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Abstract. Quantum pseudorandom functions (QPRFs) extend the classical secu-
rity of a PRF by allowing the adversary to issue queries on input superpositions.
Zhandry [Zhandry, FOCS 2012] showed a separation between the two notions and
proved that common construction paradigms are also quantum secure, albeit with
a new ad-hoc analysis. In this work we revisit the question of constructing QPRFs
and propose a new method starting from small-domain (classical) PRFs: At the
heart of our approach is a new domain-extension technique based on bipartite
expanders. Interestingly, our analysis is almost entirely classical.
As a corollary of our main theorem, we obtain the first (approximate) key-
homomorphic quantum PRF based on the quantum intractability of the learning
with errors problem.

1 Introduction

Pseudorandom functions (PRFs) are one of the fundamental building blocks of modern
cryptography. PRFs were introduced in the seminal work of Goldreich, Goldwasser and
Micali [13] answering the question of how to build a function that is indistinguishable
from a random function. Loosely speaking, a PRF guarantees that no efficient algo-
rithm, with oracle access to such a function, can distinguish it from a truly random
function. PRFs have been shown to be an invaluable tool in the design of cryptographic
primitives (such as block ciphers and message authentication codes) and are by now
a well-understood object: After the tree-based construction of [13], PRFs have been
build from pseudorandom synthesizers [19] and directly from many hard problems
[20,21,22,11,18,7,2].

However, when considering the more delicate quantum settings, the study of the
hardness of PRFs is still at its infancy. Before delving into the details of this primitive,
some clarification is needed as one can define the quantum security of a PRFs in two
ways:

1. The PRF is secure against a quantum machine that can only issue classical queries
to the function (although the internal state of the adversary is quantum).

2. The PRF is secure against a quantum machine that is allowed to query it on input
superposition states and is given as a response the superposition of the corresponding
outputs, i.e., it can issue quantum queries. This setting is the focus of our work and
we refer to it as quantum security.



The first setting is commonly referred to as post-quantum security and it involves the use
of hard problems that are conjectured to be intractable even for quantum computers, but
this aspect typically does not further affect the analysis of known construction paradigms.
On the other hand, the latter setting has been shown to require a fundamentally different
approach: In his pioneer work, Zhandry [27] gave a separation between the two models,
i.e., he constructed a PRF that is post-quantum secure but provably not quantum secure.
On the positive side, he showed that the generic constructions of [13] and [19] are also
quantum secure, albeit with a completely different analysis. He also provided a quantum
analysis of the PRFs of [2], which assumes the post-quantum hardness of the learning
with errors problem [24].

Beyond the theoretical interest, quantum security gives a more conservative model
to analyze the hardness of PRFs in a world with quantum machines. As an example, if
PRF is used as a message authentication code (MAC) by some quantum computer, then
it is reasonable to assume that an adversary might be able to obtain the function output
when evaluated on some input superposition. In this case, MACs based on post-quantum
secure PRFs might not be secure anymore. Boneh and Zhandry in their work[8] studied
this problem and constructed the first message authentication codes against quantum
chosen message attack. They also showed that a quantum secure PRF is sufficient for
constructing a quantum secure MAC. Unfortunately, the current landscape of quantum
PRFs is rather unsatisfactory: Current techniques to analyze hardness of PRFs in the
quantum settings are geared towards specific constructions. As a result, only a handful
of quantum-secure schemes are known.

1.1 What Makes QPRFs Challenging?

At the heart of Zhandry’s separation result [27] is the observation that quantum algorithms
can detect hidden linear structures. This problem is also present when we extend the
domain of truly random functions. Assume that f : {0, 1}λ → {0, 1}λ is a uniformly
random function and H : {0, 1}2λ → {0, 1}λ is a random linear function and therefore
a universal hash function [9]. The function x 7→ f(H(x)) can easily be shown to be
statistically indistinguishable from a truly random function for any classical distinguisher
with oracle access to this function. However, using the algorithm of Boneh and Lipton [6]
one can efficiently find elements in the kernel of H via superposition queries to f(H(·)).
Given an element z in the kernel of H , f(H(x)) can be distinguished from a truly
random function g : {0, 1}2λ → {0, 1}λ by two classical queries, as it holds for any
x ∈ {0, 1}2λ that f(H(x + z)) = f(H(x)). Such a collision, however, happens only
with exponentially small probability for a random g.

What this shows is that the advantage of superposition adversaries over classical
adversaries goes far beyond their computational advantage. Superposition adversaries
can learn strictly more about the structure of a function it is given oracle access to than a
classical (even unbounded) adversary ever could.

1.2 Our Results

In this work we explore a different route and we propose a new approach to construct
QPRFs. Our construction is based on the framework of Döttling and Schröder [12],
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which in turn builds on earlier ideas of PRF domain extension [16,4] and constructions
of adaptively secure PRFs from non-adaptively secure ones [3].

At the heart of our approach is a domain extension technique based on bipartite
expander graphs, which crucially allows us to reduce the quantum hardness of our PRF
to the classical (post-quantum) hardness of a small-domain PRF. Specifically, we will
prove the following theorem.

Theorem 1 (Informal). For any q let PRFq : K × Y → Z be a (post-quantum) classi-
cally secure PRF with (small) domain Yq and let Γ (x, j) be a suitable expander mapping
from a vertex x to its j-th degree neighbor, where the expander Γ has degree Di. Then

F (K,x) =
ω(logλ)⊕
i=1

⊕
j∈[Di]

PRF2i(K2i , Γ (x, j)),

where K = (K21 , . . . ,K2i , . . . ,K2ω(logλ))3, is a quantum PRF.

This gives an alternative and (arguably) conceptually simpler approach to construct-
ing QPRFs. An interesting aspect of our result is that our analysis concerns almost
exclusively the classical settings and quantum security is achieved by a simple observa-
tion: The crux of our analysis will consist in reducing the classical hardness of the PRF
to that of a small domain PRF, which is also trivially quantum secure since the attacker
can query the full domain. This result can be seen as a compiler which converts any
post-quantum secure PRF into a QPRF at a moderate overhead and without having to go
through the (expensive) GGM construction of [27].

As an additional result, we obtain a new implication: Assuming the quantum-
intractability of the learning with errors problem, then there exists a quantum (almost)
key-homomorphic PRF.

Quantum Key-Homomorphic PRF. Key-homomorphic PRFs were introduced by
Boneh et al. [5] and have applications in the context of proxy-re-encryption and re-
lated key security. In a nutshell, for key-homomorphic PRFs the key-space is a group
and it holds for all x that PRF (K1 + K2, x) = PRF (K1, x) + PRF (K2, x). Key-
homomorphic PRFs give rise to a very natural protocol for a distributed PRF. Boneh et
al. showed that the function

PRFKH(k, x) =
⌈∏̀
i=1

Axi · k
⌋
p

,

where A0 and A1 are two random public matrices in Zm×mq , is additively key-
homomorphic (ignoring a small error) over the vector space Zmq . The function is
pseudorandom under the learning with errors assumption, which is conjectured to be

3 Note that we could XOR them from log λ to ω(log λ), but for simplicity, we still use the range
from 1 to ω(log λ).
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intractable also for quantum computers. Then a simple application of our compiler
shows us that

F (K,x) =
ω(logλ)∑
i=1

∑
j∈[Di]

PRFKH(K2i , Γ (x, j)) mod p

is a quantum key-homomorphic PRF.

1.3 Technical Overview

We start by providing a technical outline of our results. As mentioned above, we use the
framework of [12] to construct our QPRFs. This framework has two steps, a domain
extension step and a combiner step. The domain extension step takes a small domain PRF
with domain size poly(q) and constructs from it a q-bounded PRF on a large domain, e.g.
{0, 1}λ. A PRF is called q-bounded if security is only guaranteed for adversaries which
make at most q queries. An important aspect about this step is that the small domain
PRF can be evaluated in time (essentially) independent of q.

The second step, or combiner step, combines a small number of bounded PRFs
which have the same domain. The key idea here is to set the bounds in an exponentially
increasing way. More specifically, if PRFq(Kq, x) are q-bounded PRFs, we combine
them into a function F via

F (K,x) =
t⊕
i=1

PRF2i(K2i , x)

where K = (K1, . . . ,K2t). We will choose the parameter t to be slightly super-
logarithmic in the security parameter λ. We claim that if PRFq(Kq, x) is a q-bounded
QPRF as long as q is polynomial, then F (K,x) is an (unbounded) QPRF. We will briefly
argue how this can be established. Fix a BQP distinguisher A against the QPRF security
of F . Since this distinguisher is efficient, there is a polynomial upper bound q on the
number of superposition queriesA will make. Given such a distinguisher we will, choose
i∗ = dlog(q)e 6 t and construct a BQP distinguisher A′ against the 2i∗-bounded secu-
rity of PRF2i∗ . Notice that since 2i∗ 6 2q and q is polynomial it holds that 2i∗ is also
polynomial. The distinguisher A′ gets q-bounded superposition access to an oracle O
which computes either PRF2i∗ or a uniformly random function f . Given a superposition
query

∑
|x〉 by A, A′ submits this query to its oracle O obtaining a superposition state∑

|x〉|O(x)〉. Now, A′ can convert this state into∑
|x〉|O(x)⊕

⊕
i 6=i∗

PRF2i(K2i , x)〉

via a local quantum computation and forwards this state to A. In the end, A′ outputs
whateverA outputs. Now notice that ifO(·) computes PRF2i∗ (K2i∗ , ·), thenA′ perfectly
simulated superposition access to F (K, ·) to A. On the other hand, if O(·) computes
a truly random function, then O(x) ⊕

⊕
i6=i∗ PRF2i(K2i , x) is also a truly random

4



function. Consequently, A′ distinguishes PRF2i∗ from uniform with the same advantage
that A distinguishes F from uniform.

The more challenging aspect of our approach is the construction of a q-bounded
QPRF from a small domain PRF. As outlined in Section 1.1, even domain extension
techniques that are statistically secure against classical adversaries might be completely
insecure against a superposition adversary. We circumnavigate this problem by adopting a
perfectly secure domain extension technique. We can then use a Lemma by Zhandry [27]
which states that any classical 2q-uniform function is identically distributed to a uniform
function from the view of a q-bounded superposition adversary.

It turns out that we can realize perfectly secure domain extension using highly unbal-
anced expander graphs via constructions that have previously been used to construct
space-efficient k-independent functions [10]. In a nutshell, a highly unbalanced expander
is a bipartite graph Γ where the set of left vertices [N ] can be made super-polynomially
large, the set of right vertices [L] is only polynomially large, and the degree D is poly-
logarithmic. Moreover, such graphs have a unique neighbor expansion property in the
sense that it holds for any subset S ⊂ [N ] of left-vertices not larger than a (polynomial)
bound Q that there exists a vertex v in Γ (S) ⊂ [L] (the neighborhood of S) which has
a unique neighbor in S. A construction of such graphs was provided by Guruswami,
Umans and Vadhan [14].

Equipped with such a graph Γ , we can now extend a random function f defined on
the small domain [L] to a Q-bounded random function g defined on the large domain
[N ] as via a simple tabulation function. For a left vertex x ∈ [N ] and an index j ∈ [D],
let Γ (x, j) ∈ [L] be the j-th neighbor of x. Define the function g by

g(x) =
⊕
j∈[D]

f(Γ (x, j)).

We claim that if f is a uniformly random function, then g is a Q-uniform function, i.e. it
holds for any pairwise distinct x1, . . . , xQ ∈ [N ] that g(x1), . . . , g(xQ) are independent
and uniformly random. To see this note that by the unique neighbor expansion property
of Γ , as the set S = {x1, . . . , xQ} is of size Q there exists a vertex v ∈ Γ (S) which has
a unique neighbor xi∗ in S. In other words, there is an index j∗ ∈ [D] such that the term
f(Γ (xi∗ , j∗)) only appears in

g(xi∗) =
⊕
j∈[D]

f(Γ (xi∗ , j)),

but not in any other g(xi) for i 6= i∗. Since f(Γ (xi∗ , j∗)) is uniformly random and inde-
pendent of all the g(xi), it follows that g(xi∗) is uniformly random and independent of
all the g(xi). We can repeat this argument recursively arguing that the g(x1), . . . , g(xQ)
are uniformly random and independent. Now assume that Q = 2q. We claim that if PRF
is a post-quantum PRF with (polynomially-sized) domain [L], then it holds that

F (K,x) =
⊕
j∈[D]

PRF(K,Γ (x, j))

is a q-bounded QPRF on the large domain [N ]. To argue security, assume that A is a
q-bounded BQP distinguisher which distinguishes F from a truly random function. We
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will first replace PRF with a truly random function f and argue security via the post-
quantum security of PRF. Specifically, if A could distinguish these two cases we can
construct a post-quantum distinguisher A′ against the PRF security of PRF. A′ is given
access to an oracle O and proceeds as follows. It first queries O on every possible input
obtaining the entire function table of O. This can be performed efficiently as the domain
of O is of size L, which is polynomial. Now, A′ can give A superposition access to the
function O′(x) =

⊕
j∈[D]O(Γ (x, j)) via a local quantum computation, since it knows

the entire function table ofO. Consequently, ifA distinguishes F (K,x) from a function
F ′(x) =

⊕
j∈[D] f(Γ (x, j)) where f is a truly random function, then A′ distiguishes

PRF from a truly random function. Finally, as F ′(x) =
⊕

j∈[D] f(Γ (x, j)) is a 2q-
uniform function, we can argue that since A is q-bounded it is identically distributed to
a uniformly random function from the view of A via a Lemma by Zhandry [27]. This
concludes the overview.

From a conceptual perspective, the main reason why our proof is simpler than, e.g.,
Zhandry’s proof for QPRF security of the GGM construction [27], stems from the fact
that the above reduction A′ can query the entire function table of the small domain PRF
PRF and simulate a quantum oracle for A locally.

2 Applications

In this section we discuss the possible applications of quantum secure PRFs.

2.1 Quantum secure MACs

Classically, any pseudorandom function can be used to implement message authentication
codes (MAC). Moreover, for quantum adversaries, we can use post-quantum secure PRFs
to protect classical messages. However, what if the quantum adversary has the ability
to query superpositions of messages? In this situation, the entire chosen message game
would be held in the quantum environment which needs stronger version of security.
For instance, considering a random oracle H , if the adversary can only issue classical
queries, after learning q queries she does not learn any additional information at other
inputs; but if she can issue quantum queries, then she might get information on all inputs
simultaneously, even with just a single query.

Boneh and Zhandry [8] defined a quantum chosen message attack game to model
the security of any MAC scheme in the quantum setting. First, quantum queries need to
be explicitly modeled as the adversary could be entangled with the queries. We denote
the adversary’s state just prior to issuing a signing query by Σm,x,yψm,x,y|m,x, y〉 and
the signing oracle performs the following transformation,

Σm,x,yψm,x,y|m,x, y〉 → Σm,x,yψm,x,y|m,x⊕ S(k,m; r), y〉,

where r is a random string and S(k,m; r) is the signing algorithm of a MAC scheme.
Then we say that the adversary wins this game if she can generate q + 1 valid classical
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message-tag pairs after issuing q quantum chosen message queries. The formal definition
of quantum secure MACs is given as follows 4.

Definition 1. A MAC system is existentially unforgeable under a quantum chosen mes-
sage attack (EUF-qCMA) if no adversary can win the quantum MAC game with non-
negligible advantage in λ.

Boneh and Zhandry [8] also showed that a quantum secure pseudorandom function
gives rise to the quantum-secure MAC, namely S(k,m) = PRF(k,m).

Theorem 2 ([8]). If PRF : K ×X → Y is a quantum-secure pseudorandom function
and 1/|Y| is negligible, then S(k,m) = PRF(k,m) is a EUF-qCMA-secure MAC.

Therefore, the theorem 2 implies that a quantum secure PRF is sufficient to give us a
quantum secure MAC.

2.2 Pseudorandom Quantum States

Pseudorandom states (or pseudorandom quantum states, denoted as PRS), are a set of
random states {|φk〉} that is indistinguishable from Haar random quantum states. In
[17], Ji et al. generalizes the definition of pseudorandomness in the classical case to the
quantum setting:

Definition 2 (Pseudorandom states). Let κ be the security parameter. Let H be a
Hilbert space and K the key space, both parameterized by κ. A keyed family of quantum
states {|φk〉 ∈ S(Hk∈K)} is pseudorandom, if the following two conditions hold:

1. Efficient generation. There is a polynomial-time quantum algorithmG that generates
state |φk〉 on input k. That is, for all k ∈ K, G(k) = |φk〉.

2. Pseudorandomness. Any polynomially many copies of |φk〉 with the same random
k ∈ K is computationally indistinguishable from the same number of copies of a
Haar random state. More precisely, for any efficient quantum algorithm A and any
m ∈ poly(κ),

| Pr
k←K

[A(|φk〉⊗m) = 1]− Pr
|ψ〉←µ

[A(|ψ〉⊗m) = 1]| = negl(κ)

where µ is the Haar measure on S(H).

Moreover, they also show that any quantum secure PRF could be used to construct
PRS as follows.

Theorem 3 ([17]). For any QPRF PRF : K ×X → X , the family of states {|φk〉}k∈K,

|φk〉 = 1√
N

∑
x∈X

ω
PRFk(x)
N |x〉,

is a PRS.

Finally, PRS can be immediately used to construct a private-key quantum money
scheme [17].

4 Recently, blind-unforgeable, a stronger security notion for qMAC is defined in [1]. It implies
EUF-qCMA notion and can also be satisfied by quantum secure PRF.
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3 Preliminaries

We denote by λ ∈ N the security parameter, by poly(λ) any function that is bounded by a
polynomial in λ, and by negl(λ) any function that is negligible in the security parameter.
We abbreviate computational indistinguishability of two distributions by ≈c. The set of
N elements is always written as [N ]. We also denote as DO a distinguisher D access to
an oracle O via classical queries and A|O〉 via quantum queries.

3.1 Quantum Computing

We recall some basic facts about quantum computing.

Fact 1 ([23]) Any classical efficiently computable function f can be implemented effi-
ciently by a quantum computer. Furthermore, any function that has an efficient classical
algorithm computing it can be implemented efficiently as a quantum-accessible oracle.

Fact 2 ([28]) For any sets X and Y , we can efficiently ‘construct’ a random oracle
from X to Y capable of handling q quantum queries, where q is a polynomial. More
specifically, the behavior of any quantum algorithm making at most q queries to a 2q-
wise independent function is identical to its behavior when the queries are made to a
random function.

A more formal statement of Fact 2 is given in the following.

Theorem 4 ([28]). Let A be a quantum algorithm making q quantum queries to an
oracle H : X → Y . If we draw H from some weight assignment D5, then for ev-
ery z, the quantity PrH ←$D[AH(·) = z] is a linear combination of the quantities
PrH ←$D[H(xi) = ri,∀i ∈ {1, . . . , 2q}] for all possible settings of the xi and ri.

This is proved in [28] and immediately implies that, if two weight assignments on oracles,
D1 and D2, are 2q-wise equivalent, then any q query quantum algorithm behaves the
same under both weight assignments, since for all 2q pairs (xi, ri) it holds that

Pr
H ←$D1

[H(xi) = ri,∀i ∈ {1, . . . , 2q}] = Pr
H ←$D2

[H(xi) = ri,∀i ∈ {1, . . . , 2q}].

3.2 Pseudorandom Functions

We recall definition of classical pseudorandom functions [13].

Definition 3 (Pseudorandom Functions). Let Xλ and Yλ be two finite sets depending
on λ. We say that an efficiently computable keyed function PRF : Kλ × Xλ → Yλ
with key-space Kλ is a pseudorandom function (PRF), if it holds for every PPT oracle
adversary A that

|Pr[APRF(K,·)(1λ) = 1]− Pr[AR(1λ) = 1]| 6 negl(λ),

where K ←$Kλ and R : Xλ → Yλ is a randomly chosen function. Moreover, if |X | 6
poly(λ), then we say that PRF is a small-domain PRF, otherwise we call PRF a large-
domain PRF.

5 A weight assignment on a set X is a function D : X → R such that
∑

x
D(x) = 1. As an

example, and the way we use it in our work, it could model a probability distribution.
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If A is a quantum machine, then we say that the PRF is post-quantum secure. Note that
A is restricted to issue only classical queries, but its computation can be quantum. We
now recall the notion of q-bounded PRF [12]. The difference between q-bounded PRF
and PRF is just the former can only send at most q distinct queries. As in [12], our only
restriction is that the runtime of the function depends polynomially on λ and log(q).

Definition 4 (Bounded Pseudorandom Functions). Let Xλ and Yλ be finite sets. A
keyed function Fq : Kq ×Xλ → Yλ parameterized by a parameter q is a q-bounded
pseudorandom function (bPRF), if Fq is computable in time poly(λ, log(q)) and if it
holds for all efficiently computable q∗ = q(λ) 6 poly(λ) and all q∗-query distinguishers
D (i.e. send at most q∗ distinct queries) that

|Pr[DFq(K,·)(1λ) = 1]− Pr[DR(1λ) = 1]| 6 negl(λ),

where K ←$Kq and R : Xλ → Yλ is a randomly chosen function.

Quantum Pseudorandom Functions. We define quantum PRFs in the following.
Roughly speaking, we say a pseudorandom function PRF is quantum-secure if no
efficient quantum adversary A making quantum queries can distinguish between a ran-
dom function R and the function PRF. By quantum query we mean that the adversary A
can send a quantum superposition to the oracle and receive a the corresponding quantum
superposition of the function evaluation in return.

Definition 5 (Quantum-secure Pseudorandom Functions). A pseudorandom func-
tion PRF : Kλ×Xλ → Yλ is quantum-secure if no efficient quantum adversaryAmaking
quantum queries can distinguish between a truly random function R and the function
PRF(K, ·) for a randomK ←$Kλ. Specifically, for keyed function PRF : Kλ×Xλ → Yλ
with key-space Kλ, we say it is a quantum-secure pseudorandom function (QPRF) if it
holds for every efficient quantum adversary A that

|Pr[A|PRF(K,·)〉(1λ) = 1]− Pr[A|R〉(1λ) = 1]| 6 negl(λ),

where K ←$Kλ and R : Xλ → Yλ is a randomly chosen function.

We also define the notion of q-bounded quantum PRFs in a similar spirit as above.

Definition 6 (Bounded Quantum-secure Pseudorandom Functions). Let Xλ and
Yλ be finite sets. A keyed function Fq : Kq ×Xλ → Yλ parameterized by a parameter q
is a q-bounded quantum-secure pseudorandom function (bQPRF), if Fq is computable in
time poly(λ, log(q)) and if it holds for all efficiently computable q∗ = q(λ) 6 poly(λ)
and all q∗-query quantum adversary A (i.e. send at most q∗ distinct quantum queries)
that

|Pr[A|Fq(K,·)〉(1λ) = 1]− Pr[A|R〉(1λ) = 1]| 6 negl(λ),

where K ←$Kq and R : Xλ → Yλ is a randomly chosen function.
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4 Bipartite Expanders

Expanders are highly connected sparse graphs, which are significantly useful in computer
science, and there is a rich body of work on constructions and properties of expanders
(see, e.g., [15] and references therein). We recall the definitions of bipartite graphs and
expanders in the following.

Definition 7 (Bipartite Graph). A bipartite graph withN left-vertices,L right-vertices,
and D left-degrees is specified by a function Γ : [N ] × [D] → [L], where Γ (x, j)
denotes the j-th neighbor of x. For a set S ⊆ [N ], we denote as Γ (S) its set of neighbors
{Γ (x, j) : x ∈ S, j ∈ [D]}.

Definition 8 (Bipartite Expander). A bipartite graph Γ : [N ] × [D] → [L] is a
(6 Q,A) expander if for all S ⊆ [N ] with |S| 6 Q, it has: |Γ (S)| > A · |S|, where A
is expansion factor.

We are only interested in highly unbalanced expanders with N � L. An explicit
construction (i.e., where Γ (·, ·) is computable in polynomial time) of such an expander
has been shown in [14]. We recall here the theorem.

Theorem 5 ([14]). For all constants α > 0 : for every N ∈ N, Q 6 N , and ξ > 0,
there is an explicit (6 Q, (1 − ξ)D) expander Γ : [N ] × [D] → [L] with degree
D = O

(
((logN)(logQ)/ξ)1+1/α) and L 6 D2 · Q1+α. Moreover, D and L are

powers of 2.

4.1 Q-unique Expanders

In our construction, we need a (6 Q, (1− ξ)D) expander to be Q-unique, which means
in every subset of left-vertices with size not greater than Q, there must exist a vertex
with a unique neighbor (i.e., this unique neighbor is connected to only one vertex). This
property is defined in [10] as constructing functions where every subset S of inputs of
size at most Q contains an input that has many unique neighbors. It is formalized as:

Definition 9 (Q-unique Expander). A (6 Q, (1−ξ)D) expander Γ : [N ]×[D]→ [L]
is Q-unique if for all S ⊆ [N ], |S| 6 Q, there exists a x ∈ S such that
|Γ ({x})\Γ (S\{x})| > l > 0 holds.

Note l in Definition 9 is a way to measure uniqueness of a expander: The greater the l is,
the more unique neighbors an input can have. In our construction, we only need l = 0
which means (at least) one unique neighbor would be sufficient for us. Moreover, there
is also a concept of Q-wise-independence:

Definition 10 (Q-wise-independence). LetQ be a positive integer and letF be a family
of functions from Y to Z . We say that F is a Q-wise-independent family of functions if,
for every choice of l 6 Q distinct keys y1, . . . , yl and arbitrary values z1, . . . , zl, then,
for f selected uniformly at random from F we have that

Pr[f(y1) = z1, . . . , f(yl) = zl] = |Z|−l.
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The existence of such Q-unique expanders is showed as follows.

Theorem 6. Given any (6 Q, (1−ξ)D) expander Γ : [N ]× [D]→ [L] from Definition
8, if ξ < 1/2, then expander Γ is Q-unique for l = 0.

Proof. First we want to show that there must exist a vertex in Γ (S) with degree at most
one, when ξ < 1/2. Assume towards contradiction that every vertex in Γ (S) has degree
at least 2 when ξ < 1/2. Then the number of edges between S and Γ (S) is at least two
times as |Γ (S)|. By Definition 7, we have that

D · |S| > 2 · |Γ (S)|.

Next, by Definition 8, we have |Γ (S)| > (1− ξ)D · |S| (in which (1− ξ)D is expansion
factor), therefore

D · |S| > 2(1− ξ)D · |S|
1 > 2(1− ξ)
ξ > 1/2,

which is a contradiction since there is ξ < 1/2. It follows that if ξ < 1/2, then there
exists one vertex in Γ (S) with degree less than or equal to 1. However, we already know
that the degree cannot be zero since it’s in the neighbors set. Therefore it must be 1. This
completes the proof. ut

Now we will state a useful lemma here. In his seminal paper [25], Siegel showed
how a Q-unique expander can be combined with a small domain random function to
obtain a Q-wise-independent function. We use a light variation of Siegel’s technique
here. It is also used by works [26] and [10].

Lemma 1. Let Γ : [N ]× [D]→ [L] be a Q-unique expander, let f : [L]→ {0, 1}λ be
a uniformly random function and let h : [N ]→ {0, 1}λ be defined by

h(x) =
⊕
j∈[D]

f(Γ (x, j)).

Then h is a Q-wise-independent function.

4.2 Parameters

Typically, goals in constructing an unbalanced bipartite expander are to maximize the
expansion factor A, minimize the degree D, and minimize the size L of the right-
hand side (L 6 N ). Although we do not care about the concrete expansion factor
A in this work, we still expect a small L (to highly extend domains of PRFs) and
small D (to reduce computational overheads). By Theorem 5 we can fix a domain size
N = 2λ and a bound Q = poly(λ) and get an explicit expander Γ : [N ]× [D]→ [L]
where D = poly(log(N), log(Q)) and L = poly(D,Q). Consequently, the degree D is
essentially independent of Q and L is of size at most polynomial in Q.
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5 Our Quantum Pseudorandom Function

In this section, we present our constrction for a quantum PRF from bipartite expanders.
First we show how to construct a perfectly secure (or loseless) domain extender which
takes as input a small-domain classical (post-quantum) PRF and outputs a q-bounded
quantum PRF with large domain. Second we show a combiner that turns a family of
q-bounded quantum PRFs into a standard quantum PRF. Note that our proof of security
is tight: If a quantum adversary A can distinguish a quantum PRF F from truly random
function R with advantage ε, then there exists an adversary A′ which can distinguish a
small-domain PRF from a truly random function (issuing only classical queries) with
the same advantage ε.

5.1 Domain Extension

In the following we present a new domain extension technique based on bipartite
expanders. Our compiler is shown below.

Construction 1 Let PRF : Kq × Y → Z be a keyed function with key space Kq. Let
Γ : {0, 1}λ × [D] → {0, 1}l be a (6 2q, (1 − ξ)D) expander with ξ ∈ (0, 1/2). We
define the keyed function Fq : Kq ×X → Z with key space Kq by

Fq(K,x) =
⊕
j∈[D]

PRF(K,Γ (x, j)),

where K ←$Kq, D = poly(λ), l = O(log(λ)), and X : {0, 1}λ,Y : {0, 1}l,Z :
{0, 1}m.

The following theorem states that the function Fq is a q-bounded quantum PRF.

Theorem 7. Let PRF and Fq be as in Construction 1. If PRF is a post-quantum (clas-
sically secure) PRF, then Fq is a q-bounded quantum PRF. More specifically, if there
exists a q∗ 6 poly(λ) and a q∗-query quantum adversary A that distinguishes Fq∗ from
a truly random function R : X → Z with advantage ε, then there exists an efficient
quantum adversary A′ with essentially the same runtime asA that distinguish PRF from
a truly random function R′ : Y → Z with advantage at least ε.

Before delving into the proof of the main theorem, we state the following useful lemma.
Loosely speaking, we show that if a small-domain PRF is post-quantum secure6(where
the adversary is allowed to issue only classical queries), then such a PRF is also quantum
secure. Intuitively, this holds because an adversary can query classically the full domain
of the PRF in polynomial time. We stress that the counterexample of [27] does not apply
in these settings, since we consider only PRFs with small (poly-sized) domain.

6 Any small domain PRF built from symmetric primitives is post-quantum secure as long as
underling symmetric assumptions are post-quantum secure.
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Lemma 2. Let PRF be a small-domain and post-quantum secure PRF as defined in
Definition 3, then PRF is also quantum-secure as defined in Definition 5. Specifically,
if there exists an efficient quantum adversary A which can make quantum queries
to distinguish PRF : K × Y → Z from truly random function R : Y → Z with
advantage ε,where |Y| 6 poly(λ), then there exists an efficient quantum adversary
A′ (with essentially the same runtime as A) that can only make classical queries to
distinguish from PRF andR with advantage ε.

Proof. Assume that there exists an efficient (i.e., running in polynomial time) quantum
adversary A who is able to distinguish PRF from a random function R : Y → Z with
advantage ε (given quantum oracle access to PRF). We can construct a quantum adversary
A′ who only sends classical queries and breaks the security of PRF with the same
advantage. From Fact 1, any classical efficiently computable function f can be efficiently
implemented by quantum computer, thus we are able to efficiently implement a quantum
circuit which computes transformation Uf on quantum computers. Specifically, given
input states |x, y〉, where x corresponds to ‘data’ register and y corresponds to ‘target’
register, the quantum circuit corresponding to Uf would transform it into |x, y ⊕ f(x)〉,
i.e., Uf |x, y〉 = |x, y ⊕ f(x)〉. For notational convenience, we also use Uf |x〉 to denote
the state of “target” register after passing through the circuit corresponding to Uf .

Quantum AdversaryA′(1λ):
Obtain function table of T (x) by querying
O′ classically;
Construct the quantum circuit corresponding
to UT ;
b′ ← A|O(|y〉)〉;
Output b′.
Classical Oracle O′(x):
Return T (x).
Quantum Oracle O(|y〉):
Return UT |y〉.

Recall that given the description of T , then UT is efficiently computable. Furhtermore,A′
issues only polynomially-many queries, since PRF has a small domain. We can conclude
that A′ is efficient. Consider the case where T (x) = PRF(K,x), for uniformly chosen
K ←$K, then O is identically distributed to PRF. On the other hand, if T (x) = R(x)
then O is identically distributed to a truly random function. Thus it holds that

|Pr[A′PRF(K,·)(1λ) = 1]− Pr[A′R(1λ) = 1]| = |Pr[A|PRF(K,·)〉(1λ) = 1]− Pr[A|R〉(1λ) = 1]|
= ε,

which completes the proof. ut

We are now in the position of proving the main theorem of this section.

Proof (of Theorem 7). Let A be a q-query quantum adversary with advantage ε against
Fq. We are going to construct an adversary A′ with the same advantage against PRF.
Consider the following sequence of hybrids.
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– Hybrid0: This is defined exactly as the real experiment where A has oracle access
to a function

F0(x) =
⊕
j∈[D]

PRF(K,Γ (x, j)),

where K is uniformly sampled from K, x ∈ X and Γ : X × [D] → Y is a
(6 2q, (1 − ξ)D) expander as in Construction 1. A can send at most q distinct
quantum queries.

– Hybrid1: This experiment is defined as Hybrid0 except that we replace PRF with
a truly random function R : Y → Z . That is, the adversary A has oracle access to a
function

F1(x) =
⊕
j∈[D]

R(Γ (x, j)),

where Rj is a function uniformly sampled from Y to Z .
– Hybrid2: This is the ideal experiment whereA has oracle access to a truly random

function
F2(x) = R(x)

which is uniformly sampled from X to Z .

Since F0 and F2 are in real and ideal experiment, respectively, it holds that

|Pr[A|F0〉(1λ) = 1]− Pr[A|F2〉(1λ) = 1]| = ε.

Similarly, we can define two other advantages as:

|Pr[A|F0〉(1λ) = 1]− Pr[A|F1〉(1λ) = 1]| = ε0,

|Pr[A|F1〉(1λ) = 1]− Pr[A|F2〉(1λ) = 1]| = ε1.

We first show that ε1 = 0. By Construction 1 we have ξ ∈ (0, 1/2), thus we know the
expanderΓ : {0, 1}λ×[D]→ {0, 1}l is 2q-unique by Theorem 6. By Lemma 1, we know
that for all distinct (x1, . . . , x2q) ∈ X 2q , the outputs F1(x1), . . . , F1(x2q) are distributed
independently and uniformly at random, that is, Pr[F1(x1) = r1, . . . , F1(x2q) = r2q]
equals to 2−2qm.

Then by Theorem 4, we have

Pr[A|F1〉(1λ) = 1] = Pr[A|F2〉(1λ) = 1],

since for all 2q pairs (xi, ri), it holds that

Pr[F1(xi) = ri,∀i ∈ {1, . . . , 2q}] = 2−2qm

= Pr[F2(xi) = ri,∀i ∈ {1, . . . , 2q}].

This means that ε1 = 0. By triangle inequality we have

ε0 = |Pr[A|F0〉(1λ) = 1]− Pr[A|F1〉(1λ) = 1]|
> |Pr[A|F0〉(1λ) = 1]− Pr[A|F2〉(1λ) = 1]| − |Pr[A|F1〉(1λ) = 1]− Pr[A|F2〉(1λ) = 1]|
= ε− ε1
= ε.
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We are left with constructing an adversary that can distinguish a small-domain PRF from
a truly random function with advantage ε0. First we allow such an adversary to issue
quantum oracle queries. Since we could use Toffoli gates to simulate any classical circuits
in quantum settings, without losing generality, let U⊕ be a quantum circuit to compute
U⊕|x1, . . . , xD, y〉 → |x1, . . . , xD, y + (x1 ⊕ · · · ⊕ xD)〉 and UΓj be another one to
compute UΓj |x, y〉 → |x, y + Γ (x, j)〉. The adversary A′′ is defined in the following.

Quantum Adversary A′′(1λ):
For each j ∈ [D] construct the circuit UΓj ;
b′ ← A|O(|x〉)〉;
Output b′.
Quantum Oracle O′′(|x〉):
Return UT |x〉.
Quantum Oracle O(|x〉):
Return U⊕|O′′(UΓ1 |x〉), . . . ,O′′(UΓD |x〉)〉.

Note that A makes at most q distinct quantum queries (q 6 poly(λ)), thus A′′ is an
efficient quantum adversary running in polynomial time. First assume that T (x) =
PRF(K,x) for K ←$Kq , then the oracle O in A′′’s simulation is identically distributed
to F0(x). On the other hand, if T (x) = R(x) is a uniformly random function, O
computes

⊕D
j=1 R(Γ (x, j)) which is F1. Therefore we have

|Pr[A′′|PRF(K,·)〉(1λ) = 1]− Pr[A′′|R(·)〉(1λ) = 1]| = |Pr[A|F0〉(1λ) = 1]− Pr[A|F1〉(1λ) = 1]|
= ε0

> ε.

By Lemma 2 we know that there exists an adversary A′ with the same advantage ε,
which issues only classical queries, since the PRF has a small (poly-sized) domain. This
completes the proof. ut

5.2 Unbounded Queries

Finally, we show that the combiner of [12] allows us to remove the restriction on the
query bound of our quantum PRF. The innovation of our paper is that we lift the analysis
to the quantum settings.

Construction 2 Let ω(log(λ)) be a slightly super-logarithmic upperbound. For a given
parameter q, let Fq : Kq ×X → Z be a keyed function with corresponding key space
Kq . Define the function F : K ×X → Z with key space K =

∏ω(log(λ))
i=1 K2i by

F (K,x) =
ω(log(λ))⊕
i=1

F2i(K2i , x),

where K2i ←$K2i for i = 1, . . . , ω(log(λ)) and K = (K2i)i=1,...,ω(log(λ)).
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Theorem 8. Let Fq and F be as in Construction 2. If Fq is a q-bounded quantum PRF,
then F is a quantum PRF. Specifically, if A is an efficient quantum adversary against F
with advantage ε that makes at most q′ = poly(λ) distinct quantum queries, then there
exists an q∗-query quantum adversary A′ (with essentially the same runtime as A) with
advantage ε against Fq∗ , where q∗ = 2dlog(q′)e 6 2q′ = poly(λ).

Proof. Let A be an efficient quantum adversary which can send quantum superpositions
to distinguish F from a truly random function R with advantage ε, then we can construct
an efficient q∗-query quantum adversary A′ to distinguish Fq from R for some q. Since
q′ = poly(λ), we have log(q′) 6 ω(log(λ)) thus 21 6 q∗ = 2dlog(q′)e 6 poly(λ) <
2ω(log(λ)) for sufficient large λ.

Bounded Quantum Adversary A′(1λ):
Set i∗ as dlog(q′)e;
Generate K2i for i ∈
{1, . . . , ω(log(λ))}\i∗;
b′ ← A|O(|x〉)〉;
Output b′.
Quantum oracle O′(|x〉):
Return UT |x〉.
Quantum oracle O(|x〉):
Return U⊕|F21 , . . .O′(|x〉), . . . F2ω(log(λ))〉.

Where O′(|x〉) is the i∗-th element in {1, . . . , ω(log(λ))} and we write F2i(Ki, x)
as F2i to simplify the notation. Observe that q′ 6 2dlog(q′)e = q∗ 6 poly(λ) thus
A′ is able to run A as a black box and q′ queries can be handled by A′. Then we
consider distributions of different T (x). If T (x) = F2i∗ (K,x) for uniformly randomized
K ←$K2i∗ , then oracle O is identically distributed to F (K,x) for K ←$K. Otherwise,
if T (x) = R(x), then the distribution of oracle O should be uniform since O′ and other
F2i are independent, thus it will be identically distributed to R(x). Therefore it holds
that

|Pr[A′|F2i∗ 〉(1λ) = 1]− Pr[A′|R〉(1λ) = 1]| = |Pr[A|F 〉(1λ) = 1]− Pr[A|R〉(1λ) = 1]|
= ε.

which completes the proof. ut
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