
SILVER – Statistical Independence and
Leakage Verification

David Knichel?[0000−0002−2510−8881], Pascal Sasdrich?[0000−0002−5443−626X], and
Amir Moradi[0000−0002−4032−7433]

Ruhr University Bochum,
Horst Görtz Institute for IT Security,

Bochum, Germany
{firstname.lastname}@rub.de

Abstract. Implementing cryptographic functions securely in the pres-
ence of physical adversaries is still a challenge although a lion’s share of
research in the physical security domain has been put in development
of countermeasures. Among several protection schemes, masking has ab-
sorbed the most attention of research in both academic and industrial
communities, due to its theoretical foundation allowing to provide proofs
or model the achieved security level. In return, masking schemes are dif-
ficult to implement as the implementation process often is manual, com-
plex, and error-prone. This motivated the need for formal verification
tools that allow the designers and engineers to analyze and verify the
designs before manufacturing.
In this work, we present a new framework to analyze and verify masked
implementations against various security notions using different secu-
rity models as reference. In particular, our framework – which directly
processes the resulting gate-level netlist of a hardware synthesis – partic-
ularly relies on Reduced Ordered Binary Decision Diagrams (ROBDDs)
and the concept of statistical independence of probability distributions.
Compared to existing tools, our framework captivates due to its simplic-
ity, accuracy, and functionality while still having a reasonable efficiency
for many applications and common use-cases.

Keywords: Verification · Side-Channel Analysis · Probing Security ·
Reduced Ordered Binary Decision Diagram · Statistical Independence ·
Probability Distribution.

1 Introduction

Even after two decades of research since the seminal description of Side-Channel
Analysis (SCA) as a threat to cryptographic implementations [32,33], secure im-
plementation of cryptographically strong algorithms is still a challenging and
open problem. In particular, those decades of research have shown that SCA on
cryptographic implementations can be performed by observing various physical

? These authors contributed equally to the work.



2 D. Knichel et al.

sources and effects, such as timing [32], power consumption [33], electromag-
netic (EM) emanations [27], or temperature and heat dissipation [30]. Eventu-
ally, observing the physical characteristics of an electronic device during security-
critical cryptographic operations can reveal secret and sensitive information to
any observer and adversary. As a consequence, a wide range of protection mech-
anisms and countermeasures have been proposed to prevent or mitigate any
side-channel leakage.

Among all candidates, masking (based on the concepts of secret sharing) is
one of the most promising countermeasures against SCA due to its formal and
sound security foundation [18] . As a consequence, many different schemes and
variants have been introduced and proposed over the years [31,43,39,42,29,28] to
address different implementation and security requirements. Unfortunately, not
a few of those schemes have been shown to be insecure due to design flaws or
inaccurate models or assumptions [36]. As a result, all these examples confirm
that design and implementation of protection mechanisms and countermeasures
against SCA is a mostly manual, complex, and error-prone process which requires
good understanding of the execution environment and careful consideration of
physical and security models.

To this end, an entirely new branch of research started to focus on the devel-
opment of formal models for adversaries and physical execution environments to
simplify and assist in formal verification [31,23,5,26]. Ideally, strong theoretical
foundations in security models can assist and help to simplify the design, imple-
mentation, and verification of cryptographic implementations and appropriate
security mechanisms. In the context of masking, formal verification often is con-
ducted in the simple and abstract Ishai-Sahai-Wagner (ISW) d-probing security
model [31] (under some basic assumptions on noise and independence of inputs),
which allows an adversary to probe (observe) up to d intermediate values during
the processing of sensitive information.

Due to its conceptual simplicity and level of abstraction, the d-probing model
was rapidly and widely adopted for formal verification [38,6,24,3,4,11,20,44,2].
Indeed, the introduction of this simple but effective security model propelled the
automation of formal verification, allowing to reduce the combinatorial complex-
ity of security proofs for masking schemes and their implementations. In fact,
development of automated formal verification tools also – in return – stimulated
the research and progress on masking schemes, e.g., reducing the cost in terms of
randomness [9] or solving the problem of secure composition of masked circuits
and gadgets [3,4,17].

However, in its basic manifestation, the d-probing model does not consider
specific physical defaults, such as glitches, transitions, or couplings [26], that
may occur during the processing of sensitive information on a physical device. In
fact, many schemes proven to be secure in the d-probing model, eventually fail in
security analyzes when concretely implemented. That is mainly due to undesired
and unintentional physical defaults that particularly violate the assumption on
the independence of inputs. In particular for hardware implementations, glitches
are well-known to be an issue and concern for masking schemes [39], wherefore



SILVER 3

Bloem et al. [11] and Faust et al. [26] independently proposed an extension of the
basic ISW d-probing model considering glitches for hardware implementations
of masking schemes.

In addition, Bloem et al. used the concept of Fourier coefficient estima-
tion to implement an automated tool formally verifying the security of mask-
ing schemes and their implementations against the basic and glitch-extended
d-probing model. However, due to computational limitations based on the esti-
mation of Fourier coefficients, this tool primarily applies to the security anal-
ysis of the first-order setting without consideration of advanced notions such
as Non-Interference (NI), Strong Non-Interference (SNI), and Probe-Isolating
Non-Interference (PINI). In contrast to this, Barthe et al. [2] recently presented
a language-based formal verification tool called maskVerif which uses the prob-
abilistic information flow to assess the security of masking schemes and their
implementations. In particular, using conservative heuristics and an optimistic
sampling method, maskVerif executes more efficiently than the tool by Bloem
et al., while minimizing but still accepting false negatives for non-linear cases.

Contributions. In this work, we present and introduce an efficient methodol-
ogy to analyze and verify the security of masked circuits and implementations
under various security notions. Due to a symbolic and exhaustive analysis of
probability distributions and statistical independence of joint distributions, we
can avoid false negatives and overly conservative decisions. In particular, by
means of ROBDDs, a well-known concept and methodology for Integrated Cir-
cuit (IC) testing and verification, we formally analyze and verify masked circuits
in the ISW d-probing model even in the presence of glitches as physical defaults.

In addition, based on the seminal work of De Meyer et al. [21], we reformulate
the security notions of d-probing security, d-Non-Interference, d-Strong Non-
Interference, and, for the first time, d-Probe-Isolating Non-Interference based on
statistical independence which can be efficiently checked and verified by our tool.
Hence, for the first time, state-of-the-art security notions for masked circuits can
be analyzed exhaustively without false negatives. Eventually, this contribution
is even extended further by efficient verification methods to check and verify the
uniformity for output sharings of arbitrary masked circuits.

Outline. While Section 2 briefly summarizes our notations and introduces pre-
liminary concepts and notions, including ROBDDs, our circuit model, and se-
curity notions, Section 3 is dedicated to a conception and discussion of our ver-
ification approach. Besides, Section 3 outlines our leakage models and discusses
the main ideas of our verification concept, particularly sketching the application
of ROBDDs to check and verify security notions. In Section 4, we then provide
formal proofs for all security notions and our leakage verification concept based
on statistical independence checks. Before we present details on practical evalua-
tions and experiments in Section 6, we briefly discuss and compare our approach
and concept to essential related work in Section 5. Eventually, we conclude our
work in Section 7.



4 D. Knichel et al.

2 Background

2.1 Notation

We use upper-case characters to denote random variables, bold ones for sets of
random variables, and subscripts for elements within a set of variables. Further,
let us denote Xi as the set of variables X \ Xi. Accordingly, we use lower-
case characters to denote values a random variable can take, bold ones for sets
of values, and subscripts for elements within the set of values. Again, let us
denote xi as the set of values x \ xi. In addition, we use Pr[X = x] for the
probability that a random variable X takes a value x, while Pr[X = x] denotes
the joint probability that each Xi ∈ X takes the value xi ∈ x. Accordingly, the
conditional probability for X = x given Y = y is written as Pr[X = x|Y = y].
Hence, Pr[X = x|Y = y] denotes the conditional probability that each Xi ∈ X
takes the value xi ∈ x, if each Yi ∈ Y takes the value yi ∈ y. Moreover, the
joint distribution over the set X is denoted as Pr[X], while Pr[X|Y] = Pr[X] is
simply equivalent to Pr[X = x|Y = y] = Pr[X = x] for all possible combination
of x and y. Extending this notation, Pr[X|Y] = Pr[X|Z] is the same as Pr[X =
x|Y = y] = Pr[X = x|Z = z] for all possible combination of x,y, and z.

Further, functions are denoted using sans-serif fonts. Handling masked func-
tions, we denote the s-th share of the a variable as Xs. Hence, the set of
all unshared inputs of a function f is denoted as X = (X0, . . . , Xn−1) while
the set containing all t shares of each variable in X is denoted as Sh(X) =
(X0

0 , X
1
0 , . . . , X

t−1
0 , X0

1 , . . . , X
0
n−1, . . . , X

t−1
n−1). Similarly, the set containing all

shares of Xi ∈ X is denoted as Sh(Xi). Eventually, for a set of indices I ⊆
[0, . . . , t − 1], Sh(X)I denotes the set containing all shares Xs

i with 0 ≤ i < n
and s ∈ I.

2.2 Reduced Ordered Binary Decision Diagrams (ROBDDs)

Binary Decision Diagrams (BDDs) are a basic structure in discrete mathematics
and computer science introduced by Akers [1] and refined by Bryant (introducing
variable ordering) [15]. In particular, many applications in computer-aided IC
design and verification make use of (reduced, ordered) BDDs.

In general, BDDs are concise and unique (i.e., canonical) graph-based rep-
resentations of Boolean functions Fn

2 → F2 with a single root node and two
terminal nodes (leaves) {T,F}. The formal definition of ROBDDs, given in the
following paragraphs, is divided into a purely syntactical definition, describ-
ing the structure based on Directed Acyclic Graphs (DAGs), before providing
a semantical definition, clarifying the representation of Boolean functions as
ROBDDs.

Syntactical Definition of ROBDDs. Before providing a syntactical defini-
tion for ROBDDs, we first recall the (syntactical) definition of Ordered Binary
Decision Diagrams (OBDDs).



SILVER 5

Definition 1 (OBDD Syntax). An Ordered Binary Decision Diagram is a
pair (π,G), where π denotes the variable ordering of the OBDD and G = (V, E)
is a finite DAG with vertices V, edges E, and the following properties:

(1) There is a single root node and each node v ∈ V is either a non-terminal
node or one of two terminal nodes {T,F}.

(2) Each non-terminal node v is labeled with a variable in X, with |X| = n,
denoted as var(v), and has exactly two child nodes in V which are denoted
as then(v) and else(v).

(3) For each path from the root node to a terminal node, the variables in X
are encountered at most once and in the same order defined by the vari-
able ordering π. More precisely, the variable ordering π of an OBDD is a
bijection π : {1, 2, . . . , n} → X.

Furthermore, assuming the following two restrictions ensures a concise and
canonical representation (under a given variable ordering π), defined as ROBDD.

Definition 2 (ROBDD Syntax). An OBDD is called Reduced Ordered Bi-
nary Decision Diagram, if and only if there is no node v ∈ V such that then(v) =
else(v) and there are no duplicate nodes, i.e., two nodes {v, v′} ∈ V such that
var(v) = var(v′), then(v) = then(v′), and else(v) = else(v′).

Semantical Definition of ROBDDs. Each ROBDD with root v ∈ V re-
cursively defines a Boolean function f : Fn

2 → F2 according to the following
definition.

Definition 3 (ROBDD Semantics). An ROBDD over X represents a Boolean
function f recursively carried out at each node and defined as follows:

(1) If v is the terminal node F, then fv|x = 0, otherwise, if v is the terminal
node T, then fv|x = 1.

(2) If v is a non-terminal node and var(v) = xi, then fv is defined by the
Shannon decomposition fv = xi · fthen(v)|xi=1 + xi · felse(v)|xi=0.

Boolean Operations over ROBDDs. Given the syntactical and semantical
definitions for ROBDDs, we now can define arbitrary Boolean operations over
Boolean functions fv1 and fv2 represented by two ROBDDs with root nodes
v1 and v2. In particular, let f = fv1 ◦ fv2 where ◦ denotes any binary Boolean
operation, then the ROBDD for f can be derived and composed recursively as:

f = xi · f|xi=1 + xi · f|xi=0

= xi · (fv1 ◦ fv2
)|xi=1 + xi · (fv1 ◦ fv2

)|xi=0

= xi · (fv1 |xi=1 ◦ fv2 |xi=1) + xi · (fv1 |xi=0 ◦ fv2 |xi=0)

(1)

2.3 Circuit Model

For the remainder of this work, we consider and model a deterministic circuit
C as a DAG, where the vertices are combinational gates and edges are wires
carrying elements from the finite field F2.



6 D. Knichel et al.

Physical Model. Without loss of generality, the physical structure of a de-
terministic circuit C at gate level is modeled using the set of combinational
gates {not, and, nand, or, nor, xor, xnor} (with fan-in at most 2) while all sequen-
tial memory gates reg model a clock-dependent synchronization point. Further,
each Boolean input variable is associated with a single in gate (with fan-in 0),
while the output and result of a Boolean function is associated with a single
out gate (with fan-out 0). Eventually, ref are special-purpose gates with fan-in 0
that introduce a independently and identically distributed (i.i.d) random element
from the finite field F2.

Functional Model. Each deterministic circuit C realizes an n × m vectorial
Boolean function F : Fn

2 → Fm
2 given its coordinate functions f1, . . . , fm defined

over X ∈ Fn
2 . In particular, each Xi ∈ X is assumed to be independently and

identically distributed (i.i.d) and associated with a single in gate, while each fi
is associated with a single out gate.

Further, the function of each gate within the circuit model C is derived re-
cursively over the functions of its fan-in gates by means of Boolean operations
over ROBDDs. Hence, each gate in the circuit model itself can be considered as
a Boolean function over (a subset of) the inputs X ∈ Fn

2 and we can introduce
a functional abstraction layer to the physical circuit model using ROBDDs to
canonically represent and store the derived Boolean functions.

Security Model. Eventually, security critical circuits handling a sensitive se-
cret X are associated with a security order d and protected (masked) based
on Boolean sharing. This means, each security critical and sensitive secret X is
shared with at least d+ 1 shares such that X =

⊕d
0X

i. Similarly, sensitive and
security critical outputs of a masked circuit are shared using Boolean sharing,
such that F(X) =

⊕d
0 F

i(X).

2.4 Security Notions

Before introducing our verification approach and methodology to analyze an
arbitrary circuit under various security notions, we first introduce the definitions
of all necessary security notions. In particular, our security definitions are based
on the work in [21] while we reformulate the definitions in order to provide
generalizations from circuits with d+1 input shares to circuits with an arbitrary
number of shares when examining dth-order security. In addition, we extend the
definitions from single sensitive and secret variable to a set of arbitrary number
of secret variables.

Probing Security. Probing security is defined as the probes being statistically
independent of any sensitive input. More precisely, the joint distribution of the
considered set of probes has to be independent of the joint distribution of all
sensitive inputs. This can be formally defined as:



SILVER 7

Definition 4 (d-Probing Security.). A circuit C with secret input set X ∈ Fn
2

is d-probing secure, if and only if for any observation set Q containing d wires,
X is statistically independent of the observation set, i.e., the following condition
holds:

Pr[Q|X] = Pr[Q] (2)

Non-Interference. The notion of Non-Interference allows partial information
on the sensitive inputs becoming available to the adversary through probing the
circuit. In particular, if the observed circuit is d-NI, the adversary is not able
to successfully distinguish the circuit result from a simulator working on partial
information knowing, i.e., using at most d shares of each input.

More formally, each adversarial probe set should be perfectly simulatable
knowing only a subset of all shares of each input. Let S be a set over arbitrary
input shares Xj

i , i.e., S ⊂ Sh(X), and |S|i denote the number of shares in S that
correspond to input Xi. In order to guarantee d-NI, there exist a simulation set
S with |S|∀i ≤ d for which a probe in Q is perfectly simulatable, i.e., an attacker
is not able to distinguish between a simulation of C using only elements in S
from the observations of C even when knowing all input shares. This can be
directly translated into the condition that there has to exist a simulation set S
with |S|∀i ≤ d, for which the distributions Pr[Q|S] and Pr[Q|Sh(X)] are equal.

Definition 5 (d-Non-Interference). A circuit C with secret input set X ∈ Fn
2

provides d-Non-Interference if and only if for any observation set of t ≤ d wires
Q there exists a set S of input shares with |S|∀i ≤ t such that

Pr[Q|S] = Pr[Q|Sh(X)]. (3)

Strong Non-Interference. The notion of SNI has been introduced as exten-
sion to NI correcting deficiencies in terms of composability of secure gadgets
within a circuit. In contrast to NI, any probe on a circuit output (also, through
composition, considered as input to a subsequent gadget) is not allowed to give
information about any share in the input. This means, each probe on an output
wire must be perfectly simulatable without knowledge of any input shares in
order to stop the flow of sensitive information between composed gadgets.

More formally, each adversarial probe set again should be perfectly simulat-
able knowing only a subset of all shares of each input. However, for a set Q of
d probes with t1 probes on internal wires and t2 probes on output wires while
t1 + t2 ≤ d, the size of the set S is bounded by the internal probes only, i.e.,
|S|∀i ≤ t1. This directly translates into the following definition and condition.

Definition 6 (d-Strong Non-Interference). A circuit C with secret input set
X ∈ Fn

2 provides d-Strong Non-Interference if and only if for any observation
set of t = t1 + t2 ≤ d wires Q of which t1 are internal wires and t2 are output
wires, there exists a simulation set S of input shares with |S|∀i ≤ t1 such that
Equation (3) holds.



8 D. Knichel et al.

Probe-Isolating Non-Interference. Unfortunately, the security notion of
SNI in practice is often very conservative and inefficient as it introduces more
area and randomness than necessary to achieve certain security goals. To ad-
dress this issue, Cassiers et al. introduced the notion of Probe-Isolating Non-
Interference [17] which offers trivial composition of any gadgets inspired by
the trivial composition of linear functions and the concept of sharing domain
separations as introduced in [29]. As the original SNI definition limits compos-
ability to single-output gadgets, Cassiers et al. also introduced a generalization
of SNI to gadgets with multiple inputs and multiple outputs (Multiple-Input-
Multiple-Output SNI (MIMO-SNI)). This is a very strong notion which in fact
already implies security under the PINI notion, i.e., every gadget that provides
d-MIMO-SNI also provides d-PINI. As PINI already guarantees trivial compo-
sition, we do not consider MIMO-SNI any further in this work.

In the context of PINI, each circuit input and output is assigned a unique
circuit share index (i.e., a share domain) and any probe set on these wires should
be perfectly simulatable knowing only the set of inputs that are assigned to the
same circuit share index. Further, any additional probe on internal wires gives the
adversary access to at most one additional circuit share, i.e., must be perfectly
simulatable knowing only the according set of inputs assigned to these circuit
shares. Eventually, this translates to the following definition.

Definition 7 (d-Probe-Isolating Non-Interference). Let P be the set of
internal probes with |P| = t1. Let further IO be the index set assigned to the
probed output wires O with |IO| = t2.

A circuit C with secret input set X ∈ Fn
2 provides d-Probe-Isolating Non-

Interference if and only if for every P and O with t1 + t2 ≤ d there exists a set
II of circuit indices with |II| ≤ t1 such that Q = P∪O can be perfectly simulated
by S = Sh(X)II∪IO , i.e., Equation (3) holds.

Uniformity. The security of (Boolean) masking schemes relies on a fundamental
assumption: uniform sharing. For that, the initial sharing of any secret variable
X using d+ 1 shares, such that X =

⊕d
0X

i, can be done by assigning random

values to X0, . . . , Xd−1 and deriving Xd = X ⊕
⊕d−1

0 Xi. Such a sharing then
is uniform if all random variables X0, . . . , Xd−1 are independent of each other
and have a uniform distribution over F2.

In practice, the uniformity of the output sharing of gadgets has been defined
as a fundamental requirement for Threshold Implementations (TIs), particularly
for secure composition of gadgets [39]. Otherwise, a non-uniform output sharing
of a gadget becomes the non-uniform input sharing of another gadget, hence
violating the essential assumption of uniformity for (Boolean) masking schemes.
Note, however, that a gadget can be probing secure, but it is not necessarily
uniform. Likewise, a uniform gadget does not automatically lead to a probing-
secure construction. This has been handled specifically in NI and SNI gadgets,
e.g., by injecting fresh randomness at the output thereby refreshing the output
sharing, i.e., achieving uniformity.



SILVER 9

Definition 8 formalizes the notion of a uniform sharing as it states that for
every unshared value, each valid sharing has to occur with the same probability.

Definition 8 (Uniform Sharing). Let Y be a set of binary random variable
and Sh(Y) its corresponding Boolean sharing. Then Sh(Y) is said to be a uni-
form sharing iff for some constant p

Pr
[
Sh(Y) = y∗|Y = y

]
=

{
p if y∗ is a valid sharing for y

0 else
. (4)

3 Verification Concept

This section briefly elaborates our main idea and concept for our verification
model and approach.

3.1 Leakage Models

For verification, we additionally consider each security notion under two different
leakage models denoted standard respectively robust leakage model.

Standard Leakage Model. For our standard leakage model following the
concept of the traditional ISW d-probing model [31], we assume an ideal circuit
without any physical defaults such as glitches or transitions. In practice, this
leakage model relates to a software scenario where each result of an operation
(i.e., a gate in a circuit C) is stored in a register before it is used by subsequent
operations (gates). Note that in this model, the implementation platform’s spe-
cific effects like pipelines are entirely ignored. In this model, an adversarial probe
provides access to the field element carried on the probed wire. More precisely,
the adversary gains full access to the Boolean function represented by the driving
gate in order to derive the field element.

Robust Leakage Model. In contrast to our standard leakage model, for our
robust model following the leakage model in [26], we also take physical default
in terms of glitches into consideration, hence, in practice this model relates to a
hardware scenario. Since only circuit inputs and memory elements are assumed
to switch synchronous to a circuit clock, glitches will propagate through all
combinational gates between two synchronization points. Therefore, by probing
a wire, the adversary not only gains access to the field element of the driving gate
but also can access all stable field elements of the last synchronization points
which drive the probed gate (having a path to the driving gate in the circuit
graph). More precisely, the adversary gains full access to the set of these field
elements (and any subset) through so called glitch-extended probes.



10 D. Knichel et al.

3.2 Verification Approach

Based on some fundamental observation, this section outlines our basic concept
and explains our main approach to verify different security notions starting from
a circuit model given as gate-level netlist.

Random Variables with Binary Events. According to our circuit model,
each edge in the circuit graph models a wire and carries an element from the field
F2 with two elements. Thus, we first observe each wire, and its associated field
element can be modeled as a binary random variable defined over the sample
space Ω = {0, 1} of two basic events given the assumption that all primary
circuit inputs are independent and identically distributed (i.i.d.). Based on this
observation, we can use the probability distributions of all random variables in
order to analyze and verify a circuit model against the security notions defined
in Section 2.4.

Probability Distribution and Satisfiability. In general, the probability of
an event is defined by the sum of the probabilities of all outcomes that satisfy
the event. In the context of our circuit model, an outcome can be considered
as a variable assignment to the primary circuit inputs that leads to the desired
element of the sample space at the observed random variable. For this, com-
puting the probability density function of a random variable associated with a
circuit wire reduces to enumerating and counting the primary input variable as-
signments that satisfy the corresponding basic events for the observed random
variable.

Symbolic Simulation using ROBDDs. As the naive approach of exhaustive
and literal simulation of the circuit model expeditiously becomes infeasible with
increasing circuit complexity and number of primary circuit inputs, symbolic
simulation and analysis is necessary to maintain the generation of all probabil-
ity distributions practicable even for large and complex circuit models. More
precisely, each gate in the circuit model represents a sub-circuit and is associ-
ated with a Boolean function given as ROBDD that computes the gate output
over the set of primary circuit inputs. Since ROBDDs are concise and canonical
representations of Boolean functions, counting the number of cubes, i.e., the sat-
isfying variable assignments, for each basic binary event can be done efficiently
using symbolic analysis. Knowing the total number of possible variable assign-
ments, computing the probability distribution for each random variable remains
feasible even for large and complex circuits.

Standard and Glitch-Extended Probes. Considering our two different leak-
age models, we also have to differentiate the capabilities and knowledge of the
adversary. Firstly, for the standard model we thus assume that an adversarial
probe gives access to the probability distribution of a field element carried on an



SILVER 11

arbitrary wire observed by the adversarial probe. More precisely, the adversary
in this case learns the Boolean sub-function associated with the driving gate in
order to compute the field element and its probability distribution as function of
the primary circuit inputs. Secondly, in contrast to the standard model, a robust
or glitch-extended probe extends the capabilities and knowledge of the adversary
as it also provides access to the joint distribution of all hindmost contributing
synchronization points (memory elements or primary inputs). Hence, in order
to model physical defaults and in particular glitches, the adversary also learns
the Boolean sub-functions associated with the corresponding synchronization
elements.

Statistical Independence and Security Checks. Eventually, depending on
the targeted security order d, an adversarial observation can consist of up to d
independently placed adversarial probes and the adversary is allowed to combine
the information and knowledge of all probes to learn details of the secret. In or-
der to verify security under the given security notions as defined in Section 2.4,
we perform an exhaustive exploration and check of all possible adversarial obser-
vations Q combining up to d probes. For this, the following section is dedicated
to a detail description and verification of our performed security checks.

4 Statistical Independence and Security Checks

Before formally analysis and verification of the correctness of our security checks,
we briefly recap the definitions of (joint) probability mass functions and statis-
tical independence for sets of random variables.

4.1 Statistical Independence

The probability mass function provides the probability of all possible values for
a set of discrete random variables based on their probability distribution.

Definition 9 (Probability Mass Function). Let X be a set of discrete ran-
dom variables. The probability mass function pX(x) is defined as:

pX(x) = Pr[X = x].

Based on this, given two arbitrary sets of discrete random variables, the
joint probability mass function between these two variable sets then is defined
as follows.

Definition 10 (Joint Probability Mass Function). Let X,Y be two sets
of discrete random variables. The joint probability mass function pX,Y(x,y) is
defined as:

pX,Y(x,y) = Pr[X = x and Y = y].



12 D. Knichel et al.

Using the definitions of probability mass function and joint probability mass
function, we can express the notion of statistical independence of two sets of
discrete random variables according to the following definition.

Definition 11 (Statistical Independence). Let X,Y be two sets of discrete
random variables. X,Y are statistically independent if and only if the joint prob-
ability mass function for ∀x and ∀y satisfies

pX,Y(x,y) = pX(x) · pY(y).

Statistical Independence of Binary Random Variables. In the context
of our security notions, we are mainly interested in statistical independence
of binary random variables. As any binary random variable can only take two
different events, Theorem 1 states that checking statistical independence for one
event implies statistical independence for both events, even extending to the case
of sets of binary random variables.

Theorem 1. Let X,Y be two sets of binary random variables. Then X and Y
are statistically independent, if and only if pX′,Y′(a,b) = pX′(a) ·pY′(b) for any
fixed values a and b and every possible combination of X′ ⊆ X and Y′ ⊆ Y.

In order to proof correctness of Theorem 1, we start with the basic case of
two binary random variables (i.e., sets of cardinality one).

Lemma 1. Let X,Y ∈ F2 be two binary random variables. Then, a necessary
and sufficient condition for X to be statistically independent of Y is that, for
any fixed values a, b ∈ {0, 1}, it holds

pX,Y (a, b) = pX(a) · pY (b).

Proof. According to Definition 11, the necessity of this proposition is obvious,
hence, the proof focuses on the sufficiency. Without loss of generality, we now
assume Lemma 1 is true for a = b = 1, i.e., pX,Y (1, 1) = pX(1) · pY (1). Since
X = 0 and X = 1 are counter events for binary variables, both the fact pX(0) +
pX(1) = 1 and the fact pX,Y (0, 1) + pX,Y (1, 1) = pY (1) hold, and we have

pX,Y (0, 1) + pX,Y (1, 1) = pY (1)

⇔ pX,Y (0, 1) + pX(1) · pY (1) = pY (1)

⇔ pX,Y (0, 1) = (1− pX(1)) · pY (1)

⇔ pX,Y (0, 1) = pX(0) · pY (1)

Proving the cases for a = 1, b = 0 and a = b = 0 is trivial as it follows the same
approach, hence is left out for brevity. ut

In a next step, we extend the basic case through mathematical induction in
order to prove statistical independence between a single random binary variable
and a set of random binary variables.



SILVER 13

Lemma 2. Let X be a binary random variable and Y a set of n random binary
variables. Further, let X be statistically independent of the joint distribution of
Y. Now, the joint distribution Y+, with Y ⊂ Y+ and |Y+| = n+1 is statistically
independent of X, if and only if pX,Y+(a,b+) = pX(a) · pY+(b+) for any fixed
values a,b+.

Proof. We now give a formal proof using mathematical induction on n.

Base case: We first show that Lemma 2 holds for n = 0.

Clearly, if n = 0, Y is the empty set while Y+ is a single binary random
variable. Then, according to Lemma 1, X and Y+ are statistically independent
if and only if for any fixed values a, b it holds that pX,Y+(a, b) = pX(a) · pY+(b).

ut

Induction: If Lemma 2 holds for n = k, it also holds for n = k + 1 with k ≥ 0.

For this, we first show that, without loss of generality, for X,Y+ the following
fact pX,Y+(a,b+

i
) = pX(a) · pY+(b+

i
) with b+

i
= {y0, y1, . . . , yi, . . . , yk, yk+1}

holds, if:

(i) pX,Y(a,b) = pX(a) · pY(b) with b = {y0, y1, . . . , yi−1, yi+1, . . . , yk, yk+1},
(ii) pX,Y+(a,b+) = pX(a) · pY+(b+) with b+ = {y0, y1, . . . , yi, . . . , yk, yk+1}

Further, we note that for binary random variables it always holds that:

pX,Y(a,b) = pX,Y+(a,b+) + pX,Y+(a,b+

i
)

Given that (i), (ii) are conditions for Lemma 2, we can state the following:

pX,Y(a,b) = pX(a) · pY(b)

⇔ pX,Y+(a,b+) + pX,Y+(a,b+

i
) = pX(a) · pY(b)

⇔ pX(a) · pY+(b+) + pX,Y+(a,b+

i
) = pX(a) · pY(b)

⇔ pX,Y+(a,b+

i
) = pX(a) · pY(b)− pX(a) · pY+(b+)

⇔ pX,Y+(a,b+

i
) = pX(a) · [pY(b)− pY+(b+)]

⇔ pX,Y+(a,b+

i
) = pX(a) · pY+(b+

i
)

As the sorting of variables in Y+ is not fixed, this approach also extends
to inversion of any other event and therefore can easily be extended to show
statistical independence for every combination of events. ut

Eventually, this also proves Theorem 1. In particular, knowing that X,Y are
statistically independent, we can argue that X+,Y with X ⊂ X+, |X| = n, and
|X+| = n + 1 must be statistically independent, if and only if pX+,Y(a+,b) =
pX+(a+) · pY(b) using the same approach as for Lemma 2.



14 D. Knichel et al.

Algorithm 1: Explore d-Probing Security.

Input : X – Set of n secret variables.
Output: Q – Set of d + 1 successful probes.

1 d← 1
2 while true do
3 foreach probing set Q with |Q| = d do
4 for t = 1 to n do
5 foreach X′ ⊆ X with X′ = t do
6 if pQ,X′(1,1) 6= pQ(1) · pX′(1) then
7 return Q
8 end

9 end

10 end

11 end
12 d← d + 1

13 end

4.2 d-Probing Security

Checking d-probing security according to Definition 4 requires to verify statistical
independence of the set of secret variables and any observation of at most d
probes. This section presents an exploration algorithm that allows to find and
verify the maximum security order of a given circuit with secret variables X.
Eventually, the algorithm will return the first set of d + 1 probes that is not
statistically independent of the secret variables.

Algorithmic Verification Approach. Algorithm 1 presents our algorithmic
approach to explore and verify d-probing security of a Circuit Under Test (CUT).
In general, the algorithm is initialized with d = 1, i.e., starts to explore and
verify first-order security before extending verification to higher orders. Since
for |Q| = 1 each observation set contains only a single binary variable (observed
by a single probe placed on a wire within the circuit C), according to Theorem 1
it is sufficient to verify:

pQ,X′(1,1)
?
= pQ(1) · pX′(1) (5)

for all possible combinations of secret variables X′ ⊆ X. If any of those checks
fails, the current observation is not statistically independent of the secret vari-
ables and Algorithm 1 terminates with returning the current set of observation
indicating the security of the CUT to be at most d = |Q| − 1.

If probing security is verified for all joint distributions of d probes, the algo-
rithm continues with all combinations of d+1 probes. However, for independence
of the current set of probes Q, it is still sufficient to check Equation (5) for all
combinations of secret variables (but only the current combination of probes),
since any subset of probes has already been verified during previous iterations
(for smaller d).



SILVER 15

Algorithm 2: Explore d-Non-Interference Security.

Input : Sh(X) – Set of all shares of n secret variables X.
Output: Q – Set of d + 1 successful probes.

1 d← 1
2 while true do
3 foreach probing set Q with |Q| = d do
4 simulatable← true
5 for t = 0 to d do
6 foreach S ⊆ Sh(X) with |S|∀i = t do
7 if pQ,Sh(X)(1,1) 6= pQ,S(1,1) · pS(1) then
8 simulatable← false
9 end

10 end

11 end
12 if not simulatable then
13 return Q
14 end

15 end
16 d← d + 1

17 end

Eventually, all verification and statistical independence checks are performed
based on ROBDDs in order to generate all (joint) probability mass functions
pQ, pX, and pQ,X. In particular, evaluation of the probability mass functions
for 1 is very efficient for ROBDD-based representations, usually implemented as
satisfiability-check.

4.3 d-Non-Interference

Checking d-NI security using Definition 5 requires to verify Equation (3) that
every set of at most d probes Q on a circuit C has to be perfectly simulatable
using only a subset S of all shares of the secret variables X. Using the concept of
statistical independence of two sets of random binary variables, we can express
NI using the following theorem.

Theorem 2. Let S := Sh(X) \S. Since all input shares are i.i.d., Equation (3)
simplifies to:

pQ,Sh(X)(q,x) = pQ,S(q, s) · pS(s). (6)

In particular, since Sh(X) = S∪S, we can simply verify statistical independence
of Q ∪ S and S (with x = s ∪ s).



16 D. Knichel et al.

Algorithm 3: Explore d-Strong Non-Interference Security.

Input : Sh(X) – Set of all shares of n secret variables X.
Output: Q – Set of d + 1 successful probes.

1 d← 1
2 while true do
3 foreach probing set Q with |Q| = t1 + t2 ≤ d (t1 internal, t2 output

probes) do
4 simulatable← true
5 for t = 0 to t1 do
6 foreach S ⊆ Sh(X) with |S|∀i = t do
7 if pQ,Sh(X)(1,1) 6= pQ,S(1,1) · pS(1) then
8 simulatable← false
9 end

10 end

11 end
12 if not simulatable then
13 return Q
14 end

15 end
16 d← d + 1

17 end

Proof.

Pr[Q|S] = Pr[Q|Sh(X)]

⇔ Pr[Q,S] · Pr[Sh(X)] = Pr[Q, Sh(X)] · Pr[S]

i.i.d.Sh(X)⇔ Pr[Q,S] · Pr[S] = Pr[Q, Sh(X)]

⇔ pQ,S(q, s) · pS(s) = pQ,Sh(X)(q,x)

ut

Algorithmic Verification Approach. Algorithm 2 explores and verifies d-NI
for increasing d and all possible observations Q of at most d probes. In particular,
the algorithm proceeds as soon as a successful simulation set S of input shares
is found for the current set of probes Q, such that Q is perfectly simulatable
using S. However, if the algorithm encounters a set of probes Q with |Q| = d+1
which is not simulatable for set of input shares (according to the definition of
NI), the algorithm terminates and returns the current set of probes indicating
d-NI with d = |Q| − 1.

4.4 d-Strong Non-Interference

Checking d-SNI is very similar to checking d-NI, except for stronger constraints
on the simulation set S due to stronger distinction between internal and output
probes.



SILVER 17

Algorithm 4: Explore d-Probe-Isolating Non-Interference Security.

Input : Sh(X) – Set of all shares of n secret variables X.
Output: Q – Set of d + 1 successful probes.

1 d← 1
2 while true do
3 foreach probing set Q with |Q| = d do
4 simulatable← true

5 foreach S ⊆ Sh(X)IO∪II do
6 if pQ,Sh(X)(1,1) 6= pQ,S(1,1) · pS(1) then
7 simulatable← false
8 end

9 end
10 if not simulatable then
11 return Q
12 end

13 end
14 d← d + 1

15 end

Algorithmic Verification Approach. In contrast to NI, for SNI the number
of shares per input in each simulation set is bounded by the number of internal
probes (instead of the number of all probes). Hence, except for minor difference,
the algorithmic verification approach given in Algorithm 3 (notation matching
the one given in Definition 6) has the same structure as the approach for NI,
but enforcing stronger constraints on the selection of shares (lines 5 and 6) for
the simulation set S.

4.5 d-Probe-Isolating Non-Interference

For the notion of PINI, the index of any input or output wires correspond to
the associated circuit share. In contrast to NI and SNI, the concept of PINI con-
strains the simulation set not by the number of (internal) probes, but according
to the associated circuit shares.

Verification Approach. The algorithmic verification approach in order to ex-
plore and verify the security notion of PINI for increasing security order d is
given in Algorithm 4. Again, the algorithm is based on the concept of perfect
simulatability of every Q with a set S, in conformity with the notions in Defini-
tion 7.

4.6 Uniformity

In order to examine the uniformity of the output sharing of a gadget, we start
with the following observation.



18 D. Knichel et al.

Lemma 3. Assume the function f with single output Y ∈ F2 whose shared ver-
sion is realized by a gadget with d+ 1 output shares Sh(Y ) = (Y 0, . . . , Y d). The
gadget’s output sharing is uniform iff any selection of d output shares make a
balanced function.

Proof. We start with d = 1, i.e., 2 output shares. Let us denote the joint prob-
ability of the output shares by ρ0,0 = Pr[Y 0 = 0, Y 1 = 0], ρ0,1 = Pr[Y 0 =
0, Y 1 = 1], ρ1,0 = Pr[Y 0 = 1, Y 1 = 0], and ρ1,1 = Pr[Y 0 = 1, Y 1 = 1], assuming
that the gadget’s input is uniformly distributed, which is true since the gadget’s
input sharing should be uniform (essential assumption of Boolean masking, see
Section 2.4). Hence, the probability of the output shares can be written as

Pr[Y 0 = 0] = ρ0,0 + ρ0,1, P r[Y 0 = 1] = ρ1,0 + ρ1,1,

P r[Y 1 = 0] = ρ0,0 + ρ1,0, P r[Y 1 = 1] = ρ0,1 + ρ1,1.

1) If Sh(Y ) is uniform, (Y 0 = 0, Y 1 = 0) and (Y 0 = 1, Y 1 = 1) are equally
likely to occur, i.e., ρ0,0 = ρ1,1. The same holds for (Y 0 = 0, Y 1 = 1) and
(Y 0 = 1, Y 1 = 0), i.e., ρ0,1 = ρ1,0. Therefore, Pr[Y 0 = 0] = ρ0,0 + ρ0,1 =
ρ1,1 + ρ1,0 = Pr[Y 0 = 1], i.e., the gadget’s coordinate function f0 with output
Y 0 is balanced. The same trivially holds for Y 1. Hence, individual balancedness
of each output share is essential for uniformity.
2) If the coordinate functions of Y 0 and Y 1 are balanced, we can write

Pr[Y 0 = 0] = Pr[Y 0 = 1] ⇐⇒ ρ0,0 + ρ0,1 = ρ1,0 + ρ1,1,

P r[Y 1 = 0] = Pr[Y 1 = 1] ⇐⇒ ρ0,0 + ρ1,0 = ρ0,1 + ρ1,1.

These two equations directly translate into ρ0,0 = ρ1,1 and ρ0,1 = ρ1,0. This
means that (Y 0 = 0, Y 1 = 0) and (Y 0 = 1, Y 1 = 1) are equally likely to occur.
The same holds for (Y 0 = 0, Y 1 = 1) and (Y 0 = 1, Y 1 = 0), i.e., Sh(Y ) is a
uniform sharing. Hence, individual balancedness of each output share is also a
sufficient condition for uniformity.

For d = 2, we have Sh(Y ) = (Y 0, Y 1, Y 2). Assuming a uniform sharing for
the gadget’s input, similar to the above case for d = 1, we denote the joint
probability of the output shares by ρy0,y1,y2 = Pr[Y 0 = y0, Y 1 = y1, Y 2 = y2],
e.g., ρ1,0,1 = Pr[Y 0 = 1, Y 1 = 0, Y 2 = 1]. Exemplary, the joint probability of
two output shares (Y 0, Y 1) can be derived as

Pr[Y 0 = 0, Y 1 = 0] = ρ0,0,0+ρ0,0,1, P r[Y 0 = 0, Y 1 = 1] = ρ0,1,0 +ρ0,1,1,

P r[Y 0 = 1, Y 1 = 0] = ρ1,0,0+ρ1,0,1, P r[Y 0 = 1, Y 1 = 1] = ρ1,1,0 +ρ1,1,1.
(7)

1) In case Sh(Y ) is uniform, we have

ρ0,0,0 = ρ0,1,1 = ρ1,0,1 = ρ1,1,0, ρ0,0,1 = ρ0,1,0 = ρ1,0,0 = ρ1,1,1. (8)

Hence, it can be trivially seen that

Pr[Y 0 =0, Y 1 =0]=Pr[Y 0 =0, Y 1 =1]=Pr[Y 0 =1, Y 1 =0]=Pr[Y 0 =1, Y 1 =1],



SILVER 19

meaning that (Y 0, Y 1) are jointly balanced. The same holds for other output
shares (Y 0, Y 2) and (Y 1, Y 2).
2) If (Y 0, Y 1) are jointly balanced, all probabilities given in Equation (7) are the
same, i.e.,

ρ0,0,0 + ρ0,0,1 = ρ0,1,0 + ρ0,1,1 = ρ1,0,0 + ρ1,0,1 = ρ1,1,0 + ρ1,1,1.

The same can be written for (Y 0, Y 2) and (Y 1, Y 2) as

ρ0,0,0 + ρ0,1,0 = ρ0,0,1 + ρ0,1,1 = ρ1,0,0 + ρ1,1,0 = ρ1,0,1 + ρ1,1,1,

ρ0,0,0 + ρ1,0,0 = ρ0,0,1 + ρ1,0,1 = ρ0,1,0 + ρ1,1,0 = ρ0,1,1 + ρ1,1,1.

Combination of these equations leads to the expressions given in Equation (8),
indicating the uniformity of Sh(Y ).

The same procedure can be followed to trivially verify Lemma 3 for d > 2.
ut

Lemma 4. Assume the function f with n-bit output Y = (Y0, . . . , Yn−1) ∈ Fn
2

whose shared version is realized by a gadget with d + 1 output shares Sh(Y) =
(Y0, . . . ,Yd). The gadget’s output sharing is uniform iff any selection of up to
n · d output shares is balanced excluding the cases where all d + 1 shares of the
same output are involved in the selection.

Proof. For n = 1 it is the same as Lemma 3. Hence, we start with n = 2 and
minimum number of output shares, d + 1 = 2. Assuming a uniform sharing
for the gadget’s input, we denote the joint probability of the output shares by
ρ(y0

0 ,y
1
0),(y

0
1 ,y

1
1)

= Pr[Y 0
0 = y00 , Y

1
0 = y10 , Y

0
1 = y01 , Y

1
1 = y11 ], e.g., ρ(1,0),(1,1) =

Pr[Y 0
0 = 1, Y 1

0 = 0, Y 0
1 = 1, Y 1

1 = 1].
Exemplary, the joint probability of two output shares (Y 0

0 , Y
1
1 ) is written as

Pr[Y 0
0 = 0, Y 1

1 = 0] = ρ(0,0),(0,0) + ρ(0,0),(1,0) + ρ(0,1),(0,0) + ρ(0,1),(1,0),

P r[Y 0
0 = 0, Y 1

1 = 1] = ρ(0,0),(0,1) + ρ(0,0),(1,1) + ρ(0,1),(0,1) + ρ(0,1),(1,1),

P r[Y 0
0 = 1, Y 1

1 = 0] = ρ(1,0),(0,0) + ρ(1,0),(1,0) + ρ(1,1),(0,0) + ρ(1,1),(1,0),

P r[Y 0
0 = 1, Y 1

1 = 1] = ρ(1,0),(0,1) + ρ(1,0),(1,1) + ρ(1,1),(0,1) + ρ(1,1),(1,1).

(9)

1) If Sh(Y) is uniform, we have

ρ(0,0),(0,0) = ρ(0,0),(1,1) = ρ(1,1),(0,0) = ρ(1,1),(1,1),

ρ(0,0),(0,1) = ρ(0,0),(1,0) = ρ(1,1),(0,1) = ρ(1,1),(1,0),

ρ(0,1),(0,0) = ρ(0,1),(1,1) = ρ(1,0),(0,0) = ρ(1,0),(1,1),

ρ(0,1),(0,1) = ρ(0,1),(1,0) = ρ(1,0),(0,1) = ρ(1,0),(1,0).

This results in equal probabilities for all probabilities given in Equation (9), such
that

Pr[Y 0
0 =0, Y 1

1 =0]=Pr[Y 0
0 =0, Y 1

1 =1]=Pr[Y 0
0 =1, Y 1

1 =0]=Pr[Y 0
0 = 1, Y 1

1 = 1],



20 D. Knichel et al.

i.e., the two output shares (Y 0
0 , Y

1
1 ) are jointly balanced. The same can be sim-

ilarly verified all other combinations (Y 0
0 , Y

0
1 ), (Y 1

0 , Y
0
1 ), and (Y 1

0 , Y
1
1 ).

2) If (Y 0
0 , Y

1
1 ) are jointly balanced, based on Equation (9) we have

ρ(0,0),(0,0) + ρ(0,0),(1,0) + ρ(0,1),(0,0) + ρ(0,1),(1,0) =

ρ(0,0),(0,1) + ρ(0,0),(1,1) + ρ(0,1),(0,1) + ρ(0,1),(1,1) =

ρ(1,0),(0,0) + ρ(1,0),(1,0) + ρ(1,1),(0,0) + ρ(1,1),(1,0) =

ρ(1,0),(0,1) + ρ(1,0),(1,1) + ρ(1,1),(0,1) + ρ(1,1),(1,1) = 1/4.

(10)

This leads to

ρ(0,0),(0,0) + ρ(0,0),(1,0) + ρ(0,1),(0,0) + ρ(0,1),(1,0)

+ ρ(0,0),(0,1) + ρ(0,0),(1,1) + ρ(0,1),(0,1) + ρ(0,1),(1,1) =

ρ(1,0),(0,0) + ρ(1,0),(1,0) + ρ(1,1),(0,0) + ρ(1,1),(1,0)

+ ρ(1,0),(0,1) + ρ(1,0),(1,1) + ρ(1,1),(0,1) + ρ(1,1),(1,1) = 1/2,

(11)

meaning that Pr[Y 0
0 = 0] = Pr[Y 0

0 = 1], i.e., it is balanced. The same can be
written for Pr[Y 1

1 = 0] = Pr[Y 1
1 = 1], and similarly for (Y 0

0 , Y
0
1 ), (Y 1

0 , Y
0
1 ),

and (Y 1
0 , Y

1
1 ). In short, every single output bit is balanced, hence, according

to Lemma 3, the sharing of every output is individually uniform. Note that,
in general when a function with d output bits is balanced, any combination of
d′ < d output bits also makes a balanced function [34, §12.1.2].

According to Equation (9) and Equation (10), we exemplary write

Pr[Y 0
0 = 0, Y 1

1 = 0] = 1/4.

On the other hand, according to Equation (11) we have

Pr[Y 0
0 = 0] = 1/2, P r[Y 1

1 = 0] = 1/2,

which implies Pr[Y 0
0 = 0, Y 1

1 = 0] = Pr[Y 0
0 = 0] · Pr[Y 1

1 = 0]. The same can
similarly be seen for (Y 0

0 , Y
1
1 ) = (0, 1), (1, 0) and (1, 1), meaning that

Pr[Y 0
0 , Y

1
1 ] = Pr[Y 0

0 ] · Pr[Y 1
1 ]. (12)

In other words, Y 0
0 and Y 1

1 are statistically independent. In a similar way, sta-
tistical independence of (Y 0

0 , Y
0
1 ), (Y 1

0 , Y
0
1 ), and (Y 1

0 , Y
1
1 ) can be shown.

Now, let us denote conditional probability Pr[Y 0
0 = y00 , Y

1
0 = y10 , Y

0
1 =

y01 , Y
1
1 = y11 |Y0 = y0, Y1 = y1] by ρ(y0

0 ,y
1
0),(y

0
1 ,y

1
1)|(y0,y1). For the sharing Sh(Y)

to be uniform, according to Equation (4) and exemplary for Y = (0, 0) we
should have

ρ(0,0),(0,0)|(0,0) = ρ(0,0),(1,1)|(0,0) = ρ(1,1),(0,0)|(0,0) = ρ(1,1),(1,1)|(0,0) = 1/4. (13)

The same should hold for other values of Y = (0, 1), (1, 0), and (1, 1). Consid-
ering the statistical independence of (Y 1

0 , Y
0
1 ) explained above, We can write

ρ(0,0),(0,0)|(0,0) =Pr
[
Y 0
0 =0,Y 1

0 =0,Y 0
1 =0,Y 1

1 =0
∣∣Y0=0,Y1=0

]
=Pr

[
Y 0
0 =0,Y 1

1 =0
∣∣Y 1

0 =0,Y 0
1 =0,Y0=0,Y1=0

]
· Pr
[
Y 1
0 =0,Y 0

1 =0
∣∣Y0=0,Y1=0

]
=1 · Pr

[
Y 1
0 =0
∣∣Y0=0,Y1=0

]
· Pr
[
Y 0
1 =0
∣∣Y0=0,Y1=0

]



SILVER 21

Due to the balancedness of every individual output, we have

Pr
[
Y 1
0 = 0

∣∣Y0 = 0, Y1 = 0
]

= Pr
[
Y 1
0 = 0

∣∣Y0 = 0, Y1 = 0
]

= 1/2.

This leads to ρ(0,0),(0,0)|(0,0) = 1/4. The same can be shown for ρ(0,0),(1,1)|(0,0),
ρ(1,1),(0,0)|(0,0), and ρ(1,1),(1,1)|(0,0), satisfying Equation (13). The same can be
similarly verified for Y = (0, 1), (1, 0), and (1, 1), hence the uniformity of Sh(Y).

The same procedure can be followed to verify Lemma 4 for n > 2 and d > 2.
ut

Indeed, for a given circuit netlist we efficiently perform balancedness checks
directly based on the ROBDDs of the circuit.

5 Related Work

For formal verification of masked implementations, both in software and hard-
ware, several tools and frameworks have been proposed, each following a different
methodology and verification approach.

Formal Verification of Software Implementations. For automated mask-
ing of software implementations, the work of Moss et al. [38] was first to consider
a type-based methodology for security annotation while dynamically repairing
the masked implementation based on heuristics if leakage was detected at some
point in the program flow. As any type-based approach inevitably results in an
overly conservative verification, logic-based methods have been proposed as an
alternative approach. Here, the work by Byrak et al. Byrak [6] translates verifi-
cation to a set of Boolean satisfiability problems which can then be solved by a
SAT solver. Nonetheless, both approaches only consider verification of masking
against first-order attacks.

Later, an SMT-solver-based method for formally verifying even higher-order
security has been introduced in [24]. As for [6], this verification method is also
based on the notion of perfect masking as presented in [13]. Similarly, in [44]
another method for verifying perfect masking was introduced, this time aiming
to optimize the trade-off between accuracy (as offered by logic-based approaches)
and efficiency (as given in type-based verification). Eventually, a composition-
based verification approach in direct conformity with d-probing security (i.e.,
without any false negatives) is given by Beläıd et al. in [9].

Formal Verification of Hardware Implementations. Considering hard-
ware designs, the work of Bloem et al. [11,12] resulted in a seminal tool enabling
formal verification even in the presence of glitches, but with restriction to veri-
fication of probing security only. Most recently, the work of Cassiers et al. [16]
proposes a composition-based approach of verifying probing security of a con-
crete implementation composed of so-called Hardware Private Circuits.



22 D. Knichel et al.

Besides, the latest version of maskVerif – as presented in [2] – supports
efficient verification of d-probing security, d-NI, and d-SNI for arbitrary orders for
both software and hardware designs, even in the presence of glitches. Currently,
maskVerif is the state-of-the-art tool offering the widest-ranging verification
features which is not composition-based, hence, in the following we provide a
more detailed discussion and comparison to our developed tool.

5.1 Comparison to maskVerif

In general, maskVerif offers an efficient approach to verify security of masked
software and hardware implementations. In contrast to our approach, maskVerif
utilizes a symbolic representation of leakage defined by a given syntax and se-
mantic. For verifying security, the tool first assigns a symbolic leakage set to
every instruction. Depending on the security order, each combination of sym-
bolic leakage sets, i.e., each possible observation, is exploited afterwards and
tested for the absence of secret dependency through performing a syntactical
check and applying semantic-preserving transformation on the sets.

Due to its language-based verification approach, security checks in maskVerif

follow a very conservative approach for particular designs. More precisely, it may
falsely reject some secure designs because the checks are not based on explicit
statistical properties in conformity with the actual definition of the security
notions. Due to these limitations of a purely syntactical verification, it more
likely fails to provide correct verification of probing security if an output of
a masked circuit is not non-complete (as used for TIs) but also does not rely
on fresh randomness. In other words, its computation is a result of all input
shares of at least one input without using any fresh randomness for blinding
purposes. In particular, a computation using all input shares not necessarily
implies statistical dependency on the corresponding input (e.g., due to blinding
with shares of different inputs). Nonetheless, since the verification approach of
maskVerif is mainly based on syntactical checks, it may falsely categorize the
design as not being probing secure although it is (i.e., resulting in false negative).

Examples for False Negatives in maskVerif. One small example is a shared
version of the 4-bit bijection quadratic class Q4

12 (based on the classification
given in [10]), utilizing two shares per input, as presented in Appendix of [42].
Using maskVerif, this design is falsely categorized as not being first-order prob-
ing secure although all possible probes are statistically independent of the se-
crets. Hence, according to maskVerif, in order to gain successful verification,
one possible solution would be to introduce additional randomness r ∈ F2 into
the design, such that:

x1 = F1(a,b, c,d) = a1

x2 = F2(a,b, c,d) = a2

y1 = G1(a,b, c,d) = a1c1 ⊕ b1 ⊕ r x̄1 = x1



SILVER 23

y2 = G2(a,b, c,d) = a1c2 x̄2 = x2

y3 = G3(a,b, c,d) = a2c1 ⊕ b2 ⊕ r ȳ1 = y1 ⊕ y2
y4 = G4(a,b, c,d) = a2c2 ȳ2 = y3 ⊕ y4
z1 = H1(a,b, c,d) = a1b1 ⊕ a1c1 ⊕ c1 z̄1 = z1 ⊕ z2
z2 = H2(a,b, c,d) = a1b2 ⊕ a1c2 ⊕ r z̄2 = z3 ⊕ z4
z3 = H3(a,b, c,d) = a2b1 ⊕ a2c1 ⊕ r t̄1 = t1

z4 = H4(a,b, c,d) = a2b2 ⊕ a2c2 ⊕ c2 t̄2 = t2

t1 = K1(a,b, c,d) = d1

t2 = K2(a,b, c,d) = d2

This new realization of Q4
12 is now correctly verified by maskVerif as being

first-order probing secure. However, introducing randomness is costly and not
necessary to gain independence of the secret input, i.e., fulfilling first-order prob-
ing security.

However, this given example based on Q4
12 is only a small design. For larger

and more complex circuits, this inaccurate determination of the security level will
lead to significantly more overhead being introduced during the design process.
An example for a more complex design, which is falsely classified as not begin
first-order probing secure, is the PRESENT S-box realized as a TI utilizing three
shares for every output and input bit as presented in [40].

In fact, in order to achieve a sufficient security level while only introducing
marginal overhead into the design, it is thus necessary to be in conformity with
the security notions. As our verification is based on actual statistical properties
between probes and inputs, i.e., in accordance with the formal definitions of the
security notions, we actually meet this need and completely avoid false nega-
tives. This eventually is expected to result in less overhead in terms of area and
randomness when designing and implementing masked implementations. More-
over, and in addition to features in maskVerif, our tool is extended to verify
dth-order PINI and the output uniformity of a given design while also returning
the first probe combination found which is not in conformity with the respective
security notion.

Hence, despite being slower and slightly less efficient for larger design com-
pared to a type-based approach, as used for instance in maskVerif, our tool is
assumed to close the gap between accuracy and efficiency by providing a com-
plete and sound verification framework for the security and composability of
both software and hardware designs.

6 Experiments and Evaluations

This section presents implementation, evaluation, and performance results of our
proposed tool1 for formal verification of masked circuits.

1 https://github.com/chair-for-security-engineering/silver

https://github.com/chair-for-security-engineering/silver


24 D. Knichel et al.

Implementation. For a practical evaluation of our proposed concepts and
methodologies, we opted to implement a formal verification tool using Sylvan [22],
a state-of-the-art BDD high-performance, multi-core decision diagram package
implemented in C/C++. Further, we also customized and extended the native
instructions of Sylvan in order to provide and support dedicated operations
computing pX(1) and pX,Y(1,1) based on [35], i.e., without formal construction
of new BDDs each time these operations are executed. Eventually, our framework
implements all verification algorithms presented in Section 4 for both, standard
and robust probing model, and is running in a 64-bit Linux Operating Sys-
tem (OS) environment on an Intel Xeon E5-1660v4 CPU with a clock frequency
of 3.20 GHz and 128 GB of Random-Access Memory (RAM).

Our tool process a netlist file as the specification of the CUT. The user
can either make such a netlist manually, e.g., for software applications or a
sequence of operations, or can provide a verilog file as the result of a hardware
synthesis, e.g., Design Compiler or Yosys2, using a restricted library (defined in
Section 2.3). It is beneficial to directly evaluate the circuit’s netlist as any user-
originated mistakes or flaws (e.g., not keeping design hierarchy, hence violating
non-completeness [39]) can be detected.

Experiments and Benchmarks. In Table 1, we summarize verification and
performance results for our tool using various different examples as a benchmark.
For this, the number d indicates the masking order of the circuit design (i.e.,
the number of input shares given as d + 1), while the number next to the tick
indicates the maximum security order found by our tool during security check
and verification (i.e., the number of probes that did not lead to a failing check).
For all designs, we provide analysis results for the security notions of d-probing,
NI, SNI, PINI, and uniformity of the output sharing. Except for uniformity, all
security checks are performed for the standard (i.e., without physical defaults in
terms of glitches) and robust (i.e., with glitches) leakage models as presented in
Section 3. Eventually, along with the number of potential probe positions, i.e.,
the number of distinct wires determined by the number of gates in the circuit,
the security parameter d yields the verification complexity in terms of possible
observations O =

∑d
i=1

(
pos
i

)
.

Examples. In Table 1, we list verification results for three different categories of
masked circuits. In the first category, denoted as Gadgets, we analyze different
variants to implement a masked field multiplication for F2. Note, that for the SNI
variant of Domain-Oriented Masking (DOM) multiplier [29], we simply added
additional registers at the output to achieve an SNI-secure circuit. Interestingly,
PARA1 [5] and PARA2 gadgets are up to d-SNI secure in both models, but
higher-order variants cannot achieve full security, and need design modifications
instead (although still SNI for smaller d). We should stress that maskVerif

reports PARA3 to be not SNI, while it is up to 2-SNI, which is correctly reported

2 http://www.clifford.at/yosys/

http://www.clifford.at/yosys/


SILVER 25

Table 1. Verification of Various Masked Circuits and Security Notions.

Scheme Pos.† d Probing NI SNI PINI Unif.

std. rob. std. rob. std. rob. std. rob.

Gadgets

DOM [29] 19 1 31 [0 ms] 31 [0 ms] 31 [0 ms] 31 [0 ms] 31 [0 ms] 71 [0 ms] 71 [0 ms] 71 [0 ms] 3[0 ms]

DOM [29] 42 2 32 [3 ms] 32 [4 ms] 32 [6 ms] 32 [19 ms] 32 [8 ms] 71 [0 ms] 71 [0 ms] 71 [0 ms] 3[0 ms]

DOM [29] 74 3 33 [98 ms] 33 [1.2 s] 33 [2.2 s] 33 [23.7 s] 33 [3.2 s] 71 [0 ms] 71 [0 ms] 71 [0 ms] 3[0 ms]

DOM SNI [26] 21 1 31 [0 ms] 31 [0 ms] 31 [0 ms] 31 [0 ms] 31 [0 ms] 31 [0 ms] 71 [0 ms] 71 [0 ms] 3[0 ms]

DOM SNI [26] 45 2 32 [3 ms] 32 [5 ms] 32 [6 ms] 32 [30 ms] 32 [7 ms] 32 [29 ms] 71 [0 ms] 71 [0 ms] 3[0 ms]

DOM SNI [26] 78 3 33 [0.1 s] 33 [1.5 s] 33 [2.4 s] 33 [39.4 s] 33 [3.7 s] 33 [39.4 s] 71 [0.0 s] 71 [0.0 s] 3[0.0 s]

PARA1 [5] 22 1 31 [0 ms] 31 [0 ms] 31 [0 ms] 31 [0 ms] 31 [0 ms] 31 [0 ms] 71 [0 ms] 71 [0 ms] 3[0 ms]

PARA2 [5] 45 2 32 [3 ms] 32 [6 ms] 32 [5 ms] 32 [32 ms] 32 [8 ms] 32 [37 ms] 71 [0 ms] 71 [0 ms] 3[0 ms]

PARA3 [5] 68 3 33 [61 ms] 33 [0.5 s] 33 [1.2 s] 33 [12.1 s] 73 /32 [0.6 s] 71 [0 ms] 71 [0 ms] 71 [0 ms] 3[0 ms]

PARA3 SNI [5] 82 3 33 [0.2 s] 33 [1.4 s] 33 [2.8 s] 33 [35.5 s] 33 [4.1 s] 33 [40.4 s] 71 [0 ms] 71 [0 ms] 3[0 ms]

PINI1 [17] 21 1 31 [0 ms] 71 [0 ms] 31 [0 ms] 71 [0 ms] 31 [0 ms] 71 [0 ms] 31 [0 ms] 71 [0 ms] 3[0 ms]

PINI2 [17] 51 2 32 [7 ms] 71 [0 ms] 32 [10 ms] 71 [0 ms] 32 [12 ms] 71 [0 ms] 32 [22 ms] 71 [0 ms] 3[0 ms]

HPC1 [16] 22 1 31 [0 ms] 31 [0 ms] 31 [0 ms] 31 [0 ms] 31 [0 ms] 71 [0 ms] 31 [0 ms] 31 [0 ms] 3[0 ms]

HPC1 [16] 52 2 32 [5 ms] 32 [7 ms] 32 [7 ms] 32 [23 ms] 32 [9 ms] 71 [0 ms] 32 [16 ms] 32 [46 ms] 3[0 ms]

HPC2 [16] 32 1 31 [0 ms] 31 [0 ms] 31 [0 ms] 31 [0 ms] 31 [0 ms] 71 [0 ms] 31 [0 ms] 31 [0 ms] 3[0 ms]

HPC2 [16] 75 2 32 [6 ms] 32 [12 ms] 32 [11 ms] 32 [37 ms] 32 [13 ms] 71 [0 ms] 32 [19 ms] 32 [61 ms] 3[0 ms]

ISW SNI REF [26] 26 1 31 [0 ms] 31 [0 ms] 31 [0 ms] 31 [0 ms] 31 [0 ms] 31 [0 ms] 31 [0 ms] 31 [0 ms] 3[0 ms]

ISW SNI REF [26] 65 2 32 [5 ms] 32 [8 ms] 32 [7 ms] 32 [36 ms] 32 [9 ms] 32 [34 ms] 32 [16 ms] 32 [59 ms] 3[0 ms]

CMS3 [36] 104 3 73 /32 [0.1 s] 73 /32 [0.3 s] 73 /32 [0.8 s] 73 /32 [2.6 s] 73 /32 [1.3 s] 73 /32 [4.4 s] 71 [0 ms] 71 [0 ms] 3[0 ms]

UMA2 [36] 81 2 72 /31 [2 ms] 72 /31 [0 ms] 72 /31 [7 ms] 72 /31 [4 ms] 72 /31 [6 ms] 72 /31 [3 ms] 71 [0 ms] 71 [0 ms] 3[0 ms]

DOM2 DEP‡ [36] 56 2 32 [4 ms] 72 /31 [8 ms] 32 [3 ms] 72 /31 [20 ms] 32 [4 ms] 71 [0 ms] 32 [4 ms] 72 /31 [21 ms] 3[0 ms]

S-boxes

PRESENTTI [40] 177 2 31 [4 ms] 31 [8 ms] 71 [4 ms] 71 [0 ms] 71 [3 ms] 71 [0 ms] 71 [0 ms] 71 [0 ms] 3[2 ms]

PRESENTTI [25] 377 2 31 [15 ms] 31 [6 ms] 71 [2 ms] 71 [0 ms] 71 [2 ms] 71 [0 ms] 71 [1 ms] 71 [0 ms] 3[0 ms]

PRESENTTI [25] 161 2 71 [3 ms] 71 [4 ms] 71 [32 ms] 71 [0 ms] 71 [26 ms] 71 [0 ms] 71 [2 ms] 71 [0 ms] 7[0 ms]

PRINCETI [37] 150 2 31 [2 ms] 31 [10 ms] 71 [2 ms] 71 [0 ms] 71 [2 ms] 71 [0 ms] 71 [0 ms] 71 [0 ms] 3[0 ms]

PRINCECMS [14] 261 1 31 [3 ms] 31 [97 ms] 31 [7 ms] 31 [2.8 s] 31 [9 ms] 71 [1 ms] 71 [0 ms] 71 [0 ms] 3[0 ms]

SKINNY8TI [7] 240 2 31 [51.2 s] 31 [2 min] 71 [2 min] 71 [2.0 s] 71 [2 min] 71 [2.0 s] 71 [77 ms] 71 [1.3 s] 3[29.6 s]

SKINNY8CMS [8] 192 1 31 [20 ms] 31 [0.3 s] 71 [0.3 s] 71 [17 ms] 71 [0.3 s] 71 [15 ms] 71 [1 ms] 71 [1 ms] 3[1 ms]

AESDOM [29] 884 1 31 [3.3 s] 31 [21 min] 71 [0.8 s] 71 [0.4 s] 71 [0.8 s] 71 [0.4 s] 71 [0.2 s] 71 [40 ms] 3[0.1 s]

AESCMS [19] 938 1 31 [9.4 s] 31 [2.9 h] 71 [0.9 s] 71 [0.5 s] 71 [0.9 s] 71 [0.5 s] 71 [0.2 s] 71 [42 ms] 3[1.8 s]

Functions

Ain [37] 18 1 31 [0 ms] 31 [0 ms] 31 [0 ms] 31 [0 ms] 71 [0 ms] 71 [0 ms] 31 [0 ms] 31 [0 ms] 3[0 ms]

Am [37] 20 1 31 [0 ms] 31 [0 ms] 31 [0 ms] 31 [0 ms] 71 [0 ms] 71 [0 ms] 31 [0 ms] 31 [0 ms] 3[0 ms]

Aout [37] 20 1 31 [0 ms] 31 [0 ms] 31 [0 ms] 31 [0 ms] 71 [0 ms] 71 [0 ms] 31 [0 ms] 31 [0 ms] 3[0 ms]

Q4
12 [42] 48 1 31 [0 ms] 31 [0 ms] 71 [0 ms] 71 [0 ms] 71 [0 ms] 71 [0 ms] 71 [0 ms] 71 [0 ms] 3[0 ms]

† Number of possible probe positions, i.e., output wires of gates. ‡ Assuming identical inputs, i.e., a = b.

by our tool. Also, our tool could identify and report all flaws described in [36]
including the probes as identified by the authors. Our second category lists
different masked S-boxes of lightweight and standard block ciphers implemented
following the concepts of Consolidating Masking Schemes (CMS) [42], TI [39],
or DOM [29]. Eventually, our last category Functions lists arbitrary masked
functions with linear or quadratic algebraic complexity.

Interestingly, besides the linear functions, only the Hardware Private Circuit
(HPC) gadgets [16] and the ISW-SNI gadget [26] extended by an additional
refresh of one input are secure in the robust, glitch-extended probing model



26 D. Knichel et al.

under the notion of PINI. Since PINI gadgets [17] are not robust probing secure,
they are mainly useful in software applications (i.e., standard probing model).
Indeed, since all HPC gadgets are secure under the PINI notion (for both probing
models) and can be composed trivially, security under the SNI notion is no
longer compulsory (as confirmed by our evaluation results for the robust, glitch-
extended probing model). Also, besides Q4

12 we also analyzed other quadratic
functions provided in [42] and our tool revealed that the implementation of Q4

300

as given by the authors is not uniform.

Verification Complexity. In contrast to the language-based verification ap-
proach of maskVerif, our framework heavily relies on statistical independence
verification of probability distributions in order to avoid false negatives. There-
fore, the overall run time of our verification approach is mainly governed by con-
struction of intermediate ROBDDs representing the logical conjunctions as part
of the statistical independence checks for the security notions. As already shown
in [41], the complexity of constructing ROBDDs increases mainly by the number
of product terms occurring in the minimal Disjunctive Normal Form (DNF) of
the represented Boolean function.

Generally speaking, when considering higher-order security verification, we
have to test for statistical independence of larger sets of random variables with
possible non-linear dependence on many of the inputs. As our test of statistical
independence is based on logical conjunctions of sets of random variables (and
every possible subset), this leads to a high number of product terms occurring
in the resulting DNF, and hence to an increased complexity of the constructed
ROBDDs. As a result, verification speed of our framework is mainly influenced
by the complexity, i.e., input dependencies of wires, and the maximum security
order of the CUT.

Further, with increasing security order, the combinatorial complexity O of
constructing all possible observations grows exponentially. However, as we opted
for accurate security verification without relying on heuristics, reducing the num-
ber of probe combinations is not trivial, but instead we have to check and verify
all of them. Although some joint distributions might be similar for different probe
combinations3, we still have to analyze most combinations which is rather time
consuming for higher security orders and larger circuits. It is worth to mention
that if any of the combinations leads to a negative statistical independence, the
tool stops and reports the found leaking probes. Hence, the maximum run time
is taken only if the CUT passes all desired security checks.

7 Conclusion

In this work, we developed and presented a sound and accurate framework to
verify the security and composability of masked gate-level netlists and circuits

3 This case is caught by the internal caching scheme of the Sylvan BDD package
which first checks if the current operation has been performed and cached recently
before executing the actual operation in case no cache entry was found.



SILVER 27

directly resulting from hardware logic synthesis processes. In particular, our ap-
proach enables formal verification of all pertinent security notions in the domain
of physical security and is applicable to both, software and hardware designs,
even considering physical defaults in terms of glitches. More concretely, it sup-
ports sound, accurate, and immediate verification whether a masked implemen-
tation provides probing security, Non-Interference, Strong Non-Interference, and
Probe-Isolating Non-Interference – even for higher security orders. In addition,
we proposed and integrated a novel methodology of verifying uniformity of the
output sharing of a masked gadget. Eventually, if verification fails, it reports
the failing set of probes being in non-conformity with the corresponding security
notion.

In contrast to common type-based methods, our approach is based on formal
verification of statistical properties in direct conformity with the fundamental
definitions of the security notions. As a result, our approach completely avoids
overly conservative decisions when falsely declaring designs as not being secure
(false negatives), ultimately leading to a reduction in design overhead as oth-
erwise introduced by additional (and expensive) fresh randomness. For this, all
verification checks of statistical properties are executed efficiently by reducing
statistical independence checks on joint distributions over multiple binary ran-
dom variables to checks of distributions over single binary random variables,
which can be efficiently done utilizing the concepts of ROBDDs. Eventually, this
results in a framework exceeding comparable tools in accuracy and functionality
while still being reasonable efficient for most applications and common use cases.

The current version of our tool is mainly beneficial to evaluate gadgets, par-
ticularly at higher orders, although we have given its capability to examine the
entire S-boxes (see Table 1). For future work, we will focus on extending ca-
pabilities and improving efficiency of our tool, mainly with respect to larger
and more complex circuits and implementations and higher security orders. For
this, distinguishing univariate and multivariate leakages would be interesting,
as it would allow divide-and-conquer approaches based on partitioning complex
circuits along register stages while security analysis then would be performed
an smaller circuits automatically. Certainly, verification then can be performed
more efficiently, even for large and complex designs and higher-orders as long as
the design is not entirely combinational but contains register stages. The future
version of our tool should receive the netlist of a complete cipher implemen-
tation, unroll the loops, divide it into separate gadgets, and conduct security
evaluation respectively.

Acknowledgments

The work described in this paper has been supported in part by the German
Research Foundation (DFG) under Germany’s Excellence Strategy - EXC 2092
CASA - 390781972, and through the project 393207943 “Security for Internet of
Things with Low Energy and Low Power Consumption (GreenSec).



28 D. Knichel et al.

References

1. Akers, S.B.: Binary Decision Diagrams. IEEE Trans. Computers (1978)

2. Barthe, G., Beläıd, S., Cassiers, G., Fouque, P., Grégoire, B., Standaert, F.:
maskVerif: Automated Verification of Higher-Order Masking in Presence of Physi-
cal Defaults. In: Computer Security - ESORICS 2019 - 24th European Symposium
on Research in Computer Security, Proceedings, Part I. LNCS, vol. 11735, pp.
300–318. Springer (2019)

3. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P., Grégoire, B., Strub, P.: Verified
Proofs of Higher-Order Masking. In: Advances in Cryptology - EUROCRYPT 2015
- 34th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Proceedings, Part I. LNCS, vol. 9056, pp. 457–485. Springer
(2015)

4. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P., Grégoire, B., Strub, P., Zucchini,
R.: Strong non-interference and type-directed higher-order masking. In: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. pp. 116–129. ACM (2016)

5. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F., Strub, P.: Parallel
Implementations of Masking Schemes and the Bounded Moment Leakage Model.
In: Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Proceedings,
Part I. LNCS, vol. 10210, pp. 535–566 (2017)

6. Bayrak, A.G., Regazzoni, F., Novo, D., Ienne, P.: Sleuth: Automated Verification
of Software Power Analysis Countermeasures. In: Cryptographic Hardware and
Embedded Systems - CHES 2013 - 15th International Workshop, Proceedings.
LNCS, vol. 8086, pp. 293–310. Springer (2013)

7. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: Advances in Cryptology - CRYPTO 2016 - 36th Annual
International Cryptology Conference, Proceedings, Part II. LNCS, vol. 9815, pp.
123–153. Springer (2016)

8. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sas-
drich, P., Sim, S.M.: SKINNY-AEAD and SKINNY-Hash. IACR Trans. Symmetric
Cryptol. (2020)

9. Beläıd, S., Goudarzi, D., Rivain, M.: Tight Private Circuits: Achieving Probing
Security with the Least Refreshing. In: Advances in Cryptology - ASIACRYPT
2018 - 24th International Conference on the Theory and Application of Cryptology
and Information Security, Proceedings, Part II. LNCS, vol. 11273, pp. 343–372.
Springer (2018)

10. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Tokareva, N.N., Vitkup, V.: Threshold
implementations of small s-boxes. Cryptogr. Commun. (2015)

11. Bloem, R., Groß, H., Iusupov, R., Könighofer, B., Mangard, S., Winter, J.: Formal
Verification of Masked Hardware Implementations in the Presence of Glitches. In:
Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Proceedings,
Part II. LNCS, vol. 10821, pp. 321–353. Springer (2018)

12. Bloem, R., Groß, H., Iusupov, R., Krenn, M., Mangard, S.: Sharing independence
& relabeling: Efficient formal verification of higher-order masking. IACR Cryptol.
ePrint Arch. (2018)



SILVER 29

13. Blömer, J., Guajardo, J., Krummel, V.: Provably secure masking of AES. IACR
Cryptol. ePrint Arch. (2004)

14. Bozilov, D., Knezevic, M., Nikov, V.: Optimized threshold implementations: Min-
imizing the latency of secure cryptographic accelerators. In: Smart Card Research
and Advanced Applications - 18th International Conference, CARDIS 2019, Re-
vised Selected Papers. LNCS, vol. 11833, pp. 20–39. Springer (2019)

15. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers (1986)

16. Cassiers, G., Grégoire, B., Levi, I., Standaert, F.: Hardware private circuits: From
trivial composition to full verification. IACR Cryptol. ePrint Arch. (2020)

17. Cassiers, G., Standaert, F.: Trivially and Efficiently Composing Masked Gadgets
With Probe Isolating Non-Interference. IEEE Trans. Information Forensics and
Security (2020)

18. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In: Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Proceedings. LNCS, vol. 1666, pp.
398–412. Springer (1999)

19. Cnudde, T.D., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Mask-
ing AES with d+1 shares in hardware. In: Cryptographic Hardware and Embed-
ded Systems - CHES 2016 - 18th International Conference, Proceedings. LNCS,
vol. 9813, pp. 194–212. Springer (2016)

20. Coron, J.: Formal Verification of Side-Channel Countermeasures via Elementary
Circuit Transformations. In: Applied Cryptography and Network Security - 16th
International Conference, ACNS 2018, Proceedings. LNCS, vol. 10892, pp. 65–82.
Springer (2018)

21. De Meyer, L., Bilgin, B., Reparaz, O.: Consolidating Security Notions in Hardware
Masking. IACR Trans. Cryptogr. Hardw. Embed. Syst. (2019)

22. van Dijk, T.: Sylvan: multi-core decision diagrams. Ph.D. thesis, University of
Twente, Enschede, Netherlands (2016)

23. Duc, A., Dziembowski, S., Faust, S.: Unifying Leakage Models: From Probing At-
tacks to Noisy Leakage. In: Advances in Cryptology - EUROCRYPT 2014 - 33rd
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Proceedings. LNCS, vol. 8441, pp. 423–440. Springer (2014)

24. Eldib, H., Wang, C., Schaumont, P.: Formal Verification of Software Countermea-
sures against Side-Channel Attacks. ACM Trans. Softw. Eng. Methodol. (2014)

25. Ender, M., Ghandali, S., Moradi, A., Paar, C.: The first thorough side-channel
hardware trojan. In: Advances in Cryptology - ASIACRYPT 2017 - 23rd Interna-
tional Conference on the Theory and Applications of Cryptology and Information
Security, Proceedings, Part I. LNCS, vol. 10624, pp. 755–780. Springer (2017)

26. Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.: Composable
Masking Schemes in the Presence of Physical Defaults & the Robust Probing
Model. IACR Trans. Cryptogr. Hardw. Embed. Syst. (2018)

27. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In: Cryptographic Hardware and Embedded Systems - CHES 2001, Third Inter-
national Workshop, Proceedings. LNCS, vol. 2162, pp. 251–261. Springer (2001)

28. Groß, H., Mangard, S.: A Unified Masking Approach. J. Cryptographic Engineering
(2018)

29. Groß, H., Mangard, S., Korak, T.: An Efficient Side-Channel Protected AES Im-
plementation with Arbitrary Protection Order. In: Topics in Cryptology - CT-RSA
2017 - The Cryptographers’ Track at the RSA Conference 2017, San Francisco, CA,



30 D. Knichel et al.

USA, February 14-17, 2017, Proceedings. LNCS, vol. 10159, pp. 95–112. Springer
(2017)

30. Hutter, M., Schmidt, J.: The Temperature Side Channel and Heating Fault At-
tacks. In: Smart Card Research and Advanced Applications - 12th International
Conference, CARDIS 2013, Revised Selected Papers. LNCS, vol. 8419, pp. 219–235.
Springer (2013)

31. Ishai, Y., Sahai, A., Wagner, D.A.: Private Circuits: Securing Hardware against
Probing Attacks. In: Advances in Cryptology - CRYPTO 2003, 23rd Annual In-
ternational Cryptology Conference, Proceedings. LNCS, vol. 2729, pp. 463–481.
Springer (2003)

32. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Advances in Cryptology - CRYPTO ’96, 16th Annual
International Cryptology Conference, Proceedings. LNCS, vol. 1109, pp. 104–113.
Springer (1996)

33. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Advances in Cryp-
tology - CRYPTO ’99, 19th Annual International Cryptology Conference, Proceed-
ings. LNCS, vol. 1666, pp. 388–397. Springer (1999)

34. Mesnager, S.: Bent Functions - Fundamentals and Results. Springer (2016)
35. Miller, D.M.: An improved method for computing a generalized spectral coefficient.

IEEE Trans. on CAD of Integrated Circuits and Systems (1998)
36. Moos, T., Moradi, A., Schneider, T., Standaert, F.: Glitch-Resistant Masking Re-

visited or Why Proofs in the Robust Probing Model are Needed. IACR Trans.
Cryptogr. Hardw. Embed. Syst. (2019)

37. Moradi, A., Schneider, T.: Side-Channel Analysis Protection and Low-Latency
in Action - - Case Study of PRINCE and Midori -. In: Advances in Cryptology -
ASIACRYPT 2016 - 22nd International Conference on the Theory and Application
of Cryptology and Information Security, Proceedings, Part I. LNCS, vol. 10031,
pp. 517–547 (2016)

38. Moss, A., Oswald, E., Page, D., Tunstall, M.: Compiler Assisted Masking. In:
Cryptographic Hardware and Embedded Systems - CHES 2012 - 14th International
Workshop, Proceedings. LNCS, vol. 7428, pp. 58–75. Springer (2012)

39. Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Nonlin-
ear Functions in the Presence of Glitches. J. Cryptology (2011)

40. Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-channel
resistant crypto for less than 2, 300 GE. J. Cryptology (2011)

41. Raseen, M., Prasad, P.W.C., Assi, A.: An efficient estimation of the ROBDD’s
complexity. Integr. (2006)

42. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidat-
ing Masking Schemes. In: Advances in Cryptology - CRYPTO 2015 - 35th An-
nual Cryptology Conference, Proceedings, Part I. LNCS, vol. 9215, pp. 764–783.
Springer (2015)

43. Trichina, E.: Combinational Logic Design for AES SubByte Transformation on
Masked Data. IACR Cryptol. ePrint Arch. (2003)

44. Zhang, J., Gao, P., Song, F., Wang, C.: SCInfer: Refinement-Based Verification
of Software Countermeasures Against Side-Channel Attacks. In: Computer Aided
Verification - 30th International Conference, CAV 2018, Held as Part of the Fed-
erated Logic Conference, FloC 2018, Proceedings, Part II. LNCS, vol. 10982, pp.
157–177. Springer (2018)


	SILVER – Statistical Independence andLeakage Verification

