute at
the outset of the game. However, this is often undesirable as such proofs incur
an exponential security loss and necessitate in relying on exponentially hard
assumptions. Using bilinear maps, we know how to directly construct adap-
tively secure fuzzy IBE [20,49], IPE [36,38,49,20], and even ABE for boolean
formulae [36,39,5,49,20,6] from standard (polynomial) assumptions.

On the other hand, our knowledge of adaptively secure lattice-based ABEs is
still quite limited. Notably, most of the lattice-based ABEs are only selectively
secure. For almost a decade, the only adaptively secure scheme we knew how to
construct from lattices was limited to the most simplistic form of ABE, an IBE
[1,19]. Considering that we had a lattice-based selectively secure ABE for the
powerful predicate class of P/poly circuits, this situation on adaptive security was
unsatisfactory. Recently, the state of affairs changed: Katsumata and Yamada [33]
proposed an adaptively secure non-zero IPE (NIPE), and Tsabary [46] proposed
an adaptively secure ABE for t-CNF predicates. The latter predicate consists
of formulas in conjunctive normal form where each clause depends on at most
t bits of the input, for any constant t. The former work is based on a generic
construction from adaptively secure functional encryption for inner-products

2

[4], whereas the latter work ingeniously extends the adaptively secure bilinear
map-based IBE of Gentry [24] to the lattice setting by utilizing a special type
of constrained pseudorandom function (CPRF) [12,35,13]. Unfortunately, NIPE
nor ABE for t-CNF is not expressive enough to capture the more interesting
types of ABE such as fuzzy IBE or IPE, let alone ABE for boolean formulae
or P/poly. Therefore, the gap between the bilinear map setting and the lattice
setting regarding adaptive security still remains quite large and dissatisfying.
Indeed, constructing an adaptively secure IPE based on lattices is widely regarded
as one of the long-standing open problems in lattice-based ABE.

1.1 Our Contribution
In this work, we propose the first lattice-based adaptively secure IPE over the
integers Z. In addition, we show several extensions of our main result to realize
other types of ABEs such as fuzzy IBE. The results are summarized below and
in Table 1. All of the following schemes are secure under the learning with errors
(LWE) assumption with sub-exponential modulus size.
– We construct an adaptively secure IPE over the integers (Z) with polynomial

sized entries. The predicate is defined as P : Z × Z → {0, 1}, where Z is a
subset of Z` with bounded polynomial sized entries and P(x,y) = 1 if and
only if 〈x,y〉 = 0 over Z.

– We construct an adaptively secure IPE over the ring Zp for p = poly(κ). The
predicate Pmod : Z`p × Z`p → {0, 1} is defined similarly to above, where now
Pmod(x,y) = 1 if and only if 〈x,y〉 = 0 mod p.

– We construct an adaptively secure fuzzy IBE for small and large universe with
threshold T . Specifically, the predicate is defined as Pfuz : Dn ×Dn → {0, 1},
where D is a set of either polynomial size (i.e., small universe) or exponential
size (i.e., large universe) and Pfuz(x,y) = 1 if and only if HD(x,y) ≤ n− T .
Here, HD denotes the hamming distance. That is, if x and y are identical in
more than T -positions, then Pfuz(x,y) = 1.
Though we mainly focus on proving payload-hiding for these constructions,

we can generically upgrade payload-hiding ABE to be weakly-attribute-hiding
by using lockable obfuscation, which is known to exist under the LWE assump-
tion with sub-exponential modulus size [31,50]. Therefore, we obtain adaptively
weakly-attribute-hiding ABE for the above classes of predicates under the LWE
assumption with sub-exponential modulus size. We note that this does not require
an additional assumption since our payload-hiding constructions already rely on
the same assumption.

The first construction is obtained by extending the recent result by Tsabary
[46], while the second and third constructions are obtained by a generic transfor-
mation of the first construction.

1.2 Technical Overview
We provide a detailed overview of our first (main) result regarding an adaptively
secure IPE over the integers (Z) and provide some discussions on how to extend

3

Table 1. Existing adaptively secure lattice-based ABE.

Reference Type of Predicate LWE Asmp.

ABB’10 [1], CHKP’10[19] IBE and HIBE w/ O(1)-hierarchy poly

KY’19 [33] NIPE over
Z w/ poly-size entries
Z w/ exp-size entries
Zp w/ poly and exp-size p†

poly
poly
subexp

Tsabary’19 [46] (CP-)ABE for t-CNF where t = O(1) subexp
Ours IPE over Z w/ poly-size entries subexp
Ours IPE over Zp w/ poly-size p subexp
Ours Fuzzy IBE w/ small and large universe subexp

† : The key generation algorithm is stateful for NIPE over Zp.

it to ABE with other types of useful predicates. For our first result, we first
extend the framework of Tsabary [46] and exploit a specific linearity property
of the lattice evaluation algorithms of Boneh et al. [10]. We then make a subtle
(yet crucial) modification to the CPRF for inner-products over the integer by
Davidson et al. [23] so as to be compatible with our extended framework for
achieving adaptively secure ABEs.
Note. In the following, to make the presentation clearer, we treat ABE as either
a ciphertext-policy (CP) ABE or a key-policy (KP) ABE interchangeably. In
CP-ABE, an attribute associated to a ciphertext represents a policy f ∈ Y , which
is described as a circuit, and we define the predicate P(x, f) := f(x). That is,
the predicate is satisfied if f(x) = 1. KP-ABE is defined analogously. Note that
IPE can be viewed as both a CP and KP-ABE since the roles of the attributes
associated with the secret key and the ciphertext are symmetric.

Reviewing Previous Results. Due to the somewhat lattice-heavy nature
of our result, we review the relevant known results. For those who are up-to-
date with the result of Tsabary [46] may safely skip to “Our Results”. We first
provide some background on lattice evaluation algorithms [10]. We then review
the framework developed by Tsabary [46] for achieving adaptively secure ABEs
(for t-CNF).

Selectively secure (KP-)ABE based on homomorphic evaluation. We
recall the selectively secure ABE by Boneh et al. [10], which is the basic recipe
for constructing lattice-based ABEs. Let A ∈ Zn×`mq be a public matrix and
G ∈ Zn×mq be the so-called (public) gadget matrix whose trapdoor is known
[37]. Then, there exists two deterministic efficiently computable lattice evaluation
algorithms PubEval and CtEval such that for any f : {0, 1}` → {0, 1} and
x ∈ {0, 1}`, the following property holds.3

– PubEval(f,A)→ Af ,
– CtEval(f,x,A, s>(A− x> ⊗G) + noise)→ s>(Af − f(x)⊗G) + noise,

3We note that f can also be represented as an arithmetic circuit.

4

where noise denotes some term whose size is much smaller than q which we can
ignore. In words, CtEval is an algorithm that allows to convert a ciphertext (or
an encoding) of x w.r.t. matrix A into a ciphertext of f(x) w.r.t. matrix Af ,
where Af is the same matrix output by PubEval. In the following, we assume
that the output of CtEval statistically hides the value x, which is possible by
adding sufficiently large noise.

PubEval

A Af

f(·)

CtEval

ctx ≈ s>(A− x> ⊗G) ctx,f ≈ s>(Af −f(x)⊗G)
f(·),x

Fig. 1. PubEval and CtEval. In all figures, symbol ≈ means that we hide (or ignore) the noise part
in ciphertexts.

We provide an overview of how to construct a (KP-)ABE. The public pa-
rameters consist of a matrix A and a vector u. Let f̂ be a negation of the
function f , that is, f̂(x) := 1 − f(x). To generate a secret key for function f ,
the KeyGen algorithm first runs Af̂ ← PubEval(f̂ ,A) as in Equation (1) below.
Then the secret key skf is sampled as a short vector ef such that Af̂ef = u.4 To
generate a ciphertext for attribute x with message M ∈ {0, 1}, the Enc algorithm
generates a LWE sample of the form ct0 := s>u + noise + M · bq/2c and ctx as
depicted on the l.h.s. of Equation (2). To decrypt with a secret key skf , the Dec
algorithm first runs CtEval(f̂ ,x,A, ctx) to generate ctx,f̂ as depicted on the r.h.s.
of Equation (2). Here, notice that the ciphertext is converted into a ciphertext
that encodes the matrix Af̂ used during KeyGen (both boxed in Equations (1)
and (2)). Then, if the predicate is satisfied, i.e., f(x) = 1 ⇔ f̂(x) = 0, then
ctx,f = s>Af̂ + noise. Therefore, using ef , the message can be recovered by
computing ct0 − 〈ctx,f , ef 〉 and rounding appropriately.

Now, selective security follows by embedding the LWE problem in the chal-
lenge ciphertext. Specifically, the reduction algorithm is given an LWE in-
stance ([u|B], [v0|v]), where [v0|v] is either random or of the form [v0|v] =
s>[u|B] + noise. It then implicitly sets A := BR + x∗> ⊗G where x∗ is the
challenge attribute the adversary commits to at the outset of the security game
and R is a random matrix with small entries and sets the challenge ciphertext as
(ct0 := v0 +M ·bq/2c, ctx∗ := v). It can be checked that if [v0|v] is a valid LWE in-
stance, then the challenge is distributed as in the actual security game. Otherwise,
the challenge ciphertext is uniformly random. Finally, we remark that simulating
secret keys for policy f such that f(x∗) = 0 is possible since there exists a special
lattice evaluation algorithm (only used during the security proof) that allows the

4To be accurate, we require an extra matrix A0 for which we know a trapdoor in
order to sample such a short vector. However, we simplify the exposition for the sake of
clarity.

5

KeyGen� �
A Af̂

f̂(·)

(1)� �
Enc and Dec� �

ctx ≈ s>(A− x> ⊗G) ctx,f̂ ≈ s>(Af̂ −f̂(x)⊗G)
f̂(·),x

(2)� �
Fig. 2. Illustration of the selectively secure ABE by BGG+14. The thin (resp. thick) black arrow
describes running algorithm PubEval (resp. CtEval). The items on top of the arrows denote the required
input to run the respective algorithms. This is the same for all subsequent figures. In Equation (2),
the l.h.s. and r.h.s. are generated by Enc and Dec, respectively.

reduction algorithm to convert Af̂ into BRf̂ + f̂(x∗)⊗G = BRf̂ + G, where
Rf̂ is a matrix with short norm. We omit the details on what or how to use Rf̂

as it is not important for this overview and refer the readers to [10].
We end by emphasizing that the above reduction technique only works in

the selective setting because the adversary commits to x∗ at the outset of the
game; if it did not, then the reduction algorithm will not be able to set A as
B + x∗> ⊗G in the public parameter.

Adaptively secure IBE à la Gentry [24] and Tsabary [46].5 Before getting
into adaptively secure ABEs, we first consider the simpler adaptively secure IBEs.
We overview the so-called “tagging” technique [24,46]. In the real scheme, a secret
key and a ciphertext for an identity id are associated with random “tags” rid. The
scheme is set up so that decryption only works if the tag value rid of the secret
key skid is different from the tag value r̃id of the ciphertext for an identity id. In
case the tags are sampled from an exponentially large space, such a scheme only
has a negligible probability of a decryption failure. At a high level, the scheme
will be tweaked so that the reduction algorithm assigns exactly one random tag
rid per identity id; a secret key and a challenge ciphertext for the same identity
id are tagged by the same rid. In addition, the reduction algorithm will only be
able to simulate a secret key and a challenge ciphertext w.r.t. this unique tag rid.
Here, this tweak will remain unnoticed by the adversary since a valid adversary
never asks for a secret key and a challenge ciphertext for the same identity id.

We briefly review how Tsabary [46] cleverly carried out this idea in the lattice-
setting. The public parameter now includes a description of a pseudorandom
function PRF, and the master secret key includes a seed k for the PRF. To generate
a secret key for identity id, the KeyGen algorithm computes the random tag rid ←
PRF.Eval(k, id). It then sequentially runs Aeval

id ← PubEval(PRF.Eval(·, id),A) and
Aeq

id,rid
← PubEval(Eqrid

(·),Aeval
id) as in Equation (3) below, where Eqrid

(r̃id) = 1
5One can also see this construction as an analogy of Waters’ dual system framework

[48]

6

if and only if rid = r̃id. As before, it then samples a short vector eid such
that Aeq

id,rid
eid = u. The final secret key is skid := (rid, eid). To generate a ci-

phertext for identity id with message M, the Enc algorithm first samples a
random PRF key k̃ and generates ct0 := s>u + noise + M · bq/2c as before. It
then generates ct̃k as depicted in the l.h.s of Equation (4) and further executes
cteval

id ← CtEval(PRF.Eval(·, id), k̃,A, ct̃k) as depicted in the r.h.s of Equation (4).
The final ciphertext is ct := (r̃id, ct0, cteval

id), where r̃id ← PRF.Eval(k̃, id). Ef-
fectively, the Enc algorithm has constructed a ciphertext that is bound to an
identity id and a random tag r̃id; observe that Aeval

id is the same matrix that
appears during KeyGen (in a single-framed box). Here, we note that the noise
term in ctid does not leak any information on the PRF key k̃ by our assumption.
Now, to decrypt, the Dec algorithm, with knowledge of both the random tag rid
and r̃id, runs cteq

id,rid
← CtEval(Eqrid

(·), r̃id,Aeval
id , cteval

id) as depicted in the r.h.s. of
Equation (5). At this point, the ciphertext is converted into a ciphertext that
encodes the matrix Aeq

id,rid
used during KeyGen (in a double-framed box), and

we have Eqrid
(r̃id) = 0 since rid 6= r̃id with all but a negligible probability. Hence,

since cteq
id,rid

= s>Aeq
id,rid

+ noise, the Dec algorithm can decrypt the ciphertext
using the short vector eid included in the secret key following the same argument
as before.

KeyGen: Tag rid� �
A Aeval

id
Aeq

id,rid

PRF.Eval(·,id) Eqrid (·)

(3)� �
Enc: PRF key k̃� �

ct̃
k
≈ s>(A− k̃> ⊗G) cteval

id ≈ s>(Aeval
id −r̃id ⊗G)

PRF.Eval(·,id),̃k

(4)� �
Dec: Tag r̃id� �
cteval

id ≈ s>(Aeval
id −r̃id ⊗G) cteq

id,rid
≈ s>(Aeq

id,rid
−Eqrid

(r̃id)⊗G)
Eqrid (·),̃rid

(5)� �
Fig. 3. Illustration of the adaptively secure IBE by Tsabary.

The key observation is that a ciphertext for an identity id is generated
from ct̃k that only depends on the PRF key. Notably, adaptive security can be
achieved (informally) because the reduction algorithm no longer needs to guess

7

the challenge identity id and by the adaptive pseudorandomness of the PRF. We
provide a proof sketch to get a better intuition for the more complex subsequent
ABE construction: We first modify the security game so that the challenger no
longer needs to explicitly embed k̃ in the ciphertext. Namely, the challenger
simply computes Aid using PubEval, which it can run without knowledge of k̃,
and directly generates cteval

id using r̃id. This is statistically the same as in the real
scheme since the noise term statistically hides k̃ due to the assumption. Now, we
can invoke the adaptive pseudorandomness of the PRF. The reduction algorithm
generates the random tag associated with the challenge ciphertext by implicitly
using the seed k included in the master secret key (by querying its own PRF
challenger) instead of sampling a fresh k̃. Note that the random tag associated
with the secret key and challenge ciphertext for the same id are identical now. We
then switch back to the real scheme where the Enc algorithm first constructs ctk,
where the only difference is that k is encoded rather than a random PRF seed k̃.
At this point, we can rely on the same argument as the selective security of [10]
since k is known at the outset of the game and the reduction algorithm (which is
the LWE adversary) can set A := B + k> ⊗G. The challenge ciphertext for any
id∗ can be computed by simply running CtEval on ctk = v, where v = s>B+noise
for a valid LWE instance. In addition, a secret key for any id can be simulated as
well since we have Aeq

id,rid
= BReq

id,rid
+ Eqrid

(rid)⊗G = BReq
id,rid

+ G for a matrix
Req

id,rid
with low norm.

Adaptively secure (CP-)ABE using (conforming) constrained PRF.
Tsabary [46] made the keen observation of using a CPRF instead of a standard
PRF in the above idea to construct an ABE. A CPRF allows a user to learn
constrained keys to evaluate the PRF only on inputs x satisfied by a constraint
f . Let k be the secret key (i.e., seed) to the “base” PRF. Algorithm CPRF.Eval
takes as an input k and x and outputs a random value rx as a standard PRF.
Algorithm CPRF.Constrain takes as input k and a constraint f , represented as a
circuit, and outputs a constrained key kcon

f . Then, algorithm CPRF.ConstrainEval
takes as input kcon

f and x and outputs r′x, where r′x = rx if the input is satisfied
by the constraint, i.e., f(x) = 1. Now, (adaptive) pseudorandomness of a CPRF
stipulates that even if an adversary can adaptively query CPRF.Eval(k, ·) on
any input of its choice and receive a constrained key kcon

f for any constraint f ,
the value CPRF.Eval(k,x∗) remains pseudorandom to the adversary as long as
f(x∗) = 0.

We now explain an initially flawed but informative approach of plugging in a
CPRF in the above idea to construct a (CP-)ABE and explain how Tsabary [46]
overcomes it. The master secret key for the ABE now includes the secret key k
for the CPRF. To generate a secret key for an attribute x, the KeyGen algorithm
first computes a random tag rx ← CPRF.Eval(k,x). It then sequentially runs
Aeval

x ← PubEval(CPRF.Eval(·,x),A) and Aeq
x,rx ← PubEval(Eqrx(·),Aeval

x) as in
Equation (6) below. Finally, a short vector ex such that Aeq

x,rxex = u is sampled.
The final secret key is skx := (rx, ex). To encrypt with respect to a policy f , the
Enc algorithm prepares a constrained key for f , which will later be used to derive
random tags for any x during decryption. Specifically, it first samples a fresh secret

8

key k̃ for the CPRF and generates ct0 := s>u+noise+M · bq/2c as before. It then
generates ct̃k and further executes ctcon

f ← CtEval(CPRF.Constrain(·, f), k̃,A, ct̃k)
as depicted in Equation (7). The final ciphertext is ct := (k̃con

f , ct0, ctcon
f), where

k̃con
f ← CPRF.Constrain(k̃, f) is a constrained key and note that ctcon

f statistically
hides the information on k̃. Observe that the ciphertext encodes the policy f .

KeyGen: Tag rx� �
A Aeval

x Aeq
x,rx

CPRF.Eval(·,x) Eqrx (·)

(6)� �
Enc: Constrained key k̃f� �
ct̃

k
≈ s>(A− k̃> ⊗G) ctcon

f ≈ s>(Acon
f −k̃con>

f ⊗G)
CPRF.Constrain(·,f),̃k

(7)� �
Dec: Tag r̃x� �
ctcon
f ≈ s>(Acon

f −k̃con>
f ⊗G) cteval

x ≈ s>(Âeval
x −r̃x ⊗G)

CPRF.ConstrainEval(·,x),̃kcon
f

cteq
x,rx ≈ s>(Âeq

x,rx −Eqrx (r̃x)⊗G)
Eqrx (·),r̃x

(8)� �
Fig. 4. Illustration of the high-level structure of the adaptively secure CP-ABE by Tsabary.

However, at this point, the problem becomes apparent: Decryption no longer
works. What the decryptor in possession of secret key skx can do is to convert the
ciphertext ctcon

f into cteval
x ← CtEval(CPRF.ConstrainEval(·,x), k̃con

f ,Acon
f , ctcon

f) as
depicted in Equation (8). In addition, it can further convert it into cteq

x,rx ←
CtEval(Eqrx(·), r̃x, Âeval

x , cteval
x), where r̃x = CPRF.ConstrainEval(k̃con

f ,x). How-
ever, the secret key ex satisfying Aeq

x,rxex = u is useless for decryption because
the (intermediate) matrices Aeval

x and Âeval
x in the single-framed box and the

shadowed single-framed box, respectively, are different. Therefore, the tagging
via CPRFs idea even fails to provide a correct ABE.

The main idea of Tsabary [46] to overcome this issue was taking advantage
of the particular composition property of the lattice evaluation algorithms [10].
Specifically, for any matrix A and circuits h, g1, and g2, where h and g2 ◦ g1 are

9

described identically as circuits, the following evaluated matrices Ah and Ag2◦g1

are the same, that is, Ah = Ag2◦g1 :

1. Ah ← PubEval(h,A),
2. Ag2◦g1 ← PubEval(g2,PubEval(g1,A)).

Then, due to the correctness of PubEval and CtEval, when ct = s>(A− z⊗G) +
noise, ciphertexts cth and ctg2◦g1 are both of the form s>(Ah−h(z)⊗G) + noise.
To take advantage of this property in the above CPRF idea, Tsabary required that
the following algorithms are represented as identical circuits in case f(x) = 1:

CPRF.Eval(·,x) ≡cir CPRF.ConstrainEval(CPRF.Constrain(·, f),x), (9)

where C ≡cir C ′ denotes that circuits C and C ′ are identical.6 Here, this
corresponds to setting h = CPRF.Eval(·,x), g1 = CPRF.Constrain(·, f), g2 =
CPRF.ConstrainEval(·,x), and z = k̃> in the above. Tsabary [46] coins CPRFs
with such a property as conforming CPRFs. Effectively, matrices Aeval

x and Âeval
x

in Equations (6) and (8) are identical if we use such a conforming CPRF. Conse-
quently, we have Aeq

x,rx = Âeq
x,rx . Therefore, decryption is now well-defined since

the short vector ex can be used as expected.
The security proof of the scheme follows almost identically to the adaptive

IBE setting: During the simulation, we first erase the information on k̃ from the
challenge ciphertext and then apply adaptive pseudorandomness to replace k̃con

f

with the real constrained key kcon
f . Then, we undo the change and encode k in

the challenge ciphertext in place of k̃. At this point, the reduction algorithm can
embed its LWE problem in the challenge ciphertext. Note that we can swap k̃con

f

with kcon
f because the ABE adversary can only obtain secret keys (that includes

the output of CPRF.Eval(k, ·)) for attributes x such that f(x) = 0. In particular,
the adversary cannot use kf to check whether the random tag associated with
the secret key is generated by k or not.

The final remaining issue is whether such an adaptively secure conforming
CPRF exists or not. Fortunately, the CPRF for bit-fixing predicates by Davidson
et al. [23] (with a minor tweak) enjoyed such properties. Tsabary [46] further
extended this CPRF to predicates expressed by t-CNF. Therefore, combining
everything together, Tsabary obtained an adaptively secure (CP-)ABE for t-CNF
policies.

Our Results. We are now prepared to explain our result. We first show why
and how to weaken the conforming CPRF property required in the (semi-)generic
construction of Tsabary [46]. We then present how to obtain such a CPRF for
inner-products over Z from LWE building on top of the recent CPRF proposal of
Davidson et al. [23]. By carefully combining them, we obtain the first lattice-based
IPE over Z. Finally, we briefly mention how to extend our IPE over Z to other
types of useful ABE.

6More precisely, Tsabary [46] required that the circuit representation of
CPRF.Eval(·, x) and the effective sub-circuit of CPRF.ConstrainEval(CPRF.Constrain(
·, f), x) are required to be the same.

10

Weakening the condition on conforming CPRF. Combining the discussion
thus far, an adaptively secure conforming CPRF for a more expressive constraint
class F will immediately yield a (CP-)ABE for the policy class F based on
Tsabary’s proof methodology. Put differently, the goal now is to construct an
adaptively secure CPRF such that for all f ∈ F and x where f(x) = 1, Equa-
tion (9) holds. However, this turns out to be an extremely strong requirement
which we only know how to construct using the CPRF for t-CNF [23,46]. This
CPRF for t-CNF is based on a combinatoric approach using PRFs and dif-
fers significantly from all other (selectively secure) CPRFs for more expressive
constraints that rely on algebraic tools such as bilinear-maps or lattices, e.g.,
[16,15,18,21,7,41]. That being said, there is one recent lattice-based CPRF for
inner-products over Z by Davidson et al. [23] that comes somewhat close to what
is required. Let us review their CPRF and explain how it fails short to fit in
Tsabary’s proof methodology.

A CPRF for inner-products over Z is a CPRF where the inputs and constraints
are provided by vectors x,y ∈ [−B,B]` for some integer B. A constrained key
kcon

y for vector y should allow to compute the same random value as the secret
key k (i.e., the “base” seed) for all inputs x such that 〈x,y〉 = 0 over Z. In
Davidson et al. [23] the secret key k is simply a random matrix-vector pair
(S,d) sampled uniformly random over [−β̄, β̄]n×` × [−β, β]n for some integers
β̄ and β, where β̄ is sub-exponentially large.7 In addition, a matrix B $← Zn×mq′

is provided as a public parameter. To evaluate on x using the secret key k,
the CPRF.Eval algorithm first converts B to a specific matrix Bx associated
to x (whose detail is irrelevant for this overview). Then, it computes a vector
kint

x := Sx ∈ Zn called an intermediate key, and finally outputs the random
value rx = bkint>

x Bxcp ∈ Zmp . Here, bacp denotes rounding of an element a ∈ Zq′
to Zp by multiplying it by (p/q′) and rounding the result.8 The constrained
key kcon

y is simply defined as kcon
y := S + d ⊗ y> ∈ Zn×`. To evaluate on x

using the constrained key kcon
y , the CPRF.ConstrainEval algorithm first prepares

Bx as done by CPRF.Eval and then computes the constrained intermediate
key kcon-int

y,x := (S + d ⊗ y>)x ∈ Zn×`, and finally outputs the random value
r′x = bkcon-int>

y,x Bxcp ∈ Zmp . Observe that if 〈x,y〉 = 0 over Z, then kint
x = kcon-int

y,x .
Therefore, CPRF.Eval(k,x) = CPRF.ConstrainEval(ky,x) in case 〈x,y〉 = 0 as
desired. Davidson et al. [23] proved that such a CPRF is adaptively secure based
on the LWE assumption with sub-exponential modulus size.

On first glance this CPRF may seem to satisfy the conforming property
(Equation (9)) since the secret key k = S and the constrained key kcon

y = S+d⊗y>
are both matrices over Zn×`, and the intermediate keys kint

x and kcon-int
y,x are

equivalent in case 〈x,y〉 = 0 and are used identically (as a circuit) to compute
rx. However, under closer inspection, it is clear that Equation (9) does not hold.

7In their original scheme, d is not included in the secret key but generated when
constraining the secret key. However, this modification is w.l.o.g and will be vital for
our purpose.

8Looking ahead, we note the moduli (q′, p) used by the CPRF is different from the
modulus q used by the ABE.

11

Specifically, CPRF.Constrain(k,y) computes kcon
y = (S + d⊗ y>); a computation

that depends on the constraint vector y, while CPRF.Eval(k,x) does not internally
perform such computation. Therefore, CPRF.Eval(·,x) cannot be identical as a
circuit as CPRF.ConstrainEval(CPRF.Constrain(·,y),x). In the context of ABE,
this means that the KeyGen algorithm and Enc/Dec algorithms will not be able
to agree on the same matrix, and hence, correctness no longer holds. Although
both algorithms CPRF.Eval and CPRF.ConstrainEval share a striking resemblance,
it seems one step short of satisfying the conforming property of Tsabary.

Our main idea to overcome this issue is weakening the conforming property
required by Tsabary [46] by noticing another particular linearity property of the
lattice evaluation algorithms of [10]. Specifically, for any matrix A and linear
functions h, g1, and g2 such that h and g2 ◦ g1 are functionally equivalent, the
matices Ah and Ag2◦g1 evaluated using PubEval as in Items 1 and 2 are in fact
equivalent (i.e., Ah = Ag2◦g1). By correctness of PubEval and CtEval, we then
also have cth = ctg2◦g1 . Here, the main observation is that we no longer require
the strong property of h ≡cir g2 ◦g1, but only require a slightly milder property of
h and g2 ◦ g1 being functionally equivalent, that is, have the same input/output.

Let us see how this property can be used. Notice that the above CPRF of
Davidson et al. [23] has the following structure. Algorithm CPRF.Eval(k,x) can
be broken up in linear and non-linear algorithms: CPRF.EvalLin(k,x)→ kint

x and
CPRF.EvalNonLin(kint

x ,x)→ rx.9 Namely, we have

CPRF.Eval(k,x) = CPRF.EvalNonLin(CPRF.EvalLin(k,x),x).

Similarly, CPRF.ConstrainEval(ky,x) can be broken up in linear and non-linear al-
gorithms: CPRF.ConstrainEvalLin(kcon

y ,x)→ kcon-int
y,x and CPRF.ConstrainEvalNonLin(

kcon-int
y,x ,x) → rx. In addition, from above, we know that we have the following
property:

1. if 〈x,y〉 = 0 over Z, then CPRF.EvalLin(·,x) and CPRF.ConstrainEvalLin(
CPRF.Constrain(·,y),x) are both linear functions that are functionally equiv-
alent (in particular, kint

x = kcon-int
y,x), and

2. the non-linear algorithms satisfy CPRF.EvalNonLin(·,x) ≡cir CPRF.ConstrainEval
NonLin(·,x). Namely, they are identical circuits.

Importing these properties to the ABE setting, we get a transition of matrices
and ciphertext for KeyGen,Enc, and Dec as in Figure 5.

Notice the matrices in red (Aint
x and Acon-int

y,x) are identical due to the property
in Item 1 and the linearity property of PubEval and CtEval. Moreover, due to
the property in Item 2, the subsequent evaluated ciphertexts cteval

x and cteq
x,rx

correctly encode the matrices Aeval
x and Aeq

x,rx , respectively, which correspond to
those computed during KeyGen. Combining all of these observations, it seems
we have successfully weakened the conforming property required by Tsabary [46]
and showed that the CPRF of Davidson et al. [23] suffices to instantiate the
generic (CP-)ABE construction. However, we show that a problem still remains.

9Concretely, the non-linear part does a rounding operation modulo a certain integer
p followed by an evaluation of a hash function.

12

KeyGen: Tag rx� �
A Aint

x Aeval
x Aeq

x,rx
CPRF.EvalLin(·,x) CPRF.EvalNonLin(·,x) Eqrx (·)

(10)� �
Enc: Constrained key k̃con

y
� �

ct̃
k
≈ s>(A− k̃> ⊗G) ctcon

y ≈ s>(Acon
y −k̃con>

y ⊗G)
CPRF.Constrain(·,y),̃k

(11)� �
Dec: Tag r̃x� �

ctcon
y ≈ s>(Acon

y −k̃con>
y ⊗G) ctcon-int

x ≈ s>(
�� ��Acon-int

y,x −k̃con-int>
y,x ⊗G)

CPRF.ConstrainEvalLin(·,x),

k̃con
y

cteval
x ≈ s>(Aeval

x −r̃x ⊗G)

cteq
x,rx ≈ s>(Aeq

x,rx −Eqrx (r̃x)⊗G)

CPRF.ConstrainEvalNonLin(·,x),̃kcon-int
y,x

Eqrx (·),r̃x

(12)� �
Fig. 5. Illustration of our adaptively secure IPE.

Bit decomposing and tweaking Davidson et al’s CPRF [23]. To under-
stand the problem, let us take a closer look at how the CtEval algorithm is used
in Equations (11) and (12). First, observe that the output of the linear function
CPRF.EvalLin(k,x), or equivalently, the output of CPRF.ConstrainEvalLin(CPRF.
Constrain(k,y),x) is over Z rather than over {0, 1}. More specifically, the output
kint

x (= kcon-int
y,x) is of the form Sx ∈ [−β̃, β̃]n, where β̃ is some sub-exponentially

large integer. Therefore, the ciphertext ctcon-int
x ≈ s>(Acon-int

y,x − k̃con-int>
y,x ⊗G) com-

puted within the Dec algorithm encodes k̃con-int
y,x as integers over [−β̃, β̃]n. Now, the

Dec algorithm must further convert this ciphertext to cteval
x ≈ s>(Aeval

x − r̃x⊗G),
where r̃x = CPRF.ConstrainEvalNonLin(kcon-int

y,x ,x) = bkcon-int>
x,y Bxcp ∈ Zmp . The

problem is: is this efficiently computable? Since Bx can be precomputed and
kcon-int>

x,y Bx is a linear function of kcon-int
x,y , the problem boils down to the following

question:

Given x ∈ [−β̃, β̃] and ct = s>(A +x⊗G) + noise (mod q) as inputs, can
we efficiently compute ctp ≈ s>(Ap + bxcp ·G), where 0 < β̃ < p < q and

13

β̃ is sub-exponentially large and Ap is some publicly computable matrix
independent of the value x?

Unfortunately, this problem turns out to be quite difficult, and as far as our
knowledge goes, we do not know how to achieve this.10 One of the main reason
for the difficulty is that we cannot efficiently simulate arithmetic operations over
the ring Zp by an arithmetic circuit over another ring Zq when the input is
provided as a sub-exponentially large integer (and not as a bit-string).

To circumvent this seemingly difficult problem, we incorporate two additional
ideas. First, we consider an easier problem compared to above where β̃ is guar-
anteed to be only polynomially large. In this case, we show that the problem is
indeed solvable. Notably, if |x| is only polynomially large, then we can efficiently
compute the bit-decomposition of x by an arithmetic circuit over the ring Zq
by using Lagrange interpolation. That is, there exists an efficiently computable
degree-2β̃ polynomial pi over Zq such that pi(x) computes the i-th bit of the
bit-decomposition of x. Therefore, given ct ≈ s>(A+x⊗G) as input, we first com-
pute ctbd ≈ s>(Abd + BitDecomp(x)⊗G) by using the polynomials (pi)i, where
Abd = PubEval(A,BitDecomp(·)). We then compute ctp ≈ s>(Ap + bxcp ⊗G),
where we use the fact that arithmetic operations over the ring Zp can be efficiently
simulated with an arithmetic circuit over another ring Zq in case the input is
provided as a bit-string.

The remaining problem is whether β̃ in the CPRF of Davidson et al. [23] can
be set to be polynomially large rather than sub-exponentially large. Very roughly,
Davidson et al. required β̃ to be sub-exponentially large to argue that with all
but a negligible probability, the absolute value of all the entries in S ∈ Zn×`
is smaller than some specified value. However, we notice that we can complete
the same security proof by only requiring that the absolute value of most of the
entries in S is smaller than a specified value. This small change allows us to use
a finer probabilistic argument on the entries of S, which in return, allows us to
set β̃ only polynomially large.

By combining all the pieces, we obtain the first lattice-based adaptively secure
IPE over Z with polynomial-sized entries. We note that our construction requires
LWE with a sub-exponential modulus since the underlying CPRF of [23] requires
it, and also, since we need to homomorphically compute the non-linear circuit
CPRF.EvalNonLin.

Extending IPE over Z to other ABEs. Finally, we also show how to extend
our adaptively secure IPE over Z with polynomial-sized entries to other useful
ABE using generic conversions. That is, the ideas are not limited to our specific
lattice-based construction. Specifically, we obtain the following three lattice-based
adaptively secure ABEs for the first time: IPE over the ring Zp for p = poly(κ),
fuzzy IBE for small and large universes with threshold T . The first two generic
conversions are almost folklore. To obtain fuzzy IBE for large universe, we use
error correcting codes with a polynomial-sized alphabet (such as Reed-Solomon
codes [42]) to encode an exponentially large element to a string of polynomially

10We note that a solution to this question will directly give us the desired result.

14

large elements with polynomial length. We then use the fuzzy IBE for small
universe with an appropriate threshold to simulate the large universe.

1.3 Related Works

Brakerski and Vaikuntanathan [17] constructed a lattice-based ABE for all
circuits with a weaker adaptive security called the semi-adaptive security, where
an adversary can declare the challenge attribute after seeing the public parameter
but before making any key query. Subsequently, Goyal, Koppula and Waters [30]
showed that we can convert any selectively secure ABE into a semi-adaptively
secure one.

Recently, Wang et al. [47] gave a framework to construct lattice-based adap-
tively secure ABE by extending the dual system framework [48] into the lattice
setting. However, their instantiation based on the LWE assumption only yields
bounded collusion-resistant ABE where an adversary can obtain only bounded
number of decryption keys that is fixed at the setup phase. We note that such an
ABE trivially follows from the bounded collusion-resistant functional encryption
scheme based on any PKE by Gorbunov, Vaikuntanathan, and Wee [27].

2 Preliminaries

We use standard cryptographic notations and refer the readers to the full version
for reference.

2.1 Lattices

In this work, we only use standard tools from lattices such as bounding norms of
discrete Gaussian distributions, gadget matrices, and sampling with trapdoors.
Therefore, we omit the details to the full version. Below, we introduce the main
hardness assumption we use in this work for completeness.

Definition 2.1 ([43], Learning with Errors). For integers n,m, a prime
q > 2, an error distribution χ over Z, and a PPT algorithm A, the advantage
for the learning with errors problem LWEn,m,q,χ of A is defined as follows:

AdvLWEn,m,q,χ
A =

∣∣∣Pr
[
A
(
A, s>A + z>

)
= 1
]
− Pr

[
A
(
A,b>

)
= 1
]∣∣∣

where A← Zn×mq , s← Znq , b← Zmq , z← χm. We say that the LWE assumption
holds if AdvLWEn,m,q,χ

A is negligible for all PPT algorithm A.

The (decisional) LWEn,m,q,DZ,αq for αq > 2
√
n has been shown by Regev [43] via

a quantum reduction to be as hard as approximating the worst-case SIVP and
GapSVP problems to within Õ(n/α) factors in the `2-norm in the worst case. In
the subsequent works, (partial) dequantumization of the reduction were achieved
[40,14]. The worst-case problems are believed to be hard even for subexponential

15

approximation factors, and in particular, the LWE problem with subexponential
modulus size is believed to be hard. We note that this is different from assuming
the subexponential LWE assumption where we allow for adversaries even with
subexponentially small advantage.

2.2 Attribute-based Encryption

Let P : X × Y → {0, 1} where X and Y are sets. An attribute-based encryp-
tion (ABE) for P (with the message space {0, 1}) consists of PPT algorithms
(Setup,KeyGen,Enc,Dec): Setup(1κ) outputs a pair public parameter and master
secret key (pp,msk); KeyGen(pp,msk, x) outputs a secret key skx for attribute x;
Enc(pp, y,M) outputs a ciphertext cty for attribute y and message M ∈ {0, 1};
and Dec(pp, skx, cty) outputs M if P(x, y) = 1.

An ABE is said to be (adaptively) payload-hiding, if it is infeasible for an
adversary to tell apart a random ciphertext and a valid ciphertext for attribute
y∗ and message M∗ of its choice, even if it is given polynomially many secret
keys skx for P(x, y) = 0. Here, adaptive security dictates that an adversary can
adaptively choose the challenge attribute y∗ even after seeing polynomially many
secret keys skx. The formal definition is omitted to the full version.

Inner-product encryption. In this study, we consider ABEs for the following
predicate. Let P be the inner-product predicate with domain X = Y = Zn
where Z is a subset of Z. That is, for x,y ∈ Zn, P(x,y) = 1 if 〈x,y〉 = 0 and
P(x,y) = 0 otherwise. We call this inner-production encryption (IPE) over the
integers (Z).

We also consider a variant where the inner-product is taken over Zp for
p a prime. Concretely, let Pmod be the inner-product predicate with domain
X = Y = Znp such that for x,y ∈ Znp , Pmod(x,y) = 1 if 〈x,y〉 = 0 mod p and
P(x,y) = 0 otherwise. We call this IPE over Zp.

Fuzzy identity-based encryption. We also consider the following predicate. Let
Pfuz be the fuzzy predicate with domain Xn = Yn = Dn and threshold T (> 0)
such that for x,y ∈ Dn, Pfuz(x,y) = 1 if HD(x,y) ≤ n − T and Pfuz(x,y) = 0
otherwise. Here, HD : Dn ×Dn → [0, n] denotes the hamming distance. That is,
if x and y are identical in more than T -positions, then Pfuz(x,y) = 1. We call
this fuzzy identity-based encryption (IBE) for small universe when |D| = poly(κ),
and fuzzy IBE for large universe when |D| = exp(κ).

2.3 Constrained Pseudorandom Functions

A constrained pseudorandom function for (D,R,K, C) is defined by the five
PPT algorithms ΠCPRF = (CPRF.Setup,CPRF.Gen, CPRF.Eval,CPRF.Constrain,
CPRF.ConstrainEval) where: CPRF.Setup(1κ) outputs a set of public parameter
pp; CPRF.Gen(pp) outputs a master key K; CPRF.Eval(pp,K, x) outputs a random
value r; CPRF.Constrain(K, C) outputs a constrained key Kcon

C associated with

16

constraint C; and CPRF.ConstrainEval(pp,Kcon
C , x) outputs the same value as

CPRF.Eval(pp,K, x) when C(x) = 1.
A CPRF is said to be (adaptive) pseudorandomness on constrained points,

when informally, it infeasible for an adversary to evaluate on a point when
only given constrained keys that are constrained on that particular point. Here,
adaptive security dictates that an adversary can adaptively query the constrained
keys even after seeing polynomially many evaluations. The formal definition is
omitted to the full version.

3 Lattice Evaluations

In this section, we show various lattice evaluation algorithms that will be used in
the description of our IPE scheme in Sec. 5. We start by recalling the following
lemma, which is an abstraction of the evaluation algorithms developed in a long
sequence of works [37,26,10,29].

Lemma 3.1 ([46, Theorem 2.5]). There exist efficient deterministic algo-
rithms EvalF and EvalFX such that for all n, q, ` ∈ N and m ≥ ndlog qe, for
any depth d boolean circuit f : {0, 1}` → {0, 1}k, input x ∈ {0, 1}`, and matrix
A ∈ Zn×m(`+1)

q , the outputs H := EvalF(f,A) and Ĥ := EvalFX(f, x,A) are both
in Zm(`+1)×m(k+1) and it holds that ‖H‖∞, ‖Ĥ‖∞ ≤ (2m)d, and

[A− (1, x)⊗G]Ĥ = AH− (1, f(x))⊗G mod q.

Moreover, for any pair of circuits f : {0, 1}` → {0, 1}k, g : {0, 1}k → {0, 1}t

and for any matrix A ∈ Zn×m(`+1)
q , the outputs Hf := EvalF(f,A), Hg :=

EvalF(g,AHf) and Hg◦f := EvalF(g ◦ f,A) satisfy HfHg = Hg◦f .

Here, we note that unlike in the original theorem [46, Theorem 2.5], we would
require the constant 1 term to handle functions with a constant term. More
details are provided in the full version.

In the following, we generalize the above lemma so that we can treat the case
where x and f(x) are integer vectors rather than bit strings. We first consider
the case where function f is a linear function over Z` in Sec. 3.1. The algorithm
we give is essentially the same as that given in the previous work [10], but we will
make a key observation that the evaluation results of two functions are the same
as long as they are functionally equivalent even if they are expressed as different
(arithmetic) circuits. In Sec. 3.2, we consider the case where f is a specific type
of non-linear function taking a vector x ∈ Z` as input; f initially computes a
binary representation of the input x, and then computes an arbitrary function
represented by a boolean circuit over that binarized input. We note that an
evaluation algorithm for arithmetic circuits over Z in previous work [10] is not
enough for our purpose. This is because the binary representation of an integer
may not be efficiently computable by an arithmetic circuit over Z in case the
integer is super-polynomially large.

17

3.1 Linear Evaluation

Here, we deal with linear functions over Z that are expressed by arithmetic
circuits.

Definition 3.1. For a (homogeneous) linear function f : Z` → Zk, we denote
the unique matrix that represents f by Mf . That is, Mf = (mi,j)i∈[`],j∈[k] ∈ Z`×k
is the matrix such that we have f(x)> = x> ·Mf . We denote ‖f‖∞ to mean
‖Mf‖∞ and call ‖f‖∞ the norm of f .

The following lemma gives an evaluation algorithm for linear functions. The
proof can be checked easily and is omitted to the full version.

Lemma 3.2. There exist efficient deterministic algorithms EvalLin such that for
all n,m, q, ` ∈ N, for any linear function f : Z` → Zk, input x ∈ Z`, and matrix
A ∈ Zn×m(`+1)

q , the output Mf := EvalLin(f) is in Zm(`+1)×m(k+1) and it holds
that ‖Mf‖∞ = max{1, ‖f‖∞}, and

[A− (1,x>)⊗G]Mf = AMf − (1, f(x)>)⊗G mod q.

Moreover, for any tuple of linear functions f : Z` → Zk, g : Zk → Zt, and h :
Z` → Zt such that g ◦ f(x) = h(x) for all x ∈ Z`, the outputs Mf := EvalLin(f),
Mg := EvalLin(g) and Mh := EvalLin(h) satisfy MfMg = Mh.

Looking ahead, the latter part of the above lemma is a key property for
our generalization of the Tsabary’s framework [46] when constructing adaptively
secure ABE. Note that in the general non-linear case, an analogue of this property
only holds when g ◦ f and h are expressed exactly as the same circuit (See
Lemma 3.1).

3.2 Non-linear Evaluation

Next, we consider the non-linear case where f takes as input a vector x ∈ Z`.
Specifically, f first computes the binary decomposition of x, and then performs
an arbitrary computation represented by a boolean circuit. Since the latter
part of the computation can be handled by Lemma 3.1, all we have to do is
to give a homomorphic evaluation algorithm that handles the former part of
the computation. The following lemma enables us to do this as long as ‖x‖∞
is bounded by some polynomial in κ. At a high level, when ‖x‖∞ is only a
polynomial, we would be able to efficiently compute the bit-decomposition of
x using Lagrange interpolation. We omit the proof to the full version. In the
statement below, we focus on the case of ` = 1.

Lemma 3.3. There exist efficient deterministic algorithms EvalBD and EvalBDX
such that for all n,m,M ∈ N, prime q satisfying q > 2M + 1 and m ≥
ndlog qe, x ∈ [−M,M], and for any matrix A ∈ Zn×2m

q , the outputs H :=

18

EvalBD(1M ,A) and Ĥ := EvalBDX(1M , x,A) are both in Z2m×mdlog qe and it
holds that ‖H‖∞, ‖Ĥ‖∞ ≤ (2mM)2M+1, and

[A− (1, x)⊗G]Ĥ = AH− BitDecomp(x)⊗G mod q (13)

where BitDecomp(x) ∈ {0, 1}dlog qe denotes the bit decomposition of x.

Finally, we combine Lemmata 3.1 and 3.3, to obtain our desired lemma. Let
q and M be integers such that q > 2M + 1. In the following lemma, we deal with
function f : [−M,M]` → {0, 1}k that can be represented by a Boolean circuit
f̃ : {0, 1}`dlog qe → {0, 1}k in the sense that we have

f(x) = f̃(BitDecomp(x1), . . . ,BitDecomp(x`))

for any x ∈ [−M,M]`. The proof is quite standard and is omitted to the full
version.

Lemma 3.4. There exist efficient deterministic algorithms EvalFbd and EvalFXbd

such that for all n,m, `,M ∈ N, prime q satisfying q > 2M +1 and m ≥ ndlog qe,
for any function f : [−M,M]` → {0, 1}k that can be expressed as an efficient
depth d boolean circuit f̃ : {0, 1}`dlog qe → {0, 1}k, for every x ∈ [−M,M]`,
and for any matrix A ∈ Zn×m(`+1)

q , the outputs H := EvalFbd(1M , f,A) and
Ĥ := EvalFXbd(1M , f,x,A) are both in Zm(`+1)×m(k+1) and it holds that ‖H‖∞,
‖Ĥ‖∞ ≤ `dlog qe(2mM)d+2M+2 and

[A− (1,x>)⊗G]Ĥ = AH− (1, f(x))⊗G mod q. (14)

4 IPE-Conforming CPRF

In this section, we introduce the notion of IPE-conforming CPRF and instantiate
it from the LWE assumption. An IPE-conforming CPRF is the main building
block for our adaptively secure IPE schemes. Although Tsabary presents how to
achieve adaptively secure ABE by using conforming CPRFs, the requirements
on conforming CPRFs are quite strong and it seems very difficult to achieve
such conforming CPRFs for inner-products. To achieve adaptively secure IPE,
we relax the requirements.

4.1 Definition

Here, we define an IPE-conforming CPRF.

Definition 4.1. A CPRF scheme ΠCPRF = (CPRF.Setup,CPRF.Eval,CPRF.Constrain,
CPRF.ConstrainEval) that supports inner products over D := [−B,B]` ⊂ Z` is
said to be IPE-conforming if it satisfies the following properties:

– Partial linear evaluation (Definition 4.2)
– Key simulation (Definition 4.3)

19

– Uniformity (Definition 4.4)

The partial linear evaluation property is a relaxed variant of the gradual
evaluation property for conforming CPRFs defined by Tsabary [46]. Recall that
the gradual evaluation property of Tsabary [46] requires that (a sub-circuit
of) the composition of CPRF.Constrain and CPRF.ConstrainEval is identical to
CPRF.Eval as a circuit. On the other hand, we only require that they are identical
as (arithmetic) circuits excluding the linear computation. The precise definition
follows.

Definition 4.2 (Partial linear evaluation). The algorithm CPRF.Eval (resp.
CPRF.ConstrainEval) can be divided into a linear part CPRF.EvalLin (resp.
CPRF.ConstrainEvalLin) and a non-linear part CPRF.EvalNonLin (resp. CPRF.
ConstrainEvalNonLin) with the following syntax:

- CPRF.EvalLin(K,x)→ Kint
x ∈ Zξ,

- CPRF.EvalNonLin(pp,Kint
x ,x)→ PRF(K,x),

- CPRF.ConstrainEvalLin(Kcon
y ,x)→ Kcon-int

y,x ∈ Zξ,
- CPRF.ConstrainEvalNonLin(pp,Kcon-int

y,x ,x)→ PRF(K,x),

where the superscript int stands for “intermediate key” and Kcon
y denotes the

constrained key for the inner-product constraint for vector y. Specifically, we have

CPRF.EvalNonLin(pp,CPRF.EvalLin(K,x),x) = CPRF.Eval(K,x)

and

CPRF.ConstrainEvalNonLin(pp,CPRF.ConstrainEvalLin(K,x),x)
= CPRF.ConstrainEval(K,x).

We require the following:

1. CPRF.EvalNonLin and CPRF.ConstrainEvalNonLin are exactly the same algo-
rithms. That is, they are expressed identically as circuits.

2. For any x,y such that 〈x,y〉 = 0 and K $← CPRF.Setup(pp) where pp $←
CPRF.Setup(1κ), we have

CPRF.EvalLin(K,x) = CPRF.ConstrainEvalLin(CPRF.Constrain(K,y),x).

Or equivalently, we have Kint
x = Kcon-int

y,x .
3. K, Kcon

y , Kint
x , and Kcon-int

y,x are integer vectors. Also, for any x,y ∈ D, algo-
rithms CPRF.Constrain(·,y), CPRF.EvalLin(·,x) and CPRF.ConstrainEvalLin(·,x)
are linear functions over Z. Moreover, their norms are at most poly(κ, `,B).
(See Definition 3.1 for the definition of a norm of a linear function.)

4. We have ‖Kint
x ‖∞ = poly(κ, `,B) where pp $← CPRF.Setup(1κ), K $← CPRF.Setup(pp),

and Kint
x := CPRF.EvalLin(K,x).

20

We stress that, in the second item above, we do not require that CPRF.EvalLin(K,x)
and CPRF.ConstrainEvalLin(CPRF.Constrain(K,y),x) to be identical as (arith-
metic) circuits; they are only required to have the same input/output. This is a
crucial difference from the notion of conforming CPRF by Tsabary [46].

The key simulation property is essentially the same as defined by Tsabary [46].

Definition 4.3 (Key simulation). The key simulation security is defined by
the following game between an adversary A and a challenger:

Setup: At the beginning of the game, the challenger generates the public parame-
ter pp $← CPRF.Setup(1κ) and master key K $← CPRF.Gen(pp), and sends pp
to A.

Queries: A can adaptively make unbounded number of evaluation queries. Upon
a query x ∈ D, the challenger returns r $← CPRF.Eval(pp,K,x).

Challenge Phase: At some point, A makes a challenge query y∗ ∈ D. Then
the challenger uniformly picks coin $← {0, 1}. If coin = 0, then the challenger
samples K̃ $← CPRF.Gen(pp) and returns K̃con

y∗
$← CPRF.Constrain(K̃,y∗) and

otherwise returns Kcon
y∗

$← CPRF.Constrain(K,y∗).
Queries: After the challenge phase, A may continue to adaptively make un-

bounded number of evaluation queries. Upon a query x ∈ D, the challenger
returns r $← CPRF.Eval(pp,K,x).

Guess: Eventually, A outputs ĉoin as a guess for coin.

We say the adversary A wins the game if ĉoin = coin and for any evalua-
tion query x, we have 〈x,y∗〉 6= 0. We require that for all PPT adversary A,
|Pr[A wins]− 1/2| = negl(κ) holds.

We note that the key simulation property easily follows from the adaptive
single-key security of a standard CPRF.

Lemma 4.1 (Implicit in [46]). If ΠCPRF is adaptively single-key secure, then
it also satisfies the key simulation property.

The uniformity requires that for any fixed input, the PRF value is uniform
over the random choice of a key.

Definition 4.4 (Uniformity). For all x ∈ D and r ∈ R, we have

Pr[CPRF.Eval(K,x) = r : pp $← CPRF.Setup(1κ),K $← CPRF.Setup(pp)] = 1/|R|.

We note that this is a very mild property, and we can generically add this
property by applying a one-time pad. Namely, suppose that we include a uniform
string R ∈ R in K, and slightly modify the evaluation algorithm so that it outputs
the XOR of the original output and R. Then it is clear that the resulting scheme
satisfies the uniformity property. Moreover, it is easy to see that this conversion
preserves the partial linear evaluation property and key simulation property.
Combining this observation with Lemma 4.1, we obtain the following lemma.

21

Lemma 4.2. If there exists a CPRF for inner-products that satisfies the partial
linear evaluation property and the adaptive single-key security, then there exists an
IPE-conforming CPRF that satisfies the partial linear evaluation, key simulation,
and uniformity properties.

Following [46], we use the following notations in Sec. 5:

- U lin
k→x: A linear function computing CPRF.EvalLin(·,x).

- U lin
k→y: A linear function computing CPRF.Constrain(·,y).

- U lin
y→x: A linear function computing CPRF.ConstrainEvalLin(·,x).

Unon-lin
x : A (not necesarily linear) function that computes CPRF.EvalNonLin(pp, ·,x)
(= CPRF.ConstrainEvalNonLin(pp, ·,x)).

Note that U lin
k→x and U lin

y→x◦U lin
k→y are functionally equivalent for any x,y ∈ D

such that 〈x,y〉 = 0 by Item 2 of Definition 4.2.

4.2 Construction

We show that a variant of the LWE-based CPRF recently proposed by Davidson
et al. [23] satisfies the required property. The scheme and security proof are
largely the same as theirs. The detais can be found in the full version. Then we
obtain the following theorem.

Theorem 4.1. There exists an IPE-conforming CPRF assuming the LWE as-
sumption with sub-exponential modulus size.

5 Adaptively Secure IPE

In this section, we give a construction of an adaptively secure IPE scheme. The
scheme will deal with inner products over vectors D := [−B,B]` ⊂ Z` for any
arbitrarily chosen B(κ) = poly(κ) and `(κ) = poly(κ). The main ingredient of the
construction is a CPRF scheme ΠCPRF = (CPRF.Setup,CPRF.Gen,CPRF.Eval,
CPRF.Constrain,CPRF.ConstrainEval) for inner products over vectors in D :=
[−B,B]` ⊂ Z` with IPE conforming property (See Definition 4.1). We assume
that the size of the range R of the CPRF is super-polynomial in κ. We can
instantiate such CPRF by the scheme in Theorem 4.1. To describe our scheme,
we introduce the following parameters.

– For simplicity of notation, we assume that K, Kint
x , and Kcon

y are integer
vectors with the same dimension s(κ). This can be realized by choosing
s(κ) to be the maximum length of these vectors and padding the vectors
with smaller dimensions by zeros. It is easy to see that the partial linear
evaluation property and the security of the CPRF are preserved with this
modification. Furthermore, by the efficiency of the CPRF, we can set s(κ) =
poly(B(κ), `(κ)) = poly(κ).

22

– We let M(κ) be an upper bound on ‖Kint
x ‖∞ and the norms of U lin

k→x, U lin
k→y,

and Unon-lin
x , where we refer to Definition 3.1 for the definition of norm for linear

functions. By Items 3 and 4 of Definition 4.2, these quantities are bounded
by poly(κ, `(κ), B(κ)) ≤ poly(κ). We therefore can set M(κ) = poly(κ).

– We let η(κ) to be the length of the output of the CPRF represented as a binary
string. Namely, we have R ⊆ {0, 1}η, where R is the range of the CPRF.
We also assume 1/|R| = negl(κ) without loss of generality. If the CPRF
does not satisfy the property, we can satisfy this by running ω(κ) number
of the CPRF in parallel. We can easily see that this preserves the partial
linear evaluation (Definition 4.2), key simulation security (Definition 4.3),
and uniformity (Definition 4.4) properties.

– We let d(κ) be an upper bound on the depth of the circuits Unon-lin
x and Eqr,

where Eqr : {0, 1}η → {0, 1} is the circuit that on input r̃ ∈ {0, 1}η returns 1
if and only if r = r̃ for r ∈ {0, 1}η. We have that d(κ) = poly(κ, `(κ), B(κ)) ≤
poly(κ) by the efficiency of the CPRF.

Then our IPE scheme ΠIPE = (IPE.Setup, IPE.Enc, IPE.KeyGen, IPE.Dec) is
described as follows. The lattice dimension n(κ) and m(κ), LWE modulus q(κ),
LWE noise distribution χ, Gaussian parameters τ0(κ) and τ(κ), and width of
noise Γ (κ) in the scheme will be specified right after the description of the
scheme.

IPE.Setup(1κ): On input the security parameter 1κ, it generates ppCPRF
$←

CPRF.Setup(1κ), k $← CPRF.Gen(ppCPRF),11 samples (B,B−1
τ0

) $← TrapGen(1n, 1m, q),
A $← Zn×m(s+1)

q , and v $← Znq , and outputs pp := (B,A,v, ppCPRF) and
msk := (B−1

τ0
,k).

IPE.Enc(pp,y,M): On input the public parameter pp, a vector y ∈ [−B,B]`,
and a message M ∈ {0, 1}, it generates k̃ $← CPRF.Gen(ppCPRF) and samples
s $← Znq , e0

$← χm, e1
$← [−Γ, Γ]m(s+1), and e2

$← χ. It then computes
k̃con

y ← CPRF.Constrain(k̃, Cy), sets

c0 = s>B+e>0 , c1 = s>[Acon
y −(1, (k̃con

y)>)⊗G]+e>1 , c2 = s>v+e2+Mbq/2c

where Acon
y = AMk→y for Mk→y ← EvalLin(U lin

k→y), and outputs ct :=
(k̃con

y , c0, c1, c2).
IPE.KeyGen(pp,msk,x): On input the master secret key msk = (B−1

τ0
,k) and a

vector x ∈ [−B,B]`, it computes r := CPRF.Eval(k,x),

Mk→x ← EvalLin(U lin
k→x), Aint

x := AMk→x,

Hx ← EvalFbd(1M , Unon-lin
x ,Aint

x), Aeval
x := Aint

x Hx

Hr ← EvalF(Eqr,Aeval
x), Aeq

x,r := Aeval
x Hr,

11We use k instead of K to denote the master secret key of CPRF for making it clear
that it is a vector.

23

It then parses

Aeq
x,r → [Aeq

x,r,0||A
eq
x,r,1] ∈ Zn×mq × Zn×mq ,

samples u $← [B||Aeq
x,r,1]−1

τ (v) by using the trapdoor B−1
τ0

, and outputs
skx := (r,u).

IPE.Dec(pp, skx, ct,y,x): On input a secret key skx = (r,u), a ciphertext ct =
(k̃con

y , c0, c1, c2), and vectors y ∈ [−B,B]` and x ∈ [−B,B]`, it computes
k̃int

x := U lin
y→x(k̃con

y) and r̃ := Unon-lin
x (k̃int

x) and aborts if r = r̃. Otherwise, it
computes

My→x ← EvalLin(U lin
y→x), Ĥx ← EvalFXbd(1M , Unon-lin

x , k̃int
x ,Aint

x),

Ĥr ← EvalFX(Eqr, r̃,Aeval
x)

where Aint
x , and Aeval

x are computed as in IPE.KeyGen. Then it computes
u := c2 − [c0||c1My→xĤxĤr[0m||Im]>]u, and output 1 if |u| ≥ q/4 and 0
otherwise.

A concrete parameter candidate and the correctness of the scheme are provided
in the full version. We note that the parameters are set in a way that the LWE
assumption with sub-exponential modulus size is believed to be hard. The security
of our scheme is provided by the following theorem.

Theorem 5.1. Under the hardness of the LWEn,m,q,DZ,χ problem, ΠIPE is adap-
tively payload-hiding if ΠCPRF is IPE-conforming.

Proof. (sketch) We consider the following sequance of games between a valid
adversary A and a challenger. In the following, we only give brief explanations
on why each game is indistinguishable from the previous game. A full proof can
be found in the full version. Below, let Ei denote the probability that ĉoin = coin
holds in Gamei.

Game0: This is the original adaptive security game. Specifically the game proceeds
as follows:
– The challenger generates ppCPRF

$← CPRF.Setup(1κ), k $← CPRF.Gen(ppCPRF),
samples (B,B−1

τ0
) $← TrapGen(1n, 1m, q), A $← Zn×m(s+1)

q , and v $← Znq ,
sets pp := (B,A,v, ppCPRF), and gives pp to A.

– Given pp, A makes unbounded number of key generation queries and one
challenge query in arbitrary order.
Key Generation: When A makes a key generation query x ∈ [−B,B]`,

the challenger computes r := CPRF.Eval(k,x),

Mk→x ← EvalLin(U lin
k→x), Aint

x := AMk→x,

Hx ← EvalFbd(1M , Unon-lin
x ,Aint

x), Aeval
x := Aint

x Hx

Hr ← EvalF(Eqr,Aeval
x), Aeq

x,r := Aeval
x Hr,

Aeq
x,r,1 := Aeq

x,r[0m||Im]>,

24

samples u $← [B||Aeq
x,r,1]−1

τ (v) by using the trapdoor B−1
τ0

, and returns
skx := (r,u) to A.

Challenge: When A makes a challenge query y∗, the challenger ran-
domly picks coin $← {0, 1}, generates k̃ $← CPRF.Gen(ppCPRF) and
k̃con

y∗ ← CPRF.Constrain(k̃, Cy∗), samples s $← Znq , e0
$← χm, e1

$←
[−Γ, Γ]m(s+1), e2

$← χ, and sets

c0 = s>B + e>0 , c1 = s>[Acon
y∗ − (1, (k̃con

y∗)>)⊗G] + e>1 ,
c2 = s>v + e2 + coinbq/2c

where Acon
y∗ = AMk→y∗ for Mk→y∗ ← EvalLin(U lin

k→y∗), and returns
ct∗ := (k̃con

y∗ , c0, c1, c2) to A.
– Finally, A outputs its guess ĉoin.

By the definition of E0, the advantage of A is |Pr[E0]− 1/2|.
Game1: This game is identical to the previous game except that k̃con

y∗ used in the
challenge ciphertext is replaced with kcon

y∗
$← CPRF.Constrain(k,y∗).

By a straightforward reduction to key-simulatability of the CPRF, we have
|Pr[E1]− Pr[E0]| = negl(κ).

Game2: This game is identical to the previous game except that A is generated
as A := BR + (1,k>)⊗G where R $← {−1, 0, 1}m×m(s+1).
By the leftover hash lemma, we have |Pr[E2]− Pr[E1]| = negl(κ).

Game3: This game is identical to the previous game except that c1 is generated
as c1 := c0RMk→y∗ + e>1 .
By Lemma 3.2, we can show that we have

c0RMk→y∗ + e>1 = s>[Acon
y∗ − (1, (kcon

y∗)>)⊗G] + e>0 RMk→y∗ + e>1 .

Moreover, by our choice of parameters, we can show that the distribution
of e>0 RMk→y∗ + e>1 is statistically close to that of e>1 . Therefore, we have
|Pr[E3]− Pr[E2]| = negl(κ).

Game4: This game is identical to the previous game except that in each key
generation, u is generated as u $← [B||BRMk→xĤxĤr[0m||Im]> + G]−1

τ (v)
where Ĥx ← EvalFXbd(1M , Unon-lin

x ,kint
x ,Aint

x) and Ĥr
$← EvalFX(Eqr, r,A

eq
x).

We note that this can be done using RMk→xĤxĤr[0m||Im]> instead of using
B−1
τ0

if the norm of RMk→xĤxĤr[0m||Im]> is small enough by a standard
lattice trapdoor technique [1,37].
By Lemma 3.2 and Lemma 3.4, we can show that we have

BRMk→xĤxĤr

[
0m
Im

]
+ G = Aeq

x,r,1.

Moreover, by our choice of parameters, we can show that the norm of
RMk→xĤxĤr[0m||Im]> is small enough for sampling u in the above way.
Therefore, |Pr[E4]− Pr[E3]| = negl(κ).

25

Game5: This game is identical to the previous game except that B is generated
as B $← Zn×mq instead of being generated with the trapdoor B−1

τ0
. We note

that this can be done since B−1
τ0

is no longer used due to the modification
made in Game4.
Since a matrix sampled with a trapdoor is almost uniformly distributed [25],
we have |Pr[E5]− Pr[E4]| = negl(κ).

Game6: This game is identical to the previous game except that c0 and c2 are
generated as c0

$← Zmq and c2
$← Zq.

We can show that we have |Pr[E6]− Pr[E5]| = negl(κ) by a straightforward
reduction to the LWE assumption. Moreover, we have Pr[E6] = 1/2 since no
information of coin is given to A in this game.

Combining the above, we obtain |Pr[E0]− 1/2| = negl(κ), which concludes the
proof of Theorem 5.1.

6 Extensions to Other Adaptively Secure Predicate
Encryptions

In this section, we show how to extend our IPE over the integers Z from the
previous section to other types of ABEs. Specifically, we provide the following
type of adaptive ABEs: IPE over Zp for p = poly(κ) and fuzzy IBE for small
and large universe. We achieve these extensions by encoding the attributes for
one predicate to attributes in another predicate. Thus, our transformations are
simple and the security reductions are straightforward. Since the former two
generic constructions are almost folklore, we provide the formal description in
the full version.

In the following, we first show how to encode a fuzzy predicate for large
universe D (i.e., D is exponentially large) into a fuzzy predicate for small universe
D′ (i.e., D is polynomially large). First, we define some parameters and functions.
Let D = {0, 1}d be the alphabet domain of a FIBE for large universe where
d = poly(κ). That is, a = (a1, . . . ,aL) ∈ DL is a (row) vector of identities in
FIBE for large universe. Let T be the threshold that satisfies 1 ≤ T ≤ L. For a
set S, a positive integer k, and a vector x,y ∈ Sk, let HDSk(x,y) be the number
of i ∈ [k] such that x[i] 6= y[i].

We use an error correcting code (ECC) ECC : D → Gn such that |G| = poly(κ)
and n > d. For simplicity, we use Reed-Solomon code [42]. More concretely, we
consider a ∈ D as a polynomial pa(X) :=

∑d
i=1 a[i]Xi−1 over G := Fq where q is

a prime such that n < q = poly(κ) and a codeword is f(a) = (pa(1), ..., pa(n)).
Then, HDGn(f(a), f(b)) ≥ n− d+ 1 holds for a 6= b ∈ D. We naturally extend
the domain of f to DL. That is, ECC : DL → (Gn)L

By the property of ECC, it holds that

0 ≤ HDDL(a,b) ≤ L− T =⇒ 0 ≤ HDGnL(f(a), f(b)) ≤ (L− T)n
L− T + 1 ≤ HDDL(a,b) ≤ L =⇒ (L− T + 1)(n− d+ 1) ≤ HDGnL(f(a), f(b)) ≤ Ln

26

for two identities a = (a1, ..., aL),b = (b1, ..., bL) ∈ DL. Therefore, for a fixed T ,
we will set (n, d) as

(L− T)n < (L− T + 1)(n− d+ 1). (15)

This allows us to argue that a “gap” exists in the hamming distance defined over
polynomially large domains if there is a “gap” in the hamming distance defined
over exponentially large domains.

Notably, we can reduce a fuzzy predicate Pexp for exponentially large alphabet
strings to a fuzzy predicate Ppoly for polynomially large alphabet strings. That
is, we first encode a ∈ DL into f(a) ∈ GnL by using an ECC. Then, if the
threshold of Pexp is T , we set the threshold of Ppoly to be Tn. Lastly, we set
n > (d− 1)(L− T + 1) to satisfy Equation (15). Notice n is some polynomial in
κ since d = poly(κ), L = poly(κ), and 0 ≤ T ≤ L.

Translating the above encoding technique to the ABE context is straightfor-
ward and is omitted to the full version.
Acknowledgement. We thank anonymous reviewers for their helpful comments.
The first and the third authors were supported by JST CREST Grant Number
JPMJCR19F6 and JSPS KAKENHI Grant Number JP19H01109.

References
1. Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the

standard model. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of
LNCS, pages 553–572. Springer, Heidelberg, May / June 2010.

2. Shweta Agrawal, Xavier Boyen, Vinod Vaikuntanathan, Panagiotis Voulgaris, and
Hoeteck Wee. Functional encryption for threshold functions (or fuzzy ibe) from lat-
tices. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012,
volume 7293 of LNCS, pages 280–297. Springer, Heidelberg, May 2012.

3. Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional
encryption for inner product predicates from learning with errors. In Dong Hoon
Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages
21–40. Springer, Heidelberg, December 2011.

4. Shweta Agrawal, Benoît Libert, and Damien Stehlé. Fully secure functional en-
cryption for inner products, from standard assumptions. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages
333–362. Springer, Heidelberg, August 2016.

5. Nuttapong Attrapadung. Dual system encryption via doubly selective security:
Framework, fully secure functional encryption for regular languages, and more. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, pages 557–577. Springer, Heidelberg, May 2014.

6. Nuttapong Attrapadung. Dual system encryption framework in prime-order groups
via computational pair encodings. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 591–623. Springer,
Heidelberg, December 2016.

7. Nuttapong Attrapadung, Takahiro Matsuda, Ryo Nishimaki, Shota Yamada, and
Takashi Yamakawa. Constrained PRFs for NC1 in traditional groups. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992
of LNCS, pages 543–574. Springer, Heidelberg, August 2018.

27

8. Dan Boneh and Xavier Boyen. Efficient selective identity-based encryption without
random oracles. Journal of Cryptology, 24(4):659–693, October 2011.

9. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil
pairing. SIAM J. Comput., 32(3):586–615, 2003.

10. Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, pages 533–556. Springer, Heidelberg, May 2014.

11. Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 535–554.
Springer, Heidelberg, February 2007.

12. Dan Boneh and Brent Waters. Constrained pseudorandom functions and their
applications. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II,
volume 8270 of LNCS, pages 280–300. Springer, Heidelberg, December 2013.

13. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudo-
random functions. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS,
pages 501–519. Springer, Heidelberg, March 2014.

14. Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, 45th ACM STOC, pages 575–584. ACM Press, June
2013.

15. Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private
constrained PRFs (and more) from LWE. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017, Part I, volume 10677 of LNCS, pages 264–302. Springer, Heidelberg,
November 2017.

16. Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs
from standard lattice assumptions - or: How to secretly embed a circuit in your
PRF. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II,
volume 9015 of LNCS, pages 1–30. Springer, Heidelberg, March 2015.

17. Zvika Brakerski and Vinod Vaikuntanathan. Circuit-ABE from LWE: Unbounded
attributes and semi-adaptive security. In Matthew Robshaw and Jonathan Katz,
editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 363–384. Springer,
Heidelberg, August 2016.

18. Ran Canetti and Yilei Chen. Constraint-hiding constrained PRFs for NC1 from LWE.
In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part I, volume 10210 of LNCS, pages 446–476. Springer, Heidelberg, April / May
2017.

19. David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how
to delegate a lattice basis. Journal of Cryptology, 25(4):601–639, October 2012.

20. Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system ABE in prime-order
groups via predicate encodings. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 595–624. Springer,
Heidelberg, April 2015.

21. Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permutation
branching programs: Proofs, attacks, and candidates. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS,
pages 577–607. Springer, Heidelberg, August 2018.

22. Clifford Cocks. An identity based encryption scheme based on quadratic residues. In
IMA international conference on cryptography and coding, pages 360–363. Springer,
2001.

28

23. Alex Davidson, Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi
Yamakawa. Adaptively secure constrained pseudorandom functions in the standard
model. In CRYPTO 2020, 2020. To appear.

24. Craig Gentry. Practical identity-based encryption without random oracles. In
Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 445–464.
Springer, Heidelberg, May / June 2006.

25. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork,
editors, 40th ACM STOC, pages 197–206. ACM Press, May 2008.

26. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042
of LNCS, pages 75–92. Springer, Heidelberg, August 2013.

27. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 162–179.
Springer, Heidelberg, August 2012.

28. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based
encryption for circuits. Journal of the ACM, 62(6):45:1–45:33, 2015.

29. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully ho-
momorphic signatures from standard lattices. In Rocco A. Servedio and Ronitt
Rubinfeld, editors, 47th ACM STOC, pages 469–477. ACM Press, June 2015.

30. Rishab Goyal, Venkata Koppula, and Brent Waters. Semi-adaptive security and
bundling functionalities made generic and easy. In Martin Hirt and Adam D. Smith,
editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 361–388. Springer,
Heidelberg, October / November 2016.

31. Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In Chris
Umans, editor, 58th FOCS, pages 612–621. IEEE Computer Society Press, October
2017.

32. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Ari Juels, Rebecca N.
Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS 2006, pages
89–98. ACM Press, October / November 2006. Available as Cryptology ePrint
Archive Report 2006/309.

33. Shuichi Katsumata and Shota Yamada. Non-zero inner product encryption schemes
from various assumptions: LWE, DDH and DCR. In Dongdai Lin and Kazue
Sako, editors, PKC 2019, Part II, volume 11443 of LNCS, pages 158–188. Springer,
Heidelberg, April 2019.

34. Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. Journal of Cryptology,
26(2):191–224, April 2013.

35. Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages
669–684. ACM Press, November 2013.

36. Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent
Waters. Fully secure functional encryption: Attribute-based encryption and (hier-
archical) inner product encryption. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 62–91. Springer, Heidelberg, May / June 2010.

29

37. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 700–718. Springer, Heidelberg, April 2012.

38. Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding (hierar-
chical) inner product encryption. In David Pointcheval and Thomas Johansson,
editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 591–608. Springer,
Heidelberg, April 2012.

39. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption
with a large class of relations from the decisional linear assumption. Journal of
Cryptology, 32(4):1491–1573, October 2019.

40. Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Michael Mitzenmacher, editor, 41st ACM STOC, pages 333–
342. ACM Press, May / June 2009.

41. Chris Peikert and Sina Shiehian. Privately constraining and programming PRFs,
the LWE way. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part II,
volume 10770 of LNCS, pages 675–701. Springer, Heidelberg, March 2018.

42. Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields.
SIAM J. Comput., 8(2):300–304, 1960.

43. Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM, 56(6):34:1–34:40, 2009.

44. Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer,
Heidelberg, May 2005.

45. Elaine Shi, John Bethencourt, Hubert T.-H. Chan, Dawn Xiaodong Song, and
Adrian Perrig. Multi-dimensional range query over encrypted data. In 2007 IEEE
Symposium on Security and Privacy, pages 350–364. IEEE Computer Society Press,
May 2007.

46. Rotem Tsabary. Fully secure attribute-based encryption for t-CNF from LWE.
In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I,
volume 11692 of LNCS, pages 62–85. Springer, Heidelberg, August 2019.

47. Geng Wang, Ming Wan, Zhen Liu, and Dawu Gu. Dual system in lattice: Fully
secure abe from lwe assumption. IACR Cryptology ePrint Archive, 2020:64, 2020.

48. Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS,
pages 619–636. Springer, Heidelberg, August 2009.

49. Hoeteck Wee. Dual system encryption via predicate encodings. In Yehuda Lindell,
editor, TCC 2014, volume 8349 of LNCS, pages 616–637. Springer, Heidelberg,
February 2014.

50. Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs
under LWE. In Chris Umans, editor, 58th FOCS, pages 600–611. IEEE Computer
Society Press, October 2017.

30

	 Adaptively Secure Inner Product Encryption from LWE
	Introduction
	Our Contribution
	Technical Overview
	Related Works

	Preliminaries
	Lattices
	Attribute-based Encryption
	Constrained Pseudorandom Functions

	Lattice Evaluations
	Linear Evaluation
	Non-linear Evaluation

	IPE-Conforming CPRF
	Definition
	Construction

	Adaptively Secure IPE
	Extensions to Other Adaptively Secure Predicate Encryptions

