
Secure MPC: Laziness Leads to GOD

Saikrishna Badrinarayanan?, Aayush Jain??, Nathan Manohar??, and Amit
Sahai??

Abstract. Motivated by what we call “honest but lazy” parties in the
context of secure multi party computation, we revisit the notion of multi-
key FHE schemes (MFHE). In MFHE, any message encrypted using a
public key pki can be “expanded” so that the resulting ciphertext is
encrypted with respect to a set of public keys (pk1, .., pkn). Such ex-
panded ciphertexts can be homomorphically evaluated with respect to
any circuit to generate a ciphertext ct. Then, this ciphertext ct can be
partially decrypted using a secret key ski (corresponding to the public
key pki) to produce a partial decryption pi. Finally, these partial de-
cryptions {pi}i∈[n] can be combined to recover the output. However, this
definition of MFHE works only for n-out-of-n access structures and, thus,
each node in the system is a point of failure. In the context of “honest
but lazy” parties, it is necessary to be able to decrypt even when only
given a subset of partial decryptions (say t out of n). In order to solve
this problem, we introduce a new notion of multi-key FHE designed to
handle arbitrary access patterns that can reconstruct the output. We call
it a threshold multi-key FHE scheme (TMFHE).

Our main contributions are the following:

– We formally define and construct TMFHE for any access structure
given by a monotone boolean formula, assuming LWE.

– We construct the first simulation-extractable multi-string NIZK from
polynomially hard LWE.

– We use TMFHE and our multi-string NIZK to obtain the first round-
optimal (three round) MPC protocol in the plain model with guar-
anteed output delivery secure against malicious adversaries or, more
generally, mixed adversaries (which supports “honest but lazy” par-
ties), assuming LWE.

– Our MPC protocols simultaneously achieve security against the max-
imum number of corruptions under which guaranteed output de-
livery is achievable, depth-proportional communication complexity,
and reusability.

1 Introduction

Starting with the breakthrough work of Gentry [21], fully homomorphic encryp-
tion (FHE) has been extensively studied over a long sequence of works (see

? Visa Research. sabadrin@visa.com
?? UCLA and Center for Encrypted Functionalities. {aayushjain, nmanohar,

sahai}@cs.ucla.edu

e.g. [6,8,9,21,22]). In an FHE scheme, given a public key pk and a ciphertext of
a message m encrypted using this public key, a user can homomorphically eval-
uate this ciphertext with respect to any circuit C to generate a new ciphertext
ct that is an encryption of C(m) without learning anything about the message.
Then, the decryptor, using the secret key sk can decrypt this message to recover
the output C(m). However, traditionally, FHE schemes are single-key in nature:
that is, they can be used to perform arbitrary computation on data encrypted
using the same public key.

In this work, we build a new multi-party generalization of FHE that we call
Threshold Multi-Key FHE, which we build from the LWE assumption. We then
use this new primitive to achieve efficient secure multi-party protocols (MPC)
in a model that allows for some honest parties to be “lazy,” as we discuss be-
low. Subsequent to our work, our Threshold Multi-Key FHE was used in the
CRYPTO 2019 paper of [26], which explicitly extends our MPC model with
honest but lazy parties to also allow lazy parties to return in future rounds
and builds upon our MPC protocol to achieve their results. We believe both
our notion of Threshold Multi-Key FHE and our MPC model and protocol will
continue to find other applications, as well (see e.g. [13], for another subsequent
result that builds upon ours). We now elaborate on our contributions.

Multi-Key FHE. Lopez-Alt et al. [32] introduced the notion of multi-key fully
homomorphic encryption. Informally, in a multi-key FHE scheme, any message
encrypted using a public key pki can be “expanded” so that the resulting cipher-
text is encrypted with respect to a set of public keys (pk1, .., pkn). Such expanded
ciphertexts can be homomorphically evaluated with respect to any circuit to gen-
erate a ciphertext ct. Then, this ciphertext ct can be partially decrypted using a
secret key ski (corresponding to the public key pki) to produce a partial decryp-
tion pi. Finally, these partial decryptions {pi}i∈[n] can be combined to recover
the output. In addition to the semantic security of encryption, a multi-key FHE
scheme also requires that given any expanded (and possibly evaluated) cipher-
text ct encrypting a message m, any set of (n−1) secret keys {ski}i 6=i∗ for any i∗,
and the message m, it is possible to statistically simulate the partial decryption
pi∗ . Multi-key FHE has been extensively studied [7, 14, 33, 34] and has proven
particularly useful in the context of building round-efficient secure multiparty
computation protocols for protocols achieving security with abort. Recall that
in security with abort, a single party that aborts could potentially prevent all
honest parties from receiving the output.

1.1 A New Primitive: Threshold Multi-Key FHE

However, none of the existing multi-key FHE schemes enable the output to
be reconstructed unless all the n partial decryptions are given out and hence
they only “work” for n-out-of-n access structures. Unfortunately, this leads to
situations where every secret key owner in the system represents a single point
of failure, since if their partial decryption is not given out, it is not possible to
recover the output. This is sufficient for protocols only achieving security with

2

abort, as this security notion allows the functionality to fail if even a single
party misbehaves. If we want to create schemes that are capable of handling
failures, we would necessarily want one to be able to decrypt even when one
only possesses a subset of partial decryptions (say t out of n).

At first glance, it seems that our goal is simply incompatible with the notion
of multi-key FHE. For instance, suppose that a ciphertext encrypting m under a
public key pk can be combined with two public keys pk′ and pk′′, and “expanded”
into a ciphertext encrypting m under a 2-out-of-3 threshold under the triple
of public keys {pk, pk′, pk′′}. Such a feature would imply the insecurity of the
original encryption, since an adversary could sample the public keys {pk′, pk′′}
together with their secret keys {sk′, sk′′}, and then use the two secret keys
{sk′, sk′′} to obtain m using the expanded ciphertext.

In order to solve this problem, we introduce a new notion of threshold multi-
key FHE1 where ciphertexts cannot be “expanded.” Instead, in our notion, given
a collection of public keys {pk1, . . . , pkn}, it is possible for an encryptor to en-
crypt a message m with respect to an access pattern such as t-out-of-n. Then this
ciphertext would only be decryptable by combining partial decryptions obtained
from holders of at least t corresponding secret keys. As we show in this work, it
turns out that this functionality is sufficient for obtaining new applications to
MPC (see below for details).

In this work, we first formally define threshold multi-key FHE in a general
way, and then we show to construct this new primitive from the learning with
errors (LWE) assumption. Formally, we show the following theorem:

Theorem 1 (Informal). Assuming LWE, there exists a secure threshold multi-
key FHE scheme for the class of access structures A induced by all monotone
boolean formulas.

In Section 2, we describe the challenges and techniques involved in our con-
struction. Our next contribution is an application of threshold multi-key FHE
in the context of round-optimal secure MPC protocols with guaranteed output
delivery (GOD).

1.2 Application to Round-Optimal MPC

Secure multi-party computation (MPC) [23,36,37] has been a problem of funda-
mental interest in cryptography. In an MPC protocol, a set of mutually distrust-
ing parties can evaluate a function on their joint inputs while maintaining privacy
of their respective inputs. Over the last few decades, much of the work related
to MPC has been devoted to achieving stronger security guarantees and improv-
ing efficiency with respect to various parameters such as round complexity and
communication complexity. In this work, we further advance our understanding
of this landscape with threshold multi-key FHE being the main technical tool.

1 We remark that in fact, some existing standard multi-key FHE schemes [33] also
sometimes used the term threshold multi-key FHE to refer to their primitive, which
requires an n-out-of-n threshold. We will use threshold multi-key FHE to denote
only our stronger notion supporting general thresholds.

3

MPC Supporting “Honest but Lazy” Parties. In traditional MPC, every party is
required to remain online and participate completely in the protocol execution.
This applies not only to “classical” MPC protocols where every party has to
participate and send a message in every round of the protocol, but also to other
interesting variants such as protocols in the client-server setting where all the
servers are required to remain active until the end of the protocol execution.
We refer the reader to Section 1.4 for a more detailed comparison with related
works. In other words, traditional MPC protocols decide to treat a “lazy” party
that just aborts midway into the protocol execution as a corrupt party that is
colluding with the other corrupt parties, and this is addressed in different ways.
In some cases, all parties abort the protocol execution while in other cases, the
“lazy” party is just discarded and all the other parties compute the function
on their joint inputs alone. We believe that such an outlook is undesirable as
there are several reasons why even an honest party might have to abort and
become “lazy” during the execution of a protocol without having to be deemed
as colluding with the corrupt parties. A few potential reasons include:

– Connectivity - A party might lose connectivity and hence be unable to con-
tinue the protocol.

– Computational resources - A computationally weak party might be unable
to perform intensive computation and hence be forced to exit the protocol.

– Interest - At some point, a party might just lose interest in that protocol
execution due to other higher priority tasks that come up.

Motivated by the above realistic scenarios, we would like to construct MPC
protocols that can handle “honest but lazy” parties without simply lumping
them in with the other corrupted parties (since treating all aborting parties as
“malicious” will unrealistically enhance the power of the adversary and limit
our protocol’s capabilities). Furthermore, we would like our protocol to be ro-
bust to aborting parties (that is, have guaranteed output delivery). Informally,
this means that at the end of the protocol execution, regardless of the behavior
of the adversary, the honest parties can still compute the output of the func-
tion on all their joint inputs (with either a default or the actual input for each
of the corrupted parties). Ideally, we would like to achieve a stronger form of
guaranteed output delivery, where, when possible, the output of the protocol is
with respect to the actual input of all the “honest but lazy” parties, rather than
some default input. This is akin to stating that provided an “honest but lazy”
party actually sent a message dependent on its input, the protocol will compute
the functionality with respect to this party’s input, regardless of whether or not
the party aborted during the rest of the protocol. We call this property input
fidelity. In this work, we ask

Can we construct round-optimal protocols in the plain model that achieve the
above desiderata?

If such protocols are achievable, then

Can these protocols handle the maximum number of possible corruptions?

4

What can we say about the assumptions, communication complexity, and
reusability of such protocols?

Using our new primitive, threshold multi-key FHE, we are able to answer
all the above satisfactorily. We construct the first round-optimal (three-round)
MPC protocol in the plain model that achieves our desired properties. Moreover,
our protocol is capable on handling the maximum number of corruptions that a
protocol can possibly support while achieving the desired properties. Our proto-
col relies only on the learning with errors (LWE) assumption. Furthermore, our
protocol has depth-proportional communication complexity and is reusable.

Formalizing Our Desired Properties. Formally, we study MPC with guaranteed
output delivery in the presence of threshold mixed adversaries, introduced by
Fitzi et al. [19, 20]. In this setting, a threshold mixed adversary A is allowed
to corrupt three sets of parties (AMal,ASh,AFc) such that the following holds:
(i) |AMal| ≤ tMal, |ASh| ≤ tSh, and |AFc| ≤ tFc, for a tuple of thresholds
(tMal, tSh, tFc). (ii) The set of parties in AMal are maliciously corrupted meaning
that the adversary can choose to behave using any arbitrary polynomial time
algorithm on behalf of each of them. (iii) The set of parties in ASh are corrupted
in a semi-honest manner and so the adversary is required to follow the protocol
execution honestly on behalf of each of them. (iv) The set of parties in AFc

are corrupted in a fail-corrupt manner meaning that for each party in this set,
the adversary can specify when that party is required to abort the protocol
execution. Until then, these parties follow the protocol execution honestly. Note
that the adversary never gets to see the inputs or internal state of any of the fail-
corrupt parties and hence these parties capture our motivation of “honest but
lazy” parties - where their laziness is enforced by the adversary in the security
game.
In this work, our goal is to build a round-optimal MPC protocol with guaranteed
output delivery in this model that also simultaneously satisfies the following
desirable properties:

– Security Against the Maximum Number of Corruptions: Security
should hold against a threshold mixed adversary that can corrupt the max-
imum number of parties under which guaranteed output delivery is achiev-
able.

– Input Fidelity: In line with our motivation, we want our protocol to satisfy
not only guaranteed output delivery, but also the stronger property that the
output of the computation is a function of the joint inputs of all parties,
including those that aborted after a “certain point”. Intuitively, we would
like our protocol to be divided into two phases - an input commitment phase
and a computation phase. We refer to the end of the input commitment phase
as this “point.” That is, in the scenario where the adversary corrupts a set of
parties in a fail-corrupt manner, for every fail-corrupt party Pi that aborts
after the input commitment phase, its input yi that is used to compute the
final output C(y1, . . . , yn) is set to be its actual input xi used in the protocol

5

so far and not a default input ⊥. Recall that this aligns with our original
motivation where we wish to not discard honest but lazy parties and deem
them to be corrupt.

– Depth-Proportional Communication Complexity: For any function f ,
the communication complexity of the protocol should be poly(λ, d,N, `inp)
where N is the number of parties, λ is the security parameter, `inp is the
input length for each party, d is the depth of the circuit computing f .

– Reusability: Given the transcript of the input commitment phase of the
protocol, the computation phase of the protocol should be able to be reused
across an unbounded polynomial number of executions to compute different
functions on the same fixed joint inputs of all the parties.

Prior to our work, much of the focus in this model was on obtaining feasibility re-
sults, understanding under what corruption patterns is secure computation even
possible, and improving the communication complexity. We refer to Section 1.4
for a more detailed discussion on the prior work in this model. In particular,
Hirt et al. [27] showed that in the setting of a threshold mixed adversary, MPC
with guaranteed output delivery is possible if and only if 2tMal + tSh + tFc < N ,
where N is the total number of parties. Since we are interested in guaranteed
output delivery, we focus on constructing MPC protocols that are secure against
(tMal, tSh, tFc)-threshold mixed adversaries, for any (tMal, tSh, tFc) satisfying
the above inequality. Furthermore, in light of the result of Gordon et al. [24]
showing that three rounds are required for MPC with guaranteed output deliv-
ery in the traditional model (this can be viewed as a special case of the threshold
mixed adversary model, where tSh and tFc are both 0), we observe that a three
round protocol will be round-optimal in this setting.

Utilizing our new primitive, threshold multi-key FHE, given any tuple of
thresholds (tMal, tSh, tFc) satisfying the Hirt et al. [27] inequality, we construct
the first round-optimal (three-round) MPC protocol with guaranteed output de-
livery that is secure against such a threshold mixed adversary. Since guaranteed
output delivery is possible if and only if the Hirt et al. [27] inequality holds,
our resulting protocol is optimal in terms of the best possible corruption we can
tolerate. The first two rounds of our protocol form the input commitment phase,
and round 3 is the computation phase. Our protocol has input fidelity, in the
sense that the functionality is computed with respect to the inputs of all parties
that did not abort in the first two rounds, even if that party aborts in round
three. Additionally, given the transcript of the input commitment phase (the
first two rounds of the protocol), the third round can be reused across an un-
bounded polynomial number of executions to compute different functions on the
same fixed joint inputs of all parties. Our protocol also has depth-proportional
communication complexity. Formally, we show the following result:

Theorem 2 (Informal). Assuming learning with errors (LWE), for any func-
tion f on N inputs, for any tuple of thresholds (tMal, tSh, tFc) satisfying 2tMal +
tSh+tFc < N , there exists a three-round MPC protocol with guaranteed output de-
livery in the plain model that is secure against a (tMal, tSh, tFc)-mixed adversary.

6

The protocol has input fidelity, depth-proportional communication complexity,
and is reusable.

By instantiating Theorem 2 with the (dN/2 − 1e, 0, 0)-mixed adversary we
achieve an interesting result in the traditional MPC world in the plain model:
in particular, notice that this setting corresponds to an honest majority of par-
ties and as a result, we get a three round MPC protocol in the plain model
with guaranteed output delivery. As mentioned previously, our protocol is round
optimal for this setting as well due to the lower bound of Gordon et al. [24].
Formally, we achieve the following corollary, matching the round complexity of
the recent independent work [1], but for the first time, also achieving input fi-
delity, reusability, and depth-proportional communication complexity, assuming
only LWE.

Corollary 1 (Informal). Assuming LWE, for any function f , there exists a
three-round MPC protocol with guaranteed output delivery in the plain model in
the presence of an honest majority.

1.3 Multi-String NIZK from LWE

As a stepping stone to achieving Theorem 2, we first consider the weaker set-
ting of a (tSm, tSh, tFc)-semi-malicious mixed adversary that corrupts the sets
(ASm,ASh,AFc) of parties such that the first set of parties ASm, with |ASm| ≤
tSm, is only corrupted in a semi-malicious manner - that is, on behalf of each
party in this set, the adversary can pick any arbitrary randomness of its choice
but using this randomness, the party is required to execute the protocol honestly.
We define this formally in the technical sections. Once we have constructed a
protocol that is secure against a semi-malicious mixed adversary, we are able to
bootstrap it to one that is secure against a (malicious) mixed adversary in the
plain model using a multi-string non-interactive zero knowledge (NIZK) argu-
ment.

In a multi-string NIZK argument system, introduced in the work of Groth
and Ostrovsky [25], a set of parties can each generate one CRS that can then
be combined to compute one unified CRS which is used to compute NIZKs.
The guarantee is that as long as a majority of the individual CRS strings are
honestly generated, the argument system is correct and secure. Unfortunately,
one of the tools in the construction of multi-string NIZKs in [25] was a Zap [16],
which is not known from polynomially hard LWE. In order to obtain Theorem 2
assuming only polynomially hard LWE, we construct a (simulation-extractable)
multi-string NIZK directly from LWE, which may be of independent interest.
Formally, we show the following.

Theorem 3 (Informal). Assuming polynomially hard LWE, there exists a simulation-
extractable multi-string NIZK for NP.

1.4 Independent and Subsequent Work

We discuss related work in detail in the full version of the paper.

7

Independent Work. Recently, in an independent work, Ananth et. al [1] also
constructed a three-round honest majority MPC protocol with guaranteed out-
put delivery in the plain model, assuming PKE and ZAPs. Their techniques are
substantially different from ours, and we note that if we instantiate our protocol
with the (dN/2− 1e, 0, 0) tuple of thresholds, we are able to match their result,
assuming LWE, as shown in Corollary 1. Moreover, our protocol simultaneously
achieves depth-proportional communication complexity and reusability, proper-
ties not achievable by their protocol. Furthermore, we note that our general
protocol can handle threshold mixed adversaries, whereas their protocol is only
secure against malicious adversaries in the honest majority setting.

Subsequent works. The work of [15] (which cites us as prior work) can use a
threshold PKI model, which is a very strong form of certified PKI model, to
achieve some of our results (guaranteed output delivery, depth proportional com-
munication) in 2 rounds. In this work, we do not make any trust assumptions.
However, we observe that our protocol already gives a 2-round protocol with
a much weaker form of PKI where the public keys can be any arbitrary string.
Thus, our work also implies results in a “plain” PKI setting. Last-round reusabil-
ity, which we achieve, was also not studied in [15]. However, we note that the
focus of [15] was to understand adaptive security in the context of communica-
tion efficient protocols, which we do not study.
A recent series of works [10, 11, 28, 31, 35] have developed a framework for in-
stantiating the Fiat-Shamir transform [18] using a hash function that satisfies
a property called correlation-intractability [12]. This culminated in the work of
Peikert and Shiehian [35], who were able to obtain the first NIZK from LWE
by constructing a correlation-intractable hash function family for (bounded) cir-
cuits from LWE. Following this, there have been two works [2, 30], subsequent
to ours, that construct two message statistically witness indistinguishable ZAP
arguments from quasipolynomial LWE. From this, using the work of [25] one
can construct a multi-string NIZK from quasipolynomial LWE. We obtain a
multi-string NIZK argument system assuming only the polynomial hardness of
LWE.

2 Technical Overview

We first describe the challenges involved in defining and constructing our new
primitive of threshold multi-key FHE in the next subsection. This is followed by
the techniques involved in constructing our round-optimal MPC protocol with
guaranteed output delivery. Finally, we discuss the techniques used to construct
a multi-string NIZK from LWE.

2.1 Threshold Multi-Key FHE (TMFHE)

Definitional Challenges. Recall that we would like to construct a version of
multi-key FHE that only requires some (say t out of n) of the partial decryption

8

shares in order to reconstruct the output as opposed to all n partial decryptions,
as is required in all existing multi-key FHE schemes.

At first glance, it is not even clear how to define such a notion. The most
direct approach leads to a definition that is impossible to achieve. Consider for
example the n/2-out-of-n access structure. In this case, if we follow the standard
procedure used by known multi-key FHE schemes, any evaluator can expand a
ciphertext encrypting a message m with respect to public key pkn to a ciphertext
ct with respect to the set of public keys (pk1, ..., pkn). Then, the evaluator can
use secret keys sk1, .., skn/2 to learn the value of m, as the set {1 . . . , n/2}
satisfies the access structure. However, in doing so, an adversary can learn m
without knowing skn, breaking the semantic security of the encryption scheme
with respect to (pkn, skn) and leading to a notion that provides no security.

Although we seem to have arrived at a notion that is not meaningful at all,
we note that the issue with the above approach is that a ciphertext encrypted
with respect to a public key pk can be expanded to one encrypted with respect
to many public keys. However, if we prevent ciphertexts from being expanded,
there is hope of achieving a meaningful notion. Expanding on this idea, we arrive
at the following (informal) definition. Any party can generate its own key pair
(pk, sk). Any encryptor can compute ct← Encrypt(pk1, .., pkn,A,m). Given two
(or more) ciphertexts encrypted with respect to the same set of public keys
and the same access structure A, it is possible to homomorphically evaluate a
circuit on these ciphertexts and partially decrypt the resulting ciphertext using
any secret key ski to recover a partial decryption pi. Given {pi}i∈B for some B
satisfying A, one can reconstruct the output. Roughly, we require two security
guarantees from the scheme.

1. Given {ski}i∈S for some S /∈ A,

Encrypt(pk1, . . . , pkn,A,m0) ≈c Encrypt(pk1, .., pkn,A,m1)

for any two equal length messages m0,m1.
2. Given a ciphertext ct for an underlying message m and {ski}i∈S for any

maximally unqualified set2 S /∈ A (for example (n/2 − 1) of the parties for
the example above), it is possible to statistically simulate a partial decryption
pi for any i ∈ [n].

For technical reasons, we require a more nuanced security definition, and we
refer the reader to Section 4 for the details.

Construction Overview. In order to construct TMFHE, one could try many
approaches to build on top of existing multi-key FHE schemes. For example,
one could try the following. Given any set of public keys (pk1, .., pkn), generate
ciphertexts ctS ← Encrypt({pki}i∈S ,m) for all minimally valid sets S ∈ A. How-
ever, such an approach is not feasible for access structures such as n/2−out-of-n

2 By maximally unqualified set S, we mean that for any i ∈ [n] \ S, (S ∪ {i}) ∈ A.
Similarly, a set S is minimally qualified if for any i ∈ [S], (S \ {i}) /∈ A.

9

as then the encryptor has to compute encryptions for roughly
(
n
n/2

)
subsets,

which is super-polynomial.
To overcome this limitation, we use the tool of threshold FHE introduced in

the work of Boneh et al. [4]. In a threshold FHE scheme, the setup algorithm
samples a single public key fpk and n secret key shares (fsk1, .., fskn) for a secret
key fsk that are shared according to the access structure A. Using the public key
fpk, an encryptor can encrypt a message m to receive a ciphertext ct (which may
be evaluated). This ciphertext can then be partially decrypted independently
using key shares ski to compute a partial decryption pi. Then using these {pi}i∈S
for any set S ∈ A, one can recover m. Security properties are two fold:

– Given {ski}i∈S for some S /∈ A, Encrypt(pk,A,m0) ≈c Encrypt(pk,A,m1)
for any two equal length messages m0,m1.

– Second, given a ciphertext ct with underlying message m and {ski}i∈S for
any maximally unqualified S /∈ A, it is possible to statistically simulate
partial decryptions pi for any i ∈ [n].

We make the following useful observations about threshold FHE which will
aid us in our construction.

1. The setup algorithm of the scheme of [4] first samples (pk, sk)← FHE.Setup(1λ)
and then secret shares sk according to the access structure using a “special
purpose” secret sharing scheme to compute shares (sk1, .., skn) so that the
reconstruction involves just addition of some subset of shares. Looking ahead
to the security proof, this feature allows us to easily simulate partial decryp-
tions.

2. The encryption procedure just involves encrypting the message m using an
underlying FHE scheme.

3. The underlying FHE scheme can be instantiated using most of the known
homomorphic encryption schemes satisfying a few general properties.

Thus, we observe that, in particular, the multi-key FHE schemes of both [7,33],
can be used to instantiate the underlying FHE scheme in threshold FHE. This
can then be used to evaluate on multiple ciphertexts encrypted with respect
to different public keys - since, using multi-key FHE, one can expand on vari-
ous ciphertexts and evaluate jointly on them. However, at this point, it is still
not clear how to compute (or simulate) partial decryptions, especially since the
threshold FHE construction of [4] only handled underlying FHE schemes where
the ciphertext was encrypted with respect to a single public key. However, we
observe the following property of the multi-key FHE schemes of both [7, 33].
Suppose we have two ciphertexts, ct1 and ct2 that are encrypted under public
keys fpk1 and fpk2, respectively. In the multi-key FHE scheme, we can expand
these ciphertexts to ĉt1 and ĉt2, each encrypted under the set of public keys
{fpk1, fpk2}. If the secret keys corresponding to fpk1 and fpk2 are fsk1 and fsk2,
respectively, then the secret key for decryption of ĉt1 and ĉt2 (and any cipher-
text computed by evaluating on these ciphertexts) is [fsk1, fsk2]. In a standard
threshold FHE scheme, the secret key would be secret shared across n parties.

10

For simplicity, assume that we secret share according to the n out of n access
structure. Let party i’s shares of fsk1 and fsk2 be denoted by fsk1,i and fsk2,i,
respectively. Since the decryption procedure of the multi-key FHE scheme is
linear and the secret sharing of fsk1 and fsk2 is also linear and, crucially, with
respect to the same access structure, one could have party i partially decrypt by
running the decryption procedure of the multi-key FHE scheme using the secret
key [fsk1,i, fsk2,i]. Given these partial decryptions, one could combine them to
recover the message by adding them as specified by the reconstruction procedure
of the secret sharing scheme.

The above gives intuition as to how one might construct threshold multi-key
FHE, but several points are still unclear. In particular, we noted that in order to
achieve a meaningful notion, we want an encryptor to encrypt with respect to a
public key set and an access structure. The idea is that the public key set that
an encryptor encrypts with respect to is not a public key set of the underlying
MFHE scheme, but rather simply a set of public keys for a public-key encryption
scheme. These public keys serve as a means to send the corresponding multi-key
FHE secret key shares to the other parties. At a high level, encryption works by
generating a multi-key FHE public key fpk and secret key shares fsk1, . . . , fskn
corresponding to the access structure A. The encryptor then encrypts fski under
pki and includes this in the ciphertext. This allows a set of parties satisfying the
access structure to use their secret keys ski of the public-key scheme to recover
the necessary fski’s to decrypt the ciphertext. Furthermore, as we noted above,
standard multi-key FHE expansion and evaluation will result in a ciphertext
that can be decrypted by concatenating the secret key shares for each of the
ciphertexts.

The above discussion is highly simplified and is meant to provide the reader
with some intuition behind our construction. We ignored various subtle points
and refer the reader to the main technical sections for the details. As a conse-
quence of our techniques, we are able to directly simulate partial decryptions
against an adversary that corrupts any set S 6∈ A, not only a maximally unqual-
ified one. The constructions of [7, 33] could only simulate against a maximally
unqualified set (N − 1 out of the N parties in their case) and relied on a trans-
formation to achieve simulation security against any unqualified corrupted set.

2.2 MPC with Guaranteed Output Delivery

Recall that a (tMal, tSh, tFc)-threshold mixed adversary is one which corrupts
three sets of parties (AMal,ASh,AFc) with |AMal| ≤ tMal, |ASh| ≤ tSh, and
|AFc| ≤ tFc that behave as follows: the set of parties in AMal are completely
malicious and can behave arbitrarily as per the adversary’s choice, the set of
parties in ASh are corrupted in a semi-honest manner meaning that they are
required to follow the protocol behavior correctly and the set of parties in AFc

are corrupted in a fail-corrupt manner meaning that for each party in this set,
the adversary can choose to abort the protocol execution at any point. Crucially,
the adversary does not get to see the internal state of any fail-corrupt party.
Intuitively, we can imagine these fail-corrupt parties as honest “lazy” parties

11

whose aborting/laziness is controlled by the adversary. In this work, we focus
on the setting of static corruptions where the adversary is required to specify all
three sets apriori. Of course, note that for each fail-corrupt party, the adversary
still has the luxury to determine adaptively when each party is expected to abort.

Our three-round MPC protocol secure against a threshold mixed adversary
follows the same recipe as in the works of Mukherjee and Wichs [33] and Brak-
erski et al. [7] who construct MPC protocols from multi-key FHE. We adapt it
to instead use the underlying system as a threshold multi-key FHE scheme. Fur-
ther, we will parametrize our protocol using an access structure A which will be
used to run the setup of the threshold multi-key FHE scheme. Recall that since
we are interested in the setting where guaranteed output delivery is possible,
we require that (tMal, tSh, tFc) respect the Hirt et al. [27] inequality. That is,
2tMal + tSh + tFc < N . In our protocol, given a threshold tuple (tMal, tSh, tFc),
A will be set as the (N − tMal − tFc)-out-of-N access structure. This ensures
that tMal + tSh, the maximum number of parties for which the adversary can
view the internal state is less than the required threshold to satisfy the access
structure.

Security Against Semi-Malicious Mixed Adversaries. Let’s first consider
the simpler setting where the first set of corrupted partiesAMal can only be semi-
malicious. That is, on behalf of each of them, the adversary can pick randomness
of its choice but the parties are required to follow the protocol behavior honestly
using this randomness. The adversary may also choose to have these parties
abort at any time. A more formal definition is given in the full version. The
overall structure of our MPC protocol with respect to any access structure is the
following:

– In round 1, each party generates its parameters and public key for the thresh-
old multi-key FHE scheme.

– In round 2, each party individually encrypts its input with respect to the
combined set of public keys and access structure and broadcasts the cipher-
text.

– All parties can now homomorphically compute a threshold multi-key FHE
encryption of the output, with respect to the functionality under considera-
tion. Then, each party broadcasts a partial decryption of the output using
its secret key. The partial decryptions can be combined to recover the output
in plaintext.

It can be readily observed from the definition of threshold multi-key FHE
that this protocol satisfies correctness and security even in the presence of a
threshold mixed adversary (with semi-malicious corruptions), where some lazy
honest parties could drop off from the protocol execution at any point as deter-
mined by the fail-corrupt corruption. Furthermore, the fact that the protocol has
guaranteed output delivery can be observed by noting that at most tMal + tFc

parties will abort. So, at least N − tMal− tFc parties will remain, which is suffi-
cient to recover the output. Note that since we have restricted the adversary to
behave semi-maliciously instead of maliciously on the set AMal, every message

12

sent will be “valid.”
One key difference from the previous works [7, 33] is the following: in the stan-
dard model MPC protocols of [7, 33], due to the design of the multi-key FHE
primitive, the protocol is secure only against a semi-malicious adversary that
corrupts all but one party. They then need to transform it to a protocol that is
secure against an adversary that can corrupt any arbitrary number of parties up
to all but one of them. In our MPC protocol, the security guarantee given by the
threshold multi-key FHE scheme allows us to prove a more general statement
that our protocol is in fact secure even if the adversary chooses to corrupt fewer
parties than it is capable of (it chooses to corrupt less than the threshold number
of parties).

Handling Malicious Adversaries. The final step in achieving our MPC pro-
tocol is to allow the set AMal to be maliciously corrupted. One way to do this
would be to use a NIZK and have each party send a proof in each round that
they computed their message properly; if the NIZK proof does not verify, the
party would be treated as malicious and ignored. Unfortunately, using a NIZK
would require us to introduce a CRS, and we want our protocol to be in the
plain model.

Round One: Malicious. To do so, the first crucial observation we make is that
the underlying semi-malicious protocol (without a NIZK) in the plain model is
already in fact secure against an adversary that can behave maliciously only in
the first round. The reason is that the first round message, which consists of
the adversary’s parameters for the threshold multi-key FHE scheme, is simply
a random matrix and a public key. To argue semi-malicious security, we only
needed the following two properties:

– The honest parties’ matrices are generated uniformly at random.3

– The simulator, before the beginning of round three, only needs to know the
randomness used by the adversary in the second round to generate its ci-
phertext. In particular, the simulator does not need to know a corresponding
secret key for the public key sent by the adversary in round 1.

As a result, we did not require the input or randomness used by the adversary
to generate its round one messages, and hence our protocol is secure against an
adversary that can behave maliciously in round one.

Multi-String NIZK. Armed with the above property, we note that our proto-
col no longer needs to prove correctness of round one messages using a NIZK.
Therefore, we will use the first round messages of all parties to try to collectively
generate a valid CRS that can then be used to generate the NIZKs and achieve a
construction in the plain model. The notion of multi-string NIZKs, introduced in
the work of Groth and Ostrovsky [25] exactly fits this requirement. As discussed
previously, in a multi-string NIZK argument system, a set of parties can each

3 This was a wonderful observation made in the work of Brakerski et al. [7].

13

generate one CRS that can then be combined to compute one unified CRS which
is used to compute NIZKs. The guarantee is that as long as a majority of the
individual CRS strings are honestly generated, the argument system is correct
and secure4.

In our protocol, we can use this primitive as follows: in round 1, each party
generates an individual CRS for the multi-string NIZK system. At the end of
round 1, all parties can combine the above set of CRS strings to compute one
unified CRS that can then be used to compute NIZKs. In rounds 2 and 3, each
party also sends a NIZK along with their message, and the other parties make
sure the NIZK verifies. If the NIZK does not verify, the party that submitted an
invalid message is ignored for the rest of the protocol and treated as if it had
aborted instead.

There is one additional hurdle to ensuring that a multi-string NIZK suffices
for our setting. The multi-string NIZK is only secure if a majority of the CRSs
are honestly generated. However, we want our protocol to be secure against any
(tMal, tSh, tFc)- mixed adversary, where 2tMal + tSh + tFc < N . In particular, we
need the multi-string NIZK to be secure in settings without an honest majority!
Fortunately, the multi-string NIZK is still secure in our setting, provided that the
CRSs are uniformly random strings. To see why this is the case, we first observe
that tFc, the number of fail-corrupt parties does not present any difficulties. This
is because these parties fall under the “honest but lazy” parties in our motivation,
and so while the adversary can force them to abort, the adversary can never
learn any internal state information of these parties or cause them to behave
dishonestly. Therefore, any CRS output by these parties will be an honest CRS,
and so choosing to not have these parties abort prior to round 1 only increases
the number of honest CRSs that are output. The second observation is that any
semi-honest corruptions also do not cause any difficulties. This is because the
honest procedure for generating a CRS is to simply sample a random string.
Therefore, even if an adversary semi-honestly corrupts a party, it can neither
prevent it from outputting an honestly generated random string nor learn any
state information that could compromise the random string. Therefore, all the
CRSs output by the semi-honest corrupt and fail-corrupt parties are honest, and
since 2tMal + tSh + tFc < N , it follows that a majority of the CRSs are honestly
generated. Therefore, security of the multi-string NIZK system holds and we
obtain a plain model construction. In this work, we construct a multi-string
NIZK from LWE that satisfies this additional property required of the CRS and
we elaborate more on this construction now.

2.3 Multi-String NIZK from LWE

The above demonstrated that a simulation-extractable multi-string NIZK would
allow us to obtain our round-optimal MPC protocol. However, a multi-string

4 As is the case with compiling semi-malicious protocols into malicious secure ones,
we need the NIZK to be simulation-extractable.

14

NIZK is not known to exist from LWE. Previously it was known from statisti-
cally sound ZAPS as shown in the work of [25]. However, ZAPs are not known
to exist from polynomially hard LWE. One might think that we could use the
recent result of Peikert and Shiehian [35], which constructs either a statistically-
sound NIZK in the common reference string model or a computationally-sound
NIZK in the common random string model. One might think that we could use
the transformation of Dwork and Naor [16] to obtain a ZAP from LWE and
then apply the transformation of [25]. However, this does not work, since their
transformation crucially requires a statistically-sound NIZK in the common ran-
dom string model, which is not known from polynomially hard LWE (the recent
works of [2, 30] construct such ZAPs from quasipolynomial LWE). Therefore,
we require a different approach. We construct the first multi-string NIZK from
LWE and use it as a tool in obtaining our round-optimal MPC result.

Our construction proceeds in two main steps. We first build a multi-string
non-interactive witness indistinguishable (NIWI) argument from LWE and then
show how to bootstrap it to obtain a simulation-extractable multi-string NIZK.

A recent series of works [10, 11, 28, 31, 35] have developed a framework for
instantiating the Fiat-Shamir transform [18] using a hash function that satisfies
a property called correlation-intractability [12]. This culminated in the work of
Peikert and Shiehian [35], who were able to obtain the first NIZK from LWE
by constructing a correlation-intractable hash function family for (bounded) cir-
cuits from LWE. The notion of a correlation-intractable hash function family
is defined formally in the full version. Informally, a hash function family H is
correlation-intractable for a relation R if given a sampled key K, it is hard to
find an x such that (x,HK(x)) ∈ R. Following the formula introduced in the
above works, we will apply the Fiat-Shamir transform to the Σ protocol for
Graph Hamiltonicity by Blum [3] in order to obtain our multi-string NIZK.

Multi-String NIWI from LWE. The first step is to construct a multi-string
NIWI from LWE. A multi-string NIWI is defined analogously to a multi-string
NIZK. That is, in a multi-string NIWI, a set of parties can each generate one
CRS that can then be combined to compute one unified CRS which is used to
compute NIWIs. The guarantee is that as long as a majority of the individual
CRS strings are honestly generated, the argument system is correct and secure.

To construct the multi-string NIWI, we first construct a non-interactive com-
mitment scheme in the multi-string model with the property that the scheme
remains hiding and binding provided that a majority of the CRSs are honestly
generated. At a high level, this is done by having each CRS be a public key pki
of a public key encryption (PKE) scheme. To commit to a message m, one sim-
ply secret shares m using a bn/2c + 1-out-of-n secret sharing scheme to obtain
shares (m1, . . . ,mn), then encrypts mi under pki, and outputs these n cipher-
texts as the commitment. Since a majority of the public keys were generated
honestly, a majority of the shares are hidden by the encryption, so the com-
mitment scheme satisfies hiding. By the correctness of the PKE scheme, the
resulting commitment scheme must also be binding. Furthermore, we observe

15

that this commitment scheme also has an associated trapdoor that facilitates
extraction of the message committed. In particular, any majority of the secret
keys ski can be used as a trapdoor as they can recover a majority of message
shares from the commitment and, therefore, the message.

The multi-string NIWI is built by having each party generate its CRS in the
setup phase as a public key pki of a PKE scheme and a hash key Ki from the
correlation hash function family H. To prove a statement x ∈ L using a witness
w, we run λ parallel repetitions of the Σ protocol using the above commitment
scheme as the underlying commitment scheme and making it non-interactive via
the Fiat-Shamir transformation, with the hash function instantiated using HKi .
A proof is the transcript of all the parallel executions of the Σ protocol. Sound-
ness follows from the correlation-intractability of the hash function family H, the
binding property of the commitment scheme and the soundness of the underlying
Σ protocol. Witness indistinguishability follows from the witness indistinguisha-
bility of the underlying Σ protocol and the fact that the commitment scheme is
hiding even if a minority of shares are learned. We refer the reader to the full
version for more details.

Obtaining a Multi-String NIZK. In order to obtain a multi-string NIZK from
our multi-string NIWI, we use the standard trick found in [17, 25] each party
also generates a random string ri as part of their CRS and the statement that
is proven using the multi-string NIWI now is that x ∈ L OR a majority of the
ri’s are actually the output of a pseudorandom generator G. Soundness and zero
knowledge then follow via standard arguments, and we refer the reader to the
full version for more details. We then observe that we can also prove simulation-
extractability of our multi-string NIZK if we additionally use the commitment
scheme from before once again and require the prover to commit to its witness
using this scheme. The statement being proved using the multi-string NIWI
would now be that either x ∈ L using a witness w that was committed OR
a majority of the ri’s are actually the output of a pseudorandom generator G.
Further, in order to prove that the scheme is simulation extractable, here, we will
instantiate all the underlying PKE schemes inside the extra commitment scheme
(for the witness) with CCA-secure PKE schemes. As a result, our extractor for
the simulation-extractable NIZK can use the secret keys of all the honest parties
for this extra commitment scheme as a trapdoor to learn the witness associated
with the adversary’s proof. We refer the reader to the full version for more details
about the proof.

Finally, recall that in order to use the multi-string NIZK in our MPC pro-
tocol, we require that the CRS generated by each party is a uniformly random
string. However, in our construction, in addition to the random string r, the
CRS consists of two public keys (one for committing to the witness and one for
the commitment used in the Σ protocol) and a hash key K for a correlation-
intractable hash function familyH. We will use an encryption scheme whose pub-
lic keys are statistically-close to uniform and we also observe that the hash key is
statistically-close to uniform. This ensures that the CRS is also statistically-close

16

to uniform. We then prove that this is in fact sufficient for the MPC application
and we don’t require the CRS to be a uniformly random string. We refer to the
full version for more details.
Roadmap. We define some preliminaries in Section 3. Then, we formally define
threshold multi-key FHE in Section 4 and give our construction in Section 5. In
Section 6, we describe our round optimal MPC protocol with guaranteed output
delivery against threshold mixed adversaries. Finally, in Section 7, we construct
multi-string NIZKs.

3 Preliminaries

We denote the security parameter by λ. For an integer n ∈ N, we use [n] to denote
the set {1, 2, . . . , n}. We use D0

∼=c D1 to denote that two distributions D0,D1

are computationally indistinguishable. We use negl(λ) to denote a function that
is negligible in λ. We use x ← A to denote that x is the output of a ran-
domized algorithm A, where the randomness of A is sampled from the uniform
distribution. We use PPT as an abbreviation for probabilistic polynomial-time.
Whenever we write {xj}j∈S for a set of parties S, we assume that the party j
that xj corresponds to is included in S. When we say an error distribution is
E-bounded, we mean that the errors are in [−E,E].

Cryptographic Primitives. We formally define secret sharing, correlation in-
tractable hash functions, simulation-extractable multi-string NIZKs, and Sigma
protocols in the full version. We also define MPC against a threshold mixed
adversary with guaranteed output delivery following the works of [19,20] in the
full version of the paper.

Guaranteed Output Delivery (GOD) Consider an MPC protocol π amongst N
parties. Informally, π is said to possess guaranteed output delivery (GOD) if
for every PPT malicious adversary, for all possible sets of inputs {x1, . . . , xN},
for any function f , the following holds: At the end of the execution of π, every
honest party outputs f(y1, . . . , yn) where yi = xi for every honest party Pi and
yj = xj/⊥ for every corrupt party Pj .

3.1 Multi-Key FHE

We recall the definition of multi-key FHE in the plain model with distributed
setup as found in [7].

Definition 1 (MFHE). A multi-key fully homomorphic encryption scheme is
a tuple of PPT algorithms

MFHE = (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec)

satisfying the following specifications:

17

paramsi ← DistSetup(1λ, 1d, 1N , i): It takes as input a security parameter λ, a
circuit depth d, the maximal number of parties N , and a party index i. It
outputs the public parameters paramsi associated with the ith party, where
paramsi ∈ {0, 1}poly(λ,d,N) for some polynomial poly. We assume implicitly
that all the following algorithms take the public parameters of all parties as
input, where we define params = params1|| . . . ||paramsN .

(pk, sk)← KeyGen(params): It takes as input the public parameters params and
outputs a key pair (pk, sk).

ct← Encrypt(pk,m): It takes as input a public key pk and a plaintext m ∈
{0, 1}λ and outputs a ciphertext ct. Throughout, we will assume that all
ciphertexts include the public key(s) that they are encrypted under.

ĉt← Eval(C, ct1, . . . , ct`): It takes as input a boolean circuit C : ({0, 1}λ)` →
{0, 1} ∈ Cλ of depth ≤ d and ciphertexts ct1, . . . , ct` for ` ≤ N . It outputs
an evaluated ciphertext ĉt.

pi ← PartDec(i, sk, ĉt): It takes as input an index i, a secret key sk and an eval-
uated ciphertext ĉt and outputs a partial decryption pi.

µ̂← FinDec(p1, . . . , p`): It takes as input partial decryptions p1, . . . , p` and de-
terministically outputs a plaintext µ̂ ∈ {0, 1,⊥}.
We require that for any parameters {paramsi ← Setup(1λ, 1d, 1N , i)}i∈[N],

any key pairs {(pki, ski) ← KeyGen(params)}i∈[N], any plaintexts m1, . . . ,m` ∈
{0, 1}λ for ` ≤ N , any sequence I1, . . . , I` ∈ [N] of indices, and any boolean
circuit C : {0, 1}` → {0, 1} ∈ Cλ of depth ≤ d, the following is satisfied:

Correctness. Let cti = Encrypt(pkIi ,mi) for 1 ≤ i ≤ `, ĉt = Eval(C, ct1, . . . , ct`),
and pi = PartDec(i, skIi , ĉt) for all i ∈ [`]. With all but negligible probability
in λ over the coins of Setup, KeyGen, Encrypt, and PartDec,

FinDec(p1, . . . , p`) = C(m1, . . . ,m`).

Compactness of Ciphertexts. There exists a polynomial, poly, such that |ct| ≤
poly(λ, d,N) for any ciphertext ct generated from the algorithms of MFHE.

Semantic Security of Encryption. Any PPT adversary A has only negligi-
ble advantage as a function of λ over the coins of all the algorithms in the
following game:
1. On input the security parameter 1λ, a circuit depth 1d, and the number

of parties 1N , the adversary A outputs a non-corrupted party i.
2. Run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given paramsi.
3. The adversary outputs {paramsj}j∈[N]\{i}.
4. params is set to params1|| . . . ||paramsN . Run KeyGen(params)→ (pki, ski).

The adversary is given pki.
5. The adversary outputs two messages m0,m1 ∈ {0, 1}λ.
6. The adversary is given ct← Encrypt(pki,mb) for a random b ∈ {0, 1}.
7. The adversary outputs b′ and wins if b = b′.

Simulation Security. There exists a stateful PPT algorithm Sim such that for
any PPT adversary A, we have that the experiments ExptA,Real(1

λ, 1d, 1N)

and ExptA,Sim(1λ, 1d, 1N) as defined below are statistically close as a function
of λ over the coins of all the algorithms. The experiments are defined as
follows:

18

ExptA,Real(1
λ, 1d, 1N):

1. On input the security parameter 1λ, a circuit depth 1d, and the num-
ber of parties 1N , the adversary A a non-corrupted party i.

2. Run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given paramsi.
3. The adversary outputs {paramsj}j∈[N]\{i}.
4. params is set to params1|| . . . ||paramsN . Sample N − 1 key pairs

KeyGen(params)→ (pkj , skj) for j ∈ [N]\{i}. The adversary is given
{(pkj , skj)}j∈[N]\{i}.

5. The adversary outputs randomness rKeyGeni used to generate (pki, ski),
m1, . . . ,m` ∈ {0, 1}λ, I1, . . . , I` ∈ [N], and a set of circuits {Ck :
({0, 1}λ)` → {0, 1}}k∈[t] with each Ck ∈ C for some ` ≤ N and some
t = poly(λ, d,N).

6. Set (pki, ski) ← KeyGen(params; rKeyGeni). The adversary is given
ctj ← Enc(pkIj ,mj) for 1 ≤ j ≤ ` and the evaluated ciphertexts

ĉtk ← Eval(Ck, ct1, . . . , ct`) for all k ∈ [t].
7. The adversary is given pi,k ← PartDec(i, ski, ĉtk) for all k ∈ [t].
8. A outputs out. The output of the experiment is out.

ExptA,Sim(1λ, 1d, 1N):

1. On input the security parameter 1λ, a circuit depth 1d, and the num-
ber of parties 1N , the adversary A a non-corrupted party i.

2. Run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given paramsi.
3. The adversary outputs {paramsj}j∈[N]\{i}.
4. params is set to params1|| . . . ||paramsN . Sample N − 1 key pairs

KeyGen(params)→ (pkj , skj) for j ∈ [N]\{i}. The adversary is given
{(pkj , skj)}j∈[N]\{i}.

5. The adversary outputs randomness rKeyGeni used to generate (pki, ski),
m1, . . . ,m` ∈ {0, 1}λ, I1, . . . , I` ∈ [N], and a set of circuits {Ck :
({0, 1}λ)` → {0, 1}}k∈[t] with each Ck ∈ C for some ` ≤ N and some
t = poly(λ, d,N).

6. Set (pki, ski) ← KeyGen(params; rKeyGeni). The adversary is given
ctj ← Enc(pkIj ,mj) for 1 ≤ j ≤ ` and the evaluated ciphertexts

ĉtk ← Eval(Ck, ct1, . . . , ct`) for all k ∈ [t].
7. Define µk = Ck(m1, . . . ,m`). For all k ∈ [t], the adversary is given

pi,k ← Sim(µk, ĉt, i, {skj}j∈[N]\{i}).
8. A outputs out. The output of the experiment is out.

4 Threshold Multi-Key FHE: Definition

In this section, we present the definition of threshold multi-key fully homomor-
phic encryption (TMFHE) in the plain model with distributed setup5. TMFHE
will be the main building block in our MPC protocol.

5 Note that we can instead define TMFHE with a single trusted setup, which will
allow us to construct MPC protocols in the CRS model as in [33]. However, our
main focus is on the plain model, and therefore, we use decentralized setup as in [7].

19

Definition 2 (TMFHE). Let P = {P1, . . . , PN} be a set of parties and let
S be a class of efficient access structures on P . A threshold multi-key fully ho-
momorphic encryption scheme supporting up to N parties is a tuple of PPT
algorithms

TMFHE = (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec)

satisfying the following specifications:

paramsi ← DistSetup(1λ, 1d, 1N , i): It takes as input a security parameter λ, a
circuit depth d, the maximal number of parties N , and a party index i. It
outputs the public parameters paramsi associated with the ith party. We de-
fine params = params1|| . . . ||paramsN .

(pk, sk)← KeyGen(1λ): It takes as input the security parameter λ and outputs
a key pair (pk, sk).

ct← Encrypt(params, pk1, . . . , pkN ,A,m): It takes as input the public parame-
ters params, public keys pk1, . . . , pkN , an access structure A over P and a
plaintext m ∈ {0, 1}λ and outputs a ciphertext ct. Throughout, we will as-
sume that all ciphertexts include the public parameters, the public keys, and
the access structure that they are encrypted under.

ĉt← Eval(C, ct1, . . . , ct`): It takes as input a boolean circuit C : ({0, 1}λ)` →
{0, 1} ∈ Cλ of depth ≤ d and ciphertexts ct1, . . . , ct` for ` = poly(N). It
outputs an evaluated ciphertext ĉt.

pi ← PartDec(i, sk, ĉt): It takes as input an index i, a secret key sk and an eval-
uated ciphertext ĉt and outputs a partial decryption pi.

µ̂← FinDec(B): It takes as input a set B = {pi}i∈S for some S ⊆ {P1, . . . , PN}
where we recall that we identify a party Pi with its index i. It deterministically
outputs a plaintext µ̂ ∈ {0, 1,⊥}.

We require that for any parameters {paramsi ← DistSetup(1λ, 1d, 1N , i)}i∈[N],

any key pairs {(pki, ski)← KeyGen(1λ)}i∈[N], any supported access structure A
over P , any plaintexts m1, . . . ,m` ∈ {0, 1}λ for ` = poly(N), and any boolean
circuit C : ({0, 1}λ)` → {0, 1} ∈ Cλ of depth ≤ d, the following is satisfied:

Correctness. Let cti = Encrypt(params, pk1, . . . , pkN ,A,mi) for 1 ≤ i ≤ `, ĉt =
Eval(C, ct1, . . . , ct`), and B = {PartDec(i, ski, ĉt)}i∈S. With all but negligible
probability in λ over the coins of DistSetup, KeyGen, Encrypt, and PartDec,

FinDec(B) =

{
C(m1, . . . ,m`), S ∈ A
⊥ S 6∈ A.

Compactness of Ciphertexts. There exists a polynomial, poly, such that |ct| ≤
poly(λ, d,N) for any ciphertext ct generated from the algorithms of TMFHE.

Simulation Security. There exist PPT algorithms Sim1,Sim2 such that for any
PPT adversary A, we have that the experiments ExptA,Real(1

λ, 1d, 1N) and

ExptA,Sim(1λ, 1d, 1N) are computationally indistinguishable.

ExptA,Real(1
λ, 1d, 1N):

20

1. On input the security parameter 1λ, a circuit depth 1d, and the max-
imal number of parties 1N , the adversary A outputs an access struc-
ture A ∈ S over N parties and a maximal set S ⊆ [N] such that
S 6∈ A.

2. For i ∈ [N], run DistSetup(1λ, 1d, 1N , i) → paramsi. The adversary
is given {paramsi}i∈[N]. Sample key pairs KeyGen(1λ) → (pki, ski)
for i ∈ [N]. The adversary is given {pki}i∈[N] and {ski}i∈S.

3. The adversary then outputs messages m1, . . . ,m` ∈ {0, 1}λ for ` =
poly(N).

4. params is set to the concatenation of the paramsi’s for i ∈ [N]. Let
PK = {pki}i∈[N]. The adversary is given cti ← Enc(params,PK,
A,mi) for i ∈ [`].

5. The adversary issues polynomially many queries of the form
(Ck : ({0, 1}λ)` → {0, 1}), where Ck ∈ C. Let the evaluated cipher-
text be ĉtk ← Eval(Ck, ct1, . . . , ct`). After each query, the adversary
receives pi,k ← PartDec(i, ski, ĉtk) for all i ∈ [N]\S.

6. A outputs out. The output of the experiment is out.
ExptA,Sim(1λ, 1d, 1N):

1. On input the security parameter 1λ, a circuit depth 1d, and the max-
imal number of parties 1N , the adversary A outputs an access struc-
ture A ∈ S over N parties and a maximal set S ⊆ [N] such that
S 6∈ A.

2. For i ∈ [N], run DistSetup(1λ, 1d, 1N , i) → paramsi. The adversary
is given {paramsi}i∈[N]. Sample key pairs KeyGen(1λ) → (pki, ski)
for i ∈ [N]. The adversary is given {pki}i∈[N] and {ski}i∈S.

3. The adversary then outputs messages m1, . . . ,m` ∈ {0, 1}λ for ` =
poly(N).

4. params is set to the concatenation of the paramsi’s for i ∈ [N]. Let
PK = {pki}i∈[N]. The adversary is given {cti}i∈[`] ← Sim1(params,
PK,A).

5. The adversary issues polynomially many queries of the form
(Ck : ({0, 1}λ)` → {0, 1}), where Ck ∈ C. Let the evaluated ci-
phertext be ĉtk ← Eval(Ck, ct1, . . . , ct`). After each query, the ad-
versary receives {pi,k}i6∈S ← Sim2(µk, ĉtk, S, {ski}i∈S), where µk =
Ck({mi}i∈[`]).

6. A outputs out. The output of the experiment is out.

The security notion is inspired by the security definitions of multi-key FHE [7,
33] suitably adapted to the context of general access structures. Observe that
the above definition captures both the semantic security of ciphertexts and the
simulation security of partial decryptions.

Looking ahead to our MPC protocol, we will actually need some stronger
guarantees from the TMFHE scheme, which adds complexity to the security
definition. In our MPC protocol, the adversary is allowed to choose which hon-
est parties abort in each round and is rushing, so he is allowed to control the
randomness of corrupted parties as a function of the honest parties. We capture

21

this by allowing the simulator of the TMFHE scheme to be stateful. Additionally,
since the adversary in MPC is rushing, it is allowed to see the honest parame-
ters/ciphertexts before it picks its parameters/ciphertexts.

The (more general) formal definition we use is deferred to the full version.

5 Threshold Multi-Key FHE: Construction

In this section, we construct threshold multi-key FHE as defined in Section 4.
Formally, we show the following.

Theorem 4 (TMFHE). Assuming LWE, there exists a secure threshold multi-
key FHE scheme for the class of access structures {0, 1}-LSSSD. In particular,
there exists a secure TMFHE scheme for any access structure induced by a mono-
tone boolean formula and any t out of N access structure.

We use several ingredients. First, we initialize a multi-key FHE scheme using
the construction in [7]. Then, we utilize the techniques in the construction of
threshold FHE in [29]6, which shows how to transform a generic FHE scheme
satisfying several properties into a threshold FHE scheme. We observe that the
multi-key FHE construction of [7] is “compatible” with the thresholdizing trans-
formation described in [29]. Finally, we use a public key encryption scheme to
tie everything together.

In more detail, examining the construction of [29], we note that it is compat-
ible with a generic FHE scheme where :

1. The secret key sk is a vector in Zmq for some prime q.
2. The decryption function Dec can be broken into two algorithms Dec0,Dec1

where Dec0(sk, ct) computes a linear function in sk and ct to output µ dq/2e+
e for some bounded error e ∈ [−E,E] with E << q, where ct is an encryption
of µ. Dec1 then takes this resulting value and rounds to recover µ.

We note that the construction of multi-key FHE in [7] satisfies these required
properties. Furthermore, it satisfies the following additional properties that will
be useful to note in the construction.

1. An evaluated ciphertext ĉt that encrypts a bit µ with respect to public keys
pk1, . . . , pk` is a matrix that satisfies

~s · ĉt ≈ µ~s ·G

for a gadget matrix G and ~s = (sk1|| . . . ||sk`), where ski is the secret key
corresponding to public key pki. Each ski is of the form (si||1).

2. There exists a low-norm vector ~v such that G~v = (0, 0, . . . , dq/2e)T . Decryp-
tion proceeds by evaluating ~s · ĉt ·~v and then outputs 1 if the resulting value
is closer to dq/2e than 0 and 0 otherwise.

6 We note that the work of Boneh et al. [4] is a merge of [29] and [5].

22

Furthermore, [29] shows the following result.

Theorem 5 ([29]). For any access structure A on N parties induced by a
monotone boolean formula, there exists a {0, 1}-LSSSD scheme of a vector s ∈
Zmq where each party P receives at most w shares of the form si ∈ Zmq for
w = poly(N).

5.1 Construction

Let MFHE = (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec) be a multi-key FHE
scheme instantiated with the construction in [7]. Let PKE = (Setup,Enc,Dec)
be a public-key encryption scheme. Let χsm denote the uniform distribution on
the interval [−Esm, Esm] for a value Esm to be determined.

Our threshold multi-key FHE construction TMFHE is given as follows:

DistSetup(1λ, 1d, 1N , i): Run MFHE.DistSetup(1λ, 1d, 1N , i) → paramsi and out-
put paramsi.

KeyGen(1λ): Run PKE.Setup(1λ)→ (pk, sk) and output (pk, sk).
Encrypt(params, pk1, . . . , pkN ,A,m): Run MFHE.KeyGen(params) → (fpk, fsk).

Compute {fski,j}i∈[N],j∈[w] for some w = poly(N) by applying the {0, 1}-LSSSD
scheme associated with A to fsk to . Set ct′ ← MFHE.Enc(fpk,m) and for
i ∈ [N], set cti = PKE.Enc(pki, {fski,j}j∈[w]). Output

ct = (ct′, ct1, . . . , ctN).

Eval(C, ct1, . . . , ct`): Parse cti as (ct′i, cti,1, . . . , cti,N). Let fpki be the MFHE pub-

lic key associated with ct′i. Run MFHE.Eval(C, ct′1, . . . , ct
′
`)→ ĉt

′
. Output

ĉt = (ĉt′, {cti,j}(i,j)∈[`]×[N]).

PartDec(i, sk, ĉt): Parse ĉt as (ĉt′, {ctk,j}(k,j)∈[`]×[N]). For every k ∈ [`], run
PKE.Dec(sk, ctk,i)→ {fskk,i,j}j∈[w]. For t ∈ [w], compute

(fsk1,i,t||fsk2,i,t|| . . . ||fsk`,i,t) · ĉt′ · ~v + esmt → p′t,

where esmt ← χsm and ~v is the low-norm vector used for decryption in [7]
described above. Output pi = (i, {p′t}t∈[w]).

FinDec(B): Parse B as {(i, {p′t}t∈[w])}i∈S for some set S of indices. If S 6∈ A,
output ⊥. If S ∈ A, apply the {0, 1}-LSSSD reconstruction to get ≈ µ̂ dq/2e.
Then, round to recover µ̂.

We defer the proofs of correctness, compactness, and security to the full version.

Instantiation. In order for correctness to hold, we required that E+NwEsm <
q/4. For security, we required that NwE/Esm = negl(λ). Recall that w =
poly(N). Let W = poly(N) be an upper bound for the set of access structures
supported by the scheme. Then, setting E/Esm < λ− log2 λ and Esm < q/8NW
gives us an instantiation that satisfies both correctness and security. The MFHE
scheme of [7] can be instantiated with such properties assuming a variant of the
learning with errors assumption, which is as hard as approximating the shortest
vector problem to within a subexponential factor.

23

6 Round-Optimal MPC with Guaranteed Output
Delivery Secure Against Threshold Mixed Adversaries

In this section, we use threshold multi-key FHE to construct a round-optimal
(three-round) MPC protocol in the plain model with guaranteed output deliv-
ery that is secure against a threshold mixed adversary (defined in the full ver-
sion), assuming LWE. Our protocol supports all functionalities computable by
polynomial-sized circuits and is parameterized by a tuple of thresholds (tMal, tSh, tFc)
that represent the number of malicious, semi-honest, and fail-corrupt corruptions
that the adversary is allowed to make, respectively. Our protocol has guaranteed
output delivery and is secure provided that 2tMal + tSh + tFc < N , the Hirt et
al. [27] inequality that characterizes the threshold values under with guaranteed
output delivery is possible to achieve.

Thus, our resulting protocol is both optimal in terms of the best possible
corruption we can tolerate and also round-optimal (since at least three rounds
are required for a protocol to have guaranteed output delivery, as shown by
Gordon et al. [24]). Moreover, our protocol has depth-proportional communica-
tion complexity, is reusable, and has input fidelity for “honest but lazy” parties.
Formally, we show the following.

Theorem 6. Assuming LWE, for any function f , for any tuple of thresholds
(tMal, tSh, tFc) satisfying 2tMal + tSh + tFc < N , there exists a three-round MPC
protocol with guaranteed output delivery in the plain model that is secure against
a (tMal, tSh, tFc)-mixed adversary. Furthermore, the protocol is reusable, has com-
munication complexity poly(λ, d,N), where d is the depth of the circuit computing
f and the functionality is computed with respect to the inputs of all parties that
send valid messages in the first two rounds.

Note that our result in the mixed adversary setting is in fact broader and more
general than the traditional MPC setting. By instantiating Theorem 6 with the
(dN/2−1e, 0, 0)-mixed adversary (this corresponds to the honest-majority setting
against a malicious adversary), we immediately obtain the following corollary.

Corollary 2. Assuming LWE, for any function f , there exists a three-round
MPC protocol with guaranteed output delivery in the plain model that is secure
against a malicious adversary in the honest majority setting. Furthermore, the
protocol is reusable and has communication complexity poly(λ, d,N), where d is
the depth of the circuit computing f .

Like Theorem 6, this result is round-optimal and supports the maximum
possible number of corruptions.

6.1 Security Against a Semi-Malicious Mixed Adversary

As a stepping stone to showing Theorem 6, we first construct a protocol that
satisfies all the properties of Theorem 6, except that it is only secure against

24

a semi-malicious mixed adversary (defined in the full version), which is sim-
ply a mixed adversary that corrupts some parties semi-maliciously, rather than
maliciously. We describe below our three-round MPC protocol that is secure
against a (tSm, tSh, tFc)-semi-malicious mixed adversary A = (ASm,ASh,AFc)
for 2tSm + tSh + tFc < N .

Notation: Consider N parties P1, . . . , PN with inputs x1, . . . , xN , respectively,
who wish to evaluate a boolean circuit C with depth≤ d. Without loss of general-
ity, assume |xi| = λ ∀i ∈ [N]. Let (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec)
be the previously constructed threshold multi-key FHE scheme. Fix (tSm, tSh, tFc)
satisfying 2tSm+tSh+tFc < N . Let A be the (N−tSm−tFc)-out-of-N threshold
access structure.

Protocol: We now describe our construction.

– Input Commitment Phase:

• Round 1: Each party Pi does the following:
1. Run TMFHE.DistSetup(1λ, 1d, 1N , i) to obtain paramsi.
2. Run TMFHE.KeyGen(1λ) to compute (pki, ski).
3. Output (paramsi, pki).

• Round 2: Each party Pi does the following:
1. Parse the message (if one was sent) from Pj as (paramsj , pkj). Let
S1 ⊆ [N] be the set of parties that sent a message in round 1.

2. Truncate each paramsj for j ∈ S1 to the appropriate size given |S1|7.
Set params as the concatenation of the truncated paramsj ’s for j ∈
S1. Set PK = {pkj}j∈S1

. Let A′ be the access structure induced by
restricting A to the parties in S1 (that is, the (N − tSm − tFc)-out-
of-|S1| access structure).

3. Run TMFHE.Encrypt(params,PK,A′, xi) to compute cti.
4. Output cti.

– Computation Phase:

• Round 3: Each party Pi does the following:
1. Parse the previous message (if one was sent) from Pj as ctj . Let
S2 ⊆ [N] be the set of parties that sent a message in round 2. Let
CT = {ctj}j∈S2

. Let C ′ be the circuit induced by hardcoding the
inputs to C corresponding to parties not in S2 to be 0λ.

2. Run TMFHE.Eval(C ′, CT) to obtain ĉt.
3. Run TMFHE.PartDec(i, ski, ĉt) to obtain pi.
4. Output pi.

– Output Computation: Each party Pi does the following:
1. Parse the previous message (if one was sent) from Pj as pj . Let S3 ⊆ [N]

be the set of parties that sent a message in round 3.

7 Note that the paramsi of each party in the MFHE construction in [7] and, therefore,
also in our TMFHE construction, are simply random matrices Ai of a size dependent
on N . Therefore, truncating the matrix to the appropriate size for a scheme with |S1|
parties is equivalent to having run the distributed setup algorithm for |S1| parties.

25

2. Take any set S ⊆ S3 with S ∈ A and run TMFHE.FinDec(B) where
B = {pj}j∈S to recover µ̂. If no such set exists, output ⊥.

We defer the proofs of correctness, security, and the properties of the above
protocol to the full version.

6.2 Handling a Malicious Mixed Adversary

In the above protocol, the adversary can only corrupt some subset ASm of the
parties semi-maliciously, some subset ASh in a semi-honest manner and another
subset AFc in a fail-corrupt manner. In order to show Theorem 6, we need to
allow the adversary to corrupt the first subset ASm maliciously.

Our first observation is that the protocol is secure even against mixed ad-
versaries that are allowed make parties in ASm behave maliciously in round
1, but only semi-maliciously in rounds 2 and 3. After noting this, we further
observe that if we had a simulation-extractable multi-string NIZK [25] in the
plain model where the honest party’s behavior when generating a CRS is to
simply sample a uniformly random string8, then we could upgrade to security
against malicious mixed adversaries. We simply have each party send a refer-
ence string CRS in round 1 and then require each party to also provide a NIZK
argument in rounds 2 and 3 using these CRSs to ensure that they submitted a
valid message in that round. As mentioned previously, the multi-string NIZK is
only secure if a majority of the CRSs are honestly generated. However, we want
our protocol to be secure against any (tMal, tSh, tFc)- mixed adversary, where
2tMal + tSh + tFc < N . In particular, we are no longer in the honest majority
setting. As discussed earlier, this is not an issue because only the CRSs corre-
sponding to a maliciously-corrupted party could be dishonestly generated and
since the honest-generation behavior is to simply output a uniformly random
string, a party that is semi-honestly corrupted will also output a perfectly good
CRS. Furthermore, since the number of maliciously-corrupted parties is a mi-
nority of the total number of parties that send a CRS, a majority of the CRSs
will be honestly generated and security of the multi-string NIZK holds.

Security Against a Round 1 Malicious Mixed Adversary. We begin by
showing security of the protocol in Section 6.1 against a semi-malicious mixed ad-
versary that can behave maliciously in round 1. Since paramsi in the MFHE con-
struction in [7] is simply a matrix Ai of random entries, it follows that every Ai
output of a malicious adversary could also have been output by a semi-malicious
adversary that chose the appropriate randomness (we can simply truncate the
message or pad it with 0’s if the malicious adversary sends a message of in-
appropriate length). However, a malicious adversary may send a pki that does
not correspond to any possible public key output by the TMFHE.KeyGen algo-
rithm. So, in the proof, the simulator does not receive the randomness rKeyGeni

8 For ease of exposition, we assume here that the honest CRS is a uniformly random
string. However, there is a subtle technical issue, which we handle in Section 7 where
we construct the multi-string NIZK.

26

used by the adversary to compute the round 1 message for a corrupted party
and therefore does not receive ski for corrupted parties. However, as we saw in
Section 5, the simulator does not need to know ski or rKeyGeni . Rather, it suffices

to know (xi, r
Encrypt
i), the input and randomness used to compute a corrupted

party’s round 2 message in order to simulate. Thus, an analogous simulator and
proof can be used to show security against this adversary.

Upgrading to Malicious Security via Multi-String NIZKs. We now show
how to use a simulation-extractable multi-string NIZK with uniformly random
CRSs to upgrade the protocol in Section 6.1 to one that achieves Theorem 6.
The final step is to show that such a multi-string NIZK can be built from LWE.
This was not previously known, and we show this in Section 7.

Construction. Let TMFHE = (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec)
be the previously constructed threshold multi-key FHE scheme from Section 5
with the underlying PKE scheme instantiated with one where any string is a
valid public key (a dense cryptosystem). Fix (tMal, tSh, tFc) satisfying 2tMal +
tSh + tFc < N . Let A be the N − tMal − tFc-out-of-N threshold access struc-
ture. Let NIZK = (Gen,Prove,Verify) be a simulation-extractable multi-string
NIZK. To compare against our previous protocol in Section 6.1, we highlight the
changes in red.

– Round 1: Each party Pi does the following:

1. Run TMFHE.DistSetup(1λ, 1d, 1N , i) to obtain paramsi.

2. Run TMFHE.KeyGen(1λ) to compute (pki, ski).

3. Run NIZK.Gen(1λ
′
) to compute crsi, where λ′ = poly(λ, d,N) is the size

of statements that will be proven.

4. Output (paramsi, pki, crsi).

– Round 2: Each party Pi does the following:

1. Parse the message (if one was sent) from Pj as (paramsj , pkj , crsj) by
appropriately truncating or padding with 0’s if it was of incorrect length.
Let S1 ⊆ [N] be the set of parties that sent a message in round 1.

2. Truncate each paramsj for j ∈ S1 to the appropriate size given |S1|. Set
params as the concatenation of the truncated paramsj ’s for j ∈ S1. Set
PK = {pkj}j∈S1

. Let CRS = {crsj}j∈S1
. Let A′ be the access structure

induced by restricting A to the parties in S1 (that is, the (N−tSm−tFc)-
out-of-|S1| access structure).

3. Sample randomness ri and run TMFHE.Encrypt(params,PK,A′, xi; ri) to
compute cti.

4. Run NIZK.Prove(CRS, yi, (xi, ri)) to compute πi, where yi is the state-
ment that there exists some input x and randomness r such that
TMFHE.Encrypt(params,PK,A′, x; r) = cti.

5. Output (cti, πi).

– Round 3: Each party Pi does the following:

27

1. Parse the previous message (if one was sent) from Pj as (ctj , πj) and
check that
NIZK.Verify(CRS, yj , πj) = 1. Let S2 ⊆ S1 be the set of parties that sent
a message in round 2 that passed the verification. Let CT = {ctj}j∈S2 .
Let C ′ be the circuit induced by hardcoding the inputs to C correspond-
ing to parties not in S2 to be 0λ.

2. Run TMFHE.Eval(C ′, CT) to compute ĉt.
3. Sample randomness r′i and run TMFHE.PartDec(i, ski, ĉt; r

′
i) to compute

pi.
4. Run NIZK.Prove(CRS, zi, (ski, r′i)) to compute π′i, where zi is the state-

ment that there exists randomness r, r′ such that TMFHE.KeyGen(1λ; r) =
(pki, sk) and TMFHE.PartDec(i, sk, ĉt; r′) = pi.

5. Output (pi, π
′
i).

– Output Computation: Each party Pi does the following:
1. Parse the previous message (if one was sent) from Pj as (pj , π

′
j) and check

that NIZK.Verify(CRS, zj , π′j) = 1. Let S3 ⊆ S2 be the set of parties that
sent a message in round 3 that passed verification.

2. Take any set S ⊆ S3 with S ∈ A′ and run TMFHE.FinDec(B) where
B = {pj}j∈S to recover µ̂. If no such set exists, output ⊥.

We defer the formal proofs to the full version.

7 Multi-String NIZKs

In this section, we build a simulation-extractable multi-string NIZK argument
system for NP based on the learning with errors (LWE) assumption. We first
show how to build a multi-string non-interactive witness indistinguishable argu-
ment system (NIWI) from LWE. We then give a transformation from multi-string
NIWI to multi-string simulation-extractable NIZK that follows along the lines of
the work of Groth and Ostrovsky [25]. Formally, we show the following results:

Theorem 7. Assuming LWE, there exists a multi-string non-interactive witness
indistinguishable argument system for NP.

Theorem 8. Assuming LWE, there exists a multi-string simulation-extractable
NIZK argument system for NP.

We defer this section to the full version.

8 Acknowledgements

Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sahai
were supported in part from DARPA SAFEWARE and SIEVE awards, NTT
Research, NSF Frontier Award 1413955, and NSF grant 1619348, BSF grant
2012378, a Xerox Faculty Research Award, a Google Faculty Research Award, an

28

equipment grant from Intel, and an Okawa Foundation Research Grant. This ma-
terial is based upon work supported by the Defense Advanced Research Projects
Agency through Award HR00112020024 and the ARL under Contract W911NF-
15-C- 0205. The views expressed are those of the authors and do not reflect the
official policy or position of the Department of Defense, the National Science
Foundation, NTT Research, or the U.S. Government. Saikrishna Badrinarayanan
was also partially supported by an IBM PhD fellowship. Aayush Jain was also
partially supported by a Google PhD fellowship.

References

1. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Round-optimal secure multiparty
computation with honest majority. in CRYPTO 2018. Cryptology ePrint Archive,
Report 2018/572 (2018), https://eprint.iacr.org/2018/572

2. Badrinarayanan, S., Fernando, R., Jain, A., Khurana, D., Sahai, A.: Statistical
ZAP arguments. EUROCRYPT (2020)

3. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of
the International Congress of Mathematicians. vol. 1, p. 2. Citeseer (1986)

4. Boneh, D., Gennaro, R., Goldfeder, S., Jain, A., Kim, S., Rasmussen, P.M.R.,
Sahai, A.: Threshold cryptosystems from threshold fully homomorphic encryption.
In: CRYPTO (2018)

5. Boneh, D., Gennaro, R., Goldfeder, S., Kim, S.: A lattice-based universal thresh-
oldizer for cryptographic systems. IACR Cryptol. ePrint Arch. 2017, 251 (2017),
http://eprint.iacr.org/2017/251

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-
cryption without bootstrapping. In: ITCS. pp. 309–325 (2012)

7. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation with-
out setup. In: Theory of Cryptography (2017)

8. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: FOCS. pp. 97–106 (2011)

9. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe
and security for key dependent messages. In: CRYPTO. pp. 505–524 (2011)

10. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum,
R.D., Wichs, D.: Fiat-shamir: From practice to theory (2019)

11. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-shamir and correlation in-
tractability from strong kdm-secure encryption. In: Nielsen, J.B., Rijmen, V. (eds.)
Advances in Cryptology – EUROCRYPT 2018. pp. 91–122. Springer International
Publishing (2018)

12. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (Jul 2004)

13. Chan, T.H., Chung, K., Lin, W., Shi, E.: MPC for MPC: secure computation on
a massively parallel computing architecture. In: ITCS (2020)

14. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled fhe from learning
with errors. In: CRYPTO (2015)

15. Cohen, R., Shelat, A., Wichs, D.: Adaptively secure MPC with sublinear commu-
nication complexity. In: CRYPTO (2019)

16. Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6), 1513–
1543 (2007), https://doi.org/10.1137/S0097539703426817

29

https://eprint.iacr.org/2018/572
http://eprint.iacr.org/2017/251
https://doi.org/10.1137/S0097539703426817

17. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput. (1999)

18. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: CRYPTO (1987)

19. Fitzi, M., Hirt, M., Maurer, U.M.: Trading correctness for privacy in unconditional
multi-party computation (extended abstract). In: CRYPTO. pp. 121–136 (1998)

20. Fitzi, M., Hirt, M., Maurer, U.M.: General adversaries in unconditional multi-party
computation. In: ASIACRYPT. pp. 232–246 (1999)

21. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC. pp. 169–
178 (2009)

22. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: CRYPTO.
pp. 75–92 (2013)

23. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC.
pp. 218–229. ACM (1987)

24. Gordon, S.D., Liu, F., Shi, E.: Constant-round MPC with fairness and guarantee
of output delivery. In: CRYPTO (2015)

25. Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In: CRYPTO
(2007)

26. Guo, Y., Pass, R., Shi, E.: Synchronous, with a chance of partition tolerance. In:
CRYPTO (2019)

27. Hirt, M., Maurer, U.M., Zikas, V.: MPC vs. SFE : Unconditional and computa-
tional security. In: ASIACRYPT. pp. 1–18 (2008)

28. Holmgren, J., Lombardi, A.: Cryptographic hashing from strong one-way functions
(or: One-way product functions and their applications). In: FOCS (2018)

29. Jain, A., Rasmussen, P.M.R., Sahai, A.: Threshold fully homomorphic encryption.
ePrint (2017), https://eprint.iacr.org/2017/257

30. Jain, A., Jin, Z.: Statistical zap arguments from quasi-polynomial LWE. IACR
Cryptology ePrint Archive 2019, 839 (2019)

31. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security
of fiat-shamir for proofs. In: CRYPTO (2017)

32. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC. pp. 1219–1234
(2012)

33. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key fhe.
In: EUROCRYPT (2016)

34. Peikert, C., Shiehian, S.: Multi-key FHE from lwe, revisited. In: TCC Part II (2016)
35. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-

ing with errors. In: CRYPTO (2019)
36. Yao, A.C.: Protocols for secure computations. In: SFCS (1982)
37. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS.

pp. 162–167 (1986)

30

https://eprint.iacr.org/2017/257

	Secure MPC: Laziness Leads to GOD

