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Abstract A new approach to the security analysis of hardware-oriented
masked ciphers against second-order side-channel attacks is developed.
By relying on techniques from symmetric-key cryptanalysis, concrete se-
curity bounds are obtained in a variant of the probing model that allows
the adversary to make only a bounded, but possibly very large, num-
ber of measurements. Specifically, it is formally shown how a bounded-
query variant of robust probing security can be reduced to the linear
cryptanalysis of masked ciphers. As a result, the compositional issues of
higher-order threshold implementations can be overcome without relying
on fresh randomness. From a practical point of view, the aforementioned
approach makes it possible to transfer many of the desirable properties
of first-order threshold implementations, such as their low randomness
usage, to the second-order setting. For example, a straightforward applic-
ation to the block cipher LED results in a masking using less than 700
random bits including the initial sharing. In addition, the cryptanalytic
approach introduced in this paper provides additional insight into the
design of masked ciphers and allows for a quantifiable trade-off between
security and performance.

Keywords: Linear Cryptanalysis · Masking · Probing Security · Side-
Channel Analysis · Threshold Implementations

1 Introduction

Side-channel attacks such as differential power analysis [29] are an important con-
cern for the security of implementations of cryptographic primitives in hardware
and software. Accordingly, several adversarial models and side-channel coun-
termeasures have been developed during the past two decades. Many of these
countermeasures attempt to achieve security in the probing model of Ishai, Sahai
and Wagner [28], or slight variants thereof.

A common theme among different countermeasures is that they rely on split-
ting all secret variables in the circuit into d + 1 or more random shares. As
demonstrated by Ishai et al. [28], this approach can be used to achieve prob-
ing security against adversaries who can observe the values of up to d wires
in the circuit. However, the probing security model is not quite sufficient for
hardware-oriented countermeasures. Indeed, glitches may allow the adversary to



obtain more than one wire value from a single probe. To counter this, Nikova,
Rechberger, and Rijmen [35] introduced the threshold implementation approach.
From a formal point of view, the security of hardware-oriented countermeasures
should be analyzed in a glitch-extended or robust probing model as formalized
by Faust et al. [23] and it can be shown that threshold implementations achieve
such first-order robust probing security [21].

Unsurprisingly, achieving probing security often comes at a cost with respect
to area usage, latency, energy consumption, and so on. This paper is primar-
ily concerned with another important cost factor, namely the reliance of many
countermeasures on the availability of a large number of random bits. Creating
these bits can be quite expensive, especially since their generation should also
be gray-box secure. In this regard, first-order threshold implementations provide
an efficient countermeasure. In particular, if one ensures that each circuit layer
satisfies the so-called uniformity property, glitch-extended first-order probing se-
curity can be achieved without using any randomness beyond what is necessary
to share the state. If instead good randomness is readily available, threshold im-
plementations allow trading this off for reduced area [7]. At ASIACRYPT 2014,
Bilgin et al. [6] proposed a higher-order variant of threshold implementations.
However, Reparaz [36] later demonstrated that it succumbs to multivariate at-
tacks. In further work at CRYPTO 2015, Reparaz et al. [37] propose to use
remasking with fresh randomness to address this issue. However, as pointed out
by Moos et al. [32], this and other schemes still lack a formal security analysis
in the robust probing model.

As proposed by Faust et al. [23], an alternative approach is to design sharings
based on a robust variant of the strong non-interference framework of Barthe
et al. [2]. This has the benefit of allowing formal security proofs, which rely on
establishing the composability of different gadgets in the shared circuit. However,
ensuring composability unfortunately comes at an inherent randomness cost.
Amortizing this cost is possible to some extend, but remains nontrivial – see
for instance the work of Faust, Paglialonga, and Schneider [24] in the context
of software-oriented masking. In addition, as for example pointed out by De
Meyer, Wegener, and Moradi [20], it is often desirable to mask Boolean functions
directly as opposed to falling back to a gate-level approach. Although verifying
larger gadgets directly is possible within the strong non-interference framework,
it requires nontrivial tools such as maskVerif due to Barthe et al. [1]. Of course,
this does not directly address how to design efficient sharings. Also, one might
hope to quantify to what extend verification fails; in the words of Barthe et al.:
“It would be interesting to extend our work beyond purely qualitative security
definitions, and to consider quantitative definitions that upper bound how much
leakage reveals about secrets – using total variation distance or more recent
metrics that directly or indirectly relate to noisy leakage security” [1, §7].

Contribution. This paper overcomes the composability problem for second-order
threshold implementations without relying on fresh randomness. As a result,
second-order probing secure masked ciphers that require no or almost no ran-
domness beyond what is necessary to share the input are obtained. In order to
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achieve these results, we introduce a variant of the probing model in which the
adversary can make only a bounded number of queries. Our approach is based
on a completely formal reduction from this model to the security of the masked
cipher against linear cryptanalysis and leads to concrete upper bounds on the
advantage (i.e. total variation distance) of such bounded-query adversaries.

From a practical point of view, our methods provide a means to reason about
and to correct potential flaws in the higher-order threshold implementations of
Bilgin et al. [6]. Importantly, the additional requirements imposed by our ana-
lysis are relatively easy to satisfy when the underlying cipher has been designed
with linear cryptanalysis in mind. As a result, one can benefit from the desirable
properties of first-order threshold implementations – in particular their low ran-
domness requirements – while simultaneously maintaining demonstrable security
in the second-order probing model with glitches.

From a theoretical point of view, this paper introduces a radically different
approach to the security-evaluation of masked ciphers. Rather than attempting
to show perfect probing security against adversaries making an arbitrary number
of queries, we allow for a limited amount of leakage but show that it can not
be exploited unless the adversary makes an infeasibly large number of measure-
ments. In this approach, the concrete security bound of a masked cipher directly
depends on the maximum absolute correlation of certain linear approximations
over parts of the design. To estimate correlation upper bounds, standard tech-
niques from linear cryptanalysis can be used. In particular, one can use the
piling-up approximation. Although the latter is only a heuristic, it is an integral
part of the security argument of essentially all modern symmetric-key primitives
and is widely accepted to result in meaningful estimates if properly used. In a
sense, the piling-up lemma acts as a substitute for the strong composability re-
quirements that are typically imposed. An important advantage of this approach
is that it provides additional insight into the design of masked ciphers, and al-
lows for a quantifiable trade-off between performance and security. In addition,
one can benefit from the large literature on the theory and practice of linear
cryptanalysis.

After introducing a number of preliminaries in Section 2, a bounded-query
variant of the glitch-extended probing model is formalized in Section 3. The
reduction to linear cryptanalysis is spread over Sections 4 and 5. To limit the
scope of the paper, only second-order probing adversaries are considered. The
possibility of further extensions to higher orders is discussed in Section 9.

Section 6 presents a high-level overview of the properties the masked cipher
needs to satisfy and the cryptanalytic process that should be followed to obtain
concrete security bounds. Roughly speaking, for probes that are separated by
a small number of rounds of the cipher, zero-correlation linear approximations
can be exploited. If the adversary places its probes further apart, the analysis
relies on upper bounds for the absolute correlation of linear approximations.

In Section 7, the framework developed in Sections 4 to 6 is illustrated by
the design and analysis of a second-order masking of the block cipher LED [27].
The implementation requires a total 664 bits of randomness, i.e. 24 bits more
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than what is needed to share the plaintext and key, but no serious attempt
was made to optimize this number. Note that the choice for LED was mainly
motivated by didactical reasons: LED is a classical wide-trail design with 4-bit
S-boxes, which results in a very transparent security analysis. A software-based
simulation, which allows experimenting with our security claims, is found on
GitLab [40].

The broader applicability of our approach is illustrated in Section 8. Finally,
Section 9 summarizes several directions for future work and concludes the paper.

2 Preliminaries

This section introduces key concepts related to linear cryptanalysis and threshold
implementations. The reader is assumed to have some, but not necessarily ex-
tensive, familiarity with these concepts. For convenience, all random variables
in this paper are denoted in boldface. All other nonstandard notation will be
introduced as necessary.

2.1 Fourier Analysis

The relation between linear cryptanalysis and the Fourier transformation on
vector spaces over F2 is well-established [5, 11, 17]. This section introduces the
necessary notation for two important concepts that will be used throughout
this work. The first is the Fourier transformation of a probability distribution,
or more generally any complex-valued function, on a vector space V over F2.
The second is the notion of the correlation matrix of a function F : V → V ,
the coordinates of which coincide with the correlations of linear approximations
over F .

The definitions below are formulated for functions on an arbitrary subspace
V ⊆ Fn2 , as opposed to functions on Fn2 itself – as is commonly the case. Since
any vector space over F2 is isomorphic to Fn2 for some n, this generalization is
mostly a matter of notation. Nevertheless, this extended notation will be very
beneficial later on in this work.

Recall that the orthogonal complement of a subspace V of Fn2 is the vector
space V ⊥ = {x ∈ Fn2 | ∀v ∈ V : v>x = 0}. The quotient space Fn2/V ⊥ is
by definition the vector space of cosets of V ⊥. For convenience, an element
x + V ⊥ ∈ Fn2/V ⊥ will simply be denoted by x. For x ∈ Fn2/V ⊥ and v ∈ V , the
expression x>v is well-defined. Consequently, the following definition is proper.

Definition 1. Let V ⊆ Fn2 be a vector space and f : V → C be a complex-valued

function on V . The Fourier transformation of f is a function f̂ : Fn2/V ⊥ → C
defined by

f̂(u) =
∑
x∈V

(−1)u
>xf(x),

where we write u for u + V ⊥. Equivalently, f̂ is the representation of f in the

basis of functions x 7→ (−1)u
>x for u ∈ Fn2/V ⊥.
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Remark 1. Unlike in standard treatments of the Fourier transformation on finite
abelian groups [22,38], Definition 1 introduces f̂ as a function on Fn2/V ⊥ rather

than on the Pontryagin dual group V̂ . Throughout this document, the isomorph-
ism V̂ ∼= Fn2/V ⊥ is used to simplify notation. Other choices are possible, but this
one is the most convenient.

As one often encounters transformations of random variables, it is convenient
to encode the action of a function F : V → V on probability distributions as a
linear operator. The coordinate representation of this operator with respect to
the standard basis {δx}x∈V may be called the transition matrix of F . Follow-
ing [4, 5], the correlation matrix of F is then the same operator expressed with
respect to the Fourier basis. Note that correlation matrices were first introduced
by Daemen et al. [17], where their definition is given in terms of concepts from
linear cryptanalysis.

Definition 2 (Transition matrix). Let V be a set and F : V → V a function.
The transition matrix TF of F is a real |V |×|V | matrix such that, in the standard
basis, if x has probability mass function px : V → [0, 1], then F (x) has probability
mass function TF px. Equivalently, indexing the coordinates of TF by elements
of V , we have TFy,x = δy,F (x).

Definition 3 (Correlation matrix). Let V ⊆ Fn2 be an F2-vector space and
F : V → V a function. The correlation matrix CF of F is the coordinate repres-
entation of the linear map defined by TF with respect to the basis of character

functions x 7→ (−1)u
>x for u ∈ Fn2/V ⊥. Equivalently, indexing the coordinates

of CF by elements of Fn2/V ⊥, we have

CFv,u =
1

|V |
∑
x∈V

(−1)u
>x+v>F (x).

The relation between Definition 3 and linear cryptanalysis is as follows: the
coordinate CFv,u is equal to the correlation of a linear approximation over F with

input mask u and output mask v. That is, CFv,u = 2 Pr[v>F (x) = u>x] − 1 for
x uniform random on V .

2.2 Boolean Masking and Threshold Implementations

Boolean masking was independently introduced by Goubin and Patarin [25] and
Chari et al. [12]. It serves as a sound and widely-deployed countermeasure against
side-channel attacks. The technique is based on splitting each secret variable x
in the circuit into shares x̄ = (x1, x2, . . . , xsx) such that x =

∑sx
i=1 x

i over a
finite field K. If the field K is binary, this masking approach is referred to as
Boolean masking. A random Boolean masking of a fixed secret is uniform if all
sharings of that secret are equally likely.

There are many ways to modify a given circuit in order to ensure that it op-
erates on shared inputs and intermediates. For example, this can be done at the
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level of individual gates, or at a higher level involving generic Boolean functions.
However, care must be taken to ensure that the sharing of the circuit is not only
correct but also secure. This is especially challenging in hardware implementa-
tions due to the presence of glitches. Nikova et al. [35] introduced threshold im-
plementations as a particular approach to share circuits. This approach achieves
first-order glitch-extended probing security in the sense defined in Section 3 be-
low. Later Bilgin et al. [6] generalized the threshold implementation approach
in order to achieve higher-order univariate security. In the following, the main
properties of threshold implementations are reviewed.

A threshold implementation consists of several layers of Boolean functions,
as shown in Figure 1. As for any masked implementation, a black-box encoder
function generates a uniform random sharing of the input before it enters the
shared circuit and the output shares are recombined by a decoder function. At
the end of each layer, synchronization is ensured by means of registers.
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Figure 1. Schematic illustration of a threshold implementation assuming an equal
number of input and output shares.

Let F̄ be a layer in the threshold implementation corresponding to a part of
the circuit F : Fn2 → Fm2 . For example, F might be the linear layer of a block
cipher. The function F̄ : Fnsx2 → Fmsy2 , where we assume sx shares per input bit
and sy shares per output bit, will be called a sharing of F . Sharings can have a
number of properties that are relevant in the security argument for a threshold
implementation; these properties are summarized in Definition 4.

Definition 4 (Properties of sharings [6, 35]). Let F : Fn2 → Fm2 be a
function and F̄ : Fnsx2 → Fmsy2 a sharing of F . The sharing F̄ is said to be

1. correct if
∑sy
i=1 F

i(x1, . . . , xsx) = F (x) for all x ∈ Fn2 and for all shares
x1, . . . , xsx ∈ Fn2 such that

∑sx
i=1 x

i = x,
2. dth-order non-complete if any function in d or fewer component functions

F̄i depends on at most sx − 1 input shares,
3. uniform if F̄ maps a uniform random sharing of any x ∈ Fn2 to a uniform

random sharing of F (x) ∈ Fm2 .

The correctness property from Definition 4 is an absolute minimum require-
ment to obtain a meaningful implementation. Furthermore, if all layers of a
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threshold implementation are first-order non-complete and uniform, the result-
ing shared circuit can be proven secure in the first-order probing model consid-
ering glitches [21]. In the higher-order setting, the situation is more complicated.
Using higher-order non-completeness and uniformity, one can secure a threshold
implementation against higher-order univariate attacks. Nevertheless, perfect
multivariate security can not be guaranteed using uniform sharings alone [36].
Instead, the threshold implementation approach was generalized to use fresh
randomness [37]. However, even this last work has been shown to exhibit flaws
against higher-order attacks [32].

In Section 3, a variant of the probing model – which we call the bounded-
query probing model – will be introduced. In the main body of this work, we will
then show that the issues surrounding higher-order threshold implementations
can be overcome if the bounded-query probing model is adopted.

3 A Bounded-Query Probing Model

Section 3.1 introduces a variant of the threshold probing model of Ishai et al. [28]
in which the adversary can make only a bounded number of queries. In addition,
Section 3.2 discusses a further extension of this model in order to account for
the effect of glitches.

3.1 Threshold Probing

Let ` ≥ t be positive integers. A t-threshold-probing adversary on F`2 is an al-
gorithm A that interacts as follows with an oracle that holds an arbitrary se-
quence (x1, ..., x`) ∈ F`2:

1. A may specify a set I = {i1, ..., i|I|} ⊂ {1, ..., `} of cardinality at most t,
2. A then receives (xi1 , . . . , xi|I|).

Note in particular that the adversary A is computationally unbounded, and
must specify the location of the probes before querying the oracle. However, the
adversary can change the location of the probes over multiple queries.

Ishai et al. [28] define a randomized stateless circuit C to be t-probing secure
if it can be simulated from scratch such that no t-threshold probing adversary
can distinguish Dec ◦ C ◦ Enc from the simulation. Importantly, the adversary’s
interaction with the circuit or simulator is mediated through the encoder and
decoder algorithms Enc and Dec, neither of which can be probed.

In this work, the security of a circuit C with input k against a t-threshold-
probing adversary will be quantified by means of a left-or-right security game
as depicted in Figure 2. The challenger picks a random bit b and provides the
oracle Ob, to which adversary A is given query access. The adversary queries the
oracle by choosing up to t wires to probe, we denote this set by P, and sends it
to the oracle along with the inputs k0 and k1. Note that we consider the input
of the circuit to consist of both the plaintext and the key. The oracle responds
by giving back the probed wire values of C(kb). After a total of q queries, the
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adversary responds to the challenger with a guess for b. For b ∈ {0, 1}, denote
the result of the adversary after interacting with the oracle Ob using q queries

by AOb

. For left-or-right security, the advantage of the adversary A is then as
defined as

Advt-thr(A) = | Pr[AO
0

= 1]− Pr[AO
1

= 1] | .

We refer to this security notion as the bounded-query probing model.

AC

Ob

Ob

b

k0, k1,P

(vb1, ..., v
b
t )

b← $

q
q
u
eries

Figure 2. The privacy model for t-threshold-probing security consisting of a challenger
C, an adversary A, a left-right oracle Ob, two inputs k0, k1, a set of probes P, and a
set of probed wire values (vb1, ..., v

b
t ) of the circuit C(kb).

If an arbitrary number of queries is allowed, the above security definition
is equivalent to the simulation-based definition of Ishai et al. [28] for stateless
circuits. Indeed, if the simulator simply evaluates the circuit for an arbitrary
choice of the secret inputs, no adversary can distinguish the simulation from
the real circuit with advantage higher than Advt-thr(A). We opt for the left-
or-right formulation as this leads to a slightly more direct proof of Theorem 1
in Section 4. However, note that there exist stronger notions of security such
as the strong non-interference model of Barthe et al. [2]. In the latter model,
the adversary controls not only the unshared input of the circuit but also some
of its shares. This is useful since probing security does not necessarily allow
composition, as illustrated by Coron et al. [14]. As the approach developed in
Sections 4 and 5 considers the circuit in its entirety, security under composition
need not be considered. In fact, as our approach allows for secure sharings that
do not use any randomness beyond what is necessary to encode the circuit input,
it is clear that arbitrary composability cannot be achieved.

3.2 Modeling Glitches

It has been shown that hardware glitches can result in significant leakage that
is not accounted for by the probing model, see for example the attacks of
Mangard et al. on several masked AES implementations [31]. Consequently, it
is necessary to extend the capabilities of threshold probing adversaries in order
to capture the physical effect of glitches on a hardware platform. In this work,
we take a conservative approach to the modeling of glitches by bundling groups
of wires over which a glitch could carry information from one wire to another.
Whereas one of the adversary’s probes normally results in the value of a single
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wire, a glitch-extended probe allows obtaining the values of all wires in a bundle.
This extension of the probing model has been discussed in the work of Reparaz
et al. [37] and formalized by Faust et al. [23]. The formulation of the latter work
is as follows: “For any ε-input circuit gadget G, combinatorial recombinations
(aka glitches) can be modeled with specifically ε-extended probes so that probing
any output of the function allows the adversary to observe all its ε inputs.”

In the setting of threshold implementations, the above extension can be sim-
plified. Recall that each layer of a threshold implementation consists of Boolean
functions F̄i, for which the synchronization of the inputs is ensured by means
of registers. Thus, a glitch-extended probe placed in the circuit for F̄i yields at
most all of the input bits on which F̄i depends – but no more, since the layers
of a threshold implementation are separated by registers.

Note that, apart from the glitch extension of the probing model, other effects
such as transition leakage can be considered. More information on other leakage
effects can be found in the work of Faust et al. [23]. The scope of this work
is limited to the modeling of the effects that are traditionally considered in
threshold implementations, thus we only consider hardware implementations in
the presence of glitches.

4 Bound on the Advantage

This section connects the bounded-query probing model from Section 3 to the
cryptanalytic approach that will be developed in Sections 5 and 6. The link
is established by means of Theorem 1 below, which provides an upper bound
on the advantage of threshold probing adversaries in terms of the nontrivial
Fourier coefficients of certain probability distributions associated with probed
wire values. As a first step towards this result, the following lemma gives an
upper bound on the entropy of a probability distribution in terms of its Fourier
transform as defined in Definition 1 from Section 2.

Lemma 1. Let x be a random variable on Fm2 with probability distribution px.
It holds that

m− H(x) ≤ ‖p̂x − δ0‖22/ log 2,

where H(x) denotes the information entropy of x with respect to the binary log-
arithm.

Proof. By definition, the binary information entropy of x is the quantity

H(x) = −E log2 px(x) ≤ m.

The goal is to upper bound the quantity m−H(x) in terms of the correlations of
x, or equivalently the coordinates of the Fourier transformation of px. It holds
that

H(x) ≥ − log2 E px(x) = − log2 ‖px‖22,
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due to Jensen’s inequality. Note that the right-hand side is equal to the Rényi
entropy of x. Let p̂x denote the Fourier transformation of px, then

H(x) ≥ m− log2 ‖p̂x‖22.

Remark that p̂x(0) = 1, since px is a probability mass function. Isolating this
coefficient, one obtains

m− H(x) ≤ log2

(
1 + ‖p̂x − δ0‖22

)
≤ ‖p̂x − δ0‖22/ log 2.

Note that the inequality in Lemma 1 is rather sharp since ‖p̂x− δ0‖22 � 1 for
the purposes of this work. Indeed p̂x will typically have a small support, thereby
enabling the use of Fourier-analytic methods.

Before turning to the proof of Theorem 1, we briefly consider the content of
its statement. The theorem essentially shows that for a bounded-query probing
secure circuit, all probed wire values either closely resemble uniform randomness
or reveal nothing about the secret input. The usefulness of the result comes
from the fact that it allows ‘bad’ probe values. These are values that might leak
information about the secret, but which nevertheless cannot be distinguished
from uniform random values unless a very large number of probing queries is
made. In practice, the ‘bad’ values will be shares of the state resulting from
probes placed far apart (i.e. separated by many rounds). The ‘good’ values then
correspond to probes that are placed in nearby locations, such as within an S-
box. As will be clarified in Sections 6 and 7, the ‘good’ values can also play an
important role in the analysis of the key-schedule of a masked cipher.

Theorem 1. Let A be a t-threshold-probing adversary for a circuit C. Assume
that for every query made by A on the oracle Ob, there exists a partitioning
(depending only on the probe positions) of the resulting wire values into two
random variables x (‘good’) and y (‘bad’) such that

1. The conditional probability distribution py|x satisfies Ex‖p̂y|x − δ0‖22 ≤ ε,
2. Any t-threshold-probing adversary for the same circuit C and making the

same oracle queries as A, but which only receives the ‘good’ wire values ( i.e.
corresponding to x) for each query, has advantage zero.

The advantage of A can be upper bounded as

Advt-thr(A) ≤
√

2q ε

log 2
,

where q is the number of queries to the oracle Ob.

Proof. The first part of the proof consists of a standard game-hopping argument.
Consider the following two additional games:
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1. Game ‘t-thr-good’ is a modification of the t-threshold probing game in which
the oracle Ob replaces the ‘bad’ values in each query by uniform random
values. In this game, A essentially only receives information about ‘good’
wire values.

2. In the game ‘∆-bad’, the adversary chooses a secret input k and is given
access to an oracle with the same t-threshold-probing interface as Ob. This
oracle is either a t-threshold-probing oracle for the real circuit with input k,
or a modification thereof in which the ‘bad’ values in each query are replaced
by uniform random bits. The goal is to distinguish between these two cases.

We construct an adversary B for the game ‘∆-bad’ by running A. Specifically, B
picks a uniform random bit b and forwards the corresponding secret kb chosen
by A to its challenger. Adversary B reports the oracle as real if and only if A
correctly recovers b. Hence,

Advt-thr(A) ≤ Advt-thr-good(A) + 2Adv∆-bad(B).

The factor two in front of Adv∆-bad(B) is due to our definition of ‘advantage’,
i.e. the absolute difference between the winning and failure probabilities of B. It
is given that Advt-thr-good(A) = 0, so it suffices to upper bound Adv∆-bad(B).

Since B makes exactly the same queries to its oracle as A, the result of
query i made by B can also be partitioned into ‘good’ and ‘bad’ wire values.
Denote these values by xi and yi respectively when B is interacting with the real
threshold probing oracle, and by x′i and y′i when B interacts with the (partially)
randomized oracle.

Let δTV(·, ·) denote the total variation distance and
⊗

the tensor product.
The distinguishing advantage of the adversary B is then upper bounded by

Adv∆-bad(B) ≤ δTV
(⊗q

i=1 pxi,yi
,
⊗q

i=1 px′
i,y

′
i

)
≤
√

1

2
DKL

(⊗q
i=1 pxi,yi ‖

⊗q
i=1 px′

i,y
′
i

)
≤
√
q

2
max

1≤i≤q
DKL

(
pxi,yi‖ px′

i,y
′
i

)
,

where DKL denotes the Kullback-Leibler divergence and the second inequality is
due to Pinsker. By definition of ‘∆-bad’, the random variables xi and x′i have
the same probability distribution. Consequently,

DKL

(
pxi,yi‖ px′

i,y
′
i

)
= EtDKL

(
pyi|xi=t‖ py′

i|x′
i=t

)
.

Finally, remark that y′i is uniformly distributed and independent of xi. If the
number of bits of yi is denoted by mi, then

DKL

(
pyi|xi=t‖ py′

i|x′
i=t

)
= mi − H(yi|xi) ≤ ‖p̂yi|xi

− δ0‖22/ log 2 .

The inequality above follows from Lemma 1. Since it is given that, for all i,
Exi
‖p̂yi|xi

− δ0‖22 ≤ ε, we have

Adv∆-bad(B) ≤
√

q ε

2 log 2
.
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Hence, we conclude that

Advt-thr(A) ≤ 2Adv∆-bad(B) ≤
√

2q ε

log 2
.

5 Fourier Analysis of Shared Functions

Theorem 1 provides an upper bound on the advantage of t-threshold probing
adversaries in terms of the Fourier coefficients of the probability distribution
of observed wire values. This section clarifies why it is beneficial to express the
advantage upper bound in this particular form. Specifically, it will be shown that
this reveals a strong link with the linear cryptanalysis of shared functions.

5.1 Restrictions of Shared Functions

Remark that all probability distributions referred to in Theorem 1 are with
respect to a fixed value of the secret inputs. Consequently, it is clear that the
relevant Fourier coefficients can not be directly related to the Walsh-Hadamard
coefficients (or equivalently, the correlation matrix) of the shared function itself.
Instead, the relevant properties are those of restrictions of the shared function
to sets of all valid sharings of a specific secret. Below, we argue that these
restrictions are indeed well-defined and that they come with a natural notion of
linear cryptanalysis.

Recall from Section 2 that Boolean masking and threshold implementations
are based on linear secret sharing. In general, any F2-linear secret sharing scheme
can be thought of as an algorithm that maps a secret x ∈ Fn2 to a random element
of a corresponding coset of a vector space V ⊂ F`2. The vector space V consists
of all possible sharings of 0 ∈ Fn2 . Let ρ : Fn2 → F`2 be a map that sends secrets
to their corresponding coset representative.

Example. In Boolean masking, a secret x ∈ F2 is shared as (x1, . . . , x`) where

x1, . . . , x`−1 is sampled uniformly at random and x` = x+
∑`−1
i=1 x

i. In this case,
V corresponds to the parity bit code

V = {(x1, . . . , x`) ∈ F`2 |
∑`
i=1 x

i = 0}.

Furthermore, one possible choice of ρ is ρ(x) = (x, 0, . . . , 0). .

Let F : Fn2 → Fn2 be any function. A function F̄ : F`2 → F`2 is said to be a
correct sharing of F if, for all x ∈ Fn2 ,

F̄ (ρ(x) + V) ⊆ ρ(F (x)) + V. (1)

If F̄ is a uniform sharing, then the above inclusion is in fact an equality. For
convenience, let Va = a + V. Due to (1), the restriction of F̄ to Va is a well-
defined function Va → Vb whenever a = ρ(x) and b = ρ(F (x)) for some x ∈ Fn2 .
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By slight abuse of notation, the same notation will be used for F̄ and for its
restrictions.

Any random variable x on Va has a corresponding probability mass function
px : Va → [0, 1]. Since V is a vector space, the Fourier transformation p̂a+x of
pa+x is well-defined (see Definition 1). In addition, for any restriction F̄ : Va →
Vb, the correlation matrix of x 7→ F̄ (a+x)+b is well defined by Definition 3. For
convenience, we introduce the following definition. Note that it does not depend
on the choice of the coset representatives a and b.

Definition 5. For V ⊆ F`2, let F̄ : Va → Vb be a well-defined restriction of a
shared function. Let F̄ ′(x) = F̄ (x+a)+b. The correlation matrix of F̄ is defined
as the matrix with coordinates

CF̄u,v = (−1)u
>a+v>bCF̄

′

u,v,

for u, v ∈ F`2/V⊥.

5.2 Correlations between Probed Values

As shown in Section 4, the advantage of a probing adversary against the cir-
cuit can be upper bounded in terms of ‖p̂z − δ0‖2 where pz is the probability
distribution of any measured set of ‘bad’ wire values, possibly conditioned on
several ‘good’ wire values. Note that the conditioning on ‘good’ values simply
corresponds to fixing some variables in the circuit to constants before applying
the results below. This section provides the essential link between p̂z and the
linear cryptanalysis of the shared circuit that will enable us to upper bound the
quantity ‖p̂z − δ0‖2 for a concrete masked cipher in Section 7.

For simplicity, from this point on, we only consider second-order probing
adversaries. For a brief outlook on how these results could be extended to third-
order security and higher, the reader is referred to Section 9. To obtain the
desired link with linear cryptanalysis, it will be shown that the coordinates of
p̂z are entries of the correlation matrix of the state-transformation between the
specified probe locations. This is illustrated in Figure 3.

· · · F · · ·x y

xI yJ

I J

Figure 3. Two probes giving the observation z = (xI ,yJ).
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The main result is stated in Theorem 2. To obtain it, the following property
of correlation matrices will be used.

Lemma 2. Let V ⊂ F`2 be a set of correct sharings and L : V → Fm2 a linear
map. If x is a random variable with probability distribution px, then it holds that

p̂Lx(u) = p̂x(L>u),

where we write L>u = L>u+ V⊥ as usual.

Proof. The result is a well-known property, see [5, Theorem 3.5] for the general
case. For completeness, we provide a short derivation. Remark that pLx(z) =∑
x∈V px(x) δLx(z). Hence, by the definition of the Fourier transformation, it

holds that

p̂Lx(u) =
∑
z∈Fm

2

(−1)u
>z pLx(z) =

∑
x∈V

px(x)

∑
z∈Fm

2

(−1)u
>z δLx(z)

 .

This simplifies to

p̂Lx(u) =
∑
x∈V

(−1)u
>Lx px(x) = p̂x(L>u).

For an index set I = {i1, . . . , im}, we denote the restriction of x ∈ V to I by

xI = (xi1 , . . . , xim) ∈ F|I|2 . Note that the maps x 7→ xI and its restriction to V
are linear.

Theorem 2. Let F : Va → Vb be a function with V ⊂ F`2 and I, J ⊂ {1, . . . , `}.
For x uniform random on Va and y = F (x), let z = (xI ,yJ). The Fourier
transformation of the probability mass function of z then satisfies

p̂z(u, v) = CFṽ, ũ,

where ũ, ṽ ∈ F`2/V⊥ are such that ũI = u, ũ[`]\I = 0, ṽJ = v and ṽ[`]\J = 0.

Proof. Note that (a + x, b + y) is a well-defined random variable on V2. Let

z′ = (aI , bJ) + z, then p̂z(u, v) = (−1)u
>aI+v>bJ p̂z′(u, v). Due to Lemma 2, the

distribution of z′ satisfies

p̂z′(u, v) = p̂a+x,b+y(ũ, ṽ).

The probability distribution of (a+ x, b+ y) satisfies

pa+x,b+y = (I ⊗ TG)pa+x,a+x,

where G(x) = F (x+ a) + b. Taking the Fourier transformation, one obtains

p̂a+x,b+y = (I ⊗ CG)p̂a+x,a+x.

14



Note that, by the definition of CF , it holds that CFũ,ṽ = (−1)ũ
>a+ṽ>bCGũ,ṽ. Com-

bining the results above, one obtains

p̂z(u, v) =
∑

u′,v′∈F`
2/V⊥

δũ,u′ CFṽ,v′ p̂a+x,a+x(u′, v′)

=
∑

v′∈F`
2/V⊥

CFṽ,v′ p̂a+x,a+x(ũ, v′)

=
∑

v′∈F`
2/V⊥

CFṽ,v′ p̂a+x(ũ+ v′).

Since pa+x is the uniform distribution on V, it holds that p̂a+x = δ0. It follows
that all terms except v′ = ũ in the sum above vanish, whence p̂z(u, v) = CFṽ,ũ.

Theorem 2 relates the linear approximations of F to p̂z(u) and hence provides
a method to upper bound ‖p̂z − δ0‖2 based on linear cryptanalysis. However, it
should be noted that the result relates to linear cryptanalysis with respect to V
rather than F`2. The differences are mostly minor, but there is a subtle difference
in relation to the important notion of ‘activity’. In standard linear cryptanalysis,
an S-box is said to be active if its output mask is nonzero. The same definition
applies for linear cryptanalysis with respect to V, but one must take into account
that the mask is now an element of the quotient space F`2/V⊥. In particular, if
the mask corresponding to the shares of a particular bit can be represented by
an all-one vector (1, 1, . . . , 1)>, it may be equivalently represented by the zero
vector. It is still true that a valid linear approximation for a permutation must
have either both input masks equivalent to zero or neither equivalent to zero.
More generally, this condition is ensured by any uniform sharing.

Finally, note that Theorem 2 assumes that all intermediate states of the
shared implementation are uniformly distributed on a coset of V. This condi-
tion is guaranteed by the uniformity property of threshold implementations. In
fact, it corresponds to the fact that the approximation with – up to equivalence
– an all-zero input mask, must also have an all-zero output mask in order to
have nonzero correlation. In particular, this is achieved if all shared functions
are permutations. Accounting for a non-uniform distribution would require sim-
ilar modifications to Theorem 2 as would be necessary to achieve higher than
second-order security. In addition, if non-uniform sharings are used, the stand-
ard wide-trail argument [18] that will be used in later sections breaks down. For
these reasons, our masking of LED in Section 7 relies on uniform sharings. A
complete assessment of the consequences of non-uniformity on first and second
order security is left as future work. Regarding this, we note that an analysis
of the security degradation for non-uniform mappings has been made by Dae-
men [15] and has been tested in practice by Wegener et al. [39]. An interesting
direction for future work would be to combine our methods in order to further
increase the efficiency of shared implementations.
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6 Cryptanalysis of Masked Ciphers

Theorems 1 and 2 provide the basic tools by which the security analysis of a
masked cipher can be reduced to its linear cryptanalysis. This section provides a
high-level overview of the analytic process. In addition, for each component of a
typical masked cipher, the cryptanalytical properties that play a prominent role
in the security analysis are discussed. This discussion can be useful not only to
determine an appropriate masking of a cipher, but also as a factor in the design
strategy of the cipher itself.

Our analysis of a masked cipher begins by partitioning the set of possible
probe positions into three parts. This is closely related to the labeling of wire
values as ‘good’ or ‘bad’ as required by Theorem 1. Each part corresponds to a
different level of ‘locality’ and is analyzed by different methods. Specifically, the
following cases can be distinguished:

S-box level. If both probes are placed within an S-box, we ensure perfect prob-
ing security and consequently such wire values are labeled ‘good’ in the proof.
Hence, the S-box must be shared such that it is higher-order probing secure.
Based on this, one can verify the probing security of one cipher round.

Nearby rounds. If the probes are separated by a small number of rounds, we
rely on zero-correlation linear cryptanalysis. If the probe positions lead to
zero-correlation approximations, then the probed values are uniformly dis-
tributed. In this case, from the point of view of Theorem 1, it does not matter
if the values are marked as ‘good’ or ‘bad’. Indeed, since the distribution of
the values is perfectly uniform in this case, one also has perfect probing se-
curity. This part of the analysis strongly depends on the linear layer of the
cipher.

Distant rounds. When the probes are separated by many rounds, we rely on
Theorem 2 and upper bound the absolute correlations of linear approxima-
tions. This is done using traditional techniques from linear cryptanalysis, in
particular the piling-up principle. As discussed in more detail in Section 7.5,
this is where we truly leave the realm of information-theoretical arguments
and enter the domain of statistical cryptanalysis. Needless to say, all such
wire values must be labeled as ‘bad’ from the point of view of Theorem 1.

For the key-schedule, the situation is slightly more complicated. If the key-
schedule is sufficiently simple, as in the case of LED, one can label all key bits
as ‘good’. It then suffices – but is not necessary – to perform the analysis above
for a fixed key. Several reasons for using this simplified approach are mentioned
below. For more complicated key-schedules, a similar analysis as above for the
key-schedule is likely to be necessary.

A detailed example of the design of a secure sharing and its complete security
evaluation is given in Section 7 for the block cipher LED. The remainder of
this section briefly discusses how the analysis above translates to each of the
components of a masked cipher.
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Ḡ Ḡ Ḡ Ḡ
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Figure 4. The addition of static randomness with the S-box decomposed as S̄ = Ḡ◦ F̄ .

S-box sharing and static randomness. The S-box should be shared following the
threshold implementation approach. For efficiency reasons, the S-box is often
decomposed into several lower degree functions. The sharing of these functions
should satisfy the uniformity property without using randomness, and be second-
order non-complete. If the S-box is decomposed, the security of the composition
must also be ensured. A simple way to achieve this is to add randomness between
the decomposed functions. This randomness can be re-used in every S-box. We
call this static randomness as it is generated by the black-box encoder and is
used throughout the masked cipher. This is illustrated in Figure 4.

As discussed in Section 5.2, due to the uniformity of the shared S-box, the
wide-trail strategy can be applied. In order to lower the potential advantage
of the adversary, the sharing of the S-box is required to have strong nonlinear
properties.

Linear layer. The linear layer of the cipher affects the security of the masked
cipher for two reasons. The first is the diffusion between shares, resulting in
zero-correlation trails. The second is that the layer ensures a minimum number
of active S-boxes when probing distant rounds, resulting in correlation upper
bounds.

Key schedule. In our analysis, we opt for simplicity by analyzing the key-schedule
and state-transformation separately. This comes at a potential loss in the upper
bounds, since many linear approximations will have correlation zero when av-
eraged over some of the unknown key-bits. Nevertheless, there are several good
reasons for making such a simplification:

– It allows us to stick as closely as possible to the basic wide-trail approach.
Indeed, conventional linear cryptanalysis of block ciphers does not usually
consider the combined effect of the key-schedule and state-transformation.

– Although many trails have average correlation zero for a random sharing of
the key, this can be quite difficult to analyze as it depends not only on which
key-bits the adversary can measure but also on the details of the key-schedule
(the key-dependence of the sign of trail correlations can cancel out).

– No additional arguments are required for cryptographic permutations. In
particular, the masked cipher can be used with a fixed key in order to obtain a
secure implementation of a cryptographically strong permutation – provided
of course that the cipher allows for such usage.
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7 Application to LED

This section applies the techniques developed in Section 4 to Section 5 to the
block cipher LED. This results in a masking requiring less than 700 bits of
randomness while attaining second-order probing security.

7.1 Description of LED

LED is a 64-bit block cipher designed by Guo et al. [27]. The cipher’s state is
divided into 16 four-bit cells. The variant considered here has a 128-bit master
key, from which subkeys are derived using a nibble-wise permutation. The cipher
consists of 12 steps, each comprising four rounds. The step function is shown in
Figure 5. For further details, we refer the reader to the work of Guo et al. [27].
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Figure 5. The step function of LED.

7.2 Sharing Second-Order LED

Following the principles outlined in Section 6, this section constructs a sharing
of the LED cipher. Figure 6 gives an overview of the shared round function.

Masking state and key. For the sharing of LED we use classical Boolean masking.
The 64-bit state is shared using seven shares per bit, requiring 384 random bits.
The 128-bit key is shared using three shares, which costs 256 random bits.

Sharing affine components. The masking of LED’s linear components such as
ShiftRows, MixColumns, and the key schedule are simply done share-wise. Con-
stants are added to the first share of the concerning variable. The key addition
is done by adding the key shares to the first three shares of the state.

Sharing the S-box. LED uses the Present S-box. Following the decomposition
given by Kutzner et al. [30], this S-box can be decomposed into two quadratic
maps S1 = G ◦ C and S2 = B ◦ G where B and C are affine. Further details
on this decomposition are given in Appendix A.1. The sharing of the S-box is
constructed from the sharing of G which we detail in Appendix A.2 and has
been verified to be uniform and second-order non-complete. In between the two
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Figure 6. One round of masked LED. The locations of the registers are indicated by
dashed lines. The round key addition is depicted in gray to show that it only happens
every four rounds.

G functions, a layer of static randomness consisting of zero sharings is added1.
This randomness is re-used in every S-box call and consists of 24 bits.

Alternative sharings. The S-box could be shared using fewer shares. For example,
the work of Moradi et al. [34] constructs a uniform sharing using five input shares.
Additionally, a uniform three-sharing is presented in Appendix A.3. However,
both sharings achieve second-order probing security by first expanding their
inputs and then re-compressing the cross products. Due to this expansion phase,
there is an intermediate layer which is not uniform. As discussed in Section 5.2,
the use of non-uniform functions would require a more thorough security analysis.

The sharing of the S-box can also be adapted to give better linear properties
improving the security bounds. One such option based on composing with a
nontrivial sharing of the identity function, is explored in Appendix A.4.

Security. In Sections 7.3 to 7.6 below, the following concrete security claim will
be established.

Security Claim 1. For the masked LED described in this section, the following
bound on the advantage of the adversary (assuming piling-up) in the probing
model is claimed:

Adv2-thr(A) ≤
√

q

2120
.

7.3 Probing Security of One Round

This section establishes the second-order probing security of one round of masked
LED, such that all wire values corresponding to such probing queries can be
labeled as ‘good’. Recall that, since each layer of the masked cipher is uniformly
shared, the input distribution to the round is uniform. To establish the probing-
security claim, it suffices to consider all possible probe positions. If both probes

1 The randomness can be avoided by using a second-order sharing of the entire S-box.
However, as this would increase the number of shares, we did not pursue this option.
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are placed in the same layer, the claim follows directly from the second-order
non-completeness of each function.

When both probes are placed in part a in Figure 6, the only nontrivial new
case corresponds to placing one probe in S̄1 and one in S̄2. Due to the refreshing
layer R̄, the input to S̄2 is uniformly random even if S̄1 is probed. Since S̄2

is second-order non-complete, placing the second probe in S̄2 then reveals no
information about the secret.

If one probe is placed in part a and another in part b , then the second
probe reveals at most a single share (the same) of each variable by the lin-
earity of part b . Due to a consistent choice of the covering scheme used for
non-completeness, the previous arguments are not limited to the bit-level. Con-
sequently, the analysis is the same as for the case with two probes in part a .

Every four rounds, a round key is also added to the state. The effect of the
key-schedule and key addition is discussed in Section 7.6.

7.4 Probing Nearby Rounds: Zero Correlation

This section shows the distribution of any pair of measurements from probes
which are at most three rounds apart almost always conforms to one of two
cases: either the observations are uniformly distributed, or they do not reveal
anything about the secret. To prove the uniformity claim of our observations, we
rely on techniques from zero-correlation linear cryptanalysis. The latter case, i.e.
independence of the secret for possibly non-uniform observations, was discussed
in the previous section. For these cases, the advantage of the adversary is zero
as specified in the proof of Theorem 1. All other cases will be considered in
Section 7.5.

The argument consists of an analysis of all possible probe placements. As
noted above, the analysis in this section is restricted to probes that are at most
three rounds apart. This results in the following cases:

Rounds i and i+ 1. If the adversary probes in part a of round i, then the
MDS matrix ensures that a full column of the state will be active at the input
of round i+ 1. A measurement in part a of round i+ 1 can activate shares
from at most one cell of the state such that the corresponding approximations
have correlation zero. Similarly, due to the shift rows operation, by probing
in part b of round i+1, the adversary can never activate all cells of a single
column at the input of round i + 1. Hence, approximations with nonzero
correlation can only be obtained by probing in part b of round i. However,
in this case only a single share of each bit is learned, such that a second
probe in part a or b of round i + 1 reveals nothing about the secret by
the same argument for the case where both probes are placed in round i.

Rounds i and i+ 2. If either part a or b of round i are probed, this results
(up to symmetry) in one of the four activity patterns shown in Figure 7 for
rounds i+ 1 and on. By probing anywhere in round i+ 2, the adversary can
clearly activate at most four cells at the input of this round. In cases 1 – 3
in Figure 7, at least eight S-boxes are active at the input of round i+ 2 such
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that the correlation of such approximations is zero. In the remaining case,
i.e. activity pattern 4 , only a single column of the state is active at the
input of round i+ 2. However, by probing in part a of round i+ 2, only a

single cell can be activated. Probing part b allows activating four cells but
never from the same column due to the shift rows step.

Rounds i and i+ 3. It is easy to see that activity patterns 2 - 4 in Figure 7
lead to correlation zero since at least eight S-boxes are then active at the
input of round i+3. Indeed, if the second probe is placed anywhere in round
i + 3, at most four cells of the state can be activated. For pattern 1 in
Figure 7, the correlation may be nonzero and will be bounded in Section 7.5.

The above case analysis shows that, when the probes are placed in nearby rounds,
perfect security is obtained. The only remaining cases are probes in rounds i and
i + r for r > 4 and the activity pattern 1 in Figure 7 when probes are placed
in rounds i and i+ 3. These cases are analyzed in Section 7.5.

SR MC

SR MC SR MC

SR MC SR MC

SR MC SR MC

1

2

3

4

i+ 1 i+ 2

Figure 7. Activity patterns for masked LED, corresponding (up to symmetry) the four
possible patterns created by a probe placed in round i. SR is short for ShiftRows and
MC for MixColumns. White cells are inactive, cells in gray are active, and hatched cells
correspond to an example trail with a minimum number of active cells.
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7.5 Five Rounds or More: Low Correlation

As discussed in Section 7.4, if the probes are placed in rounds that are far apart,
the observed values are usually not uniformly distributed. Nevertheless, it is
possible to show that they will be nearly uniform in the sense that all nontrivial
coordinates of the Fourier transform of their probability distribution are small.
To show this, we rely on standard techniques from linear cryptanalysis: we bound
the correlation of all linear trails whose activity pattern is compatible with the
probe positions.

Remark 2. The analysis in this section relies on the piling-up approximation,
i.e. we use upper bounds on the correlation of trails as an approximation for
upper bounds on the correlation of linear approximations. This heuristic is widely
used in symmetric-key cryptanalysis, and is an integral part of the security
argument of essentially all contemporary symmetric-key primitives. In addition,
as detailed in Section 7.6, our correlation upper bounds need not hold for all key
and refreshing variables but only in the average over the unobserved variables.
Finally, any adversary that can distinguish the probed wire values from uniform
randomness gives rise to a linear distinguisher. Consequently, we believe it is
reasonable to apply the piling-up heuristic in this setting.

To upper bound absolute trail correlations, we rely on the standard wide-
trail argument [18]. Specifically, the fact that any linear trail over four rounds of
(shared) LED activates at least 25 S-boxes will be used. Additionally, an upper
bound on the correlation of the best linear approximations over the shared S-
box from Section 7.2 is required. Since the shared S-box is quite large, a direct
calculation of its nonlinearity is nontrivial. Instead, the following lemma for
quadratic Boolean functions can be used. A slight restatement of this result can
be found in the book chapter by Carlet [11].

Lemma 3 (Proposition 16 [11]). Let f : Fn2 → F2 be a quadratic Boolean
function. Denote the rank of its symplectic form by r. That is, r = rank(S) where
S ∈ Fn×n2 is the symmetric matrix for which y>S x = f(x + y) + f(x) + f(y).
Then

1

2n

∣∣∣ ∑
x∈Fn

2

(−1)f(x)
∣∣∣ ≤ 2−r/2.

Lemma 4. Let Ḡ : Va → Vb be any restriction of the sharing of G defined in
Section 7.2. Denote its correlation matrix by CḠ. For any u, v ∈ F`2/V⊥ such
that uji 6= 0 for some i 6= 3, it holds that

∣∣CḠu,v∣∣ ≤ 2−3.

Proof. Since Ḡ is a function of 28 variables, bounding all of its correlations is
nontrivial. However, one can use the fact that Ḡ is a quadratic function. Indeed,
if B ∈ F`×d2 is a basis matrix for V, then∣∣CḠu,v∣∣ ≤ max

w∈F`
2/V⊥

1

|V|

∣∣∣∑
x∈V

(−1)u
>Ḡ(x+a)+w>x

∣∣∣
≤ max
w∈F`

2/V⊥

1

2d

∣∣∣ ∑
x∈Fd

2

(−1)u
>Ḡ(Bx+a)+w>Bx

∣∣∣ .
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Since u>Ḡ(Bx+a)+w>Bx is a quadratic Boolean function, Lemma 3 is applic-
able. Let Si,j denote the symplectic form matrix of Gji (Bx+ a). Since S3,j = 0

for j = 1, . . . , 7, we must require that uji is nonzero for some i 6= 3 to obtain
a nonzero minimum rank. Specifically, it suffices to verify that for all nonzero
u ∈ F`2/V⊥ with uj3 = 0 for j = 1, . . . , 7,

rank

(
4∑
i=1

7∑
j=1

uji Si,j

)
≥ 6.

Lower bounding the left-hand side above reduces to the MinRank problem. For
our purposes, a brute force search over all representative choices of u is feasible.
The verification code can be found on GitLab [40].

Theorem 3. Let S̄ = S̄2 ◦ S̄1 : Va1 → Va3 be the sharing of S = S2 ◦S1 defined
in Section 7.2. Denote the correlation matrix of S̄i : Vai → Vai+1

by CS̄i . For
any u, v ∈ F`2/V⊥ not both equal to zero and for all w ∈ F`2/V⊥, it holds that∣∣CS̄2
u,wC

S̄1
w,v

∣∣ ≤ 2−3.

Proof. Since S̄ is affine equivalent to Ḡ ◦ Ḡ, it suffices to analyze the latter
function. By Lemma 4, it holds that |CḠu,w| ≤ 2−3 unless uji = 0 for j = 1, . . . , 7

and for all i 6= 3. However, for such u, |CḠu,w| = 0 whenever w also satisfies

wji = 0 for j = 1, . . . , 7 and for all i 6= 3. Indeed, the ith-share of the third bit
Gi3 does not depend on any shares from the third input variable. It follows that
|CḠu,wCḠw,v| ≤ 2−3.

Remark 3. Experimentally, we find that the piling-up approximation gives the
correct upper bound 2−3 for the maximum absolute correlation of the shared S-
box. Due to resource constraints, the experiment was limited to the verification
for one choice of static randomness.

For probes placed in rounds i and i + r with r ≥ 4, the relevant linear
trails all have at least 25 active S-boxes. This is a consequence of the wide-trail
design strategy and can be derived in exactly the same way as for the AES [18].
Hence, by Theorem 3, the correlations of these trails are bounded by 2−75. By
Theorem 2, it then follows that the 2-norm of the nontrivial Fourier coefficients
of the observed bits z can be upper bounded by

ε := ‖p̂z − δ0‖22 ≤ |supp p̂z| ‖p̂z − δ0‖2∞ ≤ 222 2−150 = 2−128,

where we have used the inequality |supp p̂z| ≤ 222, which follows from the fact
that the observed value z consists of at most 22 bits in the glitch-extended
probing model: if an output coordinate of Ḡ is read, at most 10 shares are
learned; if an output of the shared linear layer is probed, at most 11 shares are
observed. The latter number of shares is due to the fact that LED’s MDS matrix
has at least five zeros per row when viewed over F2. Note that, in practice, the
upper bound above is not likely to be tight, because it is unlikely that a glitch
will reveal the exact value of all 11 bits in a single measurement.
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The only remaining case is when the adversary probes in rounds i and i+ 3,
assuming the activity pattern in case 1 from Figure 7. In this case, only 24
S-boxes are active. Furthermore, we again have |supp p̂z| ≤ 222. Hence,

ε := ‖p̂z − δ0‖22 ≤ 222 2−144 = 2−122.

Note that a more careful analysis results in slightly improved bounds. Never-
theless, since we believe the bound on ε is sufficiently small for all practical
purposes, we avoid such an analysis and opt for simplicity instead.

7.6 Influence of the Key-Schedule

The arguments in Sections 7.4 and 7.5 directly establish the security of our
proposed masked LED design against an adversary which does not look at shares
of the key or the bits which are added in the refreshing layer. Indeed, for such
an adversary, we may mark all wire values for queries with probe positions
considered in Section 7.4 as ‘good’ and all others (considered in Section 7.5)
as ‘bad’. Theorem 1 then provides the desired upper bound. However, showing
the conventional security where all wires in the circuit can be probed requires a
slightly more careful choice of ‘good’ and ‘bad’ wire values.

Fortunately, the LED key-schedule consists only of bit-permutations. Hence,
its sharing is perfectly secure against second-order threshold-probing adversar-
ies. The same holds for the random bits used in the refreshing layer. Hence,
Theorem 1 can be applied with the following labeling of wire values:

Probes discussed in § 7.3–7.4. For all these probe positions, all wire values
can be considered as ‘good’. This includes any key bits (and additional ran-
domness in the refreshing layer) that might be observed by the adversary.
Indeed, even with glitch-extended probes, the adversary can observe at most
two shares of each key bit.

Probes discussed in § 7.5. For these probe positions, all wire values corres-
ponding to state shares should be marked as ‘bad’; shares of the key (or
additional randomness used in the refreshing layer) are labeled ‘good’. The
arguments in Section 7.5 then apply directly.

At least one probe in the key-schedule. In this case, all wire values may
be considered ‘good’. Indeed, recall that any non-complete subset of state
bits at a particular layer is uniformly distributed and the adversary observes
at most two shares of each key bit.

For the upper bound ε, the values derived in Section 7.5 may be used directly
– as the analysis of the trails there is valid for any choice of the key. Note
that the latter assumption is stronger than necessary; it suffices to assume that
the bounds derived in Section 7.5 are valid in the average over all unobserved
randomness and key variables.
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7.7 Simulation-Based Verification

This section verifies the assumptions of Theorem 1 using a software simulation
of the masked LED. Measurements of wire values are taken and their entropy
is estimated. In case a serious vulnerability would be present, there would be
probing positions where the estimated entropy would deviate from the number
of observed bits. For some choices of probe positions, the results are shown in
Figure 8. The confidence intervals clearly converge to the number of observed
bits in each case. This software is found on GitLab [40]. More information on
our estimators and software can be found in Appendix C.
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Figure 8. The solid lines show the entropy estimates, the dashed lines represent a
95% confidence interval. The bottom curve corresponds to probing the first bit of
MixColumns in rounds i and i + 3. For the blue curve (squares), the third bits of
MixColumns from rounds i and i + 4 are observed. For the yellow curve (triangles) a
linear layer in round i and an S-box in round i + 4 were probed. For the top curve,
probes are in an S-box in round i and the linear layer of round i + 4.

8 Application to Other Primitives

The approach developed in Sections 3 to 6 of this paper was illustrated in Sec-
tion 7 by applying it to the block cipher LED. This section briefly discusses
the broader applicability of our techniques to various other block ciphers and
cryptographic permutations. In fact, as will be shown in Section 8.1 below, the
analysis for LED from Section 7 carries over to several other ciphers with only
minor changes. However, for different ciphers, the arguments need to be adapted
more significantly or there are obstacles which prevent a direct application of our
techniques. In Section 8.2, the main difficulties for a number of relevant ciphers
are identified. This section may also be of relevance from the point-of-view of
the design of block ciphers and permutations.
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8.1 Immediate Applications

As discussed above, the security analysis and masking choice of LED can be
directly adapted to several other primitives. In general, our approach is often
directly applicable to primitives following the wide-trail design strategy. Two
illustrative examples, one permutation and one block cipher, are given below.

Photon. Photon is a family of lightweight sponge-based hash functions intro-
duced by Guo et al. [26] at CRYPTO 2011. The state of the Photon permuta-
tion corresponds to a d × d array of four or eight bit cells. The design of the
permutation follows the wide-trail strategy: the linear layer consists of the paral-
lel application of d MDS matrices and a ShiftRows operation. For four bit cells,
the Present S-box is used. Using the S-box sharing introduced in Section 7.2
and a straightforward splitting of the linear layer, a second-order probing se-
cure sharing of the Photon permutation is obtained. The security analysis is
essentially the same as for LED, subject to the simplification that there is no
key-schedule. By verifying that at least (d + 1)2 − 1 S-boxes must be active
in any relevant trail with non-zero correlation, one directly obtains the bound
ε ≤ 24d−6[(d+1)2−1]. Note that the latter result assumes that each output bit of
the linear layer depends on at most 4d input bits – this is a rough bound which
can easily be improved. Accordingly, a rough upper bound on the advantage
of a second-order threshold probing adversary model making at most q queries
is 2
√
q/2d(3d+4). The sharing uses only 24 bits of randomness beyond what is

necessary to share the state.

Prince. Prince is a low-latency block cipher introduced by Borghoff et al. [10].
The Prince S-box can be decomposed into three quadratic functions in the affine
equivalence class Q294 [8]. In Appendix B, a uniform seven-sharing for this class
is given. By using similar techniques as in Section 7.5, it can be verified that
the sharing for this class has a maximal correlation of 2−3. Using the piling-up
principle, the same upper bound is obtained for linear trails through the shared
Prince S-box.

Contrary to LED and Photon, the linear layer of Prince is based on quasi-
MDS matrices rather than an MDS matrix. However, the zero-correlation argu-
ment still works for up to three rounds in most cases. For all other cases, the
wide-trail approach taken by Prince guarantees that at least 15 S-boxes are
active. Thus, a direct application of our approach would result in an advant-
age of

√
q/264 which for a large number of queries admits a lower advantage

than the security achieved by the cipher in most modes of operation. The state
sharing would need a total of 408 random bits, including the initial sharing and
static randomness. In case more security is desired, techniques such as the one
presented in Appendix A.4 can be applied in order to improve the properties of
the S-box sharing.

8.2 Applications Requiring Additional Techniques

Some ciphers do not follow the wide-trail strategy. Consequently, their linear
cryptanalysis will look somewhat different compared to the analysis in Sec-
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tions 7.4 and 7.5 for LED. For example, automated tools might be necessary
to find good bounds on the minimum number of active S-boxes. As mentioned
above, there are also a number of ciphers that present some obstacles to a direct
application of our techniques. Two examples are given below.

Present. Since LED uses the same S-box as Present, an application to the
Present cipher by Bogdanov et al. [9] seems like the natural next step. How-
ever, due to the cipher’s linear layer and well-known weaknesses with respect
to linear cryptanalysis [13], it becomes challenging to design a sharing with re-
duced randomness cost. Since the output bits of the Present S-box layer are
piped directly into the next layer using a bit-permutation, the zero-correlation
argument covers fewer rounds. Furthermore, the linear layer of Present guar-
antees only 10 active S-boxes over five rounds [9]. In order to securely reduce
randomness costs, one would need to significantly improve the linear properties
of its S-box sharing. Alternatively, one could attempt to improve the diffusion
of the shared cipher without affecting correctness.

AES. Another natural application is the AES, due to Daemen and Rijmen [19].
Since AES is a wide-trail design, the security analysis would be very similar
to the analysis for LED in Section 7. However, currently we are not aware of
any uniform sharing of the AES S-box. Note that a direct application of the
changing of the guards method by Daemen [16] would alter the diffusion of the
shared cipher and consequently demand a more detailed security analysis. We
thus wish to re-highlight the merit of finding a uniform sharing of the AES S-box.

9 Conclusion and Future Work

This paper has tilted the security paradigm for side-channel countermeasures
from perfect security arguments in a simulation-based model to a bounded-query
cryptanalytic framework. It was shown that bounded-query probing security can
be reduced to the linear cryptanalysis of masked ciphers. As the security analysis
presented in our work is new, it allows for several directions for future work.

While the scope of this paper was limited to second-order protection, we
believe the theoretical framework for higher-order security would remain largely
the same. However, as the adversary gains the ability to place more probes, it
will be able to exploit non-zero correlations even over a small number of rounds.
Thus, to achieve adequate levels of security, a more detailed analysis of the trails
in the masked cipher will typically be required.

In addition to generalizing to higher-orders, it would be worthwhile to apply
our techniques to other ciphers. In Section 8 potential difficulties with AES
and Present were discussed. Overcoming these would require innovations in
the design and analysis of masked ciphers. One such technique involves finding
sharings with high non-linearity.

Finally, in our example of LED, we have carefully analyzed possible trails to
derive an upper bound on the advantage of the adversary. However, a more hol-
istic approach would involve the practical verification of this bound on hardware
and the real-world security level.
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method). In: Koç, Çetin Kaya., Paar, C. (eds.) CHES’99. LNCS, vol. 1717, pp.

29

https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-642-11925-5_21
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-319-66787-4_7
https://doi.org/10.1007/3-540-60590-8_21
https://eprint.iacr.org/2019/1247
https://eprint.iacr.org/2019/1247
https://doi.org/10.1145/3338467.3358949
https://doi.org/10.1145/3338467.3358949
https://doi.org/10.1214/lnms/1215467418
https://doi.org/10.13154/tches.v2018.i3.89-120
https://tches.iacr.org/index.php/TCHES/article/view/7270
https://tches.iacr.org/index.php/TCHES/article/view/7270
https://doi.org/10.1007/978-3-319-70694-8_27


158–172. Springer, Heidelberg (Aug 1999). https://doi.org/10.1007/3-540-48059-
5˙15

26. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (Aug 2011). https://doi.org/10.1007/978-3-642-22792-9˙13

27. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (Sep / Oct 2011). https://doi.org/10.1007/978-3-642-23951-9˙22

28. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (Aug 2003). https://doi.org/10.1007/978-3-540-45146-4˙27

29. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
CRYPTO’99. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (Aug 1999).
https://doi.org/10.1007/3-540-48405-1˙25

30. Kutzner, S., Nguyen, P.H., Poschmann, A., Wang, H.: On 3-share threshold imple-
mentations for 4-bit S-boxes. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864,
pp. 99–113. Springer, Heidelberg (Mar 2013). https://doi.org/10.1007/978-3-642-
40026-1˙7

31. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked
AES hardware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005.
LNCS, vol. 3659, pp. 157–171. Springer, Heidelberg (Aug / Sep 2005). ht-
tps://doi.org/10.1007/11545262˙12

32. Moos, T., Moradi, A., Schneider, T., Standaert, F.X.: Glitch-
resistant masking revisited. IACR TCHES 2019(2), 256–292 (2019).
https://doi.org/10.13154/tches.v2019.i2.256-292, https://tches.iacr.org/

index.php/TCHES/article/view/7392

33. Moradi, A., Schneider, T.: Side-channel analysis protection and low-latency in
action – case study of PRINCE and Midori –. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 517–547. Springer, Heidelberg
(Dec 2016). https://doi.org/10.1007/978-3-662-53887-6˙19

34. Moradi, A., Wild, A.: Assessment of hiding the higher-order leakages in hardware
- what are the achievements versus overheads? In: Güneysu, T., Handschuh, H.
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A Sharings of the Present S-Box

This appendix gives a decomposition of the Present S-box and two possible
sharings. One uses seven shares and is detailed in the main text, the other uses
three shares and verifying its security would require more analysis. Appendix A.3
gives a construction to improve the non-linearity of the shared S-box.

Concerning the Present S-box, (x, y, z, w) denotes the input nibble from
most significant to least significant bit. Similarly, (G1, ..., G4) denotes the output
from most significant to least significant bit.

A.1 Decomposition

The Present S-box S can be decomposed as follows

S(x, y, z, w) = B′(G(G(C ′(x, y, z, w) + d)) + e) .

In the above, the nonlinear function G(x, y, z, w) is given as

G1 = x+ yz + yw G2 = w + xy G3 = y G4 = z + yw ,

the linear transformations as

B′ =


1 0 1 0
0 1 0 0
1 0 0 0
1 0 1 1

 , C ′ =


1 1 0 0
0 1 1 0
0 0 1 0
0 1 0 1

 ,
and the constants as

d =
[
0 0 0 1

]
, e =

[
0 1 0 1

]
.

A.2 Seven-Sharing of G(x, y, z, w)

For each share i ∈ {1, ..., 7}, the permutation G(x, y, z, w) is shared as

Gi1 = xi + yizi + yizi+1 + yi+1zi + yizi+3 + yi+3zi + yi+1zi+3 + yi+3zi+1

+ yiwi + yiwi+1 + yi+1wi + yiwi+3 + yi+3wi + yi+1wi+3 + yi+3wi+1 ,

Gi2 = wi + xiyi + xiyi+1 + xi+1yi + xiyi+3 + xi+3yi + xi+1yi+3 + xi+3yi+1 ,

Gi3 = yi ,

Gi4 = zi + yiwi + yiwi+1 + yi+1wi + yiwi+3 + yi+3wi + yi+1wi+3 + yi+3wi+1 ,

where the convention is used that superscripts wrap around at seven.
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A.3 Three-Sharing of G(x, y, z, w)

For each share i ∈ {1, 2, 3}, the permutation G(x, y, z, w) is shared as

Gi1 = xi + yizi + yizi+1 + yi+1zi + yiwi + yiwi+1 + yi+1wi ,

Gi2 = wi + xiyi + xiyi+1 + xi+1yi ,

Gi3 = yi ,

Gi4 = zi + yiwi + yiwi+1 + yi+1wi ,

where the convention is used that superscripts wrap around at three. Whereas
the above sharing is verified to be uniform, it is not second-order non-complete.
Instead one can achieve second-order probing security by calculating each cross
product separately, XORing them with randomness, and finally registering the
result. Afterwards, one then re-compresses the cross products back to 3 output
shares. In case one uses static randomness, further analyses should be performed
to ensure the security of the construction.

The above sharing was verified to have a maximal absolute correlation of 2−2.
In case randomness is used to make the sharing second-order probing secure, one
should re-verify this correlation for all possible choices of the static randomness.

A.4 Improved Linear Properties

The following method can be used to improve the linear properties of the shared
S-box from Appendix A.2. A sharing P̄ of the identity function is composed with
the S-box such that S̄2 ◦ P̄ ◦ S̄1 is still a sharing of the Present S-box. One
can choose any permutation P̄ and verify the linear properties of S̄2 ◦ P̄ ◦ S̄1.
As an example, we consider a function which adds the first shared output bit
of S̄1 to the second and third bits. The addition of the shares is done such
that correctness still holds. More specifically, for each share i ∈ {1, ..., 7}, the
permutation P̄ (x̄, ȳ, z̄, w̄) is

P i1 = xi P i2 = yi + xi + xi+1 P i3 = zi + xi + xi+1 P i4 = wi ,

where the convention is used that superscripts wrap around at seven.
Since P̄ is a permutation, it is clearly uniform. Additionally, P̄ is second-

order non-complete. This choice of P̄ ensures that one can not find an optimal
trail with 2−3 through the shared S-box. From experiments, we conclude that
the maximum absolute correlation of S̄2 ◦ P̄ ◦ S̄1 is 2−4.3. Again, due to resource
constraints, the experiment was limited to the verification for one choice of static
randomness.

Whereas the addition of P̄ significantly increases our security margin, it re-
quires an extra register stage as P̄ ◦S̄1 nor S̄2◦P̄ is second-order non-complete. A
more thorough search for a better permutation could result in a further increase
in security as well as potential performance improvements.
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B Seven-Sharing of the Prince S-Box

Moradi and Schneider [33] show that the inverse Prince S-box can be decom-
posed as

S−1 = D ◦ Q294 ◦ C ◦ Q294 ◦B ◦ Q294 ◦A ,

with A,B,C,D affine layers and Q294 a representative of a particular affine
equivalence class. The affine layers with input (x, y, z, w) are given as follows

A1 = y A2 = x A3 = z A4 = 1 + x+ w ,

B1 = w B2 = z B3 = 1 + y B4 = 1 + x ,

C1 = z C2 = z + w C3 = y C4 = x+ y ,

D1 = x+ y D2 = 1 + x+ z D3 = y + w D4 = z .

We can write S = E ◦ S−1 ◦ E with E,

E1 = 1 + x+ y + w E2 = 1 + x E3 = z E4 = 1 + z .

The above affine layers are straightforwardly shares by applying the functions
to each share separately. The algebraic normal form of Q294(x, y, z, w) is given
by

Q1 = x Q2 = y Q3 = xy + z Q4 = xz + w .

This function is shared into 7 shares by

Qi1 = xi ,

Qi2 = yi ,

Qi3 = zi + xiyi + xiyi+1 + xi+1yi + xiyi+3 + xi+3yi + xi+1yi+3 + xi+3yi+1 ,

Qi4 = wi + xizi + xizi+1 + xi+1zi + xizi+3 + xi+3zi + xi+1zi+3 + xi+3zi+1 ,

for the shares i ∈ {1, ..., 7}, where the convention is used that superscripts wrap
around at seven. The above sharing is verified to be second-order non-complete
and uniform.

The sharing is made second-order probing secure by adding two layers of
static randomness between the nonlinear functions.

C Entropy Estimators and Software Details

On GitLab one can find software to measure the entropy of probed values in
a C simulation of the masked LED from Section 7 [40]. The software accepts
six arguments specifying which round, operation, and share each probe targets.
The best probing location, giving the most advantage to the adversary, is found
by searching for the best trails in the masked cipher. For example, the bottom
curve of Figure 8 is related to the first activity pattern of Figure 7. As discussed
in Section 7.5, this activity pattern would constitute a promising trail.
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Further-on, the entropy estimator used in the simulation is discussed. Since
the variance of the estimator scales exponentially with the number of observed
bits, significantly more samples are needed to get a narrow confidence interval
if more bits are observed. Note that in our experiments, we used 219 samples.
However, given sufficient computational power, this number is easily increased.

The reader is encouraged to verify our results using the C simulation for their
own choice of probe locations and sample size.

C.1 Entropy Estimation and Confidence Intervals

To estimate the entropy of an m-bit random variable given N samples with
replacement, we use the straightforward ‘plug-in’ estimator with first-order bias
correction. One first estimates the probability q(x) of each observation x ∈ Fm2
by counting the number of occurrences of each x in the sample. Note that Eq = p
where p is the true probability distribution. The entropy can then be estimated
as

Ĥ = −
∑
x∈Fm

2

q(x) log2 q(x).

Unfortunately, this results in a negatively biased estimator with bias Ω(1/N).
Specifically, taking a Taylor series expansion, one gets

E Ĥ = H − 1

2N

∑
x∈Fm

2

Var [q(x)]

p(x)
+O(1/N2).

Since Var [q(x)] = p(x)(p(x) + 1), we obtain

E Ĥ = H − 2m + 1

2N
+O(1/N2).

For the variance, a similar but more technical argument [3] shows that

Var Ĥ = −H
2

N
+

1

N

∑
x∈Fm

2

p(x) log2
2 p(x) +O(1/N2).

For the bias-corrected estimator, the variance is thus

σ2 =
(2m + 1)2

4N2
− H2

N
+

1

N

∑
x∈Fm

2

p(x) log2
2 p(x) +O(1/N2).

Assuming asymptotic normality, an asymptotic two-sized 95% confidence inter-
val can be estimated obtained by adding ±1.96σ to the estimate.
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