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Abstract. A multi-recipient key encapsulation mechanism, or mKEM,
provides a scalable solution to securely communicating to a large group,
and offers savings in both bandwidth and computational cost compared
to the trivial solution of communicating with each member individu-
ally. All prior works on mKEM are only limited to classical assumptions
and, although some generic constructions are known, they all require
specific properties that are not shared by most post-quantum schemes.
In this work, we first provide a simple and efficient generic construc-
tion of mKEM that can be instantiated from versatile assumptions, in-
cluding post-quantum ones. We then study these mKEM instantiations
at a practical level using 8 post-quantum KEMs (which are lattice and
isogeny-based NIST candidates), and CSIDH, and show that compared
to the trivial solution, our mKEM offers savings of at least one order
of magnitude in the bandwidth, and make encryption time shorter by a
factor ranging from 1.92 to 35. Additionally, we show that by combining
mKEM with the TreeKEM protocol used by MLS – an IETF draft for
secure group messaging – we obtain significant bandwidth savings.

1 Introduction

Secure communication within a system of several users is becoming indispens-
able in our everyday lives. One leading example is the recent trend in secure
group messaging (Zoom, Signal, WhatsApp, and so on) to handle large groups
– up to 50 000 users according to the IETF draft of the Message Layer Security
(MLS) architecture [38, Section 3.1]. The scenario is that users in a system, each
holding their public and secret key, frequently exchange messages with a group
of users. More than often, the solution adopted is the trivial approach of indi-
vidually encrypting the same message M using the public keys associated with
the respective recipients in the group.4 However, this trivial approach makes the
required bandwidth and computational costs grow by a factor N (where N is
the number of recipients), compared to sending a message to a single recipient.
Therefore, as the number of recipients increases, this trivial solution has poor
scalability.

4 To be more precise, it is common to rely on the KEM/DEM framework [19, 22] to
lower the reliance on the more inefficient public key cryptography.



An additional motivation for lowering the bandwidth and computational
costs is the current phase of gradual transition towards post-quantum cryptog-
raphy — a type of cryptography that is known to be resilient against quantum
adversaries. Most, if not all, post-quantum secure schemes are known to incur
bandwidth and/or computational overheads compared to classical schemes. For
example, all key encapsulation mechanisms (KEMs) still considered for standard-
ization by NIST require an order of magnitude more bandwidth than ECDH [9]
at a comparable classical security level. Therefore, lowering the cost of commu-
nication with multiple recipients even when the number of recipients N is only
moderately large, say N ≥ 10, will already be of value.

Multi-Recipient Key Encapsulation Mechanism (mKEM), coined by Smart
[40]5, is a primitive designed with the above motivations in mind. On a high level,
an mKEM is like a standard KEM that securely sends the same session key K to a
group of recipients. Subsequently, the sender transmits a single ciphertext to all
the recipients by encrypting the message M using K as a secret key for a secret-
key encryption scheme. The latter procedure corresponds to the standard DEM.
The main requirement that makes mKEM appealing is that the bandwidth and
computational resources required to send the session key K are less than those
required when individually encrypting K using the recipients’ public keys. To
be precise, we can trivially construct an mKEM from any public-key encryption
(PKE) scheme by encrypting the same session key K with respect to all the re-
cipients’ public keys. However, this trivial construction will be as inefficient as
the aforementioned trivial solution (modulo the efficient DEM component), and
therefore, the main goal for mKEM is to offer a more efficient alternative.

Due to its practically appealing and theoretically interesting nature, the
study of mKEM has attracted much attention, e.g., [8,24,26,33,35,42]. Also, sim-
ilar variants of mKEM, such as multi-message multi-recipient public-key encryp-
tion [11–13, 33], have been considered prior to mKEM with similar motivations
in mind, and have illustrated the importance of investigating the multi-recipient
settings. As a consequence, by now many exciting results regarding mKEMs have
appeared. However, we like to point out three unsatisfactory issues remaining
with burdening the current state of affairs. First, to the best of our knowledge, all
the literature on mKEMs is based on classical assumptions (e.g., Diffie-Hellman
type assumptions) which are believed to not endure quantum adversaries. We
are aware of one recent work [17] that claims the construction of an IND-CCA
secure mKEM from the learning parity with noise (LPN) assumption, which is
believed to be quantumly secure. However, while going over their results, we no-
ticed that their scheme is insecure since there is a trivial break in their claimed
IND-CCA security. In particular, the ciphertexts are easily malleable. Second, ear-
lier works such as [8, 24, 35] provide a somewhat generic construction of mKEM
from a (single-recipient) PKE, but require the underlying PKE to satisfy rather
specific properties that seems somewhat tailored to classical Diffie-Hellman type
assumptions. For instance, [8] requires a notion of weak reproducibility, which in-

5 We note that very similar variants of mKEM have been considered prior to this
work [11–13,33]. More details follow.
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formally states that there is an efficient procedure to re-randomize a ciphertext
under a certain public key to a ciphertext under another public key. Unfortu-
nately, such properties are not known to exist for post-quantum assumptions,
such as lattice-based assumptions. Therefore, we still do not have a truly general
framework for constructing mKEMs from standard building blocks. Here, “stan-
dard” building blocks mean blocks that are potentially instantiable from many
hardness assumptions.

Summarizing thus far, the first question we are interested in this work is:

(Theoretical Question) Are there any simple and efficient generic con-
structions of mKEM that can be based on versatile assumptions, including
post-quantum assumptions?

The third issue, which is orthogonal to the above concerns, is that all previous
works on mKEM do not come with any implementations. Notably, most literature
only points out the efficiency gain in a rather theoretical manner and does not
provide comparisons with the trivial solution (i.e., running KEM in parallel).
Since these gains depend on the concrete mKEM implementation and also on
the choice of KEM used in the trivial solution, the benefit of using an mKEM is
unclear without proper comparison. Considering the practical oriented nature of
mKEM, we believe understanding the concrete gain of using an mKEM instead
of using the trivial solution would help in illustrating the practical relevance of
this primitive and in providing insight on when to use an mKEM.

Therefore, the second question we are interested in this work is:

(Practical Question) What is the concrete gain of using an mKEM
compared to the trivial solution? What are the concrete applications of
mKEMs?

1.1 Our Contributions and Techniques

Theoretical Contribution. We provide a new simple and efficient generic con-
struction of an IND-CCA secure multi-recipient KEM (mKEM) from any IND-CPA
secure multi-recipient PKE (mPKE).6 The construction is proven secure in the
classical and quantum random oracle model ((Q)ROM). Here, mPKE is a vari-
ant of mKEM where a user can encrypt any same message M (rather than a
random session key K) to multiple recipients. We then show that IND-CPA se-
cure mPKEs can be constructed very easily from most assumptions known to
imply standard PKEs (including classical Diffie-Hellman type assumptions). The
construction of an IND-CPA secure mPKE is in most cases a simple modification
of a standard IND-CPA secure PKE to the multi-recipient setting. Concretely,
we show how to construct mPKEs based on lattices and isogenies. Compared to
previous works [8, 24, 35] which provide some types of generic constructions of
mKEM, ours require an mPKE whereas they only require a single-recipient PKE.

6 As standard in practice, we consider indistinguishability under chosen ciphertext
attacks (IND-CCA) to be the default security requirement on our resulting scheme.
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However, we only require very natural properties from the underlying mPKE,
such as IND-CPA. Considering that our mPKE can be instantiated with diverse
assumptions (including but not limited to post-quantum assumptions) in a very
natural way from standard PKEs, we believe our generic construction to be more
versatile and handy than previous ones. We point out that our mKEM achieves
both implicit and explicit rejection.

Moreover, we introduce a new notion of recipient anonymity which we believe
to be of independent interest. The notion captures the fact that the ciphertext
does not leak the set of intended group members or recipients. We provide a mild
additional property for the underlying IND-CPA secure mPKE, under which our
above generic construction naturally implies a recipient-anonymous IND-CCA
secure mKEM. Our lattice and isogeny-based instantiations satisfy the extra
property without any modification. An overview of our generic construction is
provided in the following section.

Practical Contribution. An immediate consequence of our theoretical contribu-
tion is that it opens the door to a large number of post-quantum instantiations
of mKEM. A natural next step is to study these mKEM instantiations at a prac-
tical level and compare them to the trivial solution of running standard KEMs
in parallel. Doing this work is precisely one of our practical contributions. As it
turns out, at least 9 post-quantum schemes are compatible with our construction
of mKEM: 7 lattice-based NIST candidates, the only isogeny-based NIST can-
didate SIKE, and the CSIDH scheme. We performed a systematic study of the
bandwidth efficiency and found that for all of these schemes, our mKEM variants
are more compact than the trivial solution with the original schemes by at least
one order of magnitude (for a clearly defined metric). In addition, for a subset
of these 9 schemes (CSIDH, FrodoKEM, Kyber, SIKE), we implemented their
mKEM counterparts and compared their performance (cycle count). We found
our mKEM variants to be (asymptotically) faster than the trivial solution with
original schemes by factors ranging from 1.92 to more than 35.

Additionally, we show that we can use the mKEM primitive for the TreeKEM
protocol obtaining significant bandwidth savings. To give some context, the im-
portance of TreeKEM could be best understood by looking at its parent protocol,
MLS [10,38], a IETF draft for secure (group) messaging. MLS has gained consid-
erable industrial traction and has attracted a fair amount of academic scrutiny.
TreeKEM constitutes the cryptographic backbone of MLS, as well as its main
bottleneck in bandwidth and computational efficiency. Indeed, given N users,
it requires each of them to compute and send O(logN) ciphertexts at regular
intervals. We highlight a simple but powerful interplay between TreeKEM and
mKEM, and show that by applying our technique we can reduce communication
cost by a factor between 1.8 and 4.2 compared to using standard KEMs.

Our Techniques: Generic Construction of IND-CCA secure mKEM. On
a high level, our generic construction can be seen as a generalization of the
Fujisaki-Okamoto (FO) transform [23]. The FO transform (roughly) converts any
IND-CPA secure PKE into an IND-CCA secure KEM. There are several variants of
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the FO transform and most of the variants are secure in the ROM [18,22,25,37]
and/or QROM [15,25,29–32,39,41,43]. The high-level construction is as follows:
to encrypt, we sample a random message M←M and derive randomness for the
underlying encryption algorithm of the PKE by hashing M with a hash function
G modeled as a (Q)RO. That is, ct← PKE.Enc(pk,M;G(M)). The session key is
then set as K := H(M), where H is another hash function modeled as a (Q)RO. To
decrypt, we first decrypt M′ ← PKE.Dec(sk, ct) and then only accept K = H(M′)
if M′ re-encrypts back to ct, that is, we check ct = PKE.Enc(pk,M′;G(M′)).
Although the actual proof is rather complicated, intuitively, it achieves IND-CCA
security since the adversary must have queried G to have constructed a valid
ciphertext ct. Therefore, in the ROM, to answer a decapsulation-oracle query,
the simulator runs through all the messages that have been queried to G to
check if any of them re-encrypts to ct. Since the simulator no longer requires sk
to simulate the decapsulation oracle, we can invoke the IND-CPA security of the
underlying PKE.

Our idea is to generalize the FO transform to the mPKE/mKEM setting. At
first glance, this may seem to not work. Indeed, an mPKE typically comes with
a multi -encryption algorithm with the following syntax: mEnc(pp, (pki)i∈[N ],
M; r) → ct, where ct is targeted to the set of N recipients with public keys
(pki)i∈[N ]. There is also an extraction algorithm mExt which takes as input an
index i ∈ [N ] and ct, and outputs the ciphertext component cti targeted to the
i-th recipient, say Ri, holding pki. Recipient Ri can then run the decryption al-
gorithm on cti using its secret key ski. The reason why the FO transform cannot
be directly applied to mPKE becomes clear. Assume r = G(M) and that recipient
Ri decrypted to M. Then, to check validity of cti, Ri must re-encrypt the entire
ciphertext ct by running mEnc(pp, (pki)i∈[N ],M; r). Therefore, the decapsulation
time will depend on N , which is highly undesirable.

To get around this issue, in this work we consider a slight variant of mPKE
with a decomposable flavor. Informally, a decomposable multi-encryption algo-
rithm mEnc takes randomness of the form r = (r0, r1, · · · , rN ) as input, and
creates a public-key-independent ciphertext ct0 ← mEnci(r0) and public-key-
dependent ciphertexts ĉti ← mEncd(pki,M; r0, ri). The resulting ciphertext for
recipient Ri is then cti = (ct0, ĉti). We view this as a natural formalization of
mPKE as it is satisfied by all the mPKE constructions that we are aware of. More-
over, this feature is desirable in practice as it allows to parallelize part of the
encryption algorithm. Now, to perform the FO transform, we derive r0 = G(M)
and ri = G(pki,M). It is evident that Ri can re-encrypt and check the validity of
its ciphertext. Notably, the decapsulation time is now independent of N . With
this new formalization, the proof in the (classical) ROM follows in a straightfor-
ward manner (with minor modification) from the standard FO transform [25].

However, the security proof of our mKEM in the quantum ROM (QROM)
requires more work. Prior proof strategies in the QROM for standard IND-CCA
secure KEMs based on the FO transform – which fix the description of the QROM
at the outset of the game [15,25,29–31,39, 41] – seem to be an ill fit for mPKE.
This is because in the multi-recipient setting, the decapsulation oracle is required
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to output a different (implicit) rejection value for each of the users when the ci-
phertext is invalid, and to output the same session key K when the ciphertext
is valid. Due to this discrepancy between invalid and valid ciphertexts (i.e., the
former requires to output different random values, whereas the latter requires to
output the same random value), previous proof techniques that always output
random values fail. Note that in the single-user setting, regardless of the cipher-
text being valid or invalid, the decapsulation oracle could output random values
without being detected by the adversary, and hence, this obstacle was absent. To
overcome this, we use the recently introduced compressed oracles technique [43].
This allows the simulator to perform lazy sampling and to check the validity of
the ciphertext submitted to the decapsulation oracle without interfering with
the adversary’s state. Although the high-level structure of the proof is similar to
the classical case, much subtle care is required in the QROM case as the simu-
lator must not disturb the adversary’s state. We note that Zhandry [43] showed
security of one variant of the FO transform which converts a perfectly correct
IND-CPA secure PKE to an IND-CCA secure PKE.

2 Preliminaries

2.1 Hard Problems for Lattices

For any natural number d and q, let Rq denote the ring Z[X]/(q,Xd + 1). The
learning with errors (LWE) problem is defined below.

Definition 1 (Learning with Errors (LWE)). Let d, q, n1, n2, n3 be natural
numbers, and Ds and De be distributions over Rq. We say that the advantage of
algorithm A in solving the (decisional) LWEn1,n2,n3 problem over the ring Rq is

AdvLWE
n1,n2,n3

(A) := | Pr[A← Rn1×n2
q ,S← Dn2×n3

s ,E← Dn1×n3
e : 1← A(A,AS + E)]

− Pr[A← Rn1×n2
q ,B← Rn1×n3

q : 1← A(A,B)]
∣∣ .

We say the LWEn1,n2,n3 problem is hard if, for any (possibly quantum) efficient
adversary A, its advantage is negligible.

We also consider a variant of the LWE problem, called learning with rounding
(LWR) problem [7], where the least significant bits are removed. The benefit of
this variant is that we no longer require to sample the noise, as it is removed.
Below the function b·ep : Zq → Zp, where q > p ≥ 2, is defined as bxep =
b(p/q) · xe mod p. The definition of the LWR problem follows.

Definition 2 (Learning with Rounding (LWR)). Let d, p, q, n1, n2, n3 be
natural numbers such that q > p, and Ds a distributions over Rq. We say that
the advantage of algorithm A in solving the (decisional) LWRn1,n2,n3

problem
over the rings Rp and Rq is

AdvLWR
n1,n2,n3

(A) := | Pr[A← Rn1×n2
q ,S← Dn2×n3

s : 1← A(A, bASep)]
− Pr[A← Rn1×n2

q ,B← Rn1×n3
p : 1← A(A,B)]

∣∣ .
We say the LWRn1,n2,n3

problem is hard if, for any (possibly quantum) efficient
adversary A, its advantage is negligible.
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2.2 Hard Problems for Isogenies

In the following sections we propose two different isogeny-based schemes: one
stemming from the SIDH key exchange [21] and the other from the CSIDH key
exchange [16]. Both key exchanges share common mathematical tools, but several
technical differences make them, and their descendants, substantially different.
As a consequence, schemes in the SIDH family rely on hardness assumptions
different from those used for schemes in the CSIDH family. Our schemes make
no exception, as they use distinct security assumptions.

SIDH-based assumption. Let p be an odd prime of the form 2e23e3 − 1, with
e2, e3 ∈ N and 2e2 ≈ 3e3 . For a supersingular elliptic curve E over Fp2 we will
denote by B2 = {P2, Q2} and B3 = {P3, Q3} bases for E[2e2 ] and E[3e3 ], respec-
tively. Under the hypothesis that |E(Fp2)| = (2e23e3)2, both torsion subgroups
E[2e2 ] and E[3e3 ] are contained in E(Fp2). Given the curve E and s ∈ Z2e2 , by
pk2(s) we denote the tuple (E/ 〈R2 = P2 + [s]Q2〉 , φ〈R2〉(P3), φ〈R2〉(Q3)), where
φ〈R2〉 is the isogeny from E having kernel 〈R2〉. Analogously, for r ∈ Z3e3 we
define pk3(r) as (E/ 〈R3 = P3 + [r]Q3〉 , φ〈R3〉(P2), φ〈R3〉(Q2)).

The security of our scheme relies on a decisional variant, named SSDDH [21],
of the SSCDH assumption. The latter is used by one of NIST second-round
candidate KEMs, called SIKE [28], which is deduced from the key exchange
SIDH.

Definition 3 (Supersingular Decisional Diffie-Hellman (SSDDH)). Let
E be a supersingular elliptic curve over Fp2 such that |E(Fp2)| = (2e23e3)2. We
say that the advantage of algorithm A in solving the SSDDHp,E,B2,B3 problem is

AdvSSDDH
p,E,B2,B3

(A) := | Pr[s← Z2e2 , r ← Z3e3 :

1← A(pk2(s), pk3(r), E/ 〈P2 + [s]Q2, P3 + [r]Q3〉)]
− Pr[(s, s′)← (Z2e2 )2, (r, r′)← (Z3e3 )2 :

1← A(pk2(s), pk3(r), E/ 〈P2 + [s′]Q2, P3 + [r′]Q3〉)]| .

We say the SSCDHp,E,B2,B3
problem is hard if, for any (possibly quantum) effi-

cient adversary A, its advantage is negligible.

CSIDH-based assumption. The CSIDH key exchange works with supersin-
gular elliptic curves and isogenies as well, but they are defined over a prime field
Fp. Despite offering weaker security guarantees than SIDH, CSIDH enjoys a sim-
pler design based on the action of a group G on a set of curves. The simplicity of
its design makes it easy to use CSIDH for constructing cryptographic primitives.
Details on the CSIDH assumption we use are provided in the full version.

3 Multi-Recipient PKE and KEM

3.1 Decomposable Multi-Recipient Public Key Encryption
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Definition 4 (Decomposable Multi-Recipient Public Key Encryption).
A (single-message) decomposable multi-recipient public key encryption (mPKE)

over a message space M and ciphertext spaces C and Csingle consists of the fol-
lowing five algorithms mPKE = (mSetup,mGen,mEnc,mExt,mDec) :

– mSetup(1κ) → pp : The setup algorithm on input the security parameter 1κ

outputs a public parameter pp.
– mGen(pp) → (pk, sk) : The key generation algorithm on input a public pa-

rameter pp outputs a pair of public key and secret key (pk, sk).
– mEnc(pp, (pki)i∈[N ],M; r0, r1, · · · , rN ) → ct = (ct0, (ĉti)i∈[N ]) : The (de-

composable) encryption algorithm running with randomness (r0, r1, · · · , rN ),
splits into a pair of algorithms (mEnci,mEncd) :
• mEnci(pp; r0) → ct0 : On input a public parameter pp and randomness
r0, it outputs a (public key Independent) ciphertext ct0.
• mEncd(pp, pki,M; r0, ri)→ ĉti : On input a public parameter pp, a public

key pki, a message M ∈M, and randomness (r0, ri), it outputs a (public
key Dependent) ciphertext ĉti.

– mExt(i, ct) → cti = (ct0, ĉti) or ⊥ : The deterministic extraction algorithm
on input an index i ∈ N and a (multi-recipient) ciphertext ct ∈ C, outputs
either a (single-recipient) ciphertext cti = (ct0, ĉti) ∈ Csingle or a special
symbol ⊥Ext indicating extraction failure.

– mDec(sk, cti)→ M or ⊥ : The deterministic decryption algorithm on input a
secret key sk and a ciphertext cti ∈ Csingle, outputs either M ∈M or a special
symbol ⊥ 6∈ M.

Although we can consider non-decomposable multi-recipient PKEs, we only
focus on decomposable schemes as they are compatible with the Fujisaki-Okamoto
(FO) transform [23]. Informally, the FO transform relies on the recipient being
able to recover the encryption randomness from the ciphertext and to check valid-
ity of the ciphertext by re-encrypting with the recovered randomness. Therefore,
in the multi-recipient setting, if we do not impose decomposable encryption, then
the recipient may require all the public keys that were used in constructing ct
to be able to re-encrypt. However, this is clearly undesirable since the decryp-
tion time may now depend on the number of public keys used to encrypt, and
furthermore, the size of the ciphertext will grow by appending all the public
keys used. Therefore, in this paper, when we say mPKE, we always assume it is
decomposable. We require the following properties from a mPKE.

Definition 5 (Correctness). A mPKE is δ-correct if

δ ≥ E
[

max
M∈M

Pr

[
ct0 ← mEnci(pp), ĉt← mEncd(pp, pk,M) :

M 6= mDec(sk, (ct0, ĉt))

]]
, (1)

where the expectation is taken over pp← mSetup(1κ) and (pk, sk)← mGen(pp).

We also define the notion of well-spreadness [23] which states informally that
the ciphertext has high min-entropy.
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Definition 6 (γ-Spreadness). Let mPKE be a decomposable multi-recipient
PKE with message space M and ciphertext spaces C and Csingle. For all pp ∈
Setup(1κ), and (pk, sk) ∈ Gen(pp), define

γ(pp, pk) := − log2

(
max

ct∈Csingle,M∈M
Pr
r0,r

[
ct =

(
mEnci(pp; r0),mEncd(pp, pk,M; r0, r)

)])
.

We call mPKE γ-spread if E[γ(pp, pk)] ≥ γ, where the expectation is taken over
pp← mSetup(1κ) and (pk, sk)← mGen(pp).

Finally, we define the notion of indistinguishability of chosen plaintext attacks
(IND-CPA) for mPKE.

Definition 7 (IND-CPA). Let mPKE be a decomposable multi-recipient PKE
with message space M and ciphertext space C. We define IND-CPA by a game
illustrated in Fig. 1 and say the (possibly quantum) adversary A = (A1,A2) wins
if the game outputs 1. We define the advantage of A against IND-CPA security
of mPKE parameterized by N ∈ N as AdvIND-CPA

mPKE,N (A) = |Pr[A wins]− 1/2| .

Remark 1 (Insider corruption). We point out that insider corruptions for mPKE
are not considered [8, 40]. This is because if an adversary obtains a secret key
corresponding to any of the public keys used to encrypt, then it can trivially
recover the encrypted message.

Remark 2 (Inefficient mPKE from any standard (single-recipient) PKE). Our
definition of mPKE captures the trivial solution of sending different ciphertexts
obtained with a standard single-recipient PKE to multiple recipients. That is,
independently encrypting the same message to all recipients using their respec-
tive public keys. In the above syntax of mPKE, this amounts to setting mEnci

as a null function and setting r0 as an empty string. Also, mExt will simply pick
the relevant ciphertext component for the particular recipient. Therefore, in the
context of ciphertext compression, the goal is to obtain a mPKE with better
efficiency/ciphertext-size compared to this trivial method.

Remark 3 (Number of recipients). In general, the number of recipients N =
poly(κ) can be chosen arbitrary by the sender (or adversary). Some schemes may
require an upper bound on N since the concrete provably-secure parameters may
have a dependance on N , e.g., the reduction loss degrades by a factor of 1/N .
Our proposal does not require such an upper bound since N only shows up in a
statistical manner, and so we can handle large N , say N = 215, without having
any large impact on the concrete parameter choice.

3.2 Multi-Recipient Key Encapsulation Mechanism

Definition 8 (Multi-Recipient Key Encapsulation Mechanism). A (single-
message) multi-recipient key encapsulation mechanism (mKEM) over a key space
K and ciphertext space C consists of the following five algorithms mKEM =
(mSetup,mGen,mEncaps,mExt,mDecaps) :
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GAME IND-CPA

1: pp← mSetup(1κ)
2: for i ∈ [N ] do
3: (pki, ski)← mGen(pp)

4: (M∗0,M
∗
1, state)← A1(pp, (pki)i∈[N ])

5: b← {0, 1}
6: ct∗ ← mEnc(pp, (pki)i∈[N ],M

∗
b)

7: b′ ← A2(pp, (pki)i∈[N ], ct
∗, state)

8: return [b = b′]

GAME IND-CCA

1: pp← mSetup(1κ)
2: for i ∈ [N ] do
3: (pki, ski)← mGen(pp)

4: (K∗0, ct
∗)← mEncaps(pp, (pki)i∈[N ])

5: K∗1 ← K
6: b← {0, 1}
7: b′ ← AD(pp, (pki)i∈[N ], ct

∗,K∗b)
8: return [b = b′]

Decapsulation Oracle D(i, ct)

1: ct∗i := mExt(i, ct∗)
2: if ct = ct∗i then
3: return ⊥
4: K := mDecaps(ski, ct)
5: return K

Fig. 1: IND-CPA of mPKE and IND-CCA of mKEM.

– mSetup(1κ) → pp : The setup algorithm on input the security parameter 1κ

outputs a public parameter pp.
– mGen(pp) → (pk, sk) : The key generation algorithm on input a public pa-

rameter pp outputs a pair of public key and secret key (pk, sk).
– mEncaps(pp, (pki)i∈[N ]) → (K, ct) : The encapsulation algorithm on input a

public parameter pp, and Npublic keys (pki)i∈[N ], outputs a key K and a
ciphertext ct.

– mExt(i, ct) → cti : The deterministic extraction algorithm on input an in-
dex i ∈ N and a ciphertext ct, outputs either cti or a special symbol ⊥Ext

indicating extraction failure.
– mDecaps(sk, cti) → K or ⊥ : The deterministic decryption algorithm on in-

put a secret key sk and a ciphertext cti, outputs either K ∈ K or a special
symbol ⊥ 6∈ K.

Definition 9 (Correctness). A mKEM is δN -correct if

δN ≥ Pr
[
(K, ct)← mEnc(pp, (pki)i∈[N ]), (cti ← mExt(i, ct))i∈[N ]

: ∃i ∈ [N ] s.t. K 6= mDec(sk, cti)] ,

where the probability is taken over pp← mSetup and (pki, ski)← mGen(pp) for
all i ∈ [N ].

We define the notion of indistinguishability of chosen ciphertext attacks
(IND-CCA) for mKEM.

Definition 10 (IND-CCA). Let mKEM be a multi-recipient KEM. We define
IND-CCA by a game illustrated in Fig. 1 and say the (possibly quantum) ad-
versary A (making only classical decapsulation queries to D) wins if the game
outputs 1. We define the advantage of A against IND-CCA security of mKEM
parameterized by N ∈ N as AdvIND-CCA

mKEM,N (A) = |Pr[A wins]− 1/2| .

10



3.3 Recipient Anonymity for mPKE and mKEM

In many practical scenarios, it is often convenient to have an additional guar-
antee of recipient anonymity, which stipulates that the ciphertext does not leak
any information about the set of intended recipients. Informally, we say mPKE
(mKEM) is IND-Anon-CPA (IND-Anon-CCA) if there exists a fake encryption (en-
capsulation) algorithm mEnc (mEncaps), which takes as input only the number
of recipients and outputs a fake ciphertext indistinguishable from an honestly
generated ciphertext. The definition is formally provided in the full version.

4 FO Transform: (IND-CPA mPKE) ⇒ (IND-CCA mKEM)

4.1 Generic Construction via FO Transform

We provide a generic transformation of an IND-CPA secure mPKE to an IND-CCA
secure mKEM following the (generalized) Fujisaki-Okamoto transform. This is
illustrated in Fig. 2. The scheme provides implicit rejection as opposed to explicit
rejection, where in the latter type, the decapsulation algorithm outputs a special
symbol ⊥ to explicitly indicate decapsulation failure. We discuss later how to
tweak our scheme to get explicit rejection with no additional cost. In Fig. 2,
G1,G2,H,H

′ are hash functions modeled as random oracles in the security proof.
They can be simulated by a single random oracle by using appropriate domain
separation. Finally, we include an `-bit seed to perform implicit rejection by
viewing H′(seed, ·) as a pseudorandom function in the (Q)ROM.

mSetup(1κ)

1: pp← mSetupp(1κ)
2: return pp

mGen(pp)

1: (pk, skp)← mGenp(pp)
2: seed← {0, 1}`
3: sk := (skp, seed)
4: return (pk, sk)

mExt(i, ct)

1: cti ← mExtp(i, ct)
2: return cti

mEncaps(pp, (pki)i∈[N ])

1: M←M
2: ct0 := mEnci(pp;G1(M))
3: for i ∈ [N ] do
4: ĉti := mEncd(pp, pki,M;

G1(M),G2(pki,M))

5: K := H(M)
6: return (K, ct := (ct0, (ĉti)i∈[N ]))

mDecaps(sk, ct)

1: sk := (skp, seed)
2: M := mDec(skp, ct)
3: if M = ⊥ then
4: return K := H′(seed, ct)

5: ct0 := mEnci(pp;G1(M))
6: ĉt := mEncd(pp, pk,M;G1(M),G2(pk,M))
7: if ct 6= (ct0, ĉt) then
8: return K := H′(seed, ct)
9: else

10: return K := H(M)

Fig. 2: An IND-CCA secure mKEM from a decomposable IND-CPA secure
mPKE = (mSetupp,mGenp,mEnc = (mEnci,mEncd),mExtp,mDec). We include
the superscript p to make the code more readable.
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The following theorem classically and quantumly reduce the IND-CCA secu-
rity of mKEM to the IND-CPA security of mPKE, where the classical reduction
is tight. The proof for each theorem is provided in the subsequent sections.

Theorem 1 (Classical: IND-CPA mPKE ⇒ IND-CCA mKEM ). Assume
mPKE with message space M is δ-correct and γ-spread. Then, for any clas-
sical PPT IND-CCA adversary A issuing at most qD queries to the decapsulation
oracle D, a total of at most qG queries to G1 and G2, and at most qH, q

′
H queries

to H and H′, there exists a classical PPT adversary BIND such that

AdvIND-CCA
mKEM,N (A) ≤ 2 · AdvIND-CPA

mPKE,N (BIND) + (2qG + qD + 2) · δ + qD · 2−γ

+
(qG + qH)

|M|
+ q′H ·N · 2−`.

where the running time of BIND is about that of A, and ` is the number of bits
of the seed composing a private key.

Theorem 2 (Quantum: IND-CPA mPKE ⇒ IND-CCA mKEM ). Assume
mPKE with message space M is δ-correct and γ-spread. Then, for any quantum
PT IND-CCA adversary A issuing at most qD classical queries to the decapsula-
tion oracle D, a total of at most qG quantum queries to G1 and G2, and at most
qH, q

′
H quantum queries to H and H′, there exists a quantum PT adversary BIND

such that

AdvIND-CCA
mKEM,N (A) ≤

√
2 · (qG + 1) · AdvIND-CPA

mPKE,N (BIND) +
4(qG + 1)√
|M|

+ 12 · (qG + qD + 1)2 · δ + qD · (9
√

2−γ + 2µ−2) + q′H ·N · 2
−`+1

2 ,

where the running time of BIND is about that of A, ` is the number of bits of
the seed composing a private key, and µ = max(r0,r)∈R{|r0| , |r|} where R is the
randomness space of mPKE.

Remark 4 (Implicit vs explicit rejection). In our construction in Fig. 2, we use
implicit rejection. That is, mDecaps does not explicitly output ⊥ to indicate that
the input ciphertext was invalid. This may be suitable in practice when we do
not want to let the adversary know that decapsulation failed. However, we note
that our proof is agnostic to this choice, and in particular, the same proof can be
shown in case we want explicit rejection, where mDecaps outputs ⊥ in case either
M = ⊥ or ct is not the same as the reencrypted ciphertext (ct0, ĉti). Concretely,
we obtain an IND-CCA secure mKEM with explicit rejection by simply outputting
⊥ rather than outputting H′(seed, ct) in Fig. 2. We emphasize that this tweak
cannot be made in general since the security proofs may hinge on the fact that
the adversary does not learn decapsulation failures (see [15,39]).
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4.2 Proof for Classical Case

Proof (Proof of Thm. 1). Let A be a classical PPT adversary against the
IND-CCA security of mKEM. We upper bound its advantage by considering the
following game sequence. We denote by Ei the event A wins in Gamei.

- Game1: This is the real IND-CCA security game: AdvIND-CCA
mKEM,N (A) = |Pr[E1]− 1/2|.

- Game2: In this game, we replace the computation of H′(seedi, ·) by a random

function Ĥ′i(·) in case M = ⊥ or ct 6= (ct0, ĉt) occurs when answering the de-

capsulation oracle with input i ∈ [N ]. Here, Ĥ′i(·) is a random function that
cannot be accessed by the adversary. Since this modification remains unnoticed
by the adversary unless H′(seed, ·) is queried for any seed ∈ {seedi}i∈[N ], we have

|Pr[E1]− Pr[E2]| ≤ q′H·N
2` .

- Game3: In this game, we enforce that no decryption failure occurs. Namely, we
modify the random oracle so that the output is distributed randomly over the
space of randomness that leads to no decryption failures. By the correctness of
mPKE, we have |Pr[E2]− Pr[E3]| ≤ (qG + qD + 1) · δ.

Game4 : Decap. Oracle D(i, ct 6= ct∗i )

1: ski := (skpi , seedi)
2: M := mDec(skpi , ct)
3: if M /∈ LG then

4: return K := Ĥ′i(ct)

5: if M = ⊥ then
6: return K := Ĥ′i(ct)

7: ct0 := mEnci(pp;G1(M))
8: ĉti := mEncd(pp, pki,M;G1(M),G2(pki,M))
9: if ct 6= (ct0, ĉti) then

10: return K := Ĥ′i(ct)
11: else
12: return K := H(M)

Game5 : Decap. Oracle D(i, ct 6= ct∗i )

1: for M ∈ LG do
2: ct0 := mEnci(pp;G1(M))
3: ĉti := mEncd(pp, pki,M;

G1(M),G2(pki,M))
4: if ct = (ct0, ĉti) then
5: return K := H(M)

6: return K := Ĥi(ct)

Fig. 3: Decapsulation oracles of Game4 and Game5. We enforce ct is not ct∗i :=
mExt(i, ct∗) at the input level for simplicity.

(The next Game4, Game5 and Game6 aim to get rid of the secret keys ski to
answer A’s decapsulation oracle queries.)
- Game4: In this game, we add an additional check when answering the de-
capsulation oracle query. This is illustrated in Fig. 3 where the red underline
indicates the modification. Here, LG is a list that stores the random oracle
queries made to G1 and G2.We have M ∈ LG if either G1 was queried on
M or G2 was queried on (pk,M) for any pk. The only difference occurs when
A queries a ciphertext ct = (ct0, ĉti) such that M := mDec(skpi , ct) has not
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been queried to the random oracles G1 and G2 but ct0 = mEnci(pp;G1(M)) and
ĉti = mEncd(pp, pki,M;G1(M),G2(pki,M)). Since G1(M) and G2(pki,M) are in-
formation theoretically hidden from A, we can use γ-spreadness of mPKE to
conclude |Pr[E3]− Pr[E4]| ≤ qD · 2−γ .
- Game5: In this game, we further modify the way a decapsulation-oracle query is
answered. This is illustrated in Fig. 3, where notice that we no longer require the
secret keys ski to answer the queries. If the decapsulation oracle in Game4 outputs
K := H(M), then M ∈ LG and ct = (ct0, ĉti) holds. Therefore, the decapsulation
oracle in Game5 outputs K as well. On the other hand, assume the decapsulation
oracle in Game5 outputs K := H(M) for some M ∈ LG such that ct = (ct0, ĉti)
where ct0 := mEnci(pp;G1(M)) and ĉti := mEncd(pp, pki,M;G1(M),G2(pki,M)).
Then, since we have no correctness error (due to Game3), ct must decrypt to M.
Hence, this implies that the decapsulation oracle Game4 outputs the same K as
well. Combining the arguments together, we get Pr[E4] = Pr[E5].

- Game6: In this game, we undo the change we made in Game3 and alter the
output of the random oracles G1 and G2 to be over all the randomness space.
Due to the same argument as before, we have |Pr[E5]− Pr[E6]| ≤ (qG + 1) · δN .
(The following final Game7 aims to get rid of M∗ in the challenge ciphertext.)
- Game7: In this game, we sample the random message M∗ ← M to be used
to generate the challenge ciphertext at the beginning. We then define Query as
the event that A queries the random oracles H(·), G1(·), or G2(?, ·) on input
M∗, where ? denotes an arbitrary element. When Query occurs, we abort the
game and force A to output a random bit. We show in the full version that

|Pr[E6]− Pr[E7]| ≤ 2 · AdvIND-CPA
mPKE,N (BIND) + (qG+qH)

|M| for some classical PPT adver-

sary BIND with similar runtime as A.
In Game7, the view of the adversary is independent of the challenge bit b.

Therefore, we have Pr[E7] = 1
2 . This concludes the proof.

4.3 Proof for Quantum Case

The proof structure for the quantum case follows very closely the classical case.
Minimal background on quantum computation is provided in the full version, and
we refer for more details to other works, such as [6,20,27,43]. The main difference
between our proof and prior proofs for IND-CCA secure KEM in the QROM, e.g.,
[15,25,29–31,39,41], is that we use the lazy sampling with compressed quantum
oracles introduced in [43]. This allows the simulator to check the validity of the
ciphertext submitted to the decapsulation oracle without interfering with the
adversary’s state. Specifically, other than how we specify and interact with the
random oracle, the proof structure is essentially the same as the classical case.
We refer to the full version for the full proof.

4.4 Adding Recipient Anonymity

The construction provided in Sec. 4.1 immediately give rise to a recipient anony-
mous mKEM if we additionally assume the underlying IND-CPA secure mPKE is

14



IND-Anon-CPA secure. In particular, we define the fake encapsulation algorithm
mEncaps (see Sec. 3.3) as: sample K ← K, run ct ← mEnc(pp, N), and output
(K, ct), where mEnc is the fake encryption algorithm of the underlying mPKE
(see Sec. 3.3). The only modification to the proofs of Thms. 1 and 2 is that we
add an additional game at the end where we invoke the IND-Anon-CPA security
game. Since, by the end of both proofs, the key K∗ are distributed uniformly
random, it remains to guarantee that ct∗ is distributed independently of the
public keys (pki)i∈[N ]. We omit the full proof as it directly reduces from the
IND-Anon-CPA security game.

5 Multi-Recipient KEM from Post-Quantum Assumptions

We provide two types of IND-CCA secure mKEM instantiations: one scheme based
on lattices, and two schemes based on isogenies (in the SIDH and CSIDH setting).
Specifically, we provide two types of IND-CPA secure mPKEs and use Thms. 1
and 2 to generically convert them into IND-CCA secure mKEMs in the ROM and
QROM, respectively. As we see in Sec. 6, both types of instantiations are designed
to fit with many of the NIST round 2 candidate (single-recipient) PKE/KEMs.

5.1 Multi-Recipient KEM from Lattices

In this section, we show that the lattice-based (single-recipient) PKE based on the
Lindner-Peikert framework [34] provides a natural mPKE with the required prop-
erties. Since we are able to reuse a large part of the ciphertext for lattice-based
schemes, we get a notable efficiency gain compared to the trivial mPKE/mKEM
which runs PKE/KEM independently for each recipient (as discussed in Rem. 2).

The mPKE scheme based on the Lindner-Peikert framework [34] is provided
in Fig. 4. Here, Encode (resp. Decode) is an efficiently computable bijective func-
tion that maps elements from the message space (resp. Rm̄×mq ) to Rm̄×mq (resp.
message space). The details of Encode and Decode are scheme specific and not
significant for this section. We show the mPKE scheme in Fig. 4 has all the prop-
erties required for applying the “multi-recipient” Fujisaki-Okamoto transform
(Thms. 1 and 2). First, it is straightforward to see that we can easily set the pa-
rameters as to have δ-correctness and γ-spreadness for exponentially small δ and
2−γ . Moreover, practical schemes such as NIST candidates also allow for expo-
nentially small δ and 2−γ . It remains to show that the Linder-Peikert framework
provides not only a secure PKE but also a secure mPKE.

IND-(Anon-)CPA Security. It is straightforward to see that IND-CPA security
follows naturally from the LWE assumption. The proof of the following lemma
is given in the full version for completeness.

Lemma 1. Assume mPKE as shown in Fig. 4. Then, for any (classical/quantum)
IND-CPA adversary A, there exist (classical/quantum) adversaries B1 and B2

such that

AdvIND-CPA
mPKE,N (A) ≤ AdvLWE

n,n,Nm(B1) + AdvLWE
(n+Nm),n,m̄(B2).
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Algorithm 1 mSetup(1κ)

Input: Security parameter 1κ

Output: Public parameter pp
1: A← Rn×nq

2: return pp := A

Algorithm 2 mGen(pp)

Input: Public parameter pp = A
Output: Public key pk, a secret key sk
1: S← Dn×m

s

2: E← Dn×m
e

3: B← AS + E . B ∈ Rn×mq

4: return pk := B, sk := S

Algorithm 3 mEnc(pp, (pki)i∈[N ],M)

Input: Public parameter pp = A, set of
public keys (pki = Bi)i∈[N ], message M

Output: Ciphertext ct = (ct0, (ĉti)i∈[N ])
1: r0 := (R,E′)← Dm̄×n

s ×Dm̄×n
e

2: ct0 := mEnci(pp; r0)
3: for i ∈ [N ] do
4: ri := E′′i ← Dm̄×m

e

5: ĉti := mEncd(pp, pki,M; r0, ri)

6: return ct := (ct0, ĉt1, . . . , ĉtN )

Algorithm 4 mEncd(pp, pki,M; r0, ri)

Input: Public parameter pp = A, public
key pki = Bi, message M, randomness
r0 = (R,E′) and ri = E′′i

Output: (Public key dependent) cipher-
text ĉti

1: Vi ← RBi + E′′i + Encode(M) .
Vi ∈ Rm̄×mq

2: return ĉti := Vi

Algorithm 5 mEnci(pp; r0)

Input: Public parameter pp = A, random-
ness r0 = (R,E′)

Output: (Public key independent) cipher-
text ct0

1: U← RA + E′ . U ∈ Rm̄×nq

2: return ct0 := U

Algorithm 6 mDec(sk, ct)

Input: Secret key sk = S, ciphertext
ct = (U,V)

Output: Message M
1: M← V −US . M ∈ Rm̄×mq

2: return M := Decode(M)

Fig. 4: Lattice-based mPKE via the Lindner-Peikert framework [34]. mExt with
input index i is defined by picking the relevant components (ct0, ĉti) from ct.

Moreover, as a simple consequence of the proof of the above lemma, we have
IND-Anon-CPA for free. In particular, the fake encryption algorithm mEnc simply
outputs a random element in Rm̄×nq × (Rm̄×mq )N .

Remark 5 (Using LWR instead of LWE). The mPKE presented in Fig. 4 readily
generalizes to the LWR setting. The only difference is that instead of adding the
noise terms (i.e., E,E′,E′′i ), we round. For instance, the public key pk will be
bASep ∈ Rn×mp rather than AS + E ∈ Rn×mq . It is easy to show that mPKE has
γ-spreadness, is δ-correct and IND-CPA secure assuming the LWR assumption.
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5.2 Multi-Recipient KEMs from Isogenies

Retracing the steps that lead to the hashed version of ElGamal encryption from
the Diffie-Hellman key exchange, public-key encryption schemes can be deduced
from both SIDH [21] and CSIDH. Building on such encryption schemes, we
present two isogeny-based IND-CPA secure mPKEs. Both of them satisfy the
generic properties required in Thms. 1 and 2 for obtaining an IND-CCA secure
mKEM. Since a unified presentation of the two schemes would be rather con-
voluted, for the sake of readability we differentiate their explanations. We note
that both schemes require a family of universal hash functions H = {Hk : X ⊂
F → {0, 1}w}k∈K indexed by a finite set K, where F denotes a finite field. The
scheme based on SIDH is detailed below, while, due to space limitation, the
CSIDH-based mPKE is provided in the full version.

Isogeny-based mPKE via SIDH. The mPKE deduced from SIDH is provided
in Fig. 5. We highlight that the public parameter pp output by mSetup on input a
security parameter 1κ consists of: a prime p of the form 2e23e3−1; a supersingular
elliptic curve E defined over Fp2 and such that |E(Fp2)| = (2e23e3)2; bases
B2 = {P2, Q2} and B3 = {P3, Q3} for E[2e2 ] and E[3e3 ], respectively; a hash
function H uniformly sampled from a family of universal hash functions H =
{Hk : X ⊂ Fp2 → {0, 1}w}k∈K . Here X is the set of all supersingular j-invariants
in Fp2 , for which holds |X | = p/12+ε, with ε ∈ {0, 1, 2} [21]. Furthermore, Encode
(resp. Decode) is an efficiently computable bijective function from the message
space (resp. {0, 1}w) to {0, 1}w (resp. message space). The details of Encode and
Decode are not significant for this section, since they are scheme specific.

The perfect correctness of the SIDH-based public-key encryption scheme from
which our mPKE is deduced implies that the latter has δ-correctness, with δ = 0.
In addition, for a given security parameter 1κ, the prime p = 2e23e3 − 1 in the
public parameter pp ← mGen(1κ) is fixed [28]. The first component of each
element in Csingle contains a curve 2e2-isogenous to E. We denote by W the set
{j(E/ 〈P2 + [r]Q2〉)|r ∈ Z2e2} of all such curves. Since p/12 + ε � |W |, one
expects that the number of pairs of distinct coefficients r, r̃ ∈ Z2e2 such that
j(E/ 〈P2 + [r]Q2〉) = j(E/ 〈P2 + [r̃]Q2〉) is very small [1]. Hence, we can assume
that |W | = 2e2 and deduce γ(pp, pk) ≥ e2. This value is independent of the
public key pk and E,B2, B3 in pp,therefore the mPKE scheme has γ-spreadness
with γ = e2. We observe that 1/2e2 ≈ 1/

√
p, which is negligible in the security

parameter κ (e2 ≥ κ for any set of SIDH parameters [28]).

IND-(Anon-)CPA Security. The IND-CPA security of the SIDH-based mPKE fol-
lows from the SSDDH assumption and the Leftover Hash Lemma. The proof of
the following lemma is given in the full version for completeness.

Lemma 2. Assume mPKE as shown in Fig. 5. Then, for any (classical/quantum)
IND-CPA adversary A, there exists a (classical/quantum) adversary B such that

AdvIND-CPA
mPKE,N (A) ≤ N ·

(
AdvSSDDH

p,E,B2,B3
(B) +

1

2

√
2w/p

)
. (2)
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Algorithm 7 mSetup(1κ)

Input: Security parameter 1κ

Output: Public parameter pp
1: Select e2, e3, E,B2 = {P2, Q2}, B3 =
{P3, Q3}

2: H← H
3: return pp := (E, {(ej , Bj)}j=2,3, H)

Algorithm 8 mGen(pp)

Input: Public parameter pp = (E, {(ej ,
Bj)}j=2,3, H)

Output: Public key pk, a secret key sk
1: (P2, Q2)← B2, (P3, Q3)← B3

2: s← Z3e3

3: R3 ← P3 + [s]Q3

4: E3 ← E/ 〈R3〉
5: U2 ← φ〈R3〉(P2), V2 ← φ〈R3〉(Q2)
6: return pk := (E3, U2, V2), sk := s

Algorithm 9 mEnc(pp, (pki)i∈[N ],M)

Input: Public parameter pp = (E,
{(ej , Bj)}j=2,3, H), set of public keys

(pki = (E
(i)
3 , U

(i)
2 , V

(i)
2 ))i∈[N ], message M

Output: Ciphertext ct = (ct0, (ĉti)i∈[N ])
1: r0 := r ← Z2e2

2: ct0 := mEnci(pp; r0)
3: for i ∈ [N ] do
4: ĉti := mEncd(pp, pki,M; r0)

5: return ct := (ct0, ĉt1, . . . , ĉtN )

Algorithm 10 mEncd(pp, pki,M; r0)

Input: Public parameter pp = (E,
{(ej , Bj)}j=2,3, H), public key pki
= (E

(i)
3 ,U

(i)
2 , V

(i)
2 ), message M, ran-

domness r0 = r
Output: (Public key dependent) ci-

phertext ĉti
1: Ti ← U

(i)
2 + [r]V

(i)
2

2: Ji ← jInvariant(E
(i)
3 / 〈Ti〉)

3: Fi ← H(Ji)⊕ Encode(M)
4: return ĉti := Fi

Algorithm 11 mEnci(pp; r0)

Input: Public parameter pp = (E,
{(ej , Bj)}j=2,3, H), randomness r0 = r

Output: (Public key independent) cipher-
text ct0

1: (P2, Q2)← B2, (P3, Q3)← B3

2: R2 ← P2 + [r]Q2

3: E2 ← E/ 〈R2〉
4: U3 ← φ〈R2〉(P3), V3 ← φ〈R2〉(Q3)
5: return ct0 := (E2, U3, V3)

Algorithm 12 mDec(sk, ct)

Input: Public parameter pp = (E,
{(ej , Bj)}j=2,3, H), secret key sk = s,
ciphertext ct = (E2, U3, V3, F )

Output: Message M
1: R′ ← U3 + [s]V3

2: E′ ← E2/ 〈R′〉
3: J ′ ← jInvariant(E′)
4: M← F ⊕ H(J ′)
5: return M := Decode(M)

Fig. 5: SIDH-based mPKE via hashed ElGamal [21]. mExt with input index i is
defined by picking the relevant components (ct0, ĉti) from ct. Note that mEncd

does not require any randomness ri for i ∈ [N ].
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We note that in concrete instantiations, log2 p assumes one of the values 434, 503, 610,
while the corresponding w is 128,192 or 256, respectively [28]. Therefore the
quantity (1/2)

√
2w/p is bounded by 2152 for each pair (p, w) and it can be

safely discarded in the right term of Eq. (2). Moreover, as a simple consequence
of the concrete proof of the above lemma, we have IND-Anon-CPA for free. In
particular, the fake encryption algorithm mEnc simply outputs a tuple composed
by a ciphertext ct0 and N uniformly random elements in {0, 1}w.

Isogeny-based mPKE via CSIDH. Since the high level structure of our CSIDH-
based mPKE is similar to our SIDH-based mPKE, we refer the full details to full
version. We consider the action of a cyclic group G on a set of supersingular
elliptic curves. However, it can be easily adapted to the case where the structure
of G is unknown.

6 Instantiating mKEM with NIST Candidates and CSIDH

In this section, we concretely instantiate the generic mKEM framework laid out
in previous sections. We take the PKEs underlying 8 existing lattice-based and
isogeny-based NIST KEMs (as well as CSIDH). We first modify them into efficient
mPKEs (following Sec. 5) and then into mKEMs via our generic transformation
(Thms. 1 and 2). We note that we did not consider the corresponding mKEM
for the CISDH mPKE, for reasons explained later. We compare these mKEMs to
the trivial solution that uses (single-recipient) KEMs in parallel, and show that
our mKEMs provide efficiency gains, both in communication and computation,
of an order of magnitude.

Until the end of this document, we denote by |x| the bytesize of an object x,
where x may be any cryptographic object (a public key, a ciphertext, etc.)

6.1 Comparison Methodology

Our goal is to provide an accurate assessment of the gains provided by various
mKEM instantiations. A natural way to do that is to compare the performances
of these mKEMs (with N recipients) with N instantiations of the original (single-
recipient) KEMs. This comparison can be done via two metrics:

(C1) Communication cost. How much data does the encryptor broadcast when
using mKEM with N recipients, and how does it compare to N instances
of the original KEM (one per recipient)?

(C2) Computational cost. How many cycles does one instance of mKEM with N
recipients cost, and how does it compare to N instances of KEM?

For (C1), we measure the ratio:

Data broadcast when using N instances of the original KEM

Data broadcast when using mKEM with N recipients
. (3)

With mKEM the encryptor broadcasts a single multi-ciphertext of size |ct0| +∑
i∈[N ] |ĉti| = |ct0| + N |ĉti|, whereas with N instances of KEM he broadcasts
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N ciphertexts ct = (ct0, ĉti) – except for NewHope, see footnote 4 – for a total
size N |ct0|+N |ĉti|. Therefore, the ratio converges to a value independent of N
when N tends to infinity. Specifically, the value (3) is:

N |ct0|+N |ĉti|
|ct0|+N |ĉti|

−→
N→∞

1 +
|ct0|
|ĉti|

. (4)

Let kcomm = 1 + |ct0|
|ĉti|

. This value measures asymptotically “how much more

compact” mKEM is compared to the original KEM, and serves as our metric for
(C1). Similarly, the following value serves as our metric for (C2):

kcycles = lim
N→∞

Cycles spent to run N instances of the original KEM

Cycles spent to run mKEM with N recipients
(5)

We note that kcycles is far less absolute than kcomm as a metric, since the number of
cycles depend on the implementation of a scheme, the architecture of the target
platform, etc. However, it is a useful indicator of the efficiency gain that one can
expect by using mKEM. All cycles measurements in this section are performed
on a processor i7-8665U (Whiskey Lake) @ 1.90GHz, with Turbo Boost disabled.

6.2 Instantiation with Lattice-based NIST Candidates

In this section, we provide concrete instantiations of the high-level scheme de-
scribed in Sec. 5.1. Our efforts are facilitated by the fact that 7 lattice-based
NIST candidate KEMs are deduced from PKEs that follow the Lindner-Peikert
framework:

– Kyber;
– FrodoKEM;

– LAC;
– NewHope;

– Round5;
– Saber;

– ThreeBears.

Full specifications of these 7 schemes are available at [36]. Out of these, FrodoKEM,
Kyber, LAC and NewHope follow the most closely the Lindner-Peikert framework,
since they are based on LWE, Module-LWE, Ring-LWE and Ring-LWE, respectively.
Round5 and Saber are based on variants of LWR. This implies a few changes on
Fig. 4, since the addition of noise error is replaced in some instances by rounding.
See Rem. 5 for a short discussion on this change. Finally, ThreeBears is based on
an extremely recent variant called Module Integer-LWE. In addition, each scheme
has different parameters and uses different tweaks. A widespread trick is for ĉti
to drop the least significant bits of Vi, since the message M is encoded in the
most significant bits. This reduces the size of a (multi-)ciphertext. Note that bit
dropping is more beneficial to mKEMs than to KEMs as it reduces |ĉti|, hence a
larger bandwidth impact for mKEMs – see (4).

These 7 KEMs and the PKEs they are based on serve as the bases for our
mKEM constructions. We tweaked them in order to fit the frameworks described
in Fig. 4 (IND-CPA mPKE) and Fig. 2 (conversion into an IND-CCA mKEM).
Note that our tweaks break compatibility with the specifications of the afore-
mentioned schemes, for two reasons. First, we fix the public matrix A in order
to fit Fig. 4 (see Rem. 6 below). Second, the transform of Fig. 2 is completely
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different from the ones used in the 7 aforementioned KEMs, which themselves
differ from each other. As a consequence, comparing our mKEMs to these KEMs
is not an entirely apples-to-apples comparison, as the 7 KEMs we cited claim
some additional properties such as contributivity or security in specific threat
models (see Rem. 6). For our mKEMs, we do not claim to achieve any security
notion besides those proven in this document.

Remark 6 (Reusing the public matrix). A difference between Fig. 4 and the
aforementioned NIST schemes is that the latter use PKEs for which the matrix
A is made part of the public key pk. That is, each user has its A rather than
sharing it. The main argument for this choice is to hinder all-for-the-price-of-one
attacks [2, Section 3]. The associated threat model considers an attacker that
has enough cryptanalytic capabilities to break one hard instance of a lattice
problem, but not much more. This is an arguably specific security model, one
that implicitly considers that the parameter set of the scheme may not be cryp-
tographically secure. In order to enable our mKEM instantiations, we instead
make A part of the public parameter pp, as per Fig. 4. This can be done with
minimal changes to the PKEs used by the original KEMs, and has no impact on
their concrete security analysis.

Communication costs. Tab. 1 provides a comparison of NIST KEMs with
their mKEM variants. Sending N ciphertexts costs N · |ct| bytes for a NIST
KEM, whereas using its mKEM counterpart costs |ct0| + N · |ĉti|. The gain in
bandwidth kcomm is of one order of magnitude (sometimes two). Schemes based
on module lattices (Saber, Kyber, ThreeBears) and standard lattices (FrodoKEM)
see the most dramatic gains (as high as a factor 169 times for FrodoKEM).

Computational costs. Due to time constraints, we only implemented mKEM
on two lattice-based schemes: FrodoKEM and Kyber. Nevertheless, we believe
these examples already showcase the efficiency gain provided by our techniques.
Starting from reference implementations available on Github89, we tweaked them
to obtain mKEMs. As shown by Tab. 2, our mKEM variants perform (multi-
)encapsulation between one and two orders of magnitude faster than their origi-
nal KEM counterparts. We provide additional experiments in the full version and
show that the target platform can play an important role in the performance
gain.

6.3 Instantiation with Isogeny-Based schemes

In this section, we focus on isogeny-based instantiations of mKEM and mPKE.
Concerning SIKE, we obtain an mKEM from the mPKE of Fig. 5, and we com-
pare it with the trivial solution consisting in N instances of SIKE. For CSIDH,

4 Unlike other lattice-based KEMs, the CCA variant of NewHope adds a hash to the
ciphertext. So in this particular case |ct| = |ct0|+ |ĉti|+ {32, 64}.

8 https://github.com/Microsoft/PQCrypto-LWEKE
9 https://github.com/pq-crystals/kyber/
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Table 1: Bandwidth impact of our solution on various schemes. Sizes are in
bytes.

Scheme |ct0| |ĉti| |ct| kcomm

FrodoKEM-640 9 600 120 9 720 81
FrodoKEM-976 15 616 128 15 744 123
FrodoKEM-1344 21 504 128 21 632 169

Kyber-512 640 96 736 7.67
Kyber-768 960 128 1 088 8.5
Kyber-1024 1 408 160 1 568 9.8

LAC-128 512 200 712 3.56
LAC-192 1024 164 1188 7.24
LAC-256 1024 400 1424 3.56

NewHope-512-CCA-KEM7 896 192 1 120 5.83
NewHope-1048-CCA-KEM 1 792 384 2 208 5.75

Round5 R5ND 1KEMb 429 110 539 4.9
Round5 R5ND 3KEMb 756 74 830 11.22
Round5 R5ND 5KEMb 940 142 1 082 7.62

LightSaber 640 96 736 7.67
Saber 960 128 1 088 8.5
FireSaber 1 280 192 1 472 7.67

BabyBear 780 137 917 6.69
MamaBear 1 170 137 1 307 9.54
PapaBear 1 560 137 1 697 12.38

Table 2: Encapsulation times of FrodoKEM and Kyber vs their mKEM variants.
Times are in cycles and are normalized by the number of recipients (here, 1000).

Scheme Trivial KEM Our mKEM kcycles

FrodoKEM-640 4 948 835 251 405 19.68
FrodoKEM-976 10 413 149 387 733 26.86
FrodoKEM-1344 18 583 122 519 973 35.74

Kyber-512 181 297 42 647 4.25
Kyber-768 279 210 52 471 5.32
Kyber-1024 414 774 61 808 6.71

we compare our mPKE in the full version with N instances of the CSIDH-based
hashed ElGamal. Since CSIDH is a key-exchange, we simply construct a triv-
ial IND-CPA secure PKE from it (rather than constructing an IND-CCA secure
KEM) and compare it with our mPKE from Sec. 5.2. To obtain proof-of-concept
implementation of mPKE for CSIDH and mKEM for SIKE, we have modified
implementation available in the NOBS library10.

10 https://github.com/henrydcase/nobs
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Communication cost. Our construction provides the most significant gain
when used with SIKE/p434. In this case our mKEM variant can be over 20
times more efficient.

Table 3: Bandwidth impact of our mKEM on isogeny schemes. Sizes are in bytes.

Scheme |ct0| |ĉti| |ct| kcomm

SIKE/p434 330 16 346 21.63
SIKE/p503 378 24 402 16.75
SIKE/p751 564 32 596 18.63
SIKE/p434 compressed 196 16 209 13.25
SIKE/p503 compressed 224 24 248 10.33
SIKE/p751 compressed 331 32 363 11.34

cSIDH PKE/p512 64 16 80 5

Computational costs. In SIKE and CSIDH-based hashed ElGamal, the com-
putational cost is dominated by isogeny computations. In both schemes, encap-
sulation/encryption requires the computation of two smooth-degree isogenies.
Assuming SIKE key compression is not used, we can assume that both computa-
tions have a similar cost C. When running SIKE/CSIDH-based hashed ElGamal
for N recipients, the total computation cost is roughly 2 ·N ·C. By applying our
mKEM/mPKE this cost reduces to (N + 1) · C. So, the expectation is that our
approach will be roughly two times faster. The results from the benchmarking in
Tab. 4 confirms the expected speed-up. It is worth noticing that the gain from
using mKEM is expected to be bigger when using SIKE with key compression.
That is because computing |ct0| is a slower operation than computing |ĉti|.

Table 4: Encapsulation times of SIKE vs its mKEM variant and encryption times
of CSIDH-based hashed ElGamal vs its mPKE variant. Times are in cycles and
are normalized by the number of recipients (here, 100).

Scheme Trivial KEM Our mKEM kcycles

SIKE/p434 1 657 655 212 759 202 275 2.18
SIKE/p503 2 301 014 376 1 037 469 650 2.22
SIKE/p751 6 900 791 605 3 150 069 659 2.19

cSIDH/p512 37 455 411 429 19 438 021 692 1.92
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7 Application to Secure Group Messaging

In this section, we show how our mKEM can be used to optimize the TreeKEM
protocol [3, 5, 14] used within secure group messagings. The resulting protocol
has a lower communication cost than the standard version of TreeKEM [5,14].

7.1 Syntax and Notations for Group Messaging

We first introduce group messaging-related notions. We observe that group mes-
saging is an extensive topic; we keep our presentation minimal and introduce
notions that are strictly required for our argument. More in-depth discussions
on group messaging can be found in e.g. [3, 5, 10,14].

Continuous group key agreement (CGKA), which generalizes the notion of
continuous key agreement (CKA, see [4]), forms the backbone of secure group
messaging (SGM) protocols. Informally, one can think of CGKA as a group key
exchange where the group members dynamically change and the (group) session
keys need to be re-established in each epoch to maintain strong security. Once
a session key is established for a given epoch, a user can then use the key to
securely communicate with the group members. Therefore, a SGM protocol can
be described as a continuum of running CGKA and exchanging secured messages.

Definition 11 (Continuous Group Key Agreement. [5]). A continuous
group key agreement CGKA = (Init,Create,Add,Remove,Update,Process) con-
sists of the following algorithms:

– Initialization. Init takes an ID ID and outputs an initial state state.
– Group creation. Create takes a state state, a list of IDs (IDi)i∈[N ] and

outputs a new state state′ and a control message W .
– Add. Add takes a state state, an ID ID and outputs a new state state′ and

control messages W,T .
– Remove. Remove takes a state state, an ID ID and outputs a new state

state′ and a control message T .
– Update. Update takes a state state and outputs a new state state′ and a

control message T .
– Process. Process takes a state state and outputs a new state state′ and an

update secret I.

Above, Update allows a user to update the session key on behalf of the whole
group (it is run on every epoch to maintain strong security), and Process al-
lows each group member to process the updated session key. Four properties are
required from a CGKA: correctness, privacy, forward privacy (FS), and post-
compromise security (PCS). At a high level, FS states that if any group member
is compromised at some point, then all previous session keys remain hidden from
the attacker; and PCS states that after every compromised group member per-
forms an update, the session key becomes secret again. As the precise definitions
are not relevant to our work, we refer to [5, Section 3.2] for more details.
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In the following, we focus on TreeKEM; a specific instantiation of CGKA
that forms the building block of the SGM protocol MLS [10]. It was first de-
scribed in [14] and various improvements have been proposed in [3,5]. TreeKEM
is at the heart of the MLS protocol [10], and is arguably one of MLS’ main
efficiency bottlenecks due to the large number of public key material sent. To
be more concrete, our efforts are directed at optimizing the Update algorithm of
TreeKEM; this algorithm constitutes an efficiency bottleneck (in computation
and communication) of TreeKEM as it is performed on a regular basis (in con-
trast to Create, Add and Remove, which are performed upon punctual events). In
effect, improving the efficiency of Update will improve the efficiency of TreeKEM
(and hence the MLS protocol) on a similar scale. Details on TreeKEM follows.

Dendrologic notations. In a (binary or m-ary) tree T, a leaf is a node with
no child, an internal node is a node that is not a leaf, and the root root is the
unique node that has no parent. By synecdoche, we may abusively refer to a
node by its label; for example in Fig. 6, “1” denotes the bottom left node.

Let u be a node in a tree T. Its siblings, siblings(u), is the set of nodes v 6= u
in T with the same parent as u. Its path, path(u), is the set of nodes between
u and root, including u but excluding root. Its co-path, copath(u), is the set of
siblings of nodes in its path: copath(u) =

⋃
v∈path(u) siblings(v). For example, in

Fig. 6, the only sibling of “1” is “2”, its path is the set of red nodes ( ), and

its co-path is the set of green nodes ( ).

TreeKEM. In TreeKEM, a (binary or m-ary) tree T is constructed with the
N group members as its leaves. As an example, Fig. 6 illustrates the tree T
associated to a group of 16 users (numbered from 1 to 16). Let PRG be a pseu-
dorandom generator. Then, to each node i is associated a secret seed seedi and a
keypair (pki, ski) = mGen(pp;PRG(seedi)L), where PRG(·)L (resp. PRG(·)R) de-
notes the left (resp. right) half output of the PRG. In particular, mGen is run
on randomness PRG(seedi)L. The root does not need a keypair, but its seed will
in effect be the group secret I (i.e., session key). The TreeKEM invariant states
that a group member u knows seedi if and only if i ∈ path(u). When a user u
performs an update (via Update), he does the following:

(U1) Generate a new secret seed seedu for u.
(U2) For each i ∈ path(u), update its keypair: (pki, ski) = mGen(pp;PRG(seedi)L),

and compute a new secret seed for its parent: seedparent(i) = PRG(seedi)R.
(U3) For each i ∈ path(u), compute the ciphertext

cti ← mEncaps(pp, (pkj)j∈siblings(i); seedparent(i)). (6)

Note that mEncaps is derandomized here. For our construction in Fig. 2,
this is equivalent to setting the random message Mi = PRG(seedparent(i)).

(U4) Send the update package (pki, cti)i∈path(u) to the server, which dispatches
it to the other group members (this is known as server-side fan-out).
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Upon receiving the update package, a user v processes it (via Process) as follows:

(P1) Update each pki he received.
(P2) Compute the closest common ancestor w of u and v, then recover seedw

by decapsulating the adequate cti.
(P3) Recover the secret seeds of all remaining common ancestors of u and v by

computing seedparent(i) = PRG(seedi)R. The update secret is I = seedroot

This description is more generic than previous ones [3, 5, 10,14] in the following
sense. All existing instantiations of TreeKEM take T to be a binary tree, in
which case there is no need for a mKEM as a single-recipient KEM suffices. Note
that while our description uses mKEM as a building block, it is easily adapted to
work with an mPKE. Fig. 6 illustrates the “classical” instantiation of TreeKEM.
Each update contains at most dlog2(N)e public keys and as many ciphertexts,
so its bytesize is at most:

dlog2(N)e ·
(
|pk|+ |ct0|+ |ĉti|

)
(7)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2

Fig. 6: TreeKEM

m-ary TreeKEM. We now show how to obtain significant efficiency gains by
instantiating TreeKEM with an m-ary tree combined with mKEM. As mentioned
in [14], TreeKEM can be instantiated with an m-ary tree instead of binary; see
Fig. 7 for an example where “1” issues a package update. At first, it is not
obvious that this is more efficient than the instantiation of Fig. 6, since in our
example the update package now contains 2 public keys (one for each node ( )

in the path) and 6 ciphertexts (one for each node ( ) in the co-path).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B C D

2 3 4

A

1

Fig. 7: 4-ary TreeKEM

We make the following observation: when a user u issues an update, the
update package may encapsulate several times the same information. Precisely,
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for each i ∈ path(u), the update package encapsulates seedparent(i) under the key
pkj for each j ∈ siblings(i). In the example of Fig. 7, this means that an update
package issued by 1 encapsulates seedA under pk2, pk3, pk4, and seedroot under
pkB , pkC , pkD. The bandwidth gain happens exactly here: since the same value
seedA is encapsulated under pk2, pk3, pk4, one can use mKEM to perform this
(multi-)encapsulation. And similarly at each level of the tree. Hence the total
size of an update package is at most: dlogm(N)e ·

(
|pk|+ |ct0|+ (m− 1) · |ĉti|

)
.

One can see that this generalizes (7) to any integer m > 2. It is clear that
whenever |pk| + |ct0| � |ĉti|, it is advantageous efficiency-wise to take m > 2.
This is illustrated in the next section.

7.2 Concrete Instantiations of m-ary TreeKEM

We now illustrate the substantial communication gains that can be obtained
in practice with the method described above. A good rule of thumb is to take

m−1 ≈ |pk|+|ct0||ĉti|
. According to (7), the bytesize of an update package for binary

TreeKEM will then be approximately dlog2(N)e·m · |ĉti|. On the other hand, the
bytesize – given by (??) – for our proposal is about dlogm(N)e · 2(m− 1) · |ĉti|.
Compared to the standard TreeKEM, our proposal improves communication cost
by a factor equal to the ratio of the two values, which is approximately:

dlog2(N)e·m·|ĉti|
dlogm(N)e·2(m−1)·|ĉti|

−→
N→∞

m
2(m−1) · log2(m)

= O(logm).

Our solution provides a gain O(logm) compared to TreeKEM. A concrete com-
parison is provided by Fig. 8, which compares the bytesize of an update package
for binary TreeKEM - using FrodoKEM, Kyber, SIKE or cSIDH as a (single-
recipient) KEM/PKE - and m-ary TreeKEM - using the mKEM/mPKE obtained
from FrodoKEM, Kyber, SIKE or cSIDH, respectively. For the schemes consid-
ered, our proposal improves the communication cost for large groups by a factor
between 1.8 and 4.2.
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