
Succinct Functional Commitment for a Large
Class of Arithmetic Circuits

Helger Lipmaa and Kateryna Pavlyk

Simula UiB, Bergen, Norway {helger,kateryna}@simula.no

Abstract. A succinct functional commitment (SFC) scheme for a circuit
class CC enables, for any circuit C ∈ CC, the committer to first suc-
cinctly commit to a vector α, and later succinctly open the commitment
to C(α,β), where the verifier chooses β at the time of opening. Unfor-
tunately, SFC commitment schemes are known only for severely limited
function classes like the class of inner products. By making non-black-
box use of SNARK-construction techniques, we propose a SFC scheme
for the large class of semi-sparse polynomials. The new SFC scheme can
be used to, say, efficiently (1) implement sparse polynomials, and (2)
aggregate various interesting SFC (e.g., vector commitment and polyno-
mial commitment) schemes. The new scheme is evaluation-binding under
a new instantiation of the computational uber-assumption. We provide
a thorough analysis of the new assumption.

Keywords: aggregated functional commitment, Dejà Q, functional
commitment, SNARK, uber-assumption, vector commitment

1 Introduction

A succinct functional commitment (SFC) scheme [29] for a circuit class CC
enables the committer, for any C ∈ CC, to first commit to a vector α, and later
open the commitment to C(α,β), where the verifier chooses β at the time of
opening. An SFC scheme must be evaluation-binding (given a commitment, it
is intractable to open it to ξ = C(α,β) and ξ′ = C(α,β) for ξ 6= ξ′) and hiding
(a commitment and possibly many openings should not reveal any additional
information about α). Succinctness means that both the commitment and the
opening have length polylog(|α|, |β|).

In particular, an SFC scheme for inner products (SIPFC) assumes that, C
computes the inner product (α,β)→ 〈α,β〉 [30,25,29]. As explained in [29], one
can use an SIPFC scheme to construct succinct vector commitment schemes [12],
polynomial commitment schemes [27], and accumulators [5]. Each of these prim-
itives has a large number of independent applications. Succinct polynomial com-
mitment schemes have recently become very popular since they can be used to
construct (updatable) SNARKs [41,40,35,15] (a direction somewhat opposite to
the one we will pursue in the current paper). Since, in several applications (e.g.,
in cryptocurrencies, [38]), one has to run many instances of SFC in parallel,

2 Helger Lipmaa and Kateryna Pavlyk

there is a recent surge of interest in aggregatable SFC schemes, [8,28,9,22,38].
All mentioned papers propose succinct FC schemes for limited functionalities.

Since there are no prior SFC schemes for broader classes of functions, there
is a large gap between function classes for which an SFC scheme is known and
the class of all efficiently (e.g., poly-size arithmetic circuits) verifiable functions.
Filling a similar gap is notoriously hard in the case of related primitives like
functional encryption, homomorphic encryption, and NIZK. A natural question
to ask is whether something similar holds in the case of functional commitment.

It is easy to construct an SFC for all poly-size circuits under non-falsifiable
assumptions: given a commitment to α, the opening consists of a SNARK ar-
gument [23,31,20] that C(α,β) = ξ. However, while non-falsifiable assumptions
are required to construct SNARKs [21], they are not needed in the case of SFC
schemes. Thus, just using SNARK as a black-box is not a satisfactory solution.

Moreover, since one can construct non-succinct NIZK from falsifiable assump-
tions for NP, one can construct a non-succinct FC (nSFC) from a non-succinct
NIZK. Bitansky [6] pursued this approach, proposing an nSFC, for all circuits,
that uses NIZK as a black-box. By using NIWIs in a non-black-box manner, Bi-
tansky proposed another, non-trivial, nSFC scheme that does not achieve zero-
knowledge but does not require the CRS model. Alternatively, consider the FC
scheme where the commitment consists of fully-homomorphic encryptions Ci of
individual coefficients αi, and the opening is the randomizer R of the evalua-
tion of the circuit C on them. The verifier can re-evaluate the circuit on Ci and
her input, and then check that the result is equal to Enc(ξ;R). However, the
resulting FC is not succinct since one has to encrypt all αi individually.

Thus, the main question is to construct succinct FC schemes, under falsifiable
assumptions, for a wide variety of functionalities.

Our Contributions. We propose a falsifiable SFC scheme FCsn for the class
of semi-sparse polynomials CC = CCΣΠ∀ whose correct computation can be
verified by using an arbitrary polynomial-size arithmetic circuit that is “compil-
able” according to the definition, given in a few paragraphs. Notably, FCsn allows
efficiently aggregate various SFC schemes, e.g., vector commitments with inner-
product commitments and polynomial commitments. We analyze the power of
CCΣΠ∀ by using techniques from algebraic complexity theory; the name of the
class will be explain in Section 4.

We prove that FCsn is secure under a new falsifiable assumption (computa-
tional span-uber-assumption in a group G1) that is reminiscent of the well-known
computational uber-assumption in G1. We then thoroughly analyze the security
of the new assumption.

Our Techniques. Next, we provide a high-level overview of our technical con-
tributions. The construction of FCsn consists of the following steps.
1. Compilation of the original circuit C computing the fixed function F ∈ CC

to a circuit C∗ consisting of four public subcircuits.
2. Representation of C∗ in the QAP language which SNARKs usually use.

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 3

3. Construction of SFC for the QAP representation, by using SNARK tech-
niques in a non-black-box way.

Next we describe these steps in detail.

Circuit Compilation. Let C : Zµαp × Zµβp → Zκp be a polynomial-size arithmetic
circuit that, on input (α,β), outputs ξ = F(α,β) = (Fi(α,β))κi=1. Here, the
committer’s input α is secret, and the verifier’s input is public. We modify the
circuit C to a compiled circuit C∗, see Fig. 1, that consists of the subcircuits Cφ,
Cψ, Cχ, and Cξ. In the commitment phase, the committer uses the circuit Cφ to
compute several polynomials φi(α) depending on only 1 (this allows the output
polynomials to have a non-zero constant term) and α. In the opening phase, the
verifier sends β to the committer, who uses the circuit Cψ to compute several
polynomials ψi(β) depending on 1 and β. The verifier can redo this part of the
computation. After that, the committer uses the circuit Cχ to compute several
polynomials χi(α,β) from the inputs and outputs of Cφ and Cψ. Finally, the
committer uses Cξ to compute the outputs Fi(α,β) of C∗. We will explain more
thoroughly this compilation in Section 3.

Intuitively, the compilation restricts the

ξ

C ξ

C χ

C φ C ψ

αj 1 βj

1 1

φi(
α) ψi(β)

α
j

β
j1

χi
(α,

β)
1

Fi(α,β)

Fig. 1. The compiled circuit C∗.

class of circuits in two ways. First, we add a
small circuit Cξ at the top of the compiled
circuit to guarantee that the R1CS repre-
sentation of C∗ has several all-zero columns
and rows, which helps us in the security
reduction. This does, however, not restrict
the circuit class for which the SFC is de-
fined and it only increases the number of
gates by κ. Second, Cχ is restricted to have
multiplicative depth 1, i.e., it sums up prod-
ucts of polynomials in α with polynomials
in β. This guarantees that in a collision,
the two accepted openings have a linear re-
lation that does not depend on secret data
α. The latter makes it possible for the reduction to break the underlying falsi-
fiable assumption. Thus, we are restricted to the class CCΣΠ∀ of circuits where
each output can be written as

∑
i,j φi(α)ψj(β), for efficiently computable poly-

nomials φi and ψj , and the sum is taken over number poly(λ) products.
By employing tools from the algebraic complexity theory, in Section 4, we

study the class CCΣΠ∀ of “compilable” (according to the given definition) arith-
metic circuits. We say that a polynomial f ∈ CCΣΠ∀ if f has a circuit that
belongs to CCΣΠ∀. The new SFC scheme can implement f iff f ∈ CCΣΠ∀.
First, we show that any sparse polynomial (over indeterminates, chosen by both
the committer and the verifier) f belongs to CCΣΠ∀. Second, we construct a
non-sparse polynomial f ∈ CCΣΠ∀. This relies on a result of Ben-Or who con-
structed an O(n2)-size arithmetic circuit that simultaneously computes the dth
symmetric polynomial σd(X1, . . . , Xn), for d ∈ [1 .. n]. Third, we construct a

4 Helger Lipmaa and Kateryna Pavlyk

polynomial f ∈ VP such that f 6∈ CCΣΠ∀, where VP is the class of poly-degree
polynomials that have poly-size circuits, [39].

R1CS/QAP Representation. Let C be an arithmetic circuit, and C∗ be its com-
pilation. A circuit evaluation can be verified by verifying a matrix equation,
where matrices define the circuit uniquely and reflect all the circuit constraints.
SNARKs usually use QAP (Quadratic Arithmetic Program, [20]), a polynomial
version of R1CS, which allows for better efficiency.

Constructing the Underlying SNARK. Intuitively, we start constructing a
SNARK for C∗ by following the approach of Groth [24] who proposed the most
efficient known zk-SNARK, or more precisely, its recent modification by Lip-
maa [33]. However, we modify this approach whenever it suits our goals. The
new SFC inherits the efficiency of Groth’s SNARK; this is the main reason why
we chose Groth’s SNARK; it may be the case that SFCs constructed from less
efficient SNARKs have other desirable properties, but this is out of the scope
of the current paper. We chose the modified version of [33] due to its versatil-
ity: [33] explains sufficiently well how to construct a SNARK for QAP so that it
is feasible to modify its approach to suit the current paper.

The New SFC Scheme. In the SNARKs of [24,33], the argument consists of three
group elements, π = ([A]1, [B]2, [C]1). (We use the bracket additive notation, see
Section 2.) Due to our restrictions on C∗, both [A]1 and [B]2 can be written as
sums of a non-functional commitment that depends on the secret data only and
a non-functional commitment that depends on public data only. By the public
data we mean (β,F(α,β)); any other function of α is a part of the secret data.
E.g., [A]1 = [As]1 + [Ap]1, where [As]1 is computed by the committer before
β becomes available, and [Ap]1 can be recomputed by the verifier since it only
depends on the public data. However, [C]1 = [Csp]1 + [Cp]1, where [Cp]1 depends
only on public data but [Csp]1 depends both on public and private data.

In the new SFC commitment scheme, the functional commitment is C =
([As]1, [Bs]2) and the opening is [Csp]1. After receiving the opening, the verifier
recomputes [Ap]1, [Bp]2, and [Cp]1, and then runs the SNARK verifier on the
argument π = ([As]1 +[Ap]1, [Bs]2 +[Bp]2, [Csp]1 +[Cp]1). However, as we will see
later, the commitment also includes auxiliary elements [Baux

i]1 needed to obtain
an efficient security reduction.

We will denote the new SFC commitment scheme by FCsn. We denote by
FCCsn its specialization to the circuit C.

Applications. To demonstrate the usefulness of FCsn, we will give several appli-
cations: some of them are well-known, and some are new. In all cases, the function
of interest can be rewritten as a semi-sparse polynomial in (α,β). Some of these
examples are closely related to but still sufficiently different from IPFC. In par-
ticular, [29] showed how to use an efficient IPFC to construct SFC for polynomial
commitments [27], accumulators [5], and vector commitments [12] (See the full

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 5

version [34].). We use FCsn to construct subvector commitments [28], aggregated
polynomial commitment [15,9] (one can commit to multiple polynomials at once,
each of which can be opened at a different point), and multivariate polynomial
commitments [10]. Also, we outline a few seemingly new applications like the
aggregated inner product (that, in particular, can be used to implement sub-
vector commitment) and evaluation-point commitment schemes. (See the full
version [34].) All described commitment schemes are succinct.

Importantly, FCsn achieves easy aggregation in a more general sense. Let Ci
be some circuits for which efficient SFC schemes exist. We can then construct
an efficient SFC for the circuit that consists of the sequential composition of Ci-
s. In particular, we can aggregate multiple polynomial commitment schemes,
some vector commitment schemes, and say an evaluation-point commitment
scheme. Some of the referred papers [8,28,9,38,22] construct aggregated commit-
ment schemes for a concrete circuit (e.g., an aggregated polynomial commitment
scheme). Importantly, FCsn allows one to aggregate different SFC schemes.

Security. The correctness and perfect hiding proofs are straightforward. The
main thing worthy of note here is that we have three definitions of hiding (com-
hiding, open-hiding, and zero-knowledge, see Section 2). For the sake of com-
pleteness, we also give three different hiding proofs. The SFC schemes must work
in the CRS model to obtain zero-knowledge. However, since zero-knowledge is
stronger than the other two definitions, the proof of zero-knowledge, that fol-
lows roughly from the zero-knowledge of the related SNARK, suffices. Note that
say [29] only considered the weakest hiding notion (com-hiding).

The evaluation-binding proof differs significantly from the knowledge-
soundness proofs of SNARKs. The knowledge-soundness of SNARKs can only
be proven under non-falsifiable assumptions [21]. In particular, Groth proved
the knowledge-soundness of the SNARK from [24] in the generic group model
while Lipmaa [33] proved it under HAK (hash-algebraic knowledge assumption,
a tautological knowledge assumption) and a known computational assumption
(namely, q-PDL [31]). Such assumptions have very little in common with assump-
tions we use. As expected, a knowledge-soundness proof that uses non-falsifiable
assumptions has a very different flavor compared to an evaluation-binding proof
that only uses falsifiable assumptions. We emphasize it is not clear a priori that
an SFC constructed from SNARKs could rely on falsifiable assumptions.

We prove the evaluation-binding of FCsn under the new (R,S, {fi})-
computational span-uber-assumption in source group G1, where R,S ⊂ Zp[X,Y]
and fi ∈ Zp[X,Y] with fi 6∈ span(R). This assumption states that given a com-
mitment key ck = ([%(χ, y) : % ∈ R]1, [σ(χ, y) : σ ∈ S]2), where χ, y are random
trapdoors, it is difficult to compute (∆ 6= 0,

∑κ
i=1∆i[fi(χ, y)]1), where ∆ is ad-

versarially chosen. (See Definition 6 for a formal definition.) Importantly, if κ = 1
then we just have an uber-assumption in G1. We show that (see Theorem 2), for
concrete R and fi, fi(X,Y) 6∈ span(R).

The full evaluation-binding proof is quite tricky and relies significantly on the
structure of matrices U , V ,W , and of the commitment key. Given a collision, we

6 Helger Lipmaa and Kateryna Pavlyk

“almost” compute (∆,
∑
∆i[fi(χ, y)]1), where∆ is the componentwise difference

between two claimed values of F(α,β). To eliminate “almost” in the previous
sentence, the committer outputs κ additional “helper” elements [Baux

i]1, where
extra care has to be used to guarantee that the helper elements can be com-
puted given the commitment key. In both cases, to succeed, we need to assume
that the matrices (U, V,W) satisfy some natural restrictions stated in individual
theorems. These restrictions are collected together in Theorem 1.

Analysis of the Span-Uber-Assumption. The span-uber-assumption is fal-
sifiable and, thus, significantly more realistic than non-falsifiable (knowledge)
assumptions needed to prove the adaptive soundness of SNARKs. Still, it is a
new assumption and thus we have written down three different proofs that it
follows from already known assumptions. (See Lemma 2 and Theorem 4, and
another theorem in the full version.)

In the full version [34], we prove that the span-uber-assumption in G1 holds
under the known (R,S, f ′i)-computational uber-assumption in the target group
GT [7]. Here, f ′i are different from but related to fi. We also prove that f ′i 6∈
span(RS). Since fi(X,Y) 6∈ span(R) and f ′i(X,Y) 6∈ span(RS) (in the case
of the uber-assumption in GT), we have an instantiation of the computational
uber-assumption, known to be secure [7] in the generic group model.

Since the generic group model is very restrictive and has known weak-
nesses [17,16] not shared by well-chosen knowledge assumptions, we will use the
newer methodology of [33]. In the full version [34], we prove that if fi 6∈ span(R)
then the (R,S, {fi})-computational span-uber-assumption in G1 holds under a
HAK and a PDL assumption. Since uber-assumption in GT is not secure un-
der a HAK assumption (the latter only handles the case the adversary outputs
elements in source groups since the target group is non-generic), this result is
orthogonal to the previous result. As a corollary of independent interest, we get
that if fi(X,Y) 6∈ span(R) then uber-assumption in G1 holds under a HAK and
a PDL assumption.

In composite-order bilinear groups, the computational uber-assumption in
GT holds under a subgroup hiding assumption [13]. Thus, due to Lemma 2, a
composite-order group span-uber-assumption (and also the new SFC) is secure
under a subgroup hiding assumption. In Theorem 4, we use the Déjà Q approach
of [14] to prove that the span-uber-assumption in Gι, ι ∈ {1, 2}, is secure under
a subgroup hiding assumption. This proof is more direct than the reduction
through an uber-assumption in GT . Moreover, the Déjà Q approach is more
applicable if one is working in the source group. Whether a similar reduction
holds in the case of prime-order groups is an interesting open question.

Efficiency. It is difficult to provide a detailed efficiency comparison of our newly
constructed scheme to all the abundant existing work in all applications. FCsn is
generic, works for a large class of circuits, and can tackle scenarios, not possible
with previous work, but at the same time, it can also be used to solve the much
simpler case of, e.g., inner product. We stress that FCsn, when straightforwardly

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 7

specialized to the IPFC case, is nearly as efficient as the most efficient known
prior IPFC, losing ground only in the CRS length. On the other hand, we are
not aware of any previous aggregated IPFC schemes (See the full version [34].).

This paper uses heavily a yet unpublished paper [33] of the first author.

2 Preliminaries

If R = (%1(X), . . . , %n(X)) is a tuple of polynomials over Zp[X] and x is a
vector of integers then R(x) := (%1(x), . . . , %n(x)). Let Z(≤d)

p [X] be the set of
degree-≤ d polynomials over Zp. For a matrix U , let U i be its ith row, U (j) be
its jth column. Let a◦b denote the component-wise product of two vectors a and
b, (a◦b)i = aibi. Let a1// . . . //an =

(
a1
...
an

)
denote the vertical concatenation of

vectors ai. λ is the security parameter, and 1λ denotes its unary representation.
PPT denotes probabilistic polynomial-time. For an algorithm A, range(A) is the
range of A, i.e., the set of valid outputs of A, RNDλ(A) denotes the random tape
of A (assuming the given value of λ), and r←$S denotes the uniformly random
choice of a randomizer r from the set/distribution S.

Interpolation. Assume ν is a power of two, and let ω be the νth primitive root
of unity modulo p. Such ω exists, given that ν | (p− 1). Then,
– `(X) :=

∏ν
i=1(X −ωi−1) = Xν − 1 is the unique degree ν monic polynomial

such that `(ωi−1) = 0 for all i ∈ [1 .. ν].
– For i ∈ [1 .. ν], `i(X) is the ith Lagrange basis polynomial, i.e., the unique

degree ν−1 polynomial s.t. `i(ωi−1) = 1 and `i(ωj−1) = 0 for i 6= j. Clearly,
`i(X) := `(X)/(`′(ωi−1)(X − ωi−1)) = (Xν − 1)ωi−1/(ν(X − ωi−1)).

Moreover, (`j(ω
i−1))νi=1 = ej (the jth unit vector) and (`(ωi−1))νi=1 = 0ν .

Bilinear Pairings. Let ν be an integer parameter (the circuit size in our appli-
cation). A bilinear group generator Pgen(1λ, ν) returns (p,G1,G2,GT , ê,P1,P2),
where G1,G2,GT are three additive cyclic groups of prime order p, ê : G1×G2 →
GT is a non-degenerate efficiently computable bilinear pairing, and Pι is a fixed
generator of Gι. We assume PT = ê(P1,P2). We require the bilinear pairing to be
Type-3, i.e., there is no efficient isomorphism between G1 and G2. For efficient
interpolation, we assume that p is such that ν | (p− 1). When emphasizing effi-
ciency is not important, we drop the parameter ν and just write p← Pgen(1λ).
We use additive notation together with the standard elliptic-curve “bracket” no-
tation. Namely, we write [a]ι to denote aPι, and [a]1 • [b]2 to denote ê([a]1, [b]2)
as . We use freely the bracket notation together with matrix notation, e.g., if
AB = C as matrices then [A]1 • [B]2 = [C]T .

Uber-Assumption. The following assumption is a special case of the more general
uber-assumption of [7,11].

Definition 1 ([7,11]). Let p ← Pgen(1λ). Let R, S, and T be three tu-
ples of bivariate polynomials from Zp[X,Y]. Let f be a bivariate polyno-
mial from Zp[X,Y]. The (R,S, T , f)-computational uber-assumption for Pgen

8 Helger Lipmaa and Kateryna Pavlyk

in group Gι, where ι ∈ {1, 2, T}, states that for any PPT adversary A,
Advuber

Pgen,R,S,T ,f,A(λ) = negl(λ), where Advuber
Pgen,R,S,T ,f,A(λ) :=

Pr

[
p← Pgen(1λ);χ, y←$Z∗p; ck← ([R(χ, y)]1, [S(χ, y)]2, [T (χ, y)]T) :

A(ck) = [f(χ, y)]ι

]
.

[7,11] considered the general case of c-variate polynomials for any c. In our case,
T = ∅; then, we have an (R,S, f)-computational uber-assumption in Gι.

Importantly [7,11], (i) if f(X,Y) is not in the span of {%(X,Y)} then the
(R,S, T , f)-computational uber-assumption for G1 holds in the generic group
model, and (ii) if f(X,Y) is not in the span of {%(X,Y)σ(X,Y)+τ(X,Y)} then
the (R,S, T , f)-computational uber-assumption for GT is difficult in the generic
group model. We will only invoke the uber-assumption in the case f(X,Y) is
not in the span of {%(X,Y)}.

QAP. Let R = {(z,wit)} be a relation between statements and witnesses.
Quadratic Arithmetic Program (QAP) was introduced in [20] as a language
where for an input z and witness wit, (z,wit) ∈ R can be verified by using a par-
allel quadratic check. QAP has an efficient reduction from the (either Boolean
or Arithmetic) Circuit-SAT. Thus, an efficient zk-SNARK for QAP results in
an efficient zk-SNARK for Circuit-SAT.

We consider arithmetic circuits that consist only of fan-in-2 multiplication
gates, but either input of each multiplication gate can be any weighted sum of
wire values, [20]. Let µ0 < µ be a non-negative integer. In the case of arithmetic
circuits, ν is the number of multiplication gates, µ is the number of wires, and
µ0 is the number of public inputs.

Let F = Zp, such that ω is the ν-th primitive root of unity modulo p. This
requirement is needed for the sake of efficiency, and we will make it implicitly
throughout the paper. However, it is not needed for the new SFC to work. Let U ,
V , andW be instance-dependent matrices and let a be a witness. A QAP is char-
acterized by the constraint Ua◦V a = Wa. Let La(X) :=

∑ν
i=1 ai`i(X) be the in-

terpolating polynomial of a = (a1, . . . , aν)> at points ωi−1, with La(ωi−1) = ai.
For j ∈ [1 .. µ], define uj(X) := LU(j)(X), vj(X) := LV (j)(X), and wj(X) :=
LW (j)(X) to be interpolating polynomials of the jth column of the corre-
sponding matrix. Thus, uj , vj , wj ∈ Z(≤ν−1)

p [X]. Let u(X) =
∑µ
j=1 ajuj(X),

v(X) =
∑µ
j=1 ajvj(X), and w(X) =

∑µ
j=1 ajwj(X). Then Ua ◦ V a = Wa iff

`(X) | u(X)v(X) − w(X) iff u(X)v(X) ≡ w(X) (mod `(X)) iff there exists a
polynomial H(X) such that u(X)v(X)− w(X) = H(X)`(X).

A QAP instance Iqap is equal to (Zp, µ0, {uj , vj , wj}µj=1). Iqap defines the
following relation:

RIqap =

{
(z,wit) : z = (a1, . . . , aµ0)> ∧ wit = (aµ0+1, . . . , aµ)>∧
u(X)v(X) ≡ w(X) (mod `(X))

}
, (1)

where u(X), v(X), and w(X) are as above. Alternatively, (z,wit) ∈ R if there
exists a (degree ≤ ν−2) polynomial H(X), s.t. the following key equation holds:

χ(X) := u(X)v(X)− w(X)−H(X)`(X) = 0 . (2)

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 9

On top of checking Eq. (2), the verifier also needs to check that u(X), v(X),
and w(X) are correctly computed: that is, (i) the first µ0 coefficients aj in u(X)
are equal to the public inputs, and (ii) u(X), v(X), and w(X) are all computed
by using the same coefficients aj for j ≤ µ.

Since both the committer and the verifier have inputs, we will use a variation
of QAP that handles public inputs differently (see Section 3). In particular, we
will use different parameters instead of µ0.

SNARKs. Let R be a relation generator, such that R(1λ) returns a polynomial-
time decidable binary relation R = {(z,wit)}. Here, z is a statement, and wit is a
witness. R also outputs the system parameters p that will be given to the honest
parties and the adversary. A non-interactive zero-knowledge (NIZK) argument
system Ψ = (Kcrs,P,V,Sim) for R consists of four PPT algorithms:
CRS generator: Kcrs is a probabilistic algorithm that, given (R, p) ∈

range(R(1λ)), outputs (crs, td) where crs is a CRS and td is a simulation
trapdoor. Otherwise, it outputs a special symbol ⊥.

Prover: P is a probabilistic algorithm that, given (R, p, crs, z,wit) for (z,wit) ∈
R, outputs an argument π. Otherwise, it outputs ⊥.

Verifier: V is a probabilistic algorithm that, given (R, p, crs, z, π), returns either
0 (reject) or 1 (accept).

Simulator: Sim is a probabilistic algorithm that, given (R, p, crs, td, z), outputs
an argument π.

A NIZK argument system must satisfy completeness (an honest verifier accepts
an honest prover), knowledge-soundness (if a prover makes an honest verifier
accept, then one can extract from the prover a witness wit), and zero-knowledge
(there exists a simulator that, knowing CRS trapdoor but not the witness, can
produce accepting statements with the verifier’s view being indistinguishable
from the view when interacting with an honest prover). See the full version [34]
for formal definitions. A SNARK (succinct non-interactive argument of knowl-
edge, [23,31,20,32,24,33]) is a NIZK argument system where the argument is
sublinear in the input size.

Functional Commitment Schemes. Let D be some domain. In a functional com-
mitment scheme for a circuit C : Dµα ×Dµβ → Dκ, one first commits to a vector
α ∈ Dµα , obtaining a functional commitment C. The goal is to allow the com-
mitter to later open C to ξ = C(α,β) ∈ Dκ, where β ∈ Dµβ is a public input
that is chosen by the verifier before the opening. We generalize the notion of
functional commitment, given in [29], from inner products to arbitrary circuits.
Compared to [29], we also provide a stronger hiding definition.

Let CC be a class of circuits C : Dµα×Dµβ → Dκ. A functional commitment
scheme FC for CC is a tuple of four (possibly probabilistic) polynomial time
algorithms (KC, com, open,V), where
Commitment-key generator: KC(1λ, C) is a probabilistic algorithm that,

given a security parameter λ ∈ N and a circuit C ∈ CC, outputs a com-
mitment key ck and a trapdoor key tk. We implicitly assume 1λ and C are
described by ck.

10 Helger Lipmaa and Kateryna Pavlyk

Commitment: com(ck,α; r) is a probabilistic algorithm that takes as input
the commitment key ck, a message vector α ∈ Dµα and some randomizer r.
It outputs (C,D), where C is a commitment to α and D is a decommitment
information. We denote the first output C of com(ck;α; r) by com1(ck;α; r).

Opening: open(ck, C,D,β) is a deterministic algorithm that takes as input the
commitment key ck, a commitment C (to α), a decommitment information
D, and a vector β ∈ Dµβ . Assume that the ith output value of the circuit
C is Fi(α,β), where Fi is a public function. It computes an opening opξ to
ξ = F(α,β) := (Fi(α,β))κi=1.

Verification: V(ck, C, opξ,β, ξ) is a deterministic algorithm that takes as input
the commitment key ck, a commitment C, an opening opξ, a vector β ∈ Dµβ ,
and ξ ∈ Dκ. It outputs 1 if opξ is a valid opening for C being a commitment
to some α ∈ Dµα such that Fi(α,β) = ξ and outputs 0 otherwise.

Security of FC. Next, we give three definitions of the hiding property for FC
schemes of increasing strength. The first definition corresponds to the definition
of hiding given in [29] and essentially states that commitments do not reveal
any information about α. The other two definitions seem to be novel at least in
the context of general FC. We provide all three definitions, since in some appli-
cations, a weaker definition might be sufficient. Moreover, the third definition
(zero-knowledge) makes only sense in the CRS model; in a CRS-less model, one
can rely on the open-hiding property.

Definition 2 (Perfect com-hiding). A functional commitment scheme FC =
(KC, com, open,V) for circuit class CC is perfectly hiding if for any λ, C ∈ CC,
(ck, tk) ← KC(1λ, C), for all α1,α2 ∈ Dµα with α1 6= α2, the two distributions
δ1 and δ2 are identical, where

δb := {(ck, Cb) : r←$RNDλ(com); (Cb, Db)← com(ck,αb; r)} .

The open-hiding property is considerably stronger, stating that the commit-
ment and the openings together do not reveal more information on α than the
values C(α,βi) on queried values βi. Trivial non-succinct FC schemes, where
one uses a perfectly-hiding commitment scheme to commit to β, and then in the
opening phase, opens the whole database, are com-hiding but not open-hiding.

Definition 3 (Perfect open-hiding). A functional commitment scheme FC =
(KC, com, open,V) for circuit class CC is perfectly open-hiding if for any λ, C ∈
CC, (ck, tk)← KC(1λ, C), for all α1,α2 ∈ Dµα with α1 6= α2, and Q = poly(λ)
of βi such that C(α1,βi) = C(α2,βi) for all i ≤ Q, the two distributions δ1 and
δ2 are identical, where δb :=

{(ck, Cb, {open(ck, Cb, Db,βi)}) : r←$RNDλ(com); (Cb, Db)← com(ck,αb; r)} .

Finally, zero-knowledge FC schemes have simulation-based hiding. While
simulation-based security is a gold standard in cryptography, it is usually more
complicated to achieve than game-based security. In particular, one needs to
have a trusted ck (and its trapdoor) to achieve zero-knowledge. We will leave it

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 11

as an open problem whether one can use instead the much weaker bare public
key (BPK) model, by using the techniques of [4,1,18,2]. Note that [33] showed
that their SNARKs are all secure in the BPK model.

Definition 4 (Perfect zero-knowledge). An FC scheme FC = (KC, com,
open,V) for CC is perfectly zero-knowledge if there exists a PPT simulator
Sim, such that for all λ, all C ∈ CC, (ck, tk)← KC(1λ, C), for all α ∈ Dµα , for
any poly-size set of βi, δ0 and δ1 are identical, where

δ0 :={(ck, C, {open(ck, C,D,βi)}) : r←$RNDλ(com); (C,D)← com(ck,α; r)} ,
δ1 :={(ck,Sim(ck, td, {βi}, {C(α,βi)}))} .

Next, we will define evaluation-binding. Evaluation-binding can be weaker
than binding, but sometimes the two notions are equivalent. (Consider the case of
the inner product when the adversary asks the committer to open a commitment
for β = ei for each i.) In the context of FC schemes, evaluation-binding is the
distinguishing security notion.

Definition 5 (Computational evaluation-binding). A functional commit-
ment scheme FC = (KC, com, open,V) for circuit class CC is computationally
evaluation-binding if for any λ, C ∈ CC, and a non-uniform PPT adversary A,
Advbind

FC,λ,C,A(λ) = negl(λ), where Advbind
FC,λ,C,A(λ) :=

Pr

[
(ck, tk)← KC(1λ, C); (C,β, ξ, opξ, ξ̃, õpξ)← A(ck) : β ∈ Dµβ∧

ξ 6= ξ̃ ∈ Dκ ∧ V(ck, C, opξ,β, ξ) = V(ck, C, õpξ,β, ξ̃) = 1

]
.

An FC scheme is succinct (SFC), if both the commitments and openings have
length that is polylogarithmic in |α| and |β|.

3 The New SFC Scheme

In this section, we will construct a succinct functional commitment (SFC) scheme
for (almost) all polynomial-size arithmetic circuits by mixing techniques from
SNARKs with original ideas, needed to construct a SFC scheme. Let F be a
fixed vector function that takes inputs from two parties, the committer and the
verifier. Let αj be private inputs of the committer, used when committing. Let
βj be public inputs of the verifier, used when opening the commitment.

Let C be an arithmetic circuit that inputs αj and βj and computes F(α,β) =
(Fi(α,β))κi=1, where α is the private input of the committer and β is chosen
by the verifier, possibly only later. We compile C to a circuit C∗ that consists of
four subcircuits Cφ, Cψ, Cχ and Cξ. We need the division to four subcircuits to
prove evaluation-binding; we will give more details later.

After that, we use the QAP-representation [20] (more precisely, the approach
of [33]) of arithmetic circuits, obtaining polynomials A(X,Y), B(X,Y) (the “com-
mitment polynomials” to all left/right inputs of all gates of C∗, correspondingly),
and C(X,Y) (the “opening polynomial”), such that C(X,Y) is in the linear span

12 Helger Lipmaa and Kateryna Pavlyk

of the “polynomial commitment key” ck1 = (%(X,Y) : % ∈ R) if and only if the
committer was honest. The circuit compilation allows us to divide the polynomi-
als to “private” parts (transmitted during the commitment) and “public” parts
(trasmitted during the opening), such that one can, given two different open-
ings for the same commitment, break a computational assumption. We then
use SNARK-based techniques to construct the SFC for C∗ with succinct com-
mitment and opening. We postpone security proofs to Section 5; we currently
emphasize that the evaluation-binding proof is novel (in particular, not related
to the knowledge-soundness proofs of SNARKs at all).

Circuit Compilation. Let C be a polynomial-size arithmetic circuit that, on
input (α,β), outputs ξ = F(α,β) = (Fi(α,β))κi=1. We compile C to a compiled
circuit C∗, see Fig. 1, that consists of the public subcircuits Cφ, Cψ, Cχ, and Cξ
that are combined as follows. In the commitment phase, the committer uses the
circuit Cφ to compute a number of polynomials φi(α) depending on only 1 and
α. More precisely, φ(α) = (φ1(α), . . . , φµφ(α)) denotes the set of the outputs
of all (including intermediate) gates in Cφ (the same is the case of other circuits
and corresponding polynomials). The commitment depends only on 1, α, and
φ(α). In the opening phase, the verifier sends β to the committer, who uses the
circuit Cψ to compute some polynomials ψi(β) depending on 1 and β. This part
of the computation is public and can be redone by the verifier.

After that, the committer uses the circuit Cχ to compute a number of
polynomials χi(α,β) from the inputs and outputs of Cφ and Cψ, i.e., from
(1,α,β,φ(α),ψ(β)). Cχ has multiplicative depth 1, and thus, w.l.o.g., each
χi(α,β) is a product of some φj(α) with some ψk(β). Finally, the commit-
ter uses Cξ to compute the outputs Fi(α,β) of C∗. We will explain the need for
such compilation after Eqs. (7) and (8). We will summarize all actual restrictions
on the circuits in Theorem 1. In the introduction, we gave an intuitive explana-
tion of how this compilation reduces the circuit class that we can handle. See
Section 4 for an additional discussion on the power of this circuit class.

Next, let a ∈ Zµp be the value of all wires of C∗. We write

a = 1//α//φ(α)//β//ψ(β)//χ(α,β)//F(α,β) . (3)

Here, α ∈ Zµαp , φ(α) ∈ Zµφp , β ∈ Zµβp , ψ(β) ∈ Zµψp , χ(α,β) ∈ Zµχp , and
F(α,β) ∈ Zκp . Thus, µ = 1+µα+µβ+µφ+µψ+µχ+κ. To use the RC1S approach,
we construct matrices U , V , and W , such that Ua ◦ V a = Wa iff C∗ is correctly
computed. Let α∗ = (1//α//φ(α)) ∈ Z1+µα+µφ

p and β∗ = (1//β//ψ(β)) ∈
Z1+µβ+µψ
p . First, we define R1CS-matrices Uφ, Uψ, Uχ, Uξ, Vφ, Vψ, Vχ such that

(various subcircuits of) C∗ are correctly computed iff

Uφα
∗ ◦ Vφα∗ = φ(α) , Uψβ

∗ ◦ Vψβ∗ = ψ(β) ,

Uχ

(
α∗

β
ψ(β)

)
◦ Vχ

(
α∗

β
ψ(β)

)
= χ(α,β) , Uξχ(α,β) ◦ 1 = F(α,β) .

(4)

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 13

Here, Uφ, Vφ ∈ Zµφ×(1+µα+µφ)
p , Uψ, Vψ ∈ Zµψ×(1+µβ+µψ)

p , Uχ, Vχ ∈
Zµχ×(1+µα+µβ+µφ+µψ)
p , and Uξ ∈ Zκ×µχp . In particular,

Fi(α,β) =
∑µχ
j=1 Uξijχj(α,β) , i ∈ [1 .. κ] . (5)

Next, we define U, V,W ∈ Zν×µp , as

1 α φ
(α

)

β ψ
(β

)

χ
(α
,β

)

F
(α
,β

)

Uφ
Uψ Uψ

Uχ
Uξ

1 α φ
(α

)

β ψ
(β

)

χ
(α
,β

)

F
(α
,β

)

Vφ
Vψ Vψ

Vχ
1κ

1 α φ
(α

)

β ψ
(β

)

χ
(α
,β

)

F
(α
,β

)

Iµφ
Iµψ

Iµχ
Iκ

(6)

correspondingly. Clearly, ν := µφ+µψ +µχ+κ. Here, we labeled vertically each
column of each matrix by the supposed value of the corresponding coefficients
of a = 1//α// . . . //F(α,β). Some submatrices (Uψ and Vψ) are divided be-
tween non-continuous areas. The empty submatrices are all-zero in the compiled
instance. Clearly, Ua ◦ V a = Wa iff Eq. (4) holds.

QAP Representation. Recall that `i(X) ∈ Z(≤ν−1)
p [X], i ∈ [1 .. ν], interpo-

lates the ν-dimensional unit vector ei. To obtain a QAP representation of the
equation Ua ◦ V a = Wa, we use interpolating polynomials; e.g., uj(X) interpo-
lates the jth column of U . (See Section 2.) To simplify notation, we introduce
polynomials like uφj(X) and uχj(X), where say uχj(X) interpolates (all ν rows
of the) the jth column of the ν × (1 + µα + µβ + µφ + µψ) submatrix of U
that contains Uχ. E.g., uχj(X) interpolates the jth column of Uχ (preceded and
followed by 0 rows), uχj(X) =

∑µχ
i=1 Uχij`µφ+µψ+i(X).

We divide the polynomials u(X) and v(X) into two addends: one polynomial
(us, vs, resp.) that depends on α but not on β, and another polynomial
(up, vp, resp.) that depends on public values (β and {Fi(α,β)}) but not
on α otherwise. Such a division is possible due to the way C∗ is composed
from the subcircuits. Thus, u(X) =

∑µ
j=1 ajuj(X) = us(X) + up(X) and

v(X) =
∑µ
j=1 ajvj(X) = vs(X) + vp(X), where

us(X) =
∑µα+µφ+1

j=2 ajuj(X)

=
∑µα
j=1 αj(uφ,1+j(X) + uχ,1+j(X))+∑µφ
j=1 φj(α)(uφ,1+µα+j(X) + uχ,1+µα+j(X)) ,

up(X) =u1(X) +
∑µ
j=µα+µφ+2 ajuj(X)

=u1(X) +
∑µβ
j=1 βj(uψ,1+j(X) + uχ,1+µα+µφ+j(X))+∑µψ

j=1 ψj(β)(uψ,1+µβ+j(X) + uχ,1+µα+µφ+µβ+j(X))+∑µχ
j=1 χj(α,β)uξ,1+j(X)︸ ︷︷ ︸

=
∑κ
i=1 Fi(α,β)`ν−κ+i(X)

,

(7)

14 Helger Lipmaa and Kateryna Pavlyk

and
vs(X) =

∑µα+µφ+1

j=2 ajvj(X)

=
∑µα
j=1 αj(vφ,1+j(X) + vχ,1+j(X))+∑µφ
j=1 φj(α)(vφ,1+µα+j(X) + vχ,1+µα+j(X)) ,

vp(X) =a1v1(X) +
∑µ
j=µα+µφ+2 ajvj(X)

=v1(X) +
∑µβ
j=1 βj

(
vψ,1+j(X) + vχ,1+µα+µφ+j(X)

)
+∑µψ

j=1 ψj(β)(vψ,1+µβ+j(X) + vχ,1+µα+µφ+µβ+j(X)) .

(8)

(In particular, recall that a1 = 1.) Here, u1(X) = uφ1(X) + uψ1(X) + uχ1(X)
and v1(X) = vφ1(X) + vψ1(X) + vχ1(X) +

∑κ
i=1 `ν−κ+i(X). The concrete shape

of all these polynomials follows from Eqs. (3) and (6).
In Theorems 2 and 3(see their claims and proofs), we will need several con-

ditions to hold. Next, we will state and prove that these conditions hold for
C∗. One can observe directly that most of the guarantees, given by C∗ about
the shape of U, V,W , are actually required by the following conditions. Since
the addition of the circuit Cξ is essentially for free (it only means the addition
of κ gates), many of the following conditions are very easy to satisfy; we will
denote such conditions by a superscript + as in (a)+. We emphasize that the
only restrictive conditions are Items i and j that basically state that Cχ can only
have multiplicative depth 1. (See Remark 1 for discussion.) That is, the new SFC
scheme will work for all circuits C that have a polynomial-size compiled circuit
C∗, such that Cχ has multiplicative depth 1.

Theorem 1. Let C be an arithmetic circuit and let C∗ be its compiled version,
so that U, V,W are defined as in Eq. (6). Then the following holds.

(a)+ For j ∈ [1 .. µ− κ]: if W (j) = 0 then Uν−κ+i,j = 0 for i ∈ [1 .. κ].
(b)+ For I ∈ [1 .. κ] and j ∈ [1 .. µ− κ], Wν−κ+I,j = 0.
(c)+ For j ∈ [2 .. 1 + µα + µφ], vφj(X), vχj(X) are in the span of (`i(X))ν−κi=1 .
(d)+ For j ∈ [2 + µα + µφ .. µ], v1(X) −

∑κ
i=1 `ν−κ+i(X) and vj(X) are in the

span of (`i(X))ν−κi=1 .
(e)+ For j ∈ [µ− κ .. µ], U (j) = 0.
(f)+ For j ∈ [µ− κ .. µ], V (j) = 0.
(g)+ For i ∈ [1 .. κ], wµ−κ+i(X) = `ν−κ+i(X).
(h) The set of non-zero W (j), j ∈ [1 .. µ− κ], is linearly independent.
(i) For j ∈ [µ− µχ − κ+ 1 .. µ− κ], Uij = 0 if i ≤ ν − κ, while the last κ rows

of this column range define a matrix Uξ that satisfies Eq. (4).
(j) For j ∈ [µ− µχ − κ+ 1 .. µ− κ], V (j) = 0.

Proof. First, we summarize the requirements, denoting each submatrix of U ,
V , and W by the number of condition that ascertains that this submatrix is 0
(or has a well-defined non-zero form); moreover, Item h states that the columns
ofW , that contain identity matrices, are linearly independent. That is, U, V,W =

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 15

1 α φ
(α

)

β ψ
(β

)

χ
(α
,β

)

F
(α
,β

)

Uφ i e

Uψ Uψ i e

Uχ i e

a a a Uξi e

1 α φ
(α

)

β ψ
(β

)

χ
(α
,β

)

F
(α
,β

)

Vφ j f

Vψ Vψ j f

Vχ j f

1κd c c d d dj df

1 α φ
(α

)

β ψ
(β

)

χ
(α
,β

)

F
(α
,β

)

Iµφ g

Iµψ g

Iµχ g

b b b b b b Iκg

Item a: follows since W (j) = 0 in the columns labeled by 1, α and β, and

the last rows of U in all these columns are equal to 0, according to Eq. (6).
Item b: obvious from W in Eq. (6).
Item c: follows since the last rows of V , corresponding to columns labeled

by α and β, are equal to 0.
Item d: follows since the last rows of V , corresponding to columns labeled

by β, ψ(β), χ(α,β), and F(α,β), are equal to 0, and the last rows of V (1) are
equal to 1κ.

Items e to g, i and j: follows from direct observation.
Item h: follows from the fact that W (j) = 0 for some columns j, and the

submatrix ofW that consists of the rest of the columns is an identity matrix. ut

Remark 1. The compiled circuit C∗ satisfies some conditions, not required by
Theorem 1. First, by Item h, the set of non-zero W (j) has to be linearly inde-
pendent (not necessarily an identity matrix), while in Eq. (6), the corresponding
columns constitute an identity matrix. Second, by Item a, last rows of U (j) need
to be zero only ifW (j) is 0; one can insert dummy gates to C∗ such thatW has no
zero columns. This essentially just corresponds to the fact that we start with an
arithmetic circuit and each constraint is about a concrete gate being correctly
evaluated. Third, several submatrices of U, V,W are all-zero in our template
while there is no actual need for that. For example, Uξ can be generalized, and
Uφ and Uψ can also both depend on α and β. For the sake of simplicity, we stick
to the presented compilation process, and leave the possible generalizations to
future work.

SNARK-Related Techniques. Next, we follow [33] to derive polynomials
related to the SNARK, underlying the new SFC. We simplify the derivation a
bit, and refer to [33] for full generality. Let A(X,Y) = ra+u(X)Y and B(X,Y) =
rb + v(X)Y for ra, rb←$Zp. ([33] considered the general case where A(X,Y) =
raY

α+u(X)Y β and B(X,Y) = rbY
α+v(X)Y β for some small integers α, β to be

fixed later.) The addends ra and rb are needed to protect the secret information
hidden by A(X,Y) and B(X,Y), and we use the indeterminate Y to simplify
the security proofs. As with u and w, we divide the polynomials A,B,C into two
addends: (i) a polynomial (As,Bs, Csp), where As and Bs depend on α but not
on β while Csp depends on both α and β, and (ii) a polynomial (Ap,Bp,Cp,
resp.) that depends on public values (β and {Fi(α,β)}) but not on α otherwise.

16 Helger Lipmaa and Kateryna Pavlyk

(Such a division was not possible in [33] since there one did not work with a
compiled circuit C∗.) Then,

As(X,Y) =ra + us(X)Y , Ap(X,Y) =up(X)Y ,

Bs(X,Y) =rb + vs(X)Y , Bp(X,Y) =vp(X)Y .
(9)

For integer constants δ and η that we will fix later, define

C(X,Y) =(A(X,Y) + Y δ)(B(X,Y) + Y η)− Y δ+η

=(ra + u(X)Y + Y δ)(rb + v(X)Y + Y η)− Y δ+η

=ra(v(X)Y + Y η) + rb(A(X,Y) + Y δ) + (u(X)v(X)− w(X))Y 2+

u(X)Y η+1 + v(X)Y δ+1 + w(X)Y 2

=ra(v(X)Y + Y η) + rb(A(X,Y) + Y δ) +H(X)`(X)Y 2+

u(X)Y η+1 + v(X)Y δ+1 + w(X)Y 2 ,

where the last equation holds iff the committer is honest (see Eq. (2)). Intuitively,
we want that a committer must be able to compute C(X,Y) iff he was honest.

Following [33], the inclusion of Y δ and Y η in the definition of C(X,Y) serves
two goals. First, it introduces the addend u(X)Y η+1 + v(X)Y δ+1 + w(X)Y 2 =∑µ
j=1 aj(uj(X)Y η+1 +vj(X)Y δ+1 +wj(X)Y 2) that makes it easier to verify that

P uses the same coefficients αj when computing [A]1, [B]2, and [C]1. Second, the
coefficient of Y 2 is u(X)v(X)− w(X) that divides by `(X) iff the committer is
honest. That is, the coefficient of Y 2 is H(X)`(X) for some polynomial H(X)
iff the prover is honest and thus ξ = F(α,β).

Let γ be another small integer, fixed later. Let C(X,Y) =
Csp(X,Y) + Cp(X,Y)Y γ , where Cp(X,Y) depends only on ξ. (In [33],
Csp(X,Y) was multiplied with Y α but here α = 0.) The factor Y γ is used to
“separate” the public and the secret parts. In the honest case,

Csp(X,Y) =ra(v(X)Y + Y η) + rb(A(X,Y)Y + Y δ)+

H(X)`(X)Y 2 +
∑µ−κ
j=1 aj(uj(X)Y η+1 + vj(X)Y δ+1 + wj(X)Y 2) ,

Cp(X,Y) =
∑µ
j=µ−κ+1 aj(uj(X)Y η+1−γ + vj(X)Y δ+1−γ + wj(X)Y 2−γ)

=
∑κ
i=1 Fi(α,β)(uµ−κ+i(X)Y η+1−γ + vµ−κ+i(X)Y δ+1−γ + wµ−κ+i(X)Y 2−γ) .

Intuitively, the verifier checks that Csp(X,Y) is correctly computed by checking
that V(X,Y) = 0, where

V(X,Y) :=(As(X,Y) + Ap(X,Y) + Y δ)(Bs(X,Y) + Bp(X,Y) + Y η)−
(Csp(X,Y) + Cp(X,Y)Y γ)− Y δ+η .

Here, (As,Bs) (the part of (A,B) that only depends on private information)
is the functional commitment, Csp is the opening, and Ap, Bp, and Cp can be
recomputed by the verifier given public information.

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 17

KC(1λ, C): p← Pgen(1λ, ν); Let C∗ be the compiled arithmetic circuit; C∗ defines
ν, µ, and other parameters. For tk = (χ, y)←$ (Z∗p)2 s.t. χν 6= 1, ck =
[1, (χiy)ν−1

i=0 , y
η, (χi`(χ)y2)ν−2

i=0 , (uj(χ)y
η+1 + vj(χ)y

δ+1 + wj(χ)y
2)µ−κj=1]1,

[(uµ−κ+i(χ)y
η+1−γ + vµ−κ+i(χ)y

δ+1−γ + wµ−κ+i(χ)y
2−γ)κi=1, y

δ]1,

[1, (χiy)ν−1
i=0 , y

γ , yη]2, [y
δ+η]T

 .

Return (ck, tk);
com(ck;α; ra, rb): // ra, rb ←$Zp;

Compute (aj)
µα+µφ+1

j=2 from α;
Let As(X,Y)← ra +

∑ν−1
i=0 AiX

iY be as in Eq. (9);
Let Bs(X,Y)← rb +

∑ν−1
i=0 BiX

iY be as in Eq. (9);
For i ∈ [1 .. κ]: Baux

i (X,Y)← `ν−κ+i(X)Bs(X,Y)Y ;
[As]1 ← ra[1]1 +

∑ν−1
i=0 Ai[χ

iy]1; [Bs]2 ← rb[1]2 +
∑ν−1
i=0 Bi[χ

iy]2;
For i ∈ [1 .. κ]: [Baux

i]1 ← [Baux
i (χ, y)]1;

C ← ([As, {Baux
i }κi=1]1, [Bs]2); D ← (α, ra, rb); return (C,D);

open(ck;C = ([As, {Baux
i }κi=1]1, [Bs]2), D = (α, ra, rb),β):

Compute a from α and β;
Compute [(`j(χ)y)

ν
j=1]1 from [(χiy)ν−1

i=0]1; // Needs to be done once
Compute [(uj(χ)y, vj(χ)y)

µ
j=1]1 from [(χiy)ν−1

i=0]1; // Needs to be done once

Compute [(wj(χ)y)
µ
j=1]1 from [(χiy)ν−1

i=0]1; // Needs to be done once
u(X)←

∑µ
j=1 ajuj(X); v(X)←

∑µ
j=1 ajvj(X); w(X)←

∑µ
j=1 ajwj(X);

H(X)← (u(X)v(X)− w(X))/`(X);
[Ap]1 ← [Ap(χ, y)]1 where Ap(X,Y) is as in Eq. (9);
[Csp]1 ← ra([v(χ)y]1 + [yη]1) + rb([As]1 + [Ap]1 + [yδ]1)+∑ν−2

i=0 Hi[χ
i`(χ)y2]1 +

∑µ−κ
j=1 aj [uj(χ)y

η+1 + vj(χ)y
δ+1 +wj(χ)y

2]1;
return opξ ← [Csp]1;

V(ck, C = ([As, {Baux
i }κi=1]1, [Bs]2), [Csp]1,β, {ξi}κi=1): // ξi =? Fi(α,β)

Compute [(`ν−κ+i(χ)y)
κ
i=1]1 from [(χiy)ν−1

i=0]1; // Needs to be done once
Compute [(`ν−κ+i(χ)y

2−γ)κi=1]1 from [(χiy2−γ)ν−1
i=0]1; // Needs to be done once

Compute [(`ν−κ+i(χ)y)
κ
i=1]2 from [(χiy)ν−1

i=0]2; // Needs to be done once
Compute needed [uj(χ)y]1 from [(χiy)ν−1

i=0]2; // done once
Compute needed [vj(χ)y]2 from [(χiy)ν−1

i=0]2; // done once
[Ap]1 ← [Ap(χ, y)]1 where Ap(X,Y) is as in Eq. (9);
[Bp]2 ← [Bp(χ, y)]2 where Bp(X,Y) is as in Eq. (9);
[Cp]1 ←

∑κ
i=1 ξi[`ν−κ+i(χ)y

2−γ]1;
Check ([As]1 + [Ap]1 + [yδ]1) • ([Bs]2 + [Bp]2 + [yη]2) = [Csp]1 • [1]2 + [Cp]1 •
[yγ]2 + [yδ+η]T ;
For i ∈ [1 .. κ]: check [`ν−κ+i(χ)y]1 • [Bs]2 = [Baux

i]1 • [1]2;

Fig. 2. SNARK-based SFC scheme FCCsn for arithmetic circuit C

The New SFC Scheme FCsn: Details. We are now ready to describe the new
succinct functional commitment scheme FCsn, see Fig. 2. Here, instead of oper-
ating with bivariate polynomials like A(X,Y), one operates with their encodings
like [As(χ, y)]ι in the source groups, where χ and y are secret trapdoors. The

18 Helger Lipmaa and Kateryna Pavlyk

commitment key of the SFC scheme contains the minimal amount of informa-
tion needed to perform commitment, opening, and verification by honest parties.
The expression of ck in KC has a generic form; one can replace the polynomials
uj(X), vj(X), wj(X) with their values evident from Eq. (6). Finally, `j(X) (and
thus also uj(X), vj(X), and wj(X)) has degree ν− 1 and can thus be computed
from (Xi)ν−1

i=0 , while `(X) has degree ν. We explain in the correctness proof of
Theorem 3 how to compute [Baux

i (χ, y)]1.
Note that FCsn can also be seen as a SNARK proving that F(α,β) = ξ, if

we let the prover to compute [Ap]1, [Bp]2, and [Cp]1.

Instantiation. Let C be a fixed circuit. Let R and S be two sets of bi-
variate polynomials, such that the commitment key of FCCsn is equal to ck =
([R(χ, y)]1, [S(χ, y)]2). Similarly to [33], let

Mon1 = {0, 1, 2, 2− γ, δ, δ + 1, δ + 1− γ, η, η + 1, η + 1− γ} (10)

be the set of exponents of Y in all polynomials from R. Let Crit = {2, η + 1}
and Crit = Mon1 \ Crit. For the evaluation-binding proof to hold, we need to fix
values of γ, δ, η ∈ Zp, such that the coefficients from Crit are unique, i.e.,

2, η + 1 6∈ {0, 1, 2− γ, δ, δ + 1, δ + 1− γ, η, η + 1− γ} and η + 1 6= 2 . (11)

That is, Crit ∩ Crit = ∅ and |Crit| = 2. It follows from Theorem 1 that the
polynomial fi(X,Y) := `ν−κ+i(X)Y η+1, i ∈ [1 .. κ], does not belong to span(R).

We will later consider two different evaluations for γ, δ, and η. Replacing γ,
δ, and η with 1, 0, and 3 guarantees that Eq. (11) holds (see Theorem 2, Item 1,
for more). Then,

ck =

[1, (χiy)ν−1

i=0 , y
3, (χi`(χ)y2)ν−2

i=0 , (uj(χ)y
4 + vj(χ)y

1 + wj(χ)y
2)µ−κj=1]1,

[(uµ−κ+i(χ)y
3 + vµ−κ+i(χ)y

0 + wµ−κ+i(χ)y
1)κi=1, y

0]1,

[1, (χiy)ν−1
i=0 , y

1, y3]2, [y
3]T

 .

In this case, the ck has one element (namely, [1]1) twice, and thus ck can be
shortened by one element.

Alternatively, replacing γ, δ, and η with 4, 0, and 7 (this choice is sufficient
for the evaluation-binding reduction to uber-assumption in GT to work and will
be explained in Theorem 2, Item 2), we get

ck =

[1, (χiy)ν−1

i=0 , y
7, (χi`(χ)y2)ν−2

i=0 , (uj(χ)y
8 + vj(χ)y

1 + wj(χ)y
2)µ−κj=1]1,

[(uµ−κ+i(χ)y
4 + vµ−κ+i(χ)y

−3 + wµ−κ+i(χ)y
−2)κi=1, y

0]1,

[1, (χiy)ν−1
i=0 , y

4, y7]2, [y
7]T

 .

Then, ck has one element ([1]1) twice, and thus it can be shortened.

Efficiency. The CRS length is 1 + ν+ 1 + (ν− 1) + (µ−κ) +κ+ 1 = 2ν+µ+ 2
elements from G1, ν + 3 elements from G2, and 1 element from GT . In the case

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 19

of fixed γ, δ and η in the previous two paragraphs, the CRS length will shorten
by 1 element of G1.

The functional commitment takes (ν + 1) + κ(ν + 1) = (κ+ 1)(ν + 1) expo-
nentiations in G1 and ν + 1 exponentiations in G2. The length of the functional
commitment is κ+ 1 elements of G1 and 1 element of G2.

The opening takes µβ +µψ+κ (to compute [Ap]1; note that u1(X) and other
simular polynomials are precomputed), µα+µβ +µφ+µψ (to compute [v(χ)y]1)
and 2 + (ν − 1) + (µ− κ) = ν + µ− κ + 1 (to compute [Csp]1) exponentiations
in G1, in total, ν + µ+ µα + 2µβ + µφ + 2µψ + 1 exponentiations. The length of
the opening is 1 element of G1.

The verification takes (µβ + µψ + κ) + κ = µβ + µψ + 2κ (to compute
[Ap,Cp]1) exponentiations in G1, µβ + µψ (to compute [Bp]2) exponentiations
in G2, and 2κ+ 3 pairings. Here, we do not count computations (e.g., computa-
tion of [`ν−κ+i(χ)y]1 from [(χiy)ν−1

i=0]1) that are only done once per the CRS.
The real efficiency depends of course significantly on the concrete application.

We will give some detailed examples in the full version [34].

4 On the Circuit Class and Example Applications

Next, we study the power of the implementable circuit class CCΣΠ∀, and we
show that many known functional commitment scheme are for functionalities
that belong to this class, and thus can be implemented by FCsn.

In this section, we assume basic knowledge of the algebraic complexity theory.
See [37] for necessary background. VP is the class of polynomial families {fn},
where fn is an univariate polynomial of poly(n) variables of poly(n) degree that
has an arithmetic circuit of poly(n) size [39]. ΣΠΣ (resp., ΣΠΣΠ) is the class
of depth-3 (resp., depth-4) circuits composed of alternating levels of sum and
product gates with a sum gate at the top [37, Section 3.5]. Sparse polynomials
are n-variate polynomials that have poly(n) monomials.

Recall that a compiled circuit C∗ can evaluate a vector polynomial f(α,β) =
(fi(α,β))κi=1 iff κ ∈ poly(λ) and each fi can be written as

fi(α,β) =
∑

φj(α)ψk(β) , (12)

where all polynomials φj and ψk are in the complexity class VP, and there
are a polynomial number of additions in the representation Eq. (12) (thus, also
a polynomial number of polynomials φj and ψk). We call such representation
an efficient ΣΠ∀-representation (here, ∀ denotes “any”) of f , and we denote
by CCΣΠ∀ the class of circuits (or vector polynomials) that have an efficient
ΣΠ∀-presentation. Clearly, FCsn can implement f iff f ∈ CCΣΠ∀.

It is clear that all sparse polynomials in VP have an efficient ΣΠ∀-
representation, and thus FCsn can implement all sparse polynomials. However, we
can do more. For example, consider the polynomial f ′(α,β) =

∏n
i=1(α+ βi) for

n = poly(λ). Since f ′ has 2n monomials, it is not sparse. However, we can rewrite
f ′ as f ′(α,β) =

∑n
d=0 α

dσn−d(β), where σn−d(β) =
∑
T⊆[1 .. n],|T |=d

∏
i∈T βi is

20 Helger Lipmaa and Kateryna Pavlyk

Table 1. Rewriting the functionalites of various SFC as sparse polynomials

Type µα µβ fi

Inner-product commitment [25,29] n n
∑n
j=1 αjβj

Polynomial commitment [27] n n
∑n−1
j=0 αjβ

j

Vector commitment [12] n 1 αI =
∑n
j=1 αjeIj

Accumulator [5,3] 1 n
∑µα−1
j=0 χαjβ

j

Evaluation-point commitment 1 n
∑n−1
j=0 α

jβj

c-variate polynomial commitment [36,10]
(
n+c
c

)
c
∑
αj
∏c
k=1 β

jk
k

the (n − d)th symmetric polynomial. There exists a ΣΠΣ circuit of size O(n2),
due to Ben-Or (see [37, Section 3.5]), that computes all n symmetric polynomi-
als in parallel. Thus, f has an efficient ΣΠ∀ -representation, and thus FCsn can
implement at least one non-sparse polynomial.

On the other hand, CCΣΠ∀ ⊆ VP. To see that CCΣΠ∀ (VP, consider
the polynomial f ′′(α,β) =

∏n
i=1(αi + βi) for n = poly (λ). Since f ′′ has 2n

monomials, it is not sparse. Considering βi as coefficients, it also has 2n mono-
mials in α (the case of considering αi as coefficients is dual), and thus any
ΣΠ∀-representation of f ′′ requires at least 2n addition gates. Since f ′′ can be
implemented by a ΠΣ circuit [37], it means ΠΣ 6⊂ CCΣΠ∀; however, clearly,
ΠΣ 6⊂ CCΣΠ∀ so CCΣΠ∀ is incomparable to ΠΣ. Thus

the class of sparse polynomials (CCΣΠ∀ (VP .

It is an interesting open problem to characterize CCΣΠ∀. Motivated by our
analysis of α′′, it seems we can implement all polynomials f(α,β), where either
the dimension µα of α or the dimension µβ of β is logarithmic in λ. Really, if
µα = O(log λ) then there are at most 2µα = poly(λ) possible monomials φi(α) in
α, and thus there exists an efficient ΣΠ∀-representation of f .

Known Types of SFCs as (Semi-)Sparse Polynomials. In Table 1, we
write down the functionalities of several previous known types of SFCs. This
shows that in all such cases, one has a sparse polynomial and thus can use FCsn

to implement them. In none of these cases, one needs the power of non-sparse
semi-sparse polynomials, and we leave it as another open question to find an
application where such power is needed. In the case of the vector commitment
scheme (resp., accumulator), one implements the inner-product scheme with β =
eI (resp., χα(X) =

∏
(X − αi)). In the case of say the polynomial commitment

scheme, β = (1, β, . . . , βn−1) and thus µβ = n.

Aggregation. The next lemma is straightforward.

Lemma 1. Assume that Ci ∈ CCΣΠ∀, where i ∈ {i}Q, and Q = poly(λ). Then
their parallel composition C‖ = (C1‖ . . . ‖CQ) ∈ CCΣΠ∀.

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 21

Proof. Obvious since we can just “parallelize” the representation in Eq. (12). ut

In practice, Lemma 1 is very important since it means that FCsn allows to ag-
gregate a polynomial number of SFCs for which FCsn is efficient. It just results
in a larger circuit C‖(and thus larger parameters like µ and κ. However, as the
length of the commitment in FCsn depends on κ, it means that the commitment
stays succinct when Q < |wit|. On the other hand, the length of the opening will
be one group element, independently of Q.

As a corollary of Lemma 1, we can construct succinct aggregated inner-
product SFCs, accumulators, (multi-point / multi-polynomial) polynomial com-
mitment schemes, vector commitment schemes (including subvector commitment
schmes), but also aggregate all these SFC variants with each other. Due to the
lack of space, we will give more details and examples in the full version [34].

Example: Succinct Aggregated Inner-Product Functional Commit-
ment. In an aggregated SIPFC, the committer commits to α and then opens
it simultaneously to 〈α,βi〉 =

∑n
j=1 αjβij for κ different verifier-provided vec-

tors βi, where i ∈ [1 .. κ]. Assume α and each βi are n-dimensional vectors.
There is no circuit Cφ or Cψ. Given α and βi, Cχ computes κn products
χij(α,β) = αjβij , i ∈ [1 .. κ] and j ∈ [1 .. n], and Cξ sums them together to ob-
tain κ outputs Fi(α,β) =

∑n
j=1 αjβij . Thus, Uχ = 1κ ⊗ In ∈ Zκn×np , Vχ = Iκn,

Uξ = In ⊗ 1>κ ∈ Zn×κnp (note that Cχ does not take 1 as an input), and

U =

 1 α β χ
(α
,β

)

F
(α
,β

)

Uχ
Uξ

 , V =

 1 α β χ
(α
,β

)

F
(α
,β

)

Vχ
1

 , W =

 1 α β χ
(α
,β

)

F
(α
,β

)

Iκn
Iκ

 .

Here, ν = κ(n + 1), µ = 1 + n + κn + κn + κ = (κ + 1)n + κ + 1,
As(X,Y) = ra +

∑n
j=1 αjuχj(X)Y , Ap(X,Y) =

∑κ
i=1 〈α,βi〉 `ν−κ+i(X)Y . Im-

portantly, Bs(X,Y) = 0 (since there is nothing to hide, one can set rb ← 0; hence,
also Baux

i (X,Y) = 0; thus the commitment is only one group element, [As]1),
and Bp(X,Y) =

∑κ
i=1 `ν−κ+i(X)Y +

∑κ
i=1

∑n
j=1 βijvχ,n(i−1)+j(X)Y . The ver-

ifier has to execute 2κ exponentiations in G1 to compute [Ap]1 and [Cp]1, κn
exponentiations in G2 to compute [Bp]2, and 3 pairings. We emphasize that
here, both the functional commitment and the opening will consist of a single
group element. One obtains IPFC by setting κ← 1; in this case, the verification
executes 2 exponentiations in G1, n exponentiations in G2, and 3 pairings.

Let us briefly compare the resulting non-aggregated IPFC with the IPFC
of [25]. Interestingly, while the presented IPFC is a simple specialization of the
general SFC scheme, it is only slightly less efficient than [25]. Let gι denote the
bitlength of an element of the group Gι. The CRS length is 2ng1 + (n + 1)g2

in [25], and (3(κ + 1) + (4κ + 1)n)g1 + (κ + κn + 3)g2 + 1gT (this shortens to
(5n+6)g1 +(n+4)g2 +1gT when κ = 1) in our case. The commitment takes n+1
exponentiations in [25], and n+2 in our case. Interestingly, a straightforward [25]

22 Helger Lipmaa and Kateryna Pavlyk

opening takes Θ(n2) multiplications (this can be probably optimized), while in
our case it takes Θ(n log n) multiplications. The verifier takes n exponentiations
in [25], and n+ 3 here. The commitment and opening are both 1 group elements
in both schemes. Thus, our generic, unoptimized scheme is essentially as efficient
as the most efficient known prior IPFC, losing ground only in the CRS length.
On the other hand, we are not aware of any previous aggregated IPFC schemes.

5 Security of FCsn

Next, we prove the security of FCsn. While its correctness and hiding proofs are
straightforward, evaluation-binding is far from it. As before, for a fixed C, let R
and S be two sets of bivariate polynomials, s.t. ck = ([R(χ, y)]1, [S(χ, y)]2). For a
fixed C, in Theorem 3, we will reduce evaluation-binding of FCCsn to a (R,S, {fi})-
span-uber-assumption in G1, a new assumption that states that it is difficult to
output an element

∑
∆i[fi(χ, y)]1 together with the coefficient vector ∆ 6= 0,

where fi 6∈ span(R). Thus, it is a generalization of the (R,S, ·)-computational
uber-assumption in G1. Importantly, if κ = 1 then it is equivalent to the latter.
To motivate the span-uber-assumption, we will show that it follows from the
more conventional (R,S, f ′I)-computational uber-assumption (for a related set
of polynomials f ′i) in GT [7]; see Lemma 2. Thus, for the concrete parameters
R,S, {fi}, and {f ′i},

uber-assumption in GT ⇒ span-uber-assumption in G1 ⇒ uber-assumption in G1

For the reduction to the PDL and HAK assumptions in the full version [34]
to work, we also prove that fi 6∈ span(R) and f ′i 6∈ span(RS); see Theorem 2.
(Intuitively, this is needed for the span-uber-assumptions to be secure in the
generic model.) Each concrete proof (e.g., the proof of correctness, the proof of
evaluation-binding, and the proofs that fi 6∈ span(R) and f ′i 6∈ span(RS)) puts
some simple restrictions on the matrices U , V ,W . They can usually be satisfied
by slightly modifying the underlying arithmetic circuit.

Definition 6. Let R, S, and T be three tuples of bivariate polynomials over
Zp[X,Y]. Let fi be bivariate polynomial over Zp[X,Y]. The (R,S, T , {fi}κi=1)
computational span-uber-assumption for Pgen in group Gι, where ι ∈ {1, 2, T},
states that for any PPT adversary A, Advsetuber

Pgen,R,S,T ,{fi},A(λ) = negl(λ), where
Advsetuber

Pgen,R,S,T ,{fi},A(λ) :=

Pr

p← Pgen(1λ);χ, y←$Z∗p;
ck← ([R(χ, y)]1, [S(χ, y)]2, [T (χ, y)]T);

(∆ ∈ Zκp , [z]ι)← A(ck) : ∆ 6= 0 ∧ [z]ι =
∑κ
i=1∆i[fi(χ, y)]ι

 .

If κ = 1 then the (R,S, T , {f}) span-uber-assumption is the same as the
(R,S, T , f1) uber-assumption: in this case the adversary is tasked to output
Zp 3 ∆ 6= 0 and ∆[f1(χ, y)]ι which is equivalent to outputting [f1(χ, y)]ι.

We will now show that the used polynomials are linearly independent.

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 23

Theorem 2. Write ck = ([%(X,Y) : % ∈ R]1, [σ(X,Y) : σ ∈ S]2) as in
Fig. 2. For i ∈ [1 .. κ], let fi(X,Y) := `ν−κ+i(X)Y η+1 and f ′i(X,Y) :=
(`ν−κ+i(X))2Y η+2.
1. Assume γ = 1, δ = 0, and η = 3. Assume Items a and h of Theorem 1 hold.

Then fi(X,Y) 6∈ span(R) for i ∈ [1 .. κ].
2. Assume γ = 4, δ = 0, η = 7, and that Items a, b and h of Theorem 1 hold.

Then f ′i(X,Y) 6∈ span(RS) for i ∈ [1 .. κ].

Proof. (1: fI 6∈ span(R)). Let Mon1 be as in Eq. (10) and Crit = {2, η + 1}.
For the rest of the proof to make sense, as we will see in a few paragraphs, we
need to fix γ, δ, and η so that the coefficients in Mon1 and in Mon1 \ Crit are
different (in particular, the coefficients in Crit are different from each other).
A small exhaustive search shows that one can define γ = 1, δ = 0, η = 3,
as in the claim. This setting can be easily manually verified, by noticing that
Mon1 = {0, 1, 2, 3, 4}, Crit = {2, 4}, and thus Mon1 \ Crit = {0, 1, 3}.

Assume that, for some I, fI(X,Y) = `ν−κ+I(X)Y η+1 belongs to the span
of R. We consider the coefficients of Y i, for i ∈ Crit, in the resulting equality
(for some unknown coefficients in front of the polynomials from R), and derive a
contradiction from this. Thus, we write down an arbitrary linear combination of
polynomials inR as a linear combination of uj(X)Y η+1+vj(X)Y δ+1+wj(X)Y 2,
Xi`(X)Y 2, and T (X,Y), where T (X,Y) is some polynomial with monomials
that do not have Y i for i ∈ Crit. That is,

`ν−κ+I(X)Y η+1 =
∑µ−κ
j=1 t

′
j(uj(X)Y η+1 + vj(X)Y δ+1 + wj(X)Y 2)+

t(X)`(X)Y 2 + T (X,Y)
(13)

for some t(X) ∈ Zp[X] (thus t(X)`(X)Y 2 encompasses all Xi`(X)Y 2) and inte-
gers t′j .

First, considering only the coefficient of Y 2 in both the left-hand side and
the right hand side of Eq. (13),∑µ−κ

j=1 t
′
jwj(X) + t(X)`(X) = 0 .

Due to Item h of Theorem 1, either wj(X) = 0 or t′j = 0 for j ∈ [1 .. µ− κ]. Let
J ⊂ [1 .. µ− κ] be the set of indices j ∈ [1 .. µ− κ] so that wj(X) = 0.

Second, considering only the coefficient of Y η+1 in Eq. (13),

`ν−κ+I(X) =
∑µ−κ
j=1 t

′
juj(X) =

∑
j∈J t

′
juj(X) .

Due to Item a of Theorem 1, `ν−κ+I(X) is linearly independent of (the non-zero
elements of) {uj(X)}j∈J , a contradiction. Hence, fI(X,Y) 6∈ span(R).

(Item 2: f ′I 6∈ span(RS)). For the proof to make sense, as we will see in a
few paragraphs, we need that the set of critical coefficients Crit′ := {3, η + 2}
(that is different from Crit above) is different from the set Mon′ \ Crit′ all other
coefficients in RS, where Mon′ :=

0, 1, 2, 3, 2− γ, 3− γ, γ, γ + 1, γ + 2, δ, 1 + δ, 2 + δ, 1− γ + δ, 2− γ + δ,

γ + δ, 1 + γ + δ, η, 2η, η + 1, η + 2,−γ + η + 1,−γ + η + 2, γ + η,

γ + η + 1, δ + η, 1 + δ + η, 1− γ + δ + η, 1 + 2η, 1− γ + 2η

 .

24 Helger Lipmaa and Kateryna Pavlyk

is defined by Mon′ = Mon1 + Mon2, where Mon1 is as in Eq. (10) and Mon2 =
{0, 1, γ, η} is the set of exponents of Y in all polynomials from S. A small ex-
haustive search, performed by using computer algebra, shows that one can define
γ = 4, δ = 0, η = 7, as in the claim. This setting can be easilymanually verified,
by noticing that Mon′ \ Crit′ = {−3,−2,−1, 0, 1, 2, 4, 5, 6, 7, 8, 11, 12, 14, 15} and
Crit′ = {3, 9}.

Assume now in contrary that f ′I ∈ span(RS). Then, as in Item 1,
(`ν−κ+I(X))2Y η+2 is in the span of some polynomials containing Y i for i ∈ Crit′

(and we need to quantify the coefficients of these polynomials) and of all other
polynomials. Clearly, the first type of polynomials are in the span of Xi`(X)Y 2

times Y η, Xi`(X)Y 2 times XkY , uj(X)Y η+1 + vj(X)Y δ+1 + wj(X)Y 2 times
Y η, and uj(X)Y η+1 + vj(X)Y δ+1 + wj(X)Y 2 times XkY , for properly chosen
i, j, and k. Thus,

(`ν−κ+I(X))2Y η+2 =t(X)`(X)Y η+2 + t′′(X)`(X)Y 3+∑µ−κ
j=1 t

′
j(X)(uj(X)Y 2η+1 + vj(X)Y δ+η+1 + wj(X)Y η+2)+∑µ−κ

j=1 t
∗
j (X)(uj(X)Y η+2 + vj(X)Y δ+2 + wj(X)Y 3) + T (X,Y)

where t′j(X), t∗j (X), t(X) and t′′(X) are univariate polynomials, and T (X,Y)

is a polynomial that does not contain monomials with Y i, i ∈ Crit′. We now
consider separately the coefficients of Y i in this equation for each i ∈ Crit′ and
derive a contradiction.

First, considering the coefficients of Y 3, we get
∑µ−κ
j=1 t

∗
j (X)wj(X) +

t′′(X)`(X) = 0. Due to Item h of Theorem 1, either t∗j (X) = 0 or wj(X) = 0 for
1 ≤ j ≤ µ− κ. Let J ⊂ [1 .. µ− κ] be the set of indices j so that wj(X) = 0.

Second, the coefficients of Y η+2 give us

(`ν−κ+I(X))2 =
∑µ−κ
j=1 t

∗
j (X)uj(X) +

∑µ−κ
j=µα+2 t

′
j(X)wj(X) + t(X)`(X)

=
∑
j∈J t

∗
j (X)uj(X) +

∑
j 6∈J t

′
j(X)wj(X) + t(X)`(X) .

Due to Items a, b and h of Theorem 1 (and of the fact that (`ν−κ+i(X))2

has degree 2ν), {(`ν−κ+I(X))2} ∪ {uj(X)}j∈J ∪ {wj(X)}j 6∈J ∪ {Xi`(X)}ν−2
i=0 is

linearly independent. Contradiction, and thus f ′I(X,Y) 6∈ span(RS). ut

Next, we show that for the concrete choice of the parameters R, S, fi, and
f ′i , the span-uber-assumption in G1 is at least as strong as the uber-assumption
in GT . The new assumption may be weaker since the latter assumption argues
about elements in GT , which may not always be possible [26]. However, the proof
of Lemma 2 depends crucially on the concrete parameters.

Lemma 2 (Uber-assumption in GT ⇒ span-uber-assumption). Assume
γ = 4, δ = 0, and η = 7. Let FCCsn be the SFC scheme for arithmetic circuits
in Fig. 2. Write ck = ([%(X,Y) : % ∈ R]1, [σ(X,Y) : σ ∈ S]2) as in Fig. 2. For
i ∈ [1 .. κ], let fi(X,Y) := `ν−κ+i(X)Y η+1 and f ′i(X,Y) := (`ν−κ+i(X))2Y η+2.
If the (R,S, f ′I) computational uber-assumption holds in GT for each I ∈ [1 .. κ]
then the (R,S, {fi}κi=1) computational span-uber-assumption holds in G1.

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 25

Proof (Sketch). Assume A is an adversary against the (R,S, {fi}κi=1) com-
putational span-uber-assumption that has successfully output ∆ 6= 0 and
[z]1 =

∑κ
i=1∆i[fi(χ, y)]1 =

∑κ
i=1∆i[`ν−κ+i(X)Y η+1]1.

Since ∆ 6= 0, then there exists at least one coordinate I such that ∆I 6= 0.
Let B be the following adversary against the (R,S, fI) computational uber-
assumption in GT . Given ck and [z]1, B computes

1/∆I · [z]1 • [`ν−κ+I(χ)y]2 =
∑κ
i=1∆i/∆I · [`ν−κ+i(χ)yη+1]1 • [`ν−κ+I(χ)y]2 .

Let di(X) be the rational function satisfying di(X)`(X) = `ν−κ+i(X)`ν−κ+I(X).
Clearly, di(X) is a polynomial for i 6= I. Thus, d(X) :=

∑
i 6=I ∆i/∆I · di(X)

is a polynomial of degree ≤ ν − 2. Since [yη]2 is a part of the commitment
key, B can efficiently compute

∑
i 6=I ∆i/∆I · [`ν−κ+i(χ)yη+1]1 • [`ν−κ+I(χ)y]2 =∑

i 6=I ∆i/∆I · [di(χ)`(χ)y2]1 • [yη]2 = [d(χ)`(χ)y2]1 • [yη]2. Thus, B can compute

[z∗]T =[fI(χ, y)]T ← [`ν−κ+I(χ)yη+1]1 • [`ν−κ+I(χ)y]2

=1/∆I · [z]1 • [`ν−κ+I(χ)y]2 − [d(χ)`(χ)y2]1 • [yη]2

and break the (R,S, f ′I)-computational uber-assumption in GT . ut

Theorem 3 (Security of FCsn). Let C be a fixed circuit and let FCCsn be the
SFC scheme in Fig. 2. Let ck = ([%(X,Y) : % ∈ R]1, [σ(X,Y) : σ ∈ S]2) as in
Fig. 2. For i ∈ [1 .. κ], let fi(X,Y) := `ν−κ+i(X)Y η+1.
1. Assume Item c of Theorem 1 holds. Then FCCsn is correct.
2. FCCsn is perfectly com-hiding.
3. FCCsn is perfectly open-hiding.
4. FCCsn is perfectly zero-knowledge.
5. Assume that either γ = 1, δ = 0, and η = 3 or γ = 4, δ = 0, and η = 7.

Assume that Items d to g, i and j of Theorem 1 hold. If the (R,S, {fi})-
computational span-uber-assumption holds in G1 then the SFC scheme FCCsn
is computationally evaluation-binding.

Proof. (1: correctness).We first show that the prover can compute Baux
i (X,Y),

and then that the verification equation holds. Recall that for i ∈ [1 .. κ],
Baux
i (X,Y) = `ν−κ+i(X)Bs(X,Y)Y = `ν−κ+i(X)(rb + vs(X,Y)Y)Y , where

vs(X) is as in Eq. (8). First, the addend rb`ν−κ+i(X)Y belongs to the span of
(XiY)ν−1

i=0 ⊂ R. Second, due to Item c of Theorem 1, for all j ∈ [2 .. 1+µα+µφ],

`(X) | `ν−κ+i(X)vφj(X) and `(X) | `ν−κ+i(X)vχj(X) ,

and thus Baux
i (X,Y) − rb`ν−κ+i(X)Y is equal to b′i(X)`(X)Y 2 for some poly-

nomial b′i(X) ∈ Z≤(ν−2)
p [X]. Thus, Baux

i (X) ∈ span(R) and the committer can
compute [`ν−κ+i(χ)Bsy]2 = [Baux

i (χ, y)]2.
Assume that ck ← KC(1λ, C), ([As, {Baux

i }κi=1]1, [Bs]2) ← com(ck;α; ra, rb)
and [Csp]1 ← open(ck; ([As, {Baux

i }κi=1]1, [Bs]2), (α, ra, rb),β). It is clear that then
the verifier accepts.

26 Helger Lipmaa and Kateryna Pavlyk

(2: perfect com-hiding). Follows from the fact that ([As]1, [Bs]2) is per-
fectly masked by uniformly random ra, rb←$Zp. Moreover, [Baux

i]1 are publicly
verifiable functions of [Bs]2.

(3: perfect open-hiding). Due to com-hiding and the fact that [Ap]1, [Bp]2,
and [Cp]1 only depend on (β, {Fi(α,β)}) (and not on α otherwise), it means
that the distribution of all elements in the opening (except possibly [Csp]1) is
the same for any two vectors α1 and α2 that satisfy Fi(α1,β) = Fi(α2,β) for
all i, Since [Csp]1 is the unique element that makes the verifier to accept, this
means that the same claim holds for the whole opening, and FCCsn is open-hiding.

(4: perfect zero-knowledge). We construct Sim as follows. It has (χ, y)
as the trapdoor. It samples random As,Bs←$Zp, and then sets [Baux

i]1 ←
[`ν−κ+i(χ)yBs]1 for all i. It computes Bp (by using the trapdoors), [Ap]1, and
[Cp]1. It then computes the unique [Csp]1 that makes the verifier to accept,

[Csp]1 ← ((As + yδ)(Bs + Bp) + Asy
η)[1]1 + (Bs + Bp + yη)[Ap]1 − yγ [Cp]1 .

(5: evaluation-binding). Assume that A is an evaluation-binding ad-
versary that, with probability εA and in time τA, returns a collision
(([As, {Baux

i }κi=1]1, [Bs]2);β; {ξi}, [Csp]1, {ξ̃i}, [C̃sp]1) with ξ 6= ξ̃, such that (here,
[Ap,Cp]1 / [Ãp, C̃p]1 is the opening in the collision),

[As + Ap + yδ]1 • [Bs + Bp + yη]2 = [Csp]1 • [1]2 + [Cp]1 • [yγ]2 + [yδ+η]T ,

[As + Ãp + yδ]1 • [Bs + Bp + yη]2 = [C̃sp]1 • [1]2 + [C̃p]1 • [yγ]2 + [yδ+η]T ,

and [`ν−κ+i(χ)y]1 • [Bs]2 = [Baux
i]1 • [1]2 for i ∈ [1 .. κ]. Here we used the fact

that by Items f and j of Theorem 1 (see also the definition of up(X) and vp(X)
in Eqs. (7) and (8)), the value of [Bp]2 stays the same in both openings.

We now construct an adversary B against the computational uber-assumption
in G1. From the collision, by subtracting the second equation from the first
equation and then moving everything from GT (the result of pairings) to G1,

[(Ap − Ãp)(Bs + Bp + yη)]1 = [Csp]1 − [C̃sp]1 + [(Cp − C̃p)y
γ]1 . (14)

Denote ∆i := ξi − ξ̃i. Let a and ã be witnesses, used by A when creat-
ing the collision. Without any further assumptions (see Eqs. (7) and (9)),
Ap(X)−Ãp(X) =

∑µ
j=µα+µφ+2(aj−ãj)uj(X)Y =

∑µ−κ
j=µ−µχ−κ(aj−ãj)uj(X)Y +∑µ

j=µ−κ+1∆j−(µ−κ)uj(X)Y . (This is since for j ≤ µα+µφ+ 1, aj = ãj is either
fixed by the commitment or can be recomputed by the verifier from β alone.)
Thus, Eq. (14) is equivalent to(∑µχ

j=1(aµ−µχ−κ+j − ãµ−µχ−κ+j)uξj(χ)y +
∑κ
i=1∆iuµ−κ+i(χ)y

)
(Bs + Bp + yη)

= (Csp − C̃sp) +
∑κ
i=1∆i

(
uµ−κ+i(χ)yη+1 + vµ−κ+i(χ)yδ+1 + wµ−κ+i(χ)y2

)
.

Assuming Items e to g of Theorem 1,∑µχ
i=1(aµ−µχ−κ+i − ãµ−µχ−κ+i)uξj(χ)y(Bs + Bp + yη) = (Csp − C̃sp) +

∑κ
i=1∆i`ν−κ+i(χ)y

2.

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 27

Assuming additionally Item i of Theorem 1,∑κ
i=1∆i [`ν−κ+i(χ)y(Bs + Bp + yη)]1 = [Csp]1 − [C̃sp]1 +

∑κ
i=1∆i[`ν−κ+i(χ)y2]1 .

Let [z]1 :=
∑κ
i=1∆i[`ν−κ+i(χ)yη+1]1(=

∑
∆i[fi(χ, y)]1). In what follows, we

show that B can compute [z]1 and thus break the span-uber-assumption. From
the last displayed equation, we get

[z]1 +
∑κ
i=1∆i[`ν−κ+i(χ)(Bp − y)y]1 =[Csp]1 − [C̃sp]1 −

∑κ
i=1∆i[`ν−κ+i(χ)Bsy]1

=[Csp]1 − [C̃sp]1 −
∑κ
i=1∆i[B

aux
i]1 .

(The last equation is guaranteed by [`ν−κ+i(χ)y]1 • [Bs]2 = [Baux
i]1 • [1]2.)

We now show how to efficiently compute [`ν−κ+i(χ)(Bp − y)y]1. Let t(X) =
vp(X)−

∑κ
i=1 `ν−κ+i(X). Let h′i(X) be the rational function that satisfies

h′i(X)`(X) = `ν−κ+i(X) (Bp(X,Y)/Y − 1)

=`ν−κ+i(X) (t(X) +
∑κ
i=1 `ν−κ+i(X)− 1)

=`ν−κ+i(X)(t(X) +
∑
j 6=i `ν−κ+j(X)) + `ν−κ+i(X)(`ν−κ+i(X)− 1) .

(15)
Due to Item d of Theorem 1 and the definition of t(X) (see also Eqs. (7) and (8)),

`(X) | `ν−κ+i(X)t(X) .

Moreover, `(X) | `ν−κ+i(X)`ν−κ+j(X), for i 6= j, and `(X) |
`ν−κ+i(X)(`ν−κ+i(X) − 1). Thus, the polynomial on the right-hand side of
Eq. (15) divides by `(X). Thus, h′i(X) is a polynomial of degree ≤ ν − 2 and
thus B can compute efficiently

[`ν−κ+i(χ)(Bp − y)y]1 =[`ν−κ+i(χ)(Bp/y − 1)y2]1 = [h′i(χ)`(χ)y2]1 ,

and then

[z]1 =
∑κ
i=1∆i[`ν−κ+i(χ)yη+1]1

←([Csp]1 − [C̃sp]1)−
∑κ
i=1∆i

(
[Baux
i]1 + [h′i(χ)`(χ)y2]1

)
.

Thus, given the collision, B outputs (∆, [z]1 =
∑
∆i[fi(χ, y)]1) for fi(X,Y) 6∈

span(R). Thus, B breaks (w.p. εA and time close to tA) the (R,S, {fi})-
computational span-uber-assumption in G1 in the case fi 6∈ span(R). ut

The following Corollary follows from Item 5 in Theorem 3 and Lemma 2.

Corollary 1. Let C be a fixed circuit. Let γ = 4, δ = 0, and η = 7. Let
f ′i(X,Y) := (`ν−κ+i(X))2Y η+2. If the (R,S, f ′I)-computational uber-assumption
holds in GT for all I ∈ [1 .. κ] then FCCsn is computationally evaluation-binding.

Remark 2. Importantly, the indeterminate Y is crucial in establishing the inde-
pendence of fi from R. Let R∗ := {(Xi)ν−1

i=0 , (X
i`(X))ν−2

i=0 }, S∗ := {(Xi)ν−1
i=0 },

and f∗i := `ν−κ+i(X). One can establish that FCCsn is evaluation-binding under

28 Helger Lipmaa and Kateryna Pavlyk

the (R∗,S∗, {f∗i })-computational span-uber-assumption in G1. Really, consider
the following (R∗,S∗, {f∗i })-span-uber-assumption adversary B∗ that will create
y herself, generate a new ck based on her input and y, and then use B in Theo-
rem 3 to break the (R∗,S∗, {f∗i })-computational span-uber-assumption. B∗ will
have similar success as B. However, f∗i ∈ span(R∗) and thus the (R∗,S∗, {f∗i })-
computational span-uber-assumption itself is not secure.

On the Security of the Span-Uber-Assumption. It is known that in
composite-order bilinear groups, the computational uber-assumption inGT holds
under appropriate subgroup hiding assumptions [13]. Hence, a composite-order
group version of the span-uber-assumption (and also of the new SFC) is secure
under a subgroup hiding assumption. In the full version [34], we will use the
Déjà Q approach of [14] directly to prove that the span-uber-assumption in Gι,
ι ∈ {1, 2}, is secure under a subgroup hiding assumption. More precisely, we
establish the following corollary. (See the full version [34] for the definition of
subgroup hiding and extended adaptive parameter hiding.)

Theorem 4. The (R,S, {fi}κi=1)-computational span-uber-assumption holds in
the source group G1 with all but negligible probability if
1. subgroup hiding holds in G1 with respect to µ = {P2

1,P
1
2},

2. subgroup hiding holds in G2 with respect to µ = {P1
1},

3. extended adaptive parameter hiding holds with respect to R ∪ {fi}κi=1 and
aux = {P1

2
σ(·)}σ∈S for any P1

2 ∈ G2.
4. the polynomials in R have maximum degree poly(λ).

Here, G1,G2,GT are additive groups of composite order N = p1p2 (p1 6= p2)
and P1

ι ∈ Gι,p1 , P2
ι ∈ Gι,p2 are randomly sampled subgroup generators, where

Gι,pj is the subgroup of Gι of order pj and Pι ∈ Gι = Gι,p1 ⊕Gι,p2 .
The direct proof in the full version [34] is simpler than the mentioned two-step

proof since it does not rely on the intermediate step of reducing the span-uber-
assumption to a uber-assumption in GT . Moreover, the Déjà Q approach is more
straightforward in case one works in the source group. We will leave it up to fu-
ture work to reduce prime-order span-uber-assumption to a simpler assumption;
there has been almost no prior work on reducing prime-order assumptions.

Finally, in the full version [34], by following [33], we will prove that the span-
uber-assumption is secure under a hash algebraic knowledge (HAK) assumption
and the well-known PDL assumption [31], from which it follows that is secure
in the algebraic group model (with hashing) [19] under the PDL assumption.1
Following the semi-generic-group model of [26], the HAK assumptions of [33] are
defined only in the case when the adversary outputs elements in the source groups
(but not in GT), and thus one cannot prove the security of the computational
uber-assumption in GT using the approach of [33]. Thus, in a well-defined sense,
the span-uber-assumption is weaker than the uber-assumption in GT .
1 As a corollary of independent interest, we also show in the full version [34] that if
f 6∈ span(R) then the (R,S, T)-uber-assumption follows from HAK and PDL.

Succinct Functional Commitment for a Large Class of Arithmetic Circuits 29

References

1. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zajac, M.: A subversion-resistant
SNARK. In: ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 3–33

2. Abdolmaleki, B., Lipmaa, H., Siim, J., Zajac, M.: On QA-NIZK in the BPK model.
In: PKC 2020, Part I. LNCS, vol. 12110, pp. 590–620

3. Bari, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes
without trees. In: EUROCRYPT’97. LNCS, vol. 1233, pp. 480–494

4. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: Security
in the face of parameter subversion. In: ASIACRYPT 2016, Part II. LNCS, vol.
10032, pp. 777–804

5. Benaloh, J.C., de Mare, M.: One-way accumulators: A decentralized alternative to
digital sinatures (extended abstract). In: EUROCRYPT’93. LNCS, vol. 765, pp.
274–285

6. Bitansky, N.: Verifiable random functions from non-interactive witness-
indistinguishable proofs. In: TCC 2017, Part II. LNCS, vol. 10678, pp. 567–594

7. Boneh, D., Boyen, X., Goh, E.J.: Hierarchical identity based encryption with
constant size ciphertext. In: EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456

8. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: CRYPTO 2019, Part I. LNCS, vol.
11692, pp. 561–586

9. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Efficient polynomial commitment
schemes for multiple points and polynomials. Technical Report 2020/081, IACR
(2020)

10. Bowe, S., Grigg, J., Hopwood, D.: Halo: Recursive Proof Composition without a
Trusted Setup. Technical report (2019) Available from https://electriccoin.
co/wp-content/uploads/2019/09/Halo.pdf.

11. Boyen, X.: The uber-assumption family (invited talk). In: PAIRING 2008. LNCS,
vol. 5209, pp. 39–56

12. Catalano, D., Fiore, D.: Vector commitments and their applications. In: PKC 2013.
LNCS, vol. 7778, pp. 55–72

13. Chase, M., Maller, M., Meiklejohn, S.: Déjà Q all over again: Tighter and broader
reductions of q-type assumptions. In: ASIACRYPT 2016, Part II. LNCS, vol.
10032, pp. 655–681

14. Chase, M., Meiklejohn, S.: Déjà Q: Using dual systems to revisit q-type assump-
tions. In: EUROCRYPT 2014. LNCS, vol. 8441, pp. 622–639

15. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.P.: Marlin: Prepro-
cessing zkSNARKs with universal and updatable SRS. In: EUROCRYPT 2020,
Part I. LNCS, vol. 12105, pp. 738–768

16. Dent, A.W.: Adapting the weaknesses of the random oracle model to the generic
group model. In: ASIACRYPT 2002. LNCS, vol. 2501, pp. 100–109

17. Fischlin, M.: A note on security proofs in the generic model. In: ASIACRYPT 2000.
LNCS, vol. 1976, pp. 458–469

18. Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: PKC 2018, Part I. LNCS,
vol. 10769, pp. 315–347

19. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 33–62

20. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: EUROCRYPT 2013. LNCS, vol. 7881, pp.
626–645

https://electriccoin.co/wp-content/uploads/2019/09/Halo.pdf
https://electriccoin.co/wp-content/uploads/2019/09/Halo.pdf

30 Helger Lipmaa and Kateryna Pavlyk

21. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all
falsifiable assumptions. In: 43rd ACM STOC, pp. 99–108

22. Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: Pointproofs: Aggregating Proofs for
Multiple Vector Commitments. Technical Report 2020/419, IACR (2020)

23. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In:
ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340

24. Groth, J.: On the size of pairing-based non-interactive arguments. In: EURO-
CRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326

25. Izabachène, M., Libert, B., Vergnaud, D.: Block-wise P-signatures and non-
interactive anonymous credentials with efficient attributes. In: 13th IMA Inter-
national Conference on Cryptography and Coding. LNCS, vol. 7089, pp. 431–450

26. Jager, T., Rupp, A.: The semi-generic group model and applications to pairing-
based cryptography. In: ASIACRYPT 2010. LNCS, vol. 6477, pp. 539–556

27. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194

28. Lai, R.W.F., Malavolta, G.: Subvector commitments with application to succinct
arguments. In: CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 530–560

29. Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: From
polynomial commitments to pairing-based accumulators from simple assumptions.
In: ICALP 2016. LIPIcs, vol. 55, pp. 30:1–30:14

30. Libert, B., Yung, M.: Concise mercurial vector commitments and independent
zero-knowledge sets with short proofs. In: TCC 2010. LNCS, vol. 5978, pp. 499–
517

31. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: TCC 2012. LNCS, vol. 7194, pp. 169–189

32. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span pro-
grams and linear error-correcting codes. In: ASIACRYPT 2013, Part I. LNCS, vol.
8269, pp. 41–60

33. Lipmaa, H.: Simulation-Extractable ZK-SNARKs Revisited. Technical Report
2019/612, IACR (2019) https://eprint.iacr.org/2019/612, updated on 8 Feb
2020.

34. Lipmaa, H., Pavlyk, K.: Succinct Functional Commitment for a Large Class of
Arithmetic Circuits. Technical Report 2020/?, IACR (2020)

35. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings.
In: ACM CCS 2019, pp. 2111–2128

36. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In:
TCC 2013. LNCS, vol. 7785, pp. 222–242

37. Shpilka, A., Yehudayoff, A.: Arithmetic Circuits: A Survey of Recent Results and
Open Questions. Foundations and Trends in Theoretical Computer Science, vol. 5.
Now Publishers Inc (2010)

38. Tomescu, A., Abraham, I., Buterin, V., Drake, J., Feist, D., Khovratovich, D.:
Aggregatable Subvector Commitments for Stateless Cryptocurrencies. Technical
Report 2020/527, IACR (2020)

39. Valiant, L.G.: Completeness Classes in Algebra. In: STOC 1979, pp. 249–261
40. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-Efficient zk-

SNARKs Without Trusted Setup. In: IEEE SP 2018, pp. 926–943
41. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL:

Verifying Arbitrary SQL Queries over Dynamic Outsourced Databases. In: IEEE
SP 2017, pp. 863–880

https://eprint.iacr.org/2019/612

	Succinct Functional Commitment for a Large Class of Arithmetic Circuits

