Towards Closing The Security Gap of
Tweak-aNd-Tweak (TNT)

Chun Guo', Jian Guo?, Eik List?, and Ling Song®?®

1 School of Cyber Science and Technology, Shandong University, Qingdao, China
chun.guo(at)sdu.edu.cn

2 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore
guojian@ntu.edu.sg
3 Bauhaus-Universitat Weimar, Weimar, Germany
<firstname>.<lastname>(at)uni-weimar.de
4 Jinan University, Guangzhou, China
5 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
songling.qgs(at)gmail.com

Abstract. Tweakable block ciphers (TBCs) have been established as
a valuable replacement for many applications of classical block ciphers.
While several dedicated TBCs have been proposed in the previous years,
generic constructions that build a TBC from a classical block cipher
are still highly useful, for example, to reuse an existing implementation.
However, most generic constructions need an additional call to either
the block cipher or a universal hash function to process the tweak, which
limited their efficiency.

To address this deficit, Bao et al. proposed Tweak-aNd-Tweak (TNT)
at EUROCRYPT’20. Their construction chains three calls to indepen-
dent keyed permutations and adds the unmodified tweak to the state in
between the calls. They further suggested an efficient instantiation TNT-
AES that was based on round-reduced AES for each of the permutations.
Their work could prove 2n/3-bit security for their construction, where n
is the block size in bits. Though, in the absence of an upper bound, their
analysis had to consider all possible attack vectors with up to 2" time,
data, and memory. Still, closing the gap between both bounds remained
a highly interesting research question.

In this work, we show that a variant of Mennink’s distinguisher on
CLRW2 with O(y/n2°"/*) data and O(2°"/?) time from TCC’18 also
applies to TNT. We reduce its time complexity to O(v/n2°"/*), show
the existence of a second similar distinguisher, and demonstrate how to
transform the distinguisher to a key-recovery attack on TNT-AES[5, «, *]
from an impossible differential. From a constructive point of view, we
adapt the rigorous STPRP analysis of CLRW2 by Jha and Nandi to
show O(2°"/%) TPRP security for TNT. Thus, we move towards closing
the gap between the previous proof and attacks for TNT as well as its
proposed instance.

Keywords: Cryptanalysis - block cipher - tweakable block cipher - AES - im-
possible differential

1 Introduction

Tweakable Block Ciphers (TBCs) differ from classical block ciphers in
the sense that they take a public input called tweak that can increase the
security or the performance of higher-level schemes effectively, e.g., in encryp-
tion modes [KR11,PS16], MACs [IMPS17,Nail5], or in authenticated-encryption
schemes [IMPS17,JNP16]. Initially, TBCs have been built from classical block
ciphers and universal hash functions, starting with Liskov et al.’s construc-
tions [LRW02| LRW1 and LRW2. Various works enlarged the portfolio of generic
TBC constructions, e.g. the cascade CLRW2 [LST12|, Mennink’s constructions
F[1] and F[2] [Menl5], XHX [JLM*17], XHX2 [LL18|, or the constructions by
Wang et al. [IWGZT16]. These proposals processed the tweak either with a uni-
versal hash function or an additional call to the classical block cipher.

As An Alternative Approach, several works proposed dedicated TBCs in the
previous decade. In particular, the TWEAKEY framework [JNP14b] found wide
adoption, e.g. in Deoxys-BC, Joltik-BC [JNP14b|, or Skinny [BJK*16|. Though,
since TWEAKEY treats key and tweak equally, any update needs a call to
(significant parts of) the TWEAKEY schedule. However, tweak updates occur
usually considerably more frequently than key updates. For example, modes like
CTRT or ©CB3 employ a different tweak in each primitive call. Thus, performant
tweak-update functions can boost efficiency. KIASU-BC [JNP14a] or CRAFT
[BLMR19] avoid tweak schedules, but need further analysis. Moreover, some
applications cannot easily be equipped with novel dedicated TBCs but would
profit rather from efficient transformations that turn an existing block-cipher
implementation into a TBC. For this purpose, generic constructions such as
CLRW?2 are still relevant. Yet, it would be desirable if its internal hash function
could be eliminated to avoid its implementation and the storage of its keys.

Tweak-aNd-Tweak (TNT) is a recent proposal by Bao et al. [BGGS20] for
generating a TBC from three block ciphers Fx, , Ex,, Ex, : KxFy — F5, where
F5 is the Galois Field of characteristic 2 and K a non-empty set of keys. The
encryption of TNT is defined as

TNT(Ex,, Erx,, Ex,)(T, M) < Ex, (Exe, (Exc, (M) ®T) & T).

where the tweak space is 7 = 2"™. The intermediate values are illustrated in
Figure 1. We will use AM, AT, etc. to refer to the differences between two values
M and M', T and T, and so on. This extends naturally to the other variables.
Given ideal secret permutations 7y, w2, 73 € Perm(F%), where Perm(X) is the set
of all permutations over a set X', Bao et al. [BGGS20] showed that TNT is a
secure tweakable permutation for at least O(22"/3) queries.

TNT-AES instantiates the individual keyed permutations in TNT with round-
reduced variants of AES. More precisely, TNT-AES[rq, r2, 73] denotes the version
where 7; uses r; rounds of the AES, for 1 < i < 3, and the tweak matches the

<

|

2
B
5
D
2

4’0

Fig. 1: The encryption of a message M under a tweak T with TNT[r1, 72, 73].

state size of the AES, i.e. T = B = (F§)***, and n = 128. The concrete proposal
was TNT-AESI6, 6, 6] [BGGS20]. While the earlier proposal contained no explicit
claim, it suggested that TNT should be treated as a secure tweakable block cipher
for up to 0(22"/ 3) queries and TNT-AES should provide n-bit security, even in
the related-key chosen-tweak setting: “Following the proven security bound of
TNT, TNT-AES offers 2n/3-bit security, i.e., there exists no key-recovery attack,
given that the data (the combination of tweak and plaintext with no restriction
on individual input) and time complexities are bounded by 22:128/3 ~ 985 e
to the fact that there is no attack against TNT matching the 22*/3 bound, all our
security analysis against TNT-AES are following the 2" = 2'2% bound for both
data and time” [BGGS20, Sect. 5.2]. The best attack in [BGGS20] was a related-
tweak boomerang distinguisher on TNT-AES[*, 5, %] with 21 active S-boxes. The
asterisks indicate that the analysis holds for arbitrary values for r; and r3.

Contribution. This work aims at narrowing the security gap from both sides.
We show in Section 2 that a variant of Mennink’s distinguisher on CLRW?2
[Men18] also applies to TNT, which yields a theoretical TPRP (i.e., chosen-tweak,
chosen-plaintext) distinguisher in O(,/n2°"/*) time, data, and memory com-
plexity. As improvements, we reduce the complexity of Mennink’s information-
theoretic distinguisher from O(2%"/2) to O(2%"/*) computations. More precisely,
we show two similar TPRP distinguishers that we call parallel-road and cross-
road distinguishers. We use one of them to mount a partial key-recovery attack
on the instance TNT-AES[5, %,] with an impossible differential in Section 3.
Since it needs more message pairs, its complexity exceeds 0(23"/ 4) but is still
considerably below 2™ computations and data. We emphasize that we do not
break the proposed version TNT-AES[6, 6, 6] of [BGGS20].

From a constructive point of view, we show that the rigorous STPRP (i.e., chosen
plain- and ciphertext queries) analysis by Jha and Nandi on CLRW2, that showed
security for up to O(23"/4) queries, can be adapted to a TPRP proof of TNT
with similar complexity. Thus, we move a considerable step towards closing the
gap between proofs and attacks for TNT and its proposed instance.

Notation. We use uppercase characters for variables and functions, lowercase
characters for indices, calligraphic characters for sets and distributions, and sans-
serif characters for random variables. For n € N, let [n] =9¢f {1,2,...,n} and
[0.n] =9¢f {0,1,...,n}. For a bit string X € F%, let X = (X;—1Xn—2...X0)
be its individual bits. We assume that the most significant bit is the leftmost,
and the least significant bit is the rightmost bit, s.t. the integer representation

zof Xisz=),2" X,. For x < 2", we will use X = (z), as conversion of an
integer x into a m-bit string X that represents x. For non-negative integers < n
and X € F3, we will use Isb,(X) as function that returns the least significant
x bits of X and and msb,(X) to return the most significant z bits of X. (n),
denotes the falling factorial n!/(n — k)!. For non-negative integers x +y = n and
Z € F3, we will use (X,Y) <2~ Z to denote that X ||Y = Z where [X| = z

and |Y| = y. Similar to Perm, we define Isa'r/n('T7 X) as the set of all tweakable
permutations 7 : T x X — X over X with tweak space T .

Practical Implications. While an STPRP proof is desirable, the implica-
tions of higher TPRP security already provide a valuable gain for TBC-based
schemes that do not need the primitive’s inverse. Considering authenticated en-
cryption schemes, examples of such schemes include SCT [PS16], ZAE [IMPS17],
ZOTR [BGIM19], or the TBC-based variants of OTR (OTR) [Min14| and COFB
(iCOFB) [CIMN17,CIMN20]. Considering MACs, there exist various such con-
structions, e.g. ZMAC [IMPS17] and its derivates [LN17,Nail8]. The security of
those schemes is limited by the minimum of O(2™n((+6)/2)) queries and the
TPRP security of the underlying primitive. Since the latter is the bottleneck, its
improvement yields directly higher security guarantees for the schemes.

AES. We assume that the reader is familiar with the AES. We use R to refer
to the round function, X* for the state after ¢ rounds, starting with X° as the
plaintext, and K° for the initial round key. We use X{g, X, and Xj)c to refer
to the state directly after the SubBytes, ShiftRows, and MixColumns operation in
the i-th round, respectively. Moreover, X[j] refers to the j-th byte of X*. For
7 C {0,1,2,3}, we adopt the subspaces for diagonals Dz, columns Cz, inverse
(or anti-)diagonals ZDz, and mixed spaces Mz from Grassi et al. [GRR16].

2 Distinguishers on TNT

Here, we briefly describe two distinguishers on TNT with O(y/n - 23%/4) queries,
which implies an upper bound on the (query) security of TNT of at most
O(q*/(v/n-23")). Our distinguishers are illustrated in Figure 2. We do not claim
that our observations are novel. Instead, both are applications of [LNS18] and
[Men18]. The latter, however, is an information-theoretic distinguisher that uses
O(y/n-2°"/*%) queries, but the description by Mennink demands O(2%"/2) offline
operations to identify the required pairs.

We note that Sibleyras’ work [Sib20] proposes generic key-recovery attacks for
LRW2 and cascades that also hold for CLRW2. Those attacks slightly reduce
the time complexity of Mennink’s attack, but require more queries, roughly
22(n+k)/3 "and are hence in O(2") for plausible values of the key size k > n/2.

2.1 General Setup

Let M° M' € F% be two distinct messages and 7° and 7! be two sets of
q = 2°"/4+% pairwise distinct random tweaks T for 0 < j < ¢ in each set, where

Mt Mt M° M*
T T T 1
1,70 70 A0 1
M st M 51 M 50 M 51
LT | &1 I ! &1
1 71 70 5l
T U; T Ue T U; T Ue
S? ™2 S(k) T2 S? 2 Sl} 2
T —P i D17 Vi ° —P Vo b—1 vl
Uo ’ v ! UP - Ui !
: T —@ k S—1/ : 17 * &1/
71 7 70 7
2 W, - o we 2 W; T2 wi
VP 3 Vo 3 Vo 3 Vi 3
' — | DTy] ! — ! ST |
wy 1 Wy wy 0 wi
i C] k C [1 i C] k 041
3 3 3 3
} } | }
c? cy c? Cy

Fig. 2: Cross- (left) and parallel-road (right) distinguishers on TNT. Solid horizontal
lines are probabilistic equalities that hold with probability around 27" each. Dotted
lines hold either by choice or by design once the solid-line equalities are fulfilled.

T associates all tweaks with a fixed message M* for T* for i = 0, 1. We describe
two ways to combine two pairs to quartets each that differ in the way where
the messages are used. Figure 2 may illustrate why we call them parallel- and
cross-road distinguishers. For both distinguishers, we want two pairs, (M;,T;)
and (M;,T;) as well as (My, Tx) and (My, Ty), with the same tweak difference
AT ; =T, 0 T; = ATy ¢ =Ty, ® Ty, and for which C; = C; and Cj, = C;.

2.2 Cross-road Distinguisher

Here, we denote the queries and intermediate variables

— related to (M9, T?) € T also as (S, UP, V2, WP, C?),

— those related to (Ml,le) € T also as (S;, Ujl, le, le, C}),

— those related to (MY, TY) € T also as (S}, U, V2, W2, C}), and
— those related to (M, T}) € T also as (S;, U}, V!, W}, C}).

Clearly, we want ¢ # k and j # £ as well as (i,) # (k, £).

Procedure. We define two construction functions:

N def “pn/A4—g - .\ def /. n/4d—x
10() = 04 | (D)gnjate, and 71(5) = (anjate 07477

The resulting tweak structures are illustrated in Figure 3. The distinguisher
procedure is given on the left-hand side of Algorithm 1. Let § > 0 be a threshold.
The threshold depends on the desired error (and success) probability and will
be discussed in Section 3.3. The distinguisher can be described as:

Algorithm 1 Distinguishers on TNT.

11: function crossRoAD 11: function PARALLELROAD

12: K « F% 12: K « F%

13: M° « F3 13: M° « F3

14: M' « F3p 14: M' « Fy

15: coll + 0 15: coll+ 0

16: L+« [] x [0..2" —1] > 2" elements | 16: L+ [x [0.2" —1] > 2" elements

17: D+ 0x[0.2" —1] > 2" elements | 17: D+« 0x[0..2" —1] > 2" elements

18: for i+ 0..¢— 1 do > q iterations | 18: for i <~ 0..¢ —1do © g iterations

19: T « To(i) 19: T + 7o(d)

20: CY « Ex (TP, M°) 20: C? « Ex(T?, M°)

21: LIC?) & {12} 21: for all 7} in L£[CY] do

22: for j <+ 0..q—1do > q iterations 22: ATEJ é_ T’ ® TJQ o

23: T} () 23: D[ATY,] + D[ATY;] + 1

24: Ch Ex (T} MY) 24: LICO] & {10}

25: coll + coll+findNumColls(£, D, T}, C}) | 25: £ « [x[0..2" —1] > 2" elements

26: return coll > 0 26: for k< 0..gq—1do » g iterations
— 27: T} — 71(k)

31: function FINDNuMCoLLS(L, D, T}, C}) 28: Ct + Ex(Tg, M)

32: ¢« 0 29: for all T} in £[C}] do

33: for all 7} in £[C}] do 30: > 2/ calls over all executions

34: > 2™/2 calls over all executions | 31: AT)&,@ <~ Tkl 52 Tzl

35 AT, T? & T} 32: coll « coll + D[AT}]

36: ¢ c+ DIAT;] 33 L[Ch] {1}

3 DIAT: ;] « D[ATi] +1 34: return coll >0

38: return c

1. Initialize two lists £ and D and initialize a counter coll = 0.
2. Forie[0..¢—1]:

— Use 70(i) as tweak-construction function to generate queries (MY T7?).

Encrypt them to obtain C? «+ Ex (T, M?). Insert T? to L[CY].
3. For j € [0..g — 1]:

— Use 71(j) as tweak-construction function to generate queries (M',T}).

Encrypt them to obtain Cj < Ex (T}, M*).
4. For each T € L[C]]:

— Derive AT; j = T @ T}. Derive the number of pairs (T, T}) with the
same tweak difference from D[AT; ;], add this number ¢ to the total
number of colliding quartets, coll, and increment D[AT; ;.

5. If coll > 6, return “real” and “random” otherwise.

Since the i-th and k-th query share the same message MY, it follows that SY =
S?2: a similar argument holds from M jl = M} to S} = S}. With probability
27", it holds that SY & S} = TP @ T}}. In this case, it follows that U? = U}.
By combination, there exist approximately (237/4t%)2.1/(2" — 1) ~ 27/2+2®
ordered collision pairs U? = U} between (M°,T?) and (M',T}). There exist
(23n/4Fe — 1)2.1/(2" — 1) ~ 2"/272% ordered collision pairs Uy = U} between
(M°,T?) and (M*, le). Note that this is a conditional probability; since SP = S?
and S} = Sy, it follows from T ® T} = S) ® S} that T) & T} = T ® T;. Those

n
Z—z 4 g
P T " T
04| (&)
L TEL
" 4+ 2z "
) %=
et

Fig. 3: Construction of the tweak sets.

will be mapped to V? = V;' and V) = V}'. Thus, by combination, there are

(T/Zﬁz) ~ 27421 pairs of pairs (quartets) with T ® T} and T} @ T}". With
probability 27", a quartet has V. ® V! = TQ @ le, which implies W2 = W]Q.

Since V;? = V! and V}) = V}!, this implies that W}’ = W/} also holds. We obtain

2n/2+2m
(",

) .27 ~ 291 quartets.

Similarly, we expect (237/4F%)2. 277 ~ 91/2+2% pairs CY = C} formed by acci-
dent, which can be combined to

2n/2+2m
(5) .27 ~ 2971 quartets.
For a random tweakable permutation, only the latter events occur, whereas we
have two sources in the real world. Thus, we can expect twice as many quartets
in the real construction compared to the ideal world.

Experimental Verification. To improve the understanding, we followed Men-
nink’s approach and also implemented the distinguisher for small permutations.
We used TNT with three independent instances of Small-PRESENT-n [Leal0],
the small-scale variants of PRESENT [BKL"07], with the original key schedule
of PRESENT as proposed there, where the original round keys K*? are truncated
to their rightmost (least significant) n bits for n € {16, 20,24}. We employed the
full 31 rounds as for the original PRESENT cipher. For the real construction, we
sampled uniformly and independently 1000 random keys, one per experiment,
and two random messages. The tweaks were constructed as in Figure 3. For the
ideal world, we sampled the ciphertexts uniformly and independently at random
and verified that no message-pair for the same tweak amid any experiment col-
lides. The results of our implementation are summarized in Table 1a. The source
code of all experiments can be found freely available to the public.’

6 https://gitlab.com/elist/tnt

https://gitlab.com/elist/tnt

Table 1: Average #quartets for TNT with Small-PRESENT-n as permutations ;
(“real”) and pseudorandom sampling (“ideal”) over 1000 experiments with random keys,
two random messages, and 2° tweaks per message in each experiment.

(a) Cross-road distinguisher.

n t Ideal Real n t Ideal Real n t Ideal Real

16 11 0.026 0.061 20 14 0.032 0.055 24 17 0.034 0.066
16 12 0.485 1.009 20 15 0.494 0.960 24 18 0.482 1.009
16 13 7.967 15970 20 16 8.087 16.162 24 19 7979 16.174
16 14 127.458 255.133 20 17 128.057 255.739 24 20 127.941 255.661

(b) Parallel-road distinguisher.

n t Ideal Real n t Ideal Real n t Ideal Real

16 11 0.015 0.050 20 14 0.024 0.067 24 17 0.016 0.063
16 12 0.232 0.787 20 15 0274 0.749 24 18 0.233 0.726
16 13 4.0v6 12.127 20 16 3.892 11.952 24 19 4.016 12.170
16 14 64.274 192.275 20 17 64.405 191.398 24 20 63.686 191.599

2.3 Parallel-road Distinguisher

Our second distinguisher is described in the right-hand side of Algorithm 1 and
is illustrated on the right-hand side of Figure 2. The core difference is the choice
of sets for collisions. While the first distinguisher used collisions from different
messages, the second one uses collisions from ciphertexts from the same set.
Here, we denote the queries and intermediate variables

related to (M°,T?) € TV also as (SY, U?, ...),

those related to (M?,T}) € T° also as (57, U?, ...),

— those related to (M, T}) € T* also as (S}, U%, ...), and
— those related to (M*,T}) € T1 also as (S}, Uy, ...).

By combination, we obtain about (237/4%)2. 277 ~ 2n/2+2% collisions U = U}
between (MY T) and (M*',T}), and the approximately same number of col-
lisions Uj = U; between (M',T}) and (M',T}). Those will be mapped to

VP =V} and V) = V/!. We can form (2n/z+2z) ~ 2" +4e=1 pairs of pairs (quar-
tets). With probability 27", a quartet has V? @ V) = T @ T}, which implies
W =W, Since V;? = V}! and V}! = V}!, it follows that W)} = W/ holds. Thus,
we obtain 24*~! quartets. Moreover, we expect (23n;4+1) 27 e Qn/2420—1 g

CY = C? that are formed randomly and can be combined with 27/2+2%=1 pajrs
C} = C}. We obtain

(2/2F2e=1)2 971 ~ 9422 quartets (1)

Algorithm 2 More efficient variant of the parallel-road distinguisher on TNT.

11: function PARALLELROAD 28: L+ [x [0..q — 1] > g elements
12: K « F% 29: for k < 0..¢ — 1 do > g iterations
130 M° « T3 30: Ty < 7i(k)
14: M' « F% 31: C} « Ex (T, MY)
15: coll+0 32: (b, ¢l) n/4,3n/4 cl
16: L+ [x[0..¢ —1] > gelements | g3. g a1 (T}, b} in L[cl] do
17: D - I x[0..g—1] > q-elemfznts 34 if bl = b} then >CL=Cl
18: for i<+ 0..¢q—1do b g iterations 35 AT,if - Tkl ® T[l
19: TP 70(i) 11\ n/dsn/a h
20: CY « Ex (TP, M°) 36: (Sk,l:tkj[)) ATy, , :
21 () L o s forallsy mDliddo > AT, = ATy,
22: for all (T?,b?) in L[c?] do 39. ol — el +1
23: if Y =50 then > CP=CY : 18 ol g1
2. ATO, 10 & TO i(l) f[Ck] <_”{(>Tx;7 b))}
: return co
25: (s9,,19) L2 AT, =
26: D[] & {s2,}
27 L] {10, 00)}

formed at random. In sum, this yields
o4r—1 4 ofz=2 _ 3. 9422 quartets

in the real construction, which implies that we can expect roughly three times
as many quartets in the real construction compared to a random tweakable
permutation wherin only the latter events occur.

Experimental Verification. We implemented the distinguisher with Small-
PRESENT and state and tweak sizes of n € {16,20,24} bits. The results are
summarized in Table 1b.

2.4 Efficiency

Mennink’s [Men18] distinguisher evaluated the number of quartets for each tweak
difference A € F}. From the choice of pairs given 7 and 71, there existed 2"/2+2®
possible pairs (C?, le) for each tweak difference. Thus, the naive way needed
1.1/ 2+2% o ()(237/242%) gperations to exhaust all 2" possible tweak differences.
To reduce the computational complexity below O(2"), we give an improved
description of the parallel-road distinguisher.

The lists £ and D needed to reserve 2™ cells each, which was the bottleneck.
To reduce the complexity, we shrink £ to a list of 237/4 sub-lists, where £[z]
holds a sub-list of tweaks T} s. t. Isbs, /4(CY) = ()3,/4. This means that we
truncate the n/4 most significant bits (MSB) of C?. Additionally, we store also
the n/4 truncated bits as part of the entry: (T}, msb,, /4(C?)). Similarly, we no
longer store a list of 2" counters in D. Instead, each entry will be a sub-list of full
tweak differences. Thus, D[z] contains 23"/* slots, where AT} ; is stored in the
sub-list at location Isbs,, /4 (AT; ;) = (x)3,/4. Clearly, the length of the sub-list
at D[z] equals the previous counter value that was stored in D[z] before.

AT
WY
0
K AT =MC\ T 77
0 7/ |7 sk 747477 1 RAZR 4
i R R [/ R IV Y ARV LAV | (sBo SR T DOPTT (77
2 lrz (U 7%z 24777 77 2424 \pe—1
1 2 4 5 5
AXO AX AX AX3 AX AXER AX® = AU

Fig. 4: Key recovery and impossible differential trail through 1 4+ 4 rounds of AES.
Hatched bytes are active; filled bytes are targeted key bytes; indices in bytes denote
that a set index is encoded into them.

On average, Line 22 of Algorithm 2 is called

(23n/4+m

. 2—3n/4 ~ 23n/4+2;ﬂ—1
)

times. The second test in the if-statement on n/4 bits is fulfilled in about
2n/2+22=1 (alls. Thus, the first loop from Line 18 in Algorithm 2 has roughly
231/4+22 gherations on average. A similar argument holds for the second test in
Line 33 of Algorithm 2. Thus, the second outer loop over ¢ tweaks from Line 29
of Algorithm 2 also contains roughly 23"/4+2% gperations on average. More de-
tailed, the first 3n/4-bit filter reduces again the number of pairs

(23n/4+z

. 27371/4 ~ 23n/4+2x71
9 ~

times. The second test in the if-statement on n/4 bits is fulfilled in 27/2+22—1
times on average. The 3n/4-bit tweak-difference filter lets the check in Line 34 in
Algorithm 2 be successful 2/4+42=2 times for (23"/4+22=1)2 pairs. Thus, it will
be called at most 237/4+ 4 9n/2+2w 4 gn/4+42-2 44 the overall computational
complexity is in O(257/4+2%),

3 An Impossible-differential Attack on TNT-AES[5, *, %]

We combine the well-known impossible differential on four-round AES for key-
recovery attacks on versions of TNT-AES. We describe the key-recovery phase
in the first round and both key recovery and impossible differential in 7.

3.1 Core Idea

The core idea is based on the following assumption. The O(y/n-2%"/*)-distingui-
sher works iff we can find pairs that collide in U. Let us consider the parallel-road
distinguisher. It needs pairs (M°, M) whose difference 71 (M°) @ (M) = S°®
St equals the difference of their corresponding tweaks: SO @ S = TP @ T*, which
implies that U° = U!. The adversary can choose differences AT of its choice as

well as plaintexts with certain input differences. If it can manage to exclude that
AT occurs for the message inputs of its choice, then, the distinguisher cannot
happen. This implies that U°? # U? for all choices of M° and M!. As a result,
the values V2, Vjo, V,Cl7 Vél are pairwise unique for each quartet and the number
of colliding pairs will then match that of a random tweakable permutation.

For this purpose, the adversary considers tweaks such that their differences AT
are output differences of an impossible differential. Then, each correct quartet
from the distinguisher is possible only if the message was not encrypted through
the first (few) round(s) to an input difference of the impossible differential, which
allows discarding all keys that would have encrypted it in this way. We need a
sufficient number of pairs such that for all key candidates, we will expect a
correct quartet (for TNT-AES), except for the correct key.

We use the impossible differential from Figure 4, where AXg - (the difference
after five rounds) is identical to AT. Let Z = {0,1,2} and let Mz denote the
mixed space after applying MixColumns to a vector space that is active in the
first three inverse diagonals (cf. [GRR16]). Our choice leaves a space of 29 — 1
differences for AT € Mz and call T the space of desired tweak differences.

3.2 Messages

We need message pairs with the impossible difference after m;. Since the dif-
ference has 32 zero bits, a zero difference in the rightmost inverse diagonal has
a probability of 2732, We try to recover K°[0,5,10,15]. For a message pair
(M, M7) that produces the impossible difference after 7y, we can discard all
key candidates that would lead to a difference of AX! =df R(M?) @ R(M7)
that is active in only a single byte after the first round. On average, there exist
4 .28 = 210 possible output differences AX!. Since M* @ M7 is fixed, approxi-
mately one input-output mapping exists for the AES S-box on average. Hence,
210 keys produce an impossible AX! on average and can be discarded. Assuming
that the discarded keys are uniformly randomly and independently distributed,
the probability that a key candidate can be discarded from a given pair (M?, M7)
is 2722, Under standard assumptions, we need Npairs Pairs to reduce the number
of key candidates to 2327?, where a is the advantage in bits:

(1 — 2722)Neais < 97 (2)

Equation (2) yields approximately 22347, 224:47 92547 'and 22647 pecessary mes-
sage pairs that fulfill the impossible difference after m; to obtain an advantage
of a = 4, 8, 16, and 32 bits, respectively. If we fix the position of the inactive
diagonal, we need 22647 . 232 ~ 25847 meggage pairs, or 2 - 22924 ~ 23024 pajr-
wise distinct messages. The number of message pairs with less than four active
input bytes is negligible. We define 2% ~ [229-24]. We employ a space of a single
plaintext diagonal, where we can focus on the first diagonal Dy¢y. The remaining
diagonals are fixed to constants. We want a certain tweak difference that is zero
in the final inverse diagonal. We add computational effort by choosing many
messages that we partially compensate for by fixing those 32 bits to constants
in all tweaks and define v =9 n — 32 = 96 for the AES.

n
Lz Ltz
- > . ‘ >
04| (&) 032
i L 4o2p "
I ; I r_ 32
L) |loa™*® 0
g r-z

Fig. 5: Encoding the indices 7 and j into the tweaks to build the tweak sets T and
T? corresponding to the messages M* and M”.

Expected Number of Pairs. To each message M?, we associate a tweak set
T, where we use the same tweaks for each message. Among the pairs in a single
set (M, T?) and (M, T7), the probability for C* = (7 is approximately 2.
Using 2! tweaks in a set, we obtain (2;) 27" ~ 228711 pairs. Given two messages
that do not have the desired tweak difference after 71, we can combine the pairs,
where each pair collides in its ciphertexts, to (22/~"71)? quartets, which have
the correct tweak difference after 7 with probability 23"%/4 = 2796, Thus, the
number of quartets become

(22t7n71)2 .9=3n/4 o, 9dt—11n/d—2 9dt—354 (3)

For messages that produce the desired difference after 71, i.e., have 32 zero bits
in the rightmost inverse diagonal, we can form 2t - 2t . 2737/4 ~ 92t=3n/4 pairg
after m; since only the 96-bit tweak difference must match that of the message
difference at that point. From those pairs, we can build quartets that collide
with probability 27" after 5. Thus, the number of quartets becomes

<22t3n/4

5 > N L 24t75n/271 ~ 24t7321 . (4)

Note that the number of quartets in Equation (3) differs significantly from the
24772 of Equation (1) since we restrict the valid tweak differences. Here, we need
more message pairs so that enough of them possess the desired 32-bit condition
of the zero-difference anti-diagonal after m;. Thus, the here-proposed attack is
less efficient but allows us to recover a part of the secret key.

3.3 Success Probability, Advantage, and Data Complexity

Samajder and Sarkar [SS17] gave rigorous upper bounds on the data complex-
ities for differential and linear cryptanalysis that improved previous results.
For the parallel-road distinguisher, 2 - 2t message-tweak tuples in total produce
94t=bn/2—1 4 9dt—11n/4=2 qyartets for the real world, and 24 ~11"/4=2 quartets in
the ideal world on average. Thus, we can define for the probability of quartets

—321 —354 —354
Peor = 2 +2 and pwrong > 2 .

Let 6 be a threshold and Hy be the hypothesis that a given message pair M*, M7
has the 32-bit zero difference after 71 in the rightmost anti-diagonal. We say that
o holds if N;ujartets > 0. Otherwise, we reject Hy.
Let a =d¢f Plr[Nun‘.,rtets < O|M* @ M7 € T] be the Type-I error, i.e., a pair with
correct difference has too few quartets. This event is not essential, but yields more
surviving wrong key candidates. Let § =d°f Pr[Né[fartets > 0|Mid M) ¢ T) be
the Type-II error, i.e., a pair with wrong difference after 7 has more quartets
than the threshold and is incorrectly classified as correct. The latter event is
crucial since the pair might suggest the correct key as wrong and the attack will
fail. Therefore, the success probability is given by

1-Y P [e > 9} 2R < (258 AT pr [quartets > 9} .2—22) .

i<j

Thus, 3 should be far below 2736, From [SS17, Proposition 5.1|, it follows that
the number of quartets (for each message pair) should fulfill

(x/pcor In (1) + \/pwrong 1n)

pcor pwrong

(5)

Nquartets =

Since the distinguisher produces Nguartets = 24=2 quartets, we can derive t =
(logs(Nquartets) + 2)/4. Results of ¢ for plausible values of @ and 8 are listed in
Table 2. For Hypothesis 3, Samajder and Sarkar [SS17] suggest a threshold of

2
0= \/3Nquartets * Pwrong * In y

which is given in Table 2 for the sake of simplicity. Equation (5) targets single-
differential key-recovery attacks.

Remark 1. We point out that Samajder and Sarkar also studied an upper bound
for the data complexity of distinguishers in [SS17, Proposition 8.1]:

v21n (P%)
2(D(P[|Q)+D(QP))?

Though, [SS17, Sect. 10] showed that Equation (5) yields a better upper bound
for single-differential cryptanalysis. Details can be found in their work.

(6)

Nquartets Z

Data Complexity. Choosing a sufficiently high threshold for the number of
quartets allows identifying message pairs with the desired difference after 7.
Only those pairs are needed for subkey filtering. ¢t = 83.39 gives approximately
212:56 quartets on average, which implies 2 - 22924 . 283:39 ~ 9113.63 1yegqa0es,

We employ Mennink’s way of constructing tweaks. In each set, the tweaks iterate
over 28339 values in the leftmost three anti-diagonals in the state X2z before

Table 2: Logarithmic data complexity per set ¢t and logarithmic threshold values 6 for
varying error probabilities.

— log,(8) /log, ()

—log, () 38 39 41 45 53 69

1 80.882/— 80.882/— 80.882/— 80.882/— 80.882/— 80.882/—
2 81.382/—0.201 81.382/—0.201 81.382/—0.201 81.382/—0.201 81.382/—0.200 81.382/—0.200
4 81.882/3.204 81.882/3.204 81.882/3.204 81.882/3.204 81.882/3.204 81.882/3.204
8 82.382/5.730 82.382/5.730 82.382/5.730 82.382/5.730 82.382/5.730 82.382/5.730
16 82.882/8.012 82.882/8.012 82.882/8.012 82.882/8.012 82.882/8.012 82.882/8.012
32 83.382/10.183 83.382/10.183 83.382/10.183 83.382/10.183 83.382/10.183 83.382/10.183

the MixColumns operation of Round 5 is applied to each tweak. We define that
po(i) = Zgss — (Fas)**4 encodes the integer i into the 12 bytes 0, 1, 2, 4, 5, 7, 8,

10,

11, 13, 14, 15, from most to least significant bits and define p1(j) : Zosa —

(Fas)**% encodes (j < 12) (left shift by 12 bits) into the 12 bytes 0, 1, 2, 4, 5,
7,8,10,11, 13, 14 , 15, from most to least significant bits. This is illustrated in

Figures 4 and 5. In total, we need 2 - 2°

-2t ~ 2113.63 megsage-tweak pairs.

3.4 Procedure

The attack proceeds as follows:

1.

Zeroize 2% counters Né[ﬂ.,rtets, and prepare lists £°, DY, £, and D!. Initialize
a list K of 232 true flags that represent the values of K°[0,5,10,15].

. Construct the messages M® and tweak sets T* as described above and ask

for the encryption of all tweak-message tuples. Each message-tweak set can
be considered separately.

. For 2° messages M 0<i<?25

3.1 Call the first loop of the parallel-road distinguisher. For tweak set 77,
store the results into £07[c)"], for all 0 < k < 2¢. The 22"~ pairs are
stored in D%,

. For 2° messages M7, 25 < j < 25+1:

4.1 Call the second loop of the parallel-road distinguisher and store their
results into £17 [c,lc’]] for each tweak set 77 and 0 < k < 2!. On average,
22—n—1 ciphertext pairs per tweak set need lookups in D7,

4.2 For each message M

i. Look up D% for matches of the tweak difference. Increase the counter

N;[fartets if there are matches.

. For all counters N;[,jartets that are above the threshold 6, derive the 4-28 ~ 210

round-key candidates K°[0, 5, 10, 15] that would encrypt M@ M to a single-
byte difference after the first round.

. For all round-key candidates set the corresponding entry in K to false.
. Output the entries of IC that are still marked as true.

N

K AT:MC(”)

NN
N

7
io /
i1 —
iz

AX° AX! AX? AX? AX* AXSr AX® = AU

7
z

7
z -1
5 R

Z

22 | (sBosry—1 |0 | meTt
A
S 77

7

SYSSRY
INVENNNN
SYSIRY
N
N

A 77 77| b

Fig. 6: Key recovery and impossible differential trail through 1 + 4 rounds of SMALL-
AES 36. Hatched bytes are active; filled bytes are targeted key bytes; indices in bytes
denote that a set index is encoded into them.

3.5 Computational and Memory Complexity

The total computational complexity is given by
0 9.929.24 98339 o 9113.63

—_

encryptions.

2. About 229:24. 28339 ~ 9112:63 memory insertions and lookups to obtain all
pairs of equal ciphertexts in the sets 7% that are used to fill D%,

3. About 22924 . 28339 ~ 2112:63 memory insertions and lookups to obtain all
pairs of equal ciphertexts in the sets 717,

4. About 2% - 22t—1-7 ~ 929.24, 92:83.39-1-128 ~ 967 |nokups into the sets DO,

5. We expect to have an advantage of at least a ~ 32 bits. Thus, there will be
at most 26 remaining key candidates on average.

Thus, we have 2113:63 4 9296 ~ 9113.63 opcryptions and 2112:63 4 2112:63 4 980.1 ~
2113-63 memory accesses. The memory complexity is upper bounded by storing
2112:63 ciphertext-tweak tuples in the lists £%% and £/ each and the same
amount of tweak differences in D%? and D/, which is upper bounded by the
memory for 213:63 states and 232 key candidates.

3.6 Experiments

For verification purposes, we considered a reduced version of the AES. A natural
starting point is the 64-bit version, SMALL-AES [CMRO05]|, where each cell is
an element in Fys. Since the complexity of O(2°"/*) = O(2*®%) operations and
memory, multiplied by 100 keys is still hardly feasible, we reduced the cipher
further to a 3 x 3-matrix structure of cells with 36-bit state, which we will
denote as SMALL-AES36. We borrow almost all components from SMALL-AES,
except for the MixColumns operation. In SMALL-AES36, MixColumns employs
the circulant MDS matrix circ(1, 1, 2), with elements in the field Fas /p(x) with
p(x) = (x* + x + 1). We verified that the matrix is MDS in the given field with
a python script.

The key-recovery phase targets the first diagonal of the first round key KV.
We iterate over all 2'2 messages of the first diagonal and consider all mes-
sage pairs (M?, M7) for distinct i,j that yield more than @ collisions for fil-
tering. Each set 759 employs 2¢ tweaks. Again, we use a variant of Mennink’s
tweak encoding: The t-bit tweaks (i)os = (ig,%1,1%2,13,1%4,%5) are encoded as
MC(ig, i1, 0, 42,0,143, 0,14, i5) in the cells 0-8, as shown in Figure 6.

Key recovery

2

#Pairs I o a

o

32 2897.14 128.49 0.50
64 2025.67 131.33 1.02
128 99278 90.57 2.04
256 234.67 38.19 4.13
384 57.34 13.82 6.16
512 1444 525 815
640 471 230 9.76
211 768 1.85 097 1111
| | | | | | 896 1.34 0.66 11.58
2 2 27 2 2 2 1024 1.09 028 11.88

Number of pairs

2
s

2,
L

Remaining key candidates

9

Fig. 7: Mean (1) and standard deviation (o) for the number of key candidates, as well
as the advantage in bits (a), for 100 experiments of SMALL-AES36 each with varying
numbers of message pairs with the desired difference AT after w1 and random keys.

Expected Number of Messages. We experimented with varying numbers
of message pairs that fulfilled the desired tweak differences AT. The results
are illustrated in Figure 7. We experimented with 1000 random keys and 2'2
messages that iterated over all values of the first diagonal and used a random
value of the other cells. On average, we observed approximately 2'''! message
pairs with the desired difference after 7;, which yielded a probability of 27119 ~
212 that matches our expectation since we have 12 bit conditions in AXEg.

Expected Number of Quartets. The distribution of quartets among message
pairs with and without the desired difference is shown in Table 3.

Recall Equations (3) and (4). In our reduced AES version, we have a 24-
bit tweak space, which must replace the 3n/4 terms in those equations. In the
following, we use 2¢ = 2247 First, assume that ¢ < 24 for a message pair that

does not fulfill the correct difference after 7. Then, we can combine (2;) tweaks
pairs for one message and obtain 27" pairs that collide in their ciphertexts. We
can combine those pairs for both messages to quartets, and have a probability
of 272% that the tweak differences match for both pairs. If ¢ > 24, we have
(224;2) -27™ pairs per message whose ciphertexts collide. Building quartets, their

tweak differences will match with probability 27% - 2724, Hence, we obtain

(22t—n—1)2 . 2—1—24 ~ 24t—96—2—1} ~ 2415—98—;3 otherwise. (7)

{(22tn1)2 .9—24 A 94t—96—2 ~, 94t—98 if t <24
For a message pair that produces the desired difference after 71, we have 2% .
2t=% tweaks in their tweak sets that lead to a collision with probability 2724
after 71, and thus to 2%#~22=24 pairs. Note that we can combine only the tweak
sets that share the same 12-bit value in the anti-diagonal MC™*(AT)[2, 4, 6]. If
t = 24+ for non-negative z, there are 2% times such pairs on average: 2%—2¢-24

Table 3: Probabilities (1) and standard deviations (o) for #quartets of messages with
the desired difference after 71, from m experiments with random keys each and 2°
distinct tweaks per message.

With desired difference?

With Without

t m log,(p) logy (o) log,(p) logy(o)

22 10000 2.994 1.511 -10.480 —5.241
23 1000 6.997 3.550 —6.158 —2.991
24 100 11.005 5.502 —1.837 —0.907
25 100 12.998 6.479 1.233 0.664
26 100 15.001 7.437 3.986 2.097
27 100 17.002 8.395 6.987 3.497

for every value in the anti-diagonal, assuming 27 is integer. Thus, we have

2
T 52t—2x—24 _ _ _AR_2A_ _ _
(2 2)) . 9= ~ 94t—22-48-36—1 ~, 94t—27—85

(8)

(22“24) 9=~ 94t—48—36—1 ~, 94t—85 if t <24
otherwise.

quartets. For the messages with the desired difference after 71, we observe ap-
proximately 23, 27, 211 213 215 and 217 quartets with the standard deviation
matching about the square root, for 2¢ message-tweak tuples per message, and
t € {22,...,27}. This matches our expectations in Equation (8) including the
break at t = 24. For t < 24, one can observe an increasing factor of 2* quartets
for each increment of ¢, which becomes 22 for ¢ > 24.

For message pairs without the desired difference after 71, the numbers of quartets
are far below those of pairs with the desired difference, with means of 2710, 276,
272 2! and 2%, and 27. Again, the factor from ¢ to t + 1 changes from 2% if
t < 24, to a factor of 22 times more quartets from ¢ to ¢t + 1 when t > 24, as
expected.

The standard deviations are about the square root of the expectations, which
matches Bernoulli distributions. The major insight is that the gap in the number
of quartets is huge enough — in the order of 2'3, 212, and 2! for t = 24, 25,26 —
to reasonably choose a threshold and not have a single non-desired message pair
that could mistakenly filter out the correct partial key.

4 Provable Security Preliminaries

4.1 Provable Security Notations

Given a sequence X = (Xi, ..., X,), we use X? to indicate that it consists

of ¢ elements; X7 = {X,... , X4} denotes their set and p(X9?,X) the multi-
plicity of an element X in X7 For an index set Z C [¢] and X9, X% =def

(X;)icz. For a pair of sequences X9 and Y94, (X?,)?) denotes the two-ary
g-tuple ((X1,Y1),...,(Xq,Yy)). An n-ary g-tuple is defined naturally. A two-
ary tuple (X9,)?) is said to be permutation-compatible, denoted as X7 e«
Yo iff X; = X; © Y, = Y;. A three-ary tuple (77, X%)?) is said to be
tweakable-permutation-compatible, denoted as (79, X'9) «~s (79, Y9), iff (T}, X;)
= (1}, X;) & (1;,Y;) = (1},Y;). For any function F : X —) and X9, F(X?)
denotes (F'(X;),...,F(X,)). For a set X, X « X means that X is sampled
uniformly at random and independently from other variables from X'. Moreover,
let 3* mean “there exist distinct”.

A distinguisher A is an algorithm that tries to distinguish between two worlds
Oreal and Ojgea via black-box interaction with one of them chosen randomly and
invisible from A. At the end of its interaction, A has to output a decision bit.
Adve,, .0, (A) denotes the advantage of A to distinguish between both. We
consider information-theoretic distinguishers that are bounded only in terms of
the number of queries and message material that they can ask to the available or-
acles. Advy, .o (q) =% maxa {Advy,, .0 (A)} denotes the maximum
of advantages over all possible adversaries A that are allowed to ask at most ¢
queries to its oracles. Later, we exclude trivial distinguishers, i.e., distinguishers
who ask duplicate queries or queries to which the answer is already known.

4.2 Expectation Method

Let A be a computationally unbounded deterministic distinguisher that tries to
distinguish between a real world Oye,1 and an ideal world Ojgear. The queries and
responses of the interaction of A with its oracles are collected in a transcript
7. It may also contain additional information which would make the adversary
only stronger. By ©,¢a and Ojqeal, we denote random variables for the transcript
when A interacts with the real world or the ideal world, respectively. Since A
is deterministic, the probability of A’s decision depends only on the oracle and
the transcript. A transcript 7 is called attainable if its probability in the ideal
world is non-zero.

The expectation method is a generalization of the popular H-coefficient method
by Patarin [Pat08|], which is a simple corollary of the following result.

Lemma 1 (Expectation Method [HT16]). Let {2 be a set of all transcripts
that can be partitioned into two disjoint non-empty sets of good transcripts,
GooDT and bad transcripts, BADT. For some ¢paq > 0 and a non-negative
function €patio : 2 — [0,00), suppose Pr[@igeal € BADT] < €pag and for any
7 € GooDT, it holds that Pr[Grea1 = 7]/ Pr[Oideal = 7] > 1 — €ratio- Then, for
any distinguisher A that tries to distinguish between Oyeq and Ojgeal, it holds:

Advoideaﬁoreal (A) S €bad + E [eratio(eidcal)] .

4.3 Mirror Theory

Patarin [Pat10] defined the Mirror Theory as an approach to estimate the
number of solutions of a linear system of equalities and linear inequalities in

cyclic groups. He followed a recursive sophisticated proof [Pat08,Pat10] that was
brought to the attention of a wider audience by Mennink and Neves [MN17]. Jha
and Nandi [JN20] revisited it for a tight proof of CLRW2 [LRW02]. We follow
their description that itself referred to Mennink and Neves’ interpretation of the
Mirror theory. For ¢ > 1, let £ be a system of linear equations of the form

{el:UléBVl:)\l, ceey quUqEBV:Z:)\q},

where U; and V; are the unknowns, \; the knowns, and U;, V;, A; € F5. We denote

their sets as 47 and V1, respectively. Moreover, L contains a set of inequalities

that uniquely determine U4 and Vq respectively. We assume that u4 and Ve

are indexed in arbitrary order by index sets [g,] and [g,], where ¢, = |i{?] and
= |1A)q|. Then, we can define two surjective index maps

oy JA 7 lad oy A=l
“ i iffU =T Ylis itV =V

Thus, £ is uniquely determined by (¢, @u, A?) and vice versa. Let G(L£) =
([gu], [g0], €) be a labeled bipartite graph corresponding to £, where

€ L (uli), pu (i), M) i € [g)}

is the set of edges and \; the edge labels. Thus, each equation in £ corresponds
to a unique labeled edge if there exist no duplicate equations in £. We need three
definitions to use the fundamental theorem of the Mirror Theory.

def

Definition 1 (Cycle-freeness). We call L cycle-free iff G(L£) is acyclic.

Definition 2 (Maximal Block Size). Two equations e; and e; for distinct 1, j
are in the same component iff the corresponding edges (vertices) in G(£) are in
the same graph component. The size of any component C € £, denoted £(C), is
given by the number of vertices in the corresponding component of G(L£). The
maximal component size of G(£) is denoted by &max (L) or short by &max-

Definition 3 (Non-degeneracy). L is called non-degenerate iff there exists
no path of length > 2 in G(£) such that the labels along its edges sum to zero.

Theorem 1 (Fundamental Theorem of the Mirror Theory [Pat10]).

Let £ be a system of equations over the unknowns (U7, V?) that is (i) cycle-free,

(ii) non-degenerate, and (iii) possesses a maximal component size of {yax with
2w 'Max{qu, g} < 2". Then, the number of solutions (Ui, ...,Uq,, Vi,...,Vq,)

of L, denoted as hg, such that U; # U; and V; # V; for all ¢ # j, satisfies

(2"),, - (2")

h, > qu v . 9
q = (2n)q ()

hq is multiplied by a factor of (1 — ¢€) for some € > 0 at the end. For £ > 2 and

€ > 0, we denote as the (§, €)-restricted Mirror-Theory theorem the variant with

§max = § and hy > (1 —¢€) - hy, where hj is the right-hand side of Equation (9).

4.4 Transcript Graph

For TNT, a transcript 7 will consist of the queries and responses (T}, M;, C;) as
well as intermediate values. We will later use a transcript of TNT as the tuple
of tuples (749, M4, C4, X%, Y9, V9) that will collect the values T;, M;, etc.,
for 1 < ¢ < g, respectively. The roles of the individual variables are shown in
Figure 9.

Given a transcript 7, a transcript graph is a graph-isomorphic unique bipartite
representation of the mappings in 7. For our purpose, the relevant transcript
graph will reflect the mappings of A7 and U9. The transcript 7 is therefore
isomorphic to a graph on (X9,U7).

Definition 4. A transcript graph G = (X7,U9,E7) that is associated with
(X9,U9) is denoted as G(X'9,U?) and defined as X =9 {(X;,0) : i € [q]}, U =
{(U;,1) i € [q]}, and € =% {((X;,0), (U;, 1)) =4 € [q]}. A label)\; is associated
with the edge ((X;,0), (U;,1)) € &.

The resulting graph may contain parallel edges. The 0 and 1 in (X}, 0) and (U;, 1)
will be dropped for simplicity. If for distinct 4,j € [g], it holds that X, = X;
(or U; = Uj;), we denote that as shared vertex X, ; (or U, ;). Since there is a
bijection of each edge (X;,U;) € £ to i, we can also represent the edge by i.

4.5 Extended Mirror Theory

Jha and Nandi [JN20] applied the mirror theory to the tweakable-permutation
setting. We briefly recall their main result and the necessary notations.

In an edge-labeled bipartite graph G = (Y, V,), an edge (Y, V, \) is isolated iff
both Y and V have degree one. A component S C G is called a star iff £(S) > 3
(recall that £(S) is the number of vertices in §) and there is a unique vertex
V € § with degree £(S) — 1. V is called the center of S. S is called a Y-star (or
V-star) if its center Y €) (or V' € V). Consider an equation system £

{61:Y169V1=)\1, e Yo Vo =Xy, ..., eqi}{]@%:)\q},

such that each component in G(L) is either an isolated edge or a star. Let
c1, ¢c2, and c3 denote the number of isolated,)-star, and V-star components,
respectively. Moreover, g1 = c1, g2, and g3 denote the number of their equations.
The equations in £ can be arranged in arbitrary order. The isolated edges are
indexed first, followed by the star components. Jha and Nandi show the following:

Theorem 2 (Theorem 5.1 in [JN20]). Let £ be as above with ¢ < 272
and &naxg < 2" 1. Then, the number of tuples (Y9, V9) that satisfy £ with
Y; #Y; and V; # V; for all i # j satisfies

ca2+cs n n
h.>11= &(14 _ 2_q2 _ 223 772 4_(]2) (2)q1+02+Q3 ! (2)q1+q2+03
4= n n c;i+1 n n)
zm 2 i=1 22 [Tver: 2% uoaan)

where n; = §; — 1 and &; denotes the number of vertices of the j-th component
for j € [e1 + 2 + c3].

4.6 Universal Hashing

Let X and Y be non-empty sets or spaces in the following, and let H = {H|H :
X — Y} be a family of hash functions.

Definition 5 (Almost-Universal Hash Function [CW79]). We say that
‘H is e-almost-universal (e-AU) if, for all distinct X, X’ € X, it holds that
Pr[H(X) = H(X')] < ¢, where the probability is taken over H « H.

Definition 6 (Almost-XOR-Universal Hash Function [Kra94,Rog95]).
Let Y C F%. We say that H is e-almost-XOR-universal (e-AXU) if, for all distinct
X, X' € X and arbitrary A € Y, it holds that Pr[H (X)® H(X') = A] < ¢, where
the probability is taken over H « H.

Let H : {H|H : T — F4} be a family e-almost-universal hash functions and
H « H be an instance. Let X7 =%¢f H(T?) be the sequence of outputs X; from
H(T;), for i € [q] queries. In the following, [JN20]| defined, in an abstract way,
variables v; for the number of occurrences of the hash value 7, and defined coll
for the number of colliding pairs in A'?.

Lemma 2 (Lemma 4.3 in [JN20]). Since E [coll] < ({)e, it holds that

E liuf} :2-E[coll]+im < 4-E[coll] < 2¢%.

=1 =1

Thus, Lemma, 2 says that the number of collisions is limited by 2¢2%¢ on expecta-
tion. Furthermore, the corollary below upper bounds the number of occurrences
of any single hash value. The proof in [JN20] stems from Markov’s inequality.

Corollary 1 (Corollary 4.1 in [JN20]). Let vymax = max{v; : i € [r]}. Then,
for some a > 1, it holds that Pr[vmax > a] < 22—26.

The following lemma from [JN20] bounds the probability that four distinct inputs
to two e-AU hash functions yield three alternating collisions.

Lemma 3 (Alternating-collisions Lemma in [JN20]). Let Hy, Hy « H
be independently sampled e-AU hash functions with domain X. Let Xq, ...,
X4 € X7 be pairwise distinct inputs. Then, it holds, over Hy, Hy «- H, that

Pr(3%,j, k, £ € [q] : H1(X;) = H1(X;) A Ha(X;) = Ha(Xp) A Hy (X)) = Hi (X))

is at most ¢?el .

5 TPRP Proof of TNT

We followed the footsteps of the STPRP proof of CLRW2 by [JN20] closely to
show Theorem 3. We provide an extract that highlights where both constructions
and proofs differ. Thus, we do not claim novelty of the proof approach but show
that it applies also to TNT in encryption direction only with minor adaptions.

H1(T) Hl(T)@Hz(T) H2(T)

Lx M v e
M%@—» T % up) —»@—»C
Fig.8: CLRW2.

T T

l X Y/\l \%4 U
M — m™ =% VD) % w3 —

Fig.9: TNT with relabeled variables.

Theorem 3 (TPRP Security of TNT). Let ¢ < 2" 2, and Fk,, Ex,, Fx, :
K x Fy — % be block ciphers with K, Ko, K3 «— K. Then,

91¢* 2¢? 4q¢°
AAVINT By, Erey B2y) (1) < g + 5am + 5750 3 AdVE" (a).

First, we can replace the secret-key block ciphers Ex,, Ek,, Ex, with K,
K,, K3 « K by random permutations 7y, w2, 73 «— Perm(F}). For TNT, the
advantage between both settings is upper bounded by

AdVINT b, ey ey] < 37 AQVET () + AdVIRE, 1y (0)-

We consider the information-theoretic setting with a computationally unboun-
ded distinguisher A. W.l.o.g., we assume that A is deterministic and non-trivial.

5.1 Oracle Descriptions

The Real Oracle Opear runs TNT[m, o, m3]. The transcript random variable
Oreal yields the transcript as the tuple (7%, M9, C?, X9, Y9, V9) where for all
queries i € [q], the values T;, M;, C;, X;, Y;, V;, U;, \; refer to the variables as
given in Figure 9, which can be compared to those in CLRW2 in Figure 8. The
sets U9 = C? and A9 = T can be derived directly from the transcript.

The Ideal Oracle Ojgeal implements IT « @Tn(wg,ﬁg). Moreover, we treat
the first permutation and tweak addition in TNT as equivalent to the first hash
function in CLRW2. Thus, the ideal oracle samples m « Perm(F%) and gives all
values X; to A after A finished its interactions but before it outputs its decision
bit. The transcript looks as before, where T;, M;, C; are the inputs and outputs
from C; = H(Tl,MZ) or M; = H_l(Ti,Ci), N =T;, X; + Wl(Mi)@Ti, U; + C;.
The values of the sets X9, U9, and T ¢ are defined honestly.

Jha and Nandi [JN20] characterized so-called bad hash keys. Given the partial
transcript (79, M?,C4, X7) — plus for CLRW?2 also the hash functions H; and

Xik Xo Xi X5 Xpp

X; Xik X; Xj Xy
U U Uj Uy Uik U Uj Ugy Uik U

Type (1) Type (2) Type (3) Type (4) Type (5)

Fig. 10: Components types of a transcript graph corresponding to a good hash equiv-
alent. Type (1) is the only component with a single edge. Types (2) and (3) are X- and
U-star components, respectively. Types (4) and (5) are the only components that are
neither isolated nor stars since they can have vertices of degree > 2 in both X and U.

Hj — they defined a number of conditions when (Hy, Hy) where considered good
or bad, respectively, and defined the sets Hgood and Hpaa for this purpose. While
TNT omits hash functions, the predicates were not conditions on the hash keys
but instead on equalities of internal variables that can also occur in TNT. There-
fore, we consider their cases analogously. A hash key was defined to be bad iff
one of the following predicates was true:

1. badH: 3*2,j S [q] such that X; = Xj ANU; = Uj.

2. badHy: 3%¢,j € [¢] such that X; = X; A T; =Tj.

3. badH3: 3*2,j S [q] such that U; = Uj ANT; = Tj.

4. badH4: E*i,j,k,g S [q] such that Xl = Xj A\ Uj = Uk A\ Xk = X[.
5. badHs5: 3*4,5,k, £ € [q] such that U; = U; A X; = X A U = U,.
6. badHG: Jk Z 2”/2(], El*il,i27 . .,ik S [q] such that Xil == sz
7. badH7: Jk Z 2”/2(], El*il,i27 . .,ik S [q] such that Uil == Ulk

In the absence of hash keys, we cannot label those as H being bad or good. Thus,
we call them bad and good hash equivalent instead.

Bad Hash Equivalent: If one of the events badH; through badH7 occurs, the
ideal oracle samples the values Y4 and V? as ¥; = V; = 0 for all ¢ € [¢].

Good Hash Equivalent: In the other case, it will be useful to study the tran-
script graph G(X?,U?) of the associations (X7,U?) that arises from the tran-
script when no badH event occurs. Figure 10 shows all possible types of compo-
nents in G(X9,U49). There, (star) components of the Types (2) and (3) contain
exactly one vertex with a degree of > 2. Components of Types (4) and (5) can
contain one vertex with a degree of > 2 in U/ and one such vertex in X.

Lemma 4 (Lemma 6.1 in [JN20]). The transcript graph G(X?,U?) (G for
short, hereafter) by a good hash equivalent has the following properties:

1. G is simple, acyclic, and possesses no isolated vertices.
2. G has no two adjacent edges ¢ and j such that T; ©T; = 0.

3. G has no component of size > 2" /2¢ edges.
4. G has no component with more than one vertex of degree > 2 in neither X
or U (though, it can have one vertex with degree > 2 in X’ and one in).

The proof is given in [JN20].

For the sake of completeness, we describe the sampling process of Y and V9 in

the case of a good hash equivalent. This is the same process as for CLRW2 in

[JN20]. Therefore, this part is only a revisit and attributed to [JN20]:

The indices i € [q] are collected in index sets Zj, ..., Zs, corresponding to

the edges in all Type-1, ..., Type-5 components, respectively. The five sets are

disjoint and [¢q] = Ule Zi. Let T = Ule Z; and consider the system of equations
LYY, oV, =T ieT},

where Y; = Y; (vespectively V; = V;) holds iff X; = X (respectively U; = Uj)

for all i, j € [g]. The solution set of L is precisely the set

SLLOTVE) : YT e XTAVT an UE A YT @ VE =TT .
Given these definitions, the ideal-world oracle Oigeal samples (Y7, V) as follows:

— (Y%, V%) « S. This means, Ojqeal samples uniformly one valid assignment
from the set of all valid assignments.
— Let G \ Z denote the subgraph of G after the removal of edges and vertices

corresponding to ¢ € Z. For each component C C G \ Z:
— If (X;,U;) € C corresponds to the edge in C where both X; and U; have
a degree > 2. Then, Y; «~ Fy and V; =Y; @ T;.
— For each edge (X;,Uy) # (X;,U;) € C, either Xy = X; or Uy = Us,.
Take the case that X;; = X;. Then, Y;; =Y; and V;y = Y,y ® T}». In the
other case Uy = U;. Then, V;y =V, and Yy =V, & T

Then, the transcript in the ideal world is completely defined, maintaining both
the comnsistency of equations of the form Y; & V; = T; as in the real world and
the permutation consistency within each component for good hash equivalents.
Still, there can be collisions among the values of) or among the values of V
from different components.

5.2 Definition of Bad Transcripts

The analysis of bad transcripts and of bad hash equivalents, in particular, is
the core aspect wherein the analyses of CLRW2 and TNT differ. However, there
can be collisions among the values of) or among the values of V from different
components that have to be treated in bad transcripts. Their treatment can be
done similarly as in [JN20]. They are essential for the proof of TNT and listed
in this subsection only for the sake of completeness, but we refer to [JN20] for
their proof.

The set of transcripts (2 is the set of all tuples 7 = (T2, M%,C?, X%, Y1, V1)
defined as before. Recall that ¢ = C? holds for TNT. Following [JN20], a bad
transcript definition needs the following preprocessing steps:

1. Eliminate all tuples (X?,U9,T9) such that both Y7 and V9 are trivially
restricted by linear dependencies.
2. Eliminate all tuples (X9,U4%, V%, Y9) such that X7 ¢ Y7 or UT o~ VI,

A transcript 7 is called a bad hash-equivalent transcript if one of the conditions
badH; through badH; holds. We define a compound event badH =d°f UZ:l badH;
that ensures that the first requirement is fulfilled.

For the second requirement, all conditions that might lead to X7 4w~ Y7 or
U? 4~ V7 have to be addressed. The transcript is trivially inconsistent if one of
them is fulfilled and we consider that badH does not hold in the following. If the
transcript is still bad, it is called sampling-induced bad iff one of the following
conditions from [JN20] holds, for some « € {1,...,5} and 8 € {,...,5}:

— yeoll, g: Ji € I, j € T such that X; # X; AY; =Y and
— veolly g: 3i € Z,,j € I such that U; # U; A V; =V,

where Z; is defined as before. It holds that

badsamp f U (ycoll, g Uvcollyg) .
agls],pe{,...,5}

By varying o and § over all 30 values, one obtains 30 conditions that could yield
that X7 ¢ Y2 or U? 4 V9. Some of these conditions cannot be satisfied due
to the sampling mechanism. Those are

ycolly 1, ycoll; 5, ycolly 3,ycolly 5, yeoll, 5, ycolls 5,

VCO||1)17 VCO||1)2, VCO||1737 VCO”2)2, VCO”2)3, VCO”373 .

A transcript is called bad if it is a bad hash-equivalent or bad sampling-induced
transcript. All other transcripts are called good and all good transcripts are
attainable. It holds that

Pr [Oideal € BADT] < Pr [badH] + Pr [badsamp] .

Oideal Oideal

5.3 Analysis of Bad Transcripts

The analysis of bad transcript is the core point where the analysis of CLRW?2
and TNT differ. This is mainly because TNT lacks hash functions, but adds the
unmodified tweak to the state between the permutation calls. As a result, hash
collisions as in CLRW2 cannot occur for distinct tweaks.

Lemma 5. For TNT, it holds in the ideal world that

44> 32¢*
Pr[badH] < o1.5m + EI

Proof. We study the probabilities of the individual events badH in the following.
Prior, we note that F (T}, M;) =% 7y (M;)®T; is e-AU for e < 1/(2"—1) < 21—,
and at most 1/(2™ — (¢ — 1)) if ¢ — 1 values M; had been queried before. Since
q <2772 it holds that e < 4/(3-2").

badH;. This event holds if for some distinct ¢, j both X; = X; and U; = U;. If
T; = T}, it must hold that M; # M;, which implies that X; # X; and the event
cannot hold. If T; # Tj, X; = X; implies Y; = Y; and U; = U; implies V; = V.
Thus, it would have to hold that T; = T}, which is a contradiction. Hence, the
probability is zero.

badH,. This event holds if for some distinct ¢, j both X; = X; and T; = Tj.
Since T' = T, it must follow that M; = M;. Though, since A does not ask
duplicate queries, this implies that X; # X;. So, the probability is zero.

badH;. This event holds if for some distinct 4,j both U; = U; and T; = Tj.
Again, the latter condition implies that M; # M;. U; = U; implies that V; =
Vj, which implies that ¥; = Y}, X; = X, and m(M;) = m1(;), which is a
contradiction and therefore has zero probability.

badH,. This event holds if for some distinct 4,4, k,¢, X; = X;, U; = Uy, and
X = Xy. The values of X are results from an e-universal hash function. The
values U are sampled uniformly at random in the ideal world from a set of at
least 2™ — ¢ values for the current tweak. Thus, its sampling process can be
interpreted to be e-AU with € < 1/(2"™ — ¢). We can apply Lemma 3 to obtain

41542 2¢>
215
Pr [badH4] < qe < (3 - 2n)1_5 < 21.5n °

badHs. This event holds if for some distinct 4, j,k,¢, U; = U;, X; = X, and
Uy = Uy. From a similar argumentation as for badHy, it holds that

2
Pr [badHs] < —1

— 9Ll.5n’
badHg. This event holds if there exist distinct 41, ..., i € [q] for k > 2™ /2¢ such
that X;, = --- = X, . Since (T;, M;) # (T}, M;) for none of the indices, we can
use Corollary 1 with a = 2™/2q to upper bound it by

4 4
8q“e < 16q

Pr [badHﬁ] S 220 = 93n .

badH;. This event holds if there exist distinct 41, ..., € [q] for k > 2™ /2¢ such

that U;, = --- = U;,. From a similar argumentation as for badHg, we get
16¢*
Pr [badH7] < 230 .
Lemma 5 follows then from the sum of probabilities of all badH events. O

Lemma 6. For TNT, it holds in the ideal world that
14¢*

Pr[badsamp] < S

The proof is exactly as in [JN20] and is deferred to the full version of this work.

5.4 Analysis of Good Transcripts
Lemma 7. For an arbitrary good transcript 7, it holds that

Pr [Oreal = 7] . 45¢* B 2_q2
Pr [Gideal = 7] — 23n 92n "

Again, the proof can follow a similar argumentation as the analysis of good
transcripts in [JN20] and is therefore deferred to the full version of this work.

6 Summary and Discussion

This work tried to conduct a step towards closing the security gap of TNT.
We showed in Section 2 that a variant of Mennink’s distinguisher from [Men1§]
also applies to TNT, which yields a theoretical distinguisher in O(y/n - 23n/ 4
time, data, and memory complexity. For this purpose, we reduce the complex-
ity of Mennink’s information-theoretic distinguisher from O(23%/2) to O(23"/4)
computations and show that at least two similar distinguishers exist. There-
upon, we use the distinguisher to mount a partial key-recovery attack on the
instance TNT-AES[5, %, *] from an impossible differential. This attack is de-
scribed in Section 3. Since it needs multiple pairs, its complexity is higher than
O(23"/*). We emphasize that our analysis does not break the proposed version
of TNT-AESI6, 6, 6] from [BGGS20].

From a constructive point of view, we followed the rigorous analysis by Jha and
Nandi on CLRW2. We show in Section 5 that their STPRP security proof of
CLRW?2 for up to 0(23"/4) queries can be adapted to an TPRP proof of TNT
with similar complexity. We could build on the approach by Jha and Nandi on
CLRW?2 since we restricted the adversary’s queries to the forward direction only.
Thus, the first permutation and tweak addition masks the inputs, similar to the
first hash function in CLRW?2. Since an equivalent is missing at the ciphertext
side, one cannot directly derive STPRP security. However, a four-round variant of
TNT would possess such hash-function-like masking at the ciphertext-side. This
implies that a four-round variant that adds a fourth independent permutation
w4 and encrypts M under T as

TNT4[r1, 72, 73, 7] (T, M) g (s (ma(m (M) @ T) S T) & T),

would directly inherit the O(23%/4) STPRP security from CLRW2. Still, it re-
mains a highly interesting work to conduct an STPRP analysis of the three-round
construction TNT. In particular, the Mirror-theory approach seems not easily
adaptable since the sampling process in the ideal world is unclear.

From our studies, we see strong indications that TNT is STPRP-secure for ap-
proximately O(23"/4) queries if the primitives are secure — although, we were not
able to show it at this point of time. However, we found the problem of sampling
the variables from both sides consistently in the middle non-trivial. An alterna-

tive strategy could be a more precise, but also considerably more sophisticated,
study of the original y?-based proof of TNT from [BGGS20].

Acknowledgments. We are highly thankful to Zhenzhen Bao and Mridul
Nandi for the fruitful discussions as well as the reviewers from Asiacrypt 2020
for their inspiring comments, all of which lead to significant improvements in
this work. This research has been partially supported by Nanyang Technological
University in Singapore under Grant 04INS000397C230, Singapore’s Ministry of
Education under Grants RG18/19 and MOE2019-T2-1-060, the National Natural
Science Foundation of China (No. 61961146004, 61802399, 61802400, 61732021
and 61772519) and the Youth Innovation Promotion Association CAS.

References

BGGS20. Zhenzhen Bao, Chun Guo, Jian Guo, and Ling Song. TNT: How to Tweak
a Block Cipher. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT,
volume 12106 of LNCS, pages 1-31. Springer, 2020.

BGIM19. Zhenzhen Bao, Jian Guo, Tetsu Iwata, and Kazuhiko Minematsu. ZOCB
and ZOTR: Tweakable Blockcipher Modes for Authenticated Encryption
with Full Absorption. [ACR Transactions on Symmetric Cryptology,
2019(2):1-54, 2019.

BJK'16. Christof Beierle, Jérémy Jean, Stefan K&lbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS.
In Matthew Robshaw and Jonathan Katz, editors, CRYPTO II, volume
9815 of LNCS, pages 123-153. Springer, 2016.

BKL"™07. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier and
Ingrid Verbauwhede, editors, CHES, volume 4727 of LNCS, pages 450-466.
Springer, 2007.

BLMRI19. Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Rasoolzadeh.
CRAFT: Lightweight Tweakable Block Cipher with Efficient Protection
Against DFA Attacks. JTACR Transactions on Symmetric Cryptology,
2019(1):5-45, 2019.

CIMN17. Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.
Blockcipher-Based Authenticated Encryption: How Small Can We Go? In
Wieland Fischer and Naofumi Homma, editors, CHES, volume 10529 of
LNCS, pages 277-298. Springer, 2017.

CIMN20. Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.
Blockcipher-Based Authenticated Encryption: How Small Can We Go?
Journal of Cryptology, 33(3):703-741, 2020.

CMRO05. Carlos Cid, Sean Murphy, and Matthew J. B. Robshaw. Small Scale Variants
of the AES. In Henri Gilbert and Helena Handschuh, editors, FSE, volume
3557 of LNCS, pages 145-162. Springer, 2005.

CWT9. Larry Carter and Mark N. Wegman. Universal Classes of Hash Functions.
Journal of Computer and System Sciences, 18(2):143-154, 1979.

GRR16. Lorenzo Grassi, Christian Rechberger, and Sondre Rgnjom. Subspace Trail
Cryptanalysis and its Applications to AES. TACR Transactions on Sym-
metric Cryptology, 2016(2):192-225, 2016.

HT16.

IMPS17.

JLMTt17.

JN20.

JNP14a.

JNP14b.

JNP16.

KR11.

Kra94.

LealO.

LL18.

LN17.

LNS18.

LRWO2.

LST12.

Men15.

Viet Tung Hoang and Stefano Tessaro. Key-Alternating Ciphers and Key-
Length Extension: Exact Bounds and Multi-user Security. In CRYPTO,
pages 3-32. Springer, 2016.

Tetsu Iwata, Kazuhiko Minematsu, Thomas Peyrin, and Yannick Seurin.
ZMAC: A Fast Tweakable Block Cipher Mode for Highly Secure Message
Authentication. In Jonathan Katz and Hovav Shacham, editors, CRYPTO,
Part 111, volume 10403 of LNCS, pages 34—65. Springer, 2017.

Ashwin Jha, Eik List, Kazuhiko Minematsu, Sweta Mishra, and Mridul
Nandi. XHX - A Framework for Optimally Secure Tweakable Block Ciphers
from Classical Block Ciphers and Universal Hashing. In Tanja Lange and
Orr Dunkelman, editors, LATINCRYPT, volume 11368 of LNCS, pages
207-227. Springer, 2017.

Ashwin Jha and Mridul Nandi. Tight Security of Cascaded LRW2. Journal
of Cryptology, pages 1378-1432, 2020.

Jérémy Jean, Ivica Nikoli¢, and Thomas Peyrin. KIASU v1.1, 2014. First-
round submission to the CAESAR competition.

Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and Keys for Block
Ciphers: The TWEAKEY Framework. In Palash Sarkar and Tetsu Iwata,
editors, ASTACRYPT II, volume 8874 of LNCS, pages 274-288. Springer,
2014.

Jérémy Jean, Ivica Nikoli¢, and Thomas Peyrin. Deoxys v1.41.
http://competitions.cr.yp.to/caesar-submissions.html, Oct 12 2016. Third-
round submission to the CAESAR competition.

Ted Krovetz and Phillip Rogaway. The Software Performance of
Authenticated-Encryption Modes. In Antoine Joux, editor, FSE, volume
6733 of LNCS, pages 306-327. Springer, 2011.

Hugo Krawczyk. LFSR-based Hashing and Authentication. In Yvo
Desmedt, editor, CRYPTO, volume 839 of LNCS, pages 129-139. Springer,
1994.

Gregor Leander. Small Scale Variants Of The Block Cipher PRESENT.
TACR Cryptology ePrint Archive, 2010:143, 2010.

Byeonghak Lee and Jooyoung Lee. Tweakable Block Ciphers Secure Beyond
the Birthday Bound in the Ideal Cipher Model. In Thomas Peyrin and
Steven D. Galbraith, editors, ASIACRYPT I, volume 11272 of LNCS, pages
305-335. Springer, 2018.

Eik List and Mridul Nandi. ZMAC+ - An Efficient Variable-output-
length Variant of ZMAC. IACR Transactions of Symmetric Cryptology,
2017(4):306-325, 2017.

Gaétan Leurent, Mridul Nandi, and Ferdinand Sibleyras. Generic Attacks
Against Beyond-Birthday-Bound MACs. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO I, volume 10991 of LNCS, pages 306-336.
Springer, 2018.

Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable Block Ci-
phers. In Moti Yung, editor, CRYPTO, volume 2442 of LNCS, pages 31-46.
Springer, 2002.

Will Landecker, Thomas Shrimpton, and R. Seth Terashima. Tweakable
Blockciphers with Beyond Birthday-Bound Security. In Reihaneh Safavi-
Naini and Ran Canetti, editors, CRYPTO, volume 7417 of LNCS, pages
14-30. Springer, 2012.

Bart Mennink. Optimally Secure Tweakable Blockciphers. In Gregor Lean-
der, editor, F'SE, volume 9054 of LNCS, pages 428-448. Springer, 2015.

Men18.

Min14.

MN17.

Nailb.

Nail8.

Pat08.

Pat10.

PS16.

Rog95.

Sib20.

SS17.

WGZ116.

Bart Mennink. Towards Tight Security of Cascaded LRW2. In Amos Beimel
and Stefan Dziembowski, editors, T'CC II, volume 11240 of LNCS, pages
192-222. Springer, 2018.

Kazuhiko Minematsu. Parallelizable Rate-1 Authenticated Encryption from
Pseudorandom Functions. In Phong Q. Nguyen and Elisabeth Oswald,
editors, EUROCRYPT, volume 8441 of LNCS, pages 275—292. Springer,
2014.

Bart Mennink and Samuel Neves. Encrypted Davies-Meyer and Its Dual:
Towards Optimal Security Using Mirror Theory. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO, Part I1I, volume 10403 of LNCS, pages
556-583. Springer, 2017.

Yusuke Naito. Full PRF-Secure Message Authentication Code Based on
Tweakable Block Cipher. In Man Ho Au and Atsuko Miyaji, editors,
ProvSec, volume 9451 of LNCS, pages 167-182. Springer, 2015.

Yusuke Naito. On the Efficiency of ZMAC-Type Modes. In Jan Camenisch
and Panos Papadimitratos, editors, CANS, volume 11124 of LNCS, pages
190-210. Springer, 2018.

Jacques Patarin. The "Coefficients H" Technique. In Roberto Maria Avanzi,
Liam Keliher, and Francesco Sica, editors, SAC, volume 5381 of LNCS,
pages 328—-345. Springer, 2008.

Jacques Patarin. Introduction to Mirror Theory: Analysis of Systems of
Linear Equalities and Linear Non Equalities for Cryptography. IACR Cryp-
tology ePrint Archive, 2010:287, 2010.

Thomas Peyrin and Yannick Seurin. Counter-in-Tweak: Authenticated En-
cryption Modes for Tweakable Block Ciphers. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO I, volume 9814 of LNCS, pages 33—63.
Springer, 2016.

Phillip Rogaway. Bucket Hashing and its Application to Fast Message Au-
thentication. In Don Coppersmith, editor, CRYPTO, volume 963 of LNCS,
pages 29-42. Springer, 1995.

Ferdinand Sibleyras. Generic Attack on Iterated Tweakable FX Construc-
tions. In Stanislaw Jarecki, editor, CT-RSA, volume 12006 of LNCS, pages
1-14. Springer, 2020.

Subhabrata Samajder and Palash Sarkar. Rigorous upper bounds on data
complexities of block cipher cryptanalysis. Journal of Mathematical Cryp-
tology, 11(3):147-175, 2017.

Lei Wang, Jian Guo, Guoyan Zhang, Jingyuan Zhao, and Dawu Gu. How
to Build Fully Secure Tweakable Blockciphers from Classical Blockciphers.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASTACRYPT I, volume
10031 of LNCS, pages 455-483, 2016.

	Towards Closing The Security Gap of Tweak-aNd-Tweak (TNT)

