
Subvert KEM to Break DEM:
Practical Algorithm-Substitution Attacks on

Public-Key Encryption

Rongmao Chen1, Xinyi Huang2(B), and Moti Yung3

1 College of Computer, National University of Defense Technology, China
chromao@nudt.edu.cn

2 Fujian Provincial Key Laboratory of Network Security and Cryptology,
College of Mathematics and Informatics, Fujian Normal University, China

xyhuang@fjnu.edu.cn
3 Google. Inc & Columbia University , USA

moti@cs.columbia.edu

Abstract. Motivated by the currently widespread concern about mass
surveillance of encrypted communications, Bellare et al. introduced at
CRYPTO 2014 the notion of Algorithm-Substitution Attack (ASA) where
the legitimate encryption algorithm is replaced by a subverted one that
aims to undetectably exfiltrate the secret key via ciphertexts. Practically
implementable ASAs on various cryptographic primitives (Bellare et al.,
CRYPTO’14 & ACM CCS’15; Ateniese et al., ACM CCS’15; Berndt and
Lískiewicz, ACM CCS’17) have been constructed and analyzed, leaking
the secret key successfully. Nevertheless, in spite of much progress, the
practical impact of ASAs (formulated originally for symmetric key cryp-
tography) on public-key (PKE) encryption operations remains unclear,
primarily since the encryption operation of PKE does not involve the
secret key, and also previously known ASAs become relatively inefficient
for leaking the plaintext due to the logarithmic upper bound of exfiltra-
tion rate (Berndt and Lískiewicz, ACM CCS’17).

In this work, we formulate a practical ASA on PKE encryption algo-
rithm which, perhaps surprisingly, turns out to be much more efficient
and robust than existing ones, showing that ASAs on PKE schemes are
far more effective and dangerous than previously believed. We mainly
target PKE of hybrid encryption which is the most prevalent way to
employ PKE in the literature and in practice. The main strategy of our
ASA is to subvert the underlying key encapsulation mechanism (KEM)
so that the session key encapsulated could be efficiently extracted, which,
in turn, breaks the data encapsulation mechanism (DEM) enabling us
to learn the plaintext itself. Concretely, our non-black-box yet quite gen-
eral attack enables recovering the plaintext from only two successive
ciphertexts and minimally depends on a short state of previous internal
randomness. A widely used class of KEMs is shown to be subvertible by
our powerful attack.

Our attack relies on a novel identification and formalization of cer-
tain properties that yield practical ASAs on KEMs. More broadly, it
points at and may shed some light on exploring structural weaknesses

of other “composed cryptographic primitives,” which may make them
susceptible to more dangerous ASAs with effectiveness that surpasses
the known logarithmic upper bound (i.e., reviewing composition as an
attack enabler).

Keywords. Algorithm-substitution attacks, public-key encryption, key
encapsulation mechanism.

1 Introduction

Provable security provides strong guarantees for deploying cryptographic tools
in the real world to achieve security goals. Nevertheless, it has been shown that
even provably secure cryptosystems might be problematic in practice. Such a
security gap—between the ideal and the real world—lies in the fact that the
robustness of provable security closely depends on the adopted adversarial model
which, however, often makes idealized assumptions that are not always fulfilled
in actual implementations.

An implicit and common assumption—in typical adversarial models for prov-
able security—is that cryptographic algorithms should behave in the way speci-
fied by their specifications. In the real world, unfortunately, such an assumption
may turn out to be invalid due to a variety of reasons such as software/hardware
bugs and even malicious tampering attacks. In particular, attackers (manufac-
turers and supply-chain intermediaries), in reality, may be able to modify the al-
gorithm implementation so that the subverted one remains indistinguishable—in
black-box testing—from the specification, while leaking private information (e.g.,
secret keys) during its subsequent runs. The threat was originally identified as
kleptography by Young and Yung [30,31] over two decades ago, while the Snowden
revelations of actual deployments of such attacks (in 2013) attracted renewed at-
tention of the research community [7,6,3,14,5,25,15,11,17,27,8,9,24,28,29,18,4,12].

1.1 Algorithm-Substitution Attacks

In Crypto 2014, Bellare, Paterson, and Rogaway [7] initiated the formal study
of algorithm-substitution attack (ASA), which was defined broadly, against sym-
metric encryption. In the ASA model, the encryption algorithm is replaced by
an altered version created by the adversary. Such a substitution is said to be
undetectable if the detector—who knows the secret key—cannot differentiate
subverted ciphertexts from legitimate ones. The subversion goal of an ASA ad-
versary is to gain the ability to recover the secret key from (sequential) subverted
ciphertexts. Concretely, [7] proposed actual substitution attacks against certain
symmetric encryption schemes.

Subsequently, Degabriele, Farshim and Poettering [14] further justified Bel-
lare et al.’s ASA model [7] from an increased practical perspective, and redefined
the security notion by relaxing the assumption that any subverted ciphertext
produced by the altered algorithm should be decryptable. Bellare, Jaeger and
Kane [6] strengthened the undetectability notion of [7] by considering stronger

2

detectors which are able to adaptively feed the encryption code with some speci-
fied inputs and see all outputs written to memory, including the current state of
the encryption code. They then designed stateless ASAs against all randomized
symmetric encryption schemes. In [3], Ateniese, Magri and Venturi extended
the ASA model and studied signature schemes in the setting of fully-adaptive
and continuous subversion. Berndt and Lískiewicz [8], in turn, rigorously investi-
gated the relationship between ASAs and steganography—a well-known concept
of hiding information in unsuspicious communication. By modeling encryption
schemes as steganographic channels, they showed that successful ASAs corre-
spond to secure stegosystems on the channels and vice versa. This indicates
a general result that there exist universal ASAs—work with no knowledge on
the internal implementation of the underlying cryptographic primitive—for any
cryptographic algorithm with sufficiently large min-entropy, and in fact almost
all known ASAs [7,6,3] are universal ASAs.

In this work, we turn to another fundamental cryptographic primitives, i.e.,
public-key encryption (PKE), aiming at better understanding the impact of
ASAs on PKE systems. Indeed, Bellare, Paterson and Rogaway mentioned in
[7] that:

“...one can consider subversion for public-key schemes or for other cryp-
tographic goals, like key exchange. There are possibilities for algorithms-
substitution attacks (ASAs) in all these settings...the extensions to cover
additional schemes is an obvious and important target for future research.”

At first glance, the general result by Berndt and Lískiewicz [8] has already
illustrated the feasibility of ASAs on randomized PKE algorithms, and, further,
a concrete attack was indeed exhibited on the CPA-secure PKE by Russell et al.
[28] (where their main result was a concrete architectural setting and construc-
tion to prevent such attacks). However, as we will explain below, the impact of
such univerisal ASAs on PKE encryption algorithm turns out to be much weaker
(i.e., much less efficient) than those on symmetric encryption [7,6]. We concen-
trate in this work on subverting the system via the content of its ciphertexts.

Limited efficiency and impact of previously known ASAs on PKE. It
is proved that the exfiltration rate of universal ASAs—the number of embedded
bits per ciphertext—suffers a logarithmic upper bound[8]. Concretely, for the
case of encryption schemes, no universal and consistent ASA is able to embed
more than log(κ) (κ is the key length) bits of information into a single ciphertext
in the random oracle model. Although this upper bound is somewhat limited, it
does not significantly weaken the impact of universal ASAs on secret-key algo-
rithms [7,6,3], since given sufficient ciphertexts—or sufficient signatures in the
case of signature schemes—the adversary can extract the whole secret key, and
afterwards can completely break the security of these algorithms, as long as the
underlying secret key remains unchanged. However, when it comes to the case
of PKE, the impact of universal ASAs turns out to be quite impractical as the
encryption procedure of PKE has only access to the public key, and thus it is im-
possible to leak the secret key via subverting the PKE encryption algorithm itself
(via the ciphertexts). Hence, as we see it, the best possible goal for ASAs on PKE

3

encryption procedure is to recover plaintexts. For legitimate users, this seems
somewhat positive as different from the (fixed) secret key, the plaintext is usually
much longer, and thus the adversary needs to collect much more ciphertexts—
due to the logarithmic upper bound of universal ASAs—to recover the whole
plaintext successfully. Note that although gaining one-bit information of plain-
text suffices for the adversary to win the indistinguishibility-based security game
(e.g., IND-CPA), such a bit-by-bit recovery of plaintext is rather inefficient and
thus not desirable from the point of view of the adversary, especially given the
fact that plaintexts are usually fresh across various encryption sessions in reality.

Concrete examples. We apply Bellare et al.’s ASAs [7,6] to PKE to give a
more intuitive picture. Precisely, the biased ciphertext attack [7]—using rejection
sampling of randomness—could be also mounted on PKE and it has been indeed
proposed by Russell et al. [28] to leak the plaintext bit from the subverted
PKE ciphertext. However, such an attack could only leak one bit of information
per subverted ciphertext, and thus fully recovering a plaintext would (at least)
require as many ciphertexts as the length of a plaintext. This concretely shows
that existing ASAs are relatively inefficient on PKE. Moreover, such an attack is
stateful with a large state, as it needs to maintain a global counter that represents
which bit(s) of the plaintext it is trying to exfiltrate in each run. This weakens the
robustness of attacks in practice as it depends on a state related to a long system
history, in order to successfully leak the whole plaintext of PKE encryption. Note
also that the strong ASA proposed in [6]—although being stateless—is much less
efficient on PKE due to the application of the coupon collector’s problem.

Our concrete question: efficient and robust ASAs on PKE? The afore-
mentioned observations and the importance of better understanding of the im-
pact of ASAs, motivated us to consider the following question:

Are there ASAs that could be efficiently mounted on a wide range of PKE
schemes and only have much limited (i.e., constant length) dependency on
the system history?

In particular, we mainly consider the possibility of practical ASAs on PKE
that enable the plaintext recovery with a constant number—independent of the
plaintext length—of ciphertexts while only depending on a short system history.
Generally, a stateful attack is more robust if its state depends on just a small
history. For example, in the backdoored Dual EC DRBG (Dual Elliptic Curve
Deterministic Random Bit Generator)[10], an attack which apparently was suc-
cessfully employed, there is a dependency on prior public randomness and learn-
ing the current seed. Nevertheless, it turned out to be deployed and the limited
dependency does not weaken its impacts on practical systems. This is mainly
due to the fact that an implementation of pseudo-random generators (PRGs), in
fact, needs to maintain some states and the state of generators always persists
for a while at least in systems (hence, some limited dependency on the past is
natural, whereas long history dependency is not that typical and creates more
complicated state management).

4

Remark: Young and Yung’s Kleptography [30,31,32]. In the line of kleptography,
subversions of PKE have been studied (primarily of key generation procedures
of PKE) by Young and Yung [30,31,32]. They introduced the notion of secretly
embedded trapdoor with universal protection (SETUP) mechanism, which enables
the attacker to exclusively and efficiently recover the user private information.
Young and Yung showed how SETUP can be embedded in several concrete
cryptosystems including RSA, ElGamal key generation and Diffie-Hellman key
exchange [30,31,32]. Our motivation may be viewed as a modern take on Young
and Yung’s kleptographic attacks on PKE key generation, but in the ASA model
against the encryption operation itself, and particularly we ask: to what extent
their type of attacks may be extended to cover PKE encryption algorithms (and
composed methods like hybrid encryption) more generally?

1.2 Our Results

In this work, we provide an affirmative answer to the above question by proposing
a practical ASA that is generically applicable to a wide range of PKE schemes,
demonstrating that ASAs on PKE could be much more dangerous than pre-
viously thought. Our idea is initially inspired by the observation that almost
all primary PKE constructions adopt the hybrid encryption: a public key cryp-
tosystem (the key encapsulation mechanism or KEM) is used to encapsulate the
so-called session key which is subsequently used to encrypt the plaintext by a
symmetric encryption algorithm (the data encapsulation mechanism or DEM).
Specifically, we turn to consider the possibility of substituting the underlying
KEM stealthily so that the attacker is able to recover the session key to break
the DEM (and thereafter recover the plaintext). The idea behind our attack
strategy is somewhat intuitive as compared with the plaintext that might be
of arbitrary length, the session key is usually much shorter and thus easier to
recover. However, this does not immediately gain much efficiency improvement
in subverting PKE encryption, mainly due to the fact that the underlying KEM
produces fresh session keys in between various encryption invocations. Hence,
we further explore the feasibility of efficient ASA on KEMs that could success-
fully recover a session key from a constant number of ciphertexts. Given the
logarithmic upper bound of universal ASAs [8], we turn to study the possibility
of non-black-box yet still general ASAs.

To the end, due to the successful dentification of a general structural weak-
ness in existing KEM constructions, we manage to mount a much more efficient
ASA on KEMs that could recover a session key from only two successive ci-
phertexts, which means that the state required by the attack is much smaller
than the generic one. In fact, the state relation (as we will discuss below) in
our proposed ASA is similar to that of the well-known Dual EC DRBG attack,
and thus it is similar to typical state cryptosystems keep in operation, which
indicates that the attack is very robust in actual systems. Our proposed attack
relies on the novel identification of non-black-box yet general enough properties
that yield practical ASAs on KEMs. Also, it is a fundamental property that

5

turns out to be conceptually easy to explain after we formulate the non-black-
box assumption. However, we remark that the exact formulations and analysis
are challenging. In particular, we are able to prove that the attack works only
assuming that the underlying KEM satisfies some special properties, and we for-
mally define them, rigorously showing a wide range of KEMs suffering from our
ASA. This new finding explains why the attack was not considered before, even
though the rationale behind our attack (as briefly shown below) was implicitly
informally already hinted about if one considers the cases given in [30]. In fact,
our attack could be regarded as a general extension of Young and Yung’s klepto-
graphic attacks in the ASA model against the modern encryption procedures of
PKE schemes. More broadly, our work may shed some light on further exploring
the non-black-box but quite general structural weaknesses of other composed
cryptographic primitives (which the KEM/ DEM paradigm is an example of),
that may make them susceptible to more efficient and effective ASAs surpassing
the logarithmic upper bound of universal ASAs [8].

Our contributions. To summarize, we make the following contributions.

1. We formalize an asymmetric ASA model for KEMs. Compared with previous
works that mainly studied symmetric ASAs [7,6,3,14], in this work we con-
sider a stronger setting where revealing the hard-wired subversion key does
not provide users with the same cryptographic capabilities as the subverter.

2. We redefine the KEM syntax in a module level with two new properties—
namely universal decryptability and key-pseudo-randomness—that are vital
to our proposed ASA. We then introduce a generic ASA and rigorously prove
its session-key-recoverability and undetectability in our ASA model.

3. We show that our attack works on a wide range of KEMs including the
generic construction from hash proof system [23,20]; and concrete KEMs
derived from popular PKE schemes such as the Cramer-Shoup scheme [13],
the Kurosawa-Desmedt scheme [23], and the Hofheinz-Kiltz scheme [20].

Below we further elaborate on the results presented in this work.

Asymmetric ASA model. We start with briefly introducing the adopted ASA
model in our work. Current ASA models [7,6,3,14,8] are in the symmetric setting
where the subversion key hard-wired in the (subverted) algorithm is the same
with the one used for secret key recovery. Such a symmetric setting would enable
anyone who reverse-engineers the subversion key from the subverted algorithm
to have the same cryptographic ability as the subverter. In this work, we turn to
the asymmetric ASA setting advocated by kleptograhic attacks [31], and we care-
fully formalize an asymmetric ASA model specifically for KEMs. In our model,
the subverted KEM contains the public subversion key while the corresponding
secret subversion key is only known to the subverter. The session key recovery
requires the secret subversion key and thus the attacking ability is exclusive to
the subverter (and is not acquired by reverse engineering the subverted device).
Also, we further enhance the notion of undetectability in the sense that the de-
tector is allowed to know the public subversion key in the detection game. We
note that in [7], an asymmetric ASA model is also discussed in the context of

6

r1 r2 r3 · · · ri ri+1

(K1, C1) (K2 , C2) (K3 , C3) (Ki, Ci) (Ki+1 , Ci+1)

KEM.Enc KEM.Enc KEM.Enc

KEM.Dec KEM.Dec KEM.Dec

Fig. 1. The sketch map of our ASA on (simplfied) KEMs. The dashed line at the top
represents that in the subverted encapsulation algorithm, ri+1 is derived from ri (i
starts with “1”) via running the legitimate algorithm KEM.Enc. The dashed diagonal
line indicates that the attacker recovers ri+1 (and Ki+1) from Ci via running KEM.Dec.

symmetric encryption, whereas all the proposed ASAs are symmetric. In fact,
as we will show later, the asymmetric setting essentially enables our proposed
effective ASAs.

A sketch map of our ASA (simplified version). We now informally de-
scribe our identified non-black-box structural weakness in existing KEM con-
structions and show how it enables our efficient attack. We remark that here
we only take the case of simplified KEM as an example to illustrate our basic
idea. For more details and formal analysis we refer the reader to Section 4.2
where we present our ASA on more general KEMs. We first roughly recall the
syntax of (simplified) KEM. Informally, a KEM is defined by a tuple of algo-
rithms (KEM.Setup, KEM.Gen, KEM.Enc, KEM.Dec). The key generation algo-
rithm KEM.Gen generates the public/secret key pair (pk, sk). The encapsulation
algorithm KEM.Enc takes as input pk and output the session key K with the key
ciphertext C. The decapsulation algorithm KEM.Dec uses sk to decrypt C for
computing K. Our proposed ASA is essentially inspired by the observation that
many popular KEM constructions, in fact, produce “public-key-independent” ci-
phertexts which only depend on the internal random coins generated by KEM.Enc
while is independent of the public key. Consequently, such kind of key ciphertexts
are “decryptable” with any key pair honestly generated by KEM.Gen (formal-
ized as universal decryptability in our work). Relying on this fact, we manage to
mount a substitution attack on KEM.Enc via manipulating the internal random
coin. Specifically, the subverter runs the legitimate algorithm KEM.Gen—with
the public parameter—to generate the subversion key pair (psk, ssk) of which
psk is hard-wired in the subverted KEM.Enc (denoted by ASA.Enc in our ASA
model), while ssk is exclusively held by the subverter. Note that KEM.Enc would
be run repeatedly in an ongoing encryption procedure of PKE and let ri denote
the random coin generated by KEM.Enc in its i-th invocation. Ideally, it is ex-
pected that random coins from different invocations are generated independently.
However, in our designed ASA.Enc, as roughly depicted in Fig. 1, the random
coin ri+1 is actually derived via KEM.Enc taking psk and ri (maintained as an

7

internal state) as inputs. Consequently, due to the universal decryptability of
KEM, the subverter is able to recompute ri+1 (and thereafter recover the ses-
sion key Ki+1) by running KEM.Dec to decrypt Ci using ssk. In this way, our
attack enables the subverter to recover the session key of a subverted ciphertext
with the help of the previous subverted ciphertext.

On the robustness of our stateful attacks. As pointed out by Bellare et al.
[6], stateful ASAs may become detectable upon the system reboot (e.g., resetting
the state). However, we argue below that the state in our attack is practically
acceptable, and our attack could still be very robust and meaningful in cryp-
tographic implementation practices nowadays. The state relation (i.e., only the
previous randomness) in our proposed ASA is similar to that of Dual EC DRBG,
and is much more limited than the stateful ASA on symmetric encryption [7],
which needs to maintain a global counter that represents which bit(s) of the
secret is trying to exfiltrate in each run. More broadly, modern cryptosystems
in the cloud services are implemented typically in secure hardware modules that
are rented to cloud customers. This has become a popular configuration in recent
years. It is inconceivable that such service cannot be temporarily non-volatile
and stateful. Even if it happens or all relevant tools are reinitiated at system
initiation, our attack persists since we do not really need a state depending on
the entire system history, but only the randomness generated in the previous
session. Therefore, we categorically see no practical weakness with our configu-
ration, primarily in view of modern secure hardware modules as cryptographic
implementations, and the successful large scale attack on Dual EC DRBG [10].

2 Preliminaries

Notations. For any randomized algorithm F , y := F(x; r) denotes the output
of F on the fixed randomness r and y←$F(x) denotes the random output of
F . We write AO1,O2,···(x, y, · · ·) to indicate that A is an algorithm with inputs
x, y, · · · and access to oracle O1,O2, · · · . Let z ← AO1,O2,···(x, y, · · ·) denote the
outputs of running A with inputs (x, y, · · ·) and access to oracles O1,O2, · · · .

2.1 Entropy Smoothing Hash Functions

Let H = {Hk̂}k̂∈K̂ (K̂ is the key space) be a family of keyed hash functions,
where every function Hk̂ maps an element of group X to another element of

group Y . Let D be a PPT algorithm that takes as input an element of K̂, and
an element from Y , and outputs a bit. The ES-advantage of D is defined as

AdvesH,D(n) := |Pr
[
D(k̂, Hk̂(x)) = 1|k̂←$ K̂, x←$X

]
−Pr

[
D(k̂, y) = 1|k̂←$ K̂, y←$Y

]
|.

We sayH is εes(n)-entropy smoothing if for any PPT algorithmD, AdvesH,D(n) ≤
εes(n). It has been shown in [16] that the CBC-MAC, HMAC and Merkle-
Damg̊ard constructions meet the above definition on certain conditions.

8

2.2 Key Encapsulation Mechanism (KEM)

Syntax. A key encapsulation mechanismKEM consists of algorithms (KEM.Setup,
KEM.Gen, KEM.Enc, KEM.Dec) which are formally defined as below.

– KEM.Setup(1n). Takes as input the security parameter n ∈ N and outputs
the public parameter pp. We assume pp is taken by all other algorithms as
input (except of KEM.Gen where it is explicitly given).

– KEM.Gen(pp). Takes as input pp, and outputs the key pair (pk, sk).
– KEM.Enc(pk). Takes as input the public key pk, and outputs (K,ψ) where
K is the session key and ψ is the ciphertext.

– KEM.Dec(sk, ψ). Takes as input the secret key sk and the ciphertext ψ, and
outputs the session key K or ⊥.

Correctness. We say KEM satisfies (perfect) correctness if for any n ∈ N,
for any pp←$KEM.Setup(1n), for any (pk, sk)←$ KEM.Gen(pp) and for any
(K,ψ)←$ KEM.Enc(pk), we have KEM.Dec(sk, ψ) = K.

Security. Let KEM = (KEM.Setup, KEM.Gen, KEM.Enc, KEM.Dec) be a KEM.
We say KEM is IND-CCA-secure if for any PPT adversary A,

Advccakem,A(n) :=

∣∣∣∣∣∣∣∣∣∣
Pr

b = b′ :

pp←$KEM.Setup(1n)
(pk, sk)←$KEM.Gen(pp)
(K0, ψ

∗)←$KEM.Enc(pk)
K1←$Kkem, b←$ {0, 1}
b′ ← AODec(·)(pk,Kb, ψ

∗)

− 1

2

∣∣∣∣∣∣∣∣∣∣
≤ negl(n) ,

where Kkem is the key space of KEM, and ODec is a decryption oracle that on
input any ciphertext ψ, returns K := KEM.Dec(sk, ψ) on the condition that
ψ 6= ψ∗. As a weak security definition, we say KEM is IND-CPA-secure if in the
above definition, the adversary is restricted not to query ODec.

3 Asymmetric ASA Model for KEMs

In this section, we extend the notion of ASA model by Bellare et al. [7] to
the asymmetric setting for KEMs. Here we mainly consider substitution attacks
against the encapsulation algorithm while assuming that the key generation and
decapsulation algorithm are not subverted. It is worth noting that via subverting
the decapsulation algorithm it is possible to exfiltrate decapsulation key. Par-
ticularly, Armour and Poettering [1] demonstrated the feasibility of exfiltrating
secret keys by subverting the decryption algorithm of AEAD.

3.1 Asymmetric ASA on KEMs

An ASA on KEM is that in the real-world implementation, the attacker replaces
the legitimate algorithm KEM.Enc by a subverted one denoted by ASA.Enc, which

9

hard-wires some auxiliary information chosen by the subverter. The goal of sub-
verter is to gain some advantages in breaking the security of the subverted KEM.
The algorithm ASA.Enc could be arbitrary. Particularly, the randomness space
in ASA.Enc could be different from that of KEM.Enc, and the subverted cipher-
text space is not necessarily equal to the valid ciphertext space of KEM.Enc1.
Also, ASA.Enc may be stateful by maintaining some internal state, even in the
case that KEM.Enc is not.

Syntax. Let KEM = (KEM.Setup, KEM.Gen,KEM.Enc, KEM.Dec) be a KEM
which generates pp←$KEM.Setup(1n) and (pk, sk)←$KEM.Gen(pp). An asym-
metric ASA on KEM is denoted by ASA = (ASA.Gen,ASA.Enc,ASA.Rec).

– (psk, ssk)←$ASA.Gen(pp). The subversion key generation algorithm takes
as input pp, and outputs the subversion key pair (psk, ssk). This algorithm
is run by the subverter. The public subversion key psk is hard-wired in the
subverted algorithm while the secret subversion key ssk is hold by the at-
tacker.

– (K,ψ)←$ASA.Enc(pk, psk, τ). The subverted encapsulation algorithm takes
as input pk, psk, and the (possible) internal state τ , outputs (K,ψ) and
updates the state τ (if exists). This algorithm is created by the subverter and
run by the legitimate user. The state τ is never revealed to the outside.

– K ←$ASA.Rec(pk, ssk, ψ, Φψ). The key recovery algorithm takes as input pk,
ssk, ψ, the associated ciphertext set Φψ, and outputs K or ⊥. This algorithm
is run by the subverter to recover the session key K encapsulated in ψ.

Remark. The algorithm ASA.Rec is run by the subverter to “decrypt” the
subverted ciphertext ψ—output by ASA.Enc—using the secret subversion key
ssk that is associated with psk hard-wired in ASA.Enc. However, due to the
information-theoretic reasons, it might be impossible for the subverter to recover
the key given the subverted ciphertext only. Therefore, we generally assume that
the subverter needs some associated ciphertexts (e.g., a tuple of previous cipher-
texts) to successfully run ASA.Rec. More details are provided in Section 4.2.

Below we define the notion of decryptability which says that the subverted
ciphertext—produced by ASA.Enc—is still decryptable to the legitimate receiver.
In fact, decryptability could be viewed as the basic form of undetectability notion
defined in Section 3.3.

Definition 1 (Decryptability). Let ASA = (ASA.Gen,ASA.Enc,ASA.Rec) be
an ASA on KEM = (KEM.Setup, KEM.Gen,KEM.Enc, KEM.Dec). We say ASA
preserves decryptability for KEM if for any n ∈ N, any pp←$KEM.Setup(1n),
and any (pk, sk) ←$KEM.Gen(pp), for any (psk, ssk)←$ASA.Gen(pp), and all
state τ ∈ {0, 1}∗,

Pr[Dec(sk, ψ) 6= K : (K,ψ)←$ASA.Enc(pk, psk, τ)] ≤ negl(n) ,

where the probability is taken over the randomness of algorithm ASA.Enc.
1 For example, the subverted algorithm ASA.Enc may directly output the key as its

ciphertext.

10

3.2 Session Key Recovery

Generally, the goal of the subverter is to gain some advantages in attacking the
scheme. In the ASA model for symmetric encryption and signature schemes, the
notion of key recovery is defined as a strong goal [6,3]. However, for KEMs, the
encapsulation algorithm has no access to the secret (decapsulation) key and thus
it is impossible to exfiltrate the long-term secret of a subverted encapsulation
algorithm. Alternatively, we define another notion which captures the ability of
the subverter—who has the secret subversion key ssk—to recover the session
key from the subverted ciphertext. In the following definition, we let Γ denote
the internal state space of ASA.

Definition 2 (Session-Key-Recoverability). Let ASA = (ASA.Gen,ASA.Enc,
ASA.Rec) be an ASA on KEM = (KEM.Setup, KEM.Gen,KEM.Enc, KEM.Dec).
We say that ASA is session-key-recoverable if for any n ∈ N, any pp←$

KEM.Setup(1n), any (pk, sk) ←$KEM.Gen(pp), any (psk, ssk) ←$ASA.Gen(pp),
and any τ ∈ Γ ,

Pr[ASA.Rec(pk, ssk, ψ, Φψ) 6= K : (K,ψ)←$ASA.Enc(pk, psk, τ)] ≤ negl(n) .

Here we implicitly assume that for every state τ ∈ Γ , the subverted ciphertext ψ
and the associated ciphertext set Φψ exist, i.e., Φψ 6= ∅.

3.3 Undetectability

The notion of undetectability denotes the inability of ordinary users to tell
whether the ciphertext is produced by a subverted encapsulation algorithm
ASA.Enc or the legitimate encapsulation algorithm KEM.Enc. Different from con-
ventional security games, here the challenger is the subverter who aims to subvert
the encapsulation algorithm without being detected, while the detector (denoted
by U) is the legitimate user who aims to detect the subversion via a black-box
access to the algorithm.

Note that our undetectability notion does not cover all possible detection
strategies in the real world, such as comparing the (possibly subverted) code
execution time with that of a legitimate code. In fact, as argued by Bellare et
al. [6], it is impossible for an ASA to evade all forms of detection and there is
usually a tradeoff between detection effort and attack success.

Definition 3 (Secret Undetectability). Let ASA = (ASA.Gen,ASA.Enc,
ASA.Rec) be an ASA on KEM = (KEM.Setup, KEM.Gen,KEM.Enc, KEM.Dec).
For a user U , we define the advantage function

Advu-detasa,U (n) :=

∣∣∣∣∣∣∣∣∣∣
Pr

b = b′ :

pp←$KEM.Setup(1n)
{(pk`, sk`)}u`=1 ←$KEM.Gen(pp)
(psk, ssk)←$ASA.Gen(pp)
τ := ε, b←$ {0, 1}
b′ ← UOEnc ({(pk`, sk`)}u`=1 , psk)

− 1

2

∣∣∣∣∣∣∣∣∣∣
,

where OEnc is an encapsulation oracle that for each query of input pk`(` ∈ [1, u])
by user U , returns (K,ψ) which are generated depending on the bit b:

11

– if b = 1, (K,ψ)←$KEM.Enc(pk`);
– if b = 0, (K,ψ)←$ASA.Enc(pk`, psk, τ).

We say ASA is secretly (u, q, ε)-undetectable w.r.t. KEM if for all PPT
users U that make q ∈ N queries with u ∈ N key pairs, Advu-detasa,U (n) ≤ ε.

Alternatively, we say ASA is publicly (u, q, ε)-undetectable w.r.t. KEM if in
the above definition of advantage function, user U is only provided with pk but
not sk. Such an undetectability notion may still make sense in the real world as
when the user is the encryptor, it may only know the public key. Nevertheless,
since that secret undetectability clearly implies public undetectability, we only
consider secret undetectability for ASAs on KEMs in this work.

Strong undetectability. The notion of strong undetectability was introduced
by Bellare et al. [6] for the case of subverting symmetric encryption. In the
definition of strong undetectability, the challenger also returns the state to the
user. This mainly considers a strong detection where the detector may be able
to see all outputs written to the memory of the machine when the subverted
code is running. Meeting such a strong notion naturally limits the ASA to be
stateless otherwise it would be detectable to the user.

Multi-user undetectability. Here we only consider the case of a single user
in Definition 3 for simplicity. One could extend our notion to the more general
setting of multi-user. Precisely, in the undetectability definition for the multi-
user setting, user U also receives multiple key pairs from the challenger and is
allowed to make polynomially many queries to ν identical encapsulation oracles
independently and adaptively (ν denotes the user number).

4 Mounting ASAs on KEMs

We present an ASA on KEMs that enables the subverter to recover the session
key efficiently while the attack is undetectable to the user. We first revisit the
KEM syntax in the module level so that it has some notational advantages in
describing our proposed ASA. New properties with respect to the module-level
KEM are then explicitly defined for the formal analysis of the proposed attack.

4.1 A Module-Level Syntax of KEM

The module-level KEM syntax is mainly depicted in Fig. 2.

– pp← KEM.Setup(1n). Takes as input the security parameter n ∈ N and out-
puts the public parameter pp which includes the descriptions of the session
key space Kkem and the randomness space Rkem.

– (pk = (ek, tk), sk = (dk, vk)) ← KEM.Gen(pp). Takes as input the public
parameter and runs the following sub-algorithms.
• (ek, dk) ← KEM.Ek(pp). The encapsulation key generation algorithm

generates the key pair (ek, dk) for key encapsulation and decapsulation.

12

KEM.Gen(pp)

(ek, dk)←$KEM.Ek(pp)

(tk, vk)←$KEM.Tk(pp)

pk := (ek, tk)
sk := (dk, vk)
Return (pk, sk)

KEM.Enc(pk)

r←$KEM.Rg(pp)
K := KEM.Kg(ek, r)
C := KEM.Cg(r)

π := KEM.Tg(tk, r)

Return (K,ψ = (C, π))

KEM.Dec(sk, ψ = (C, π))

K′ := KEM.Kd(dk, C)

π′ := KEM.Vf(vk, C)

If π′ = π then K := K′

Else K := ⊥
Return K

Fig. 2. Module-level Syntax of KEM. The boxed algorithms are optional.

• (tk, vk)← KEM.Tk(pp). The tag key generation algorithm generates the
key pair (tk, vk) for tag generation and verification. This algorithm is
usually required only for KEM of strong security, e.g., IND-CCA secu-
rity.

– (K,ψ = (C, π))← KEM.Enc(pk). Takes as input the public key and runs the
following sub-algorithms.
• r ← KEM.Rg(pp). The randomness generation algorithm picks r←$Rkem.
• K ← KEM.Kg(ek, r). The encapsulated key generation algorithm takes

as input ek and randomness r, and outputs key K.
• C ← KEM.Cg(r). The key ciphertext generation algorithm takes as input

randomness r, and outputs key ciphertext C.
• π ← KEM.Tg(tk, r). The tag generation algorithm takes as input tk and
r, and outputs the ciphertext tag π.

– K/⊥ ← KEM.Dec (sk, ψ = (C, π)). Takes as input the secret key and the
ciphertext, and runs the following sub-algorithms.
• K ← KEM.Kd(dk,C). The ciphertext decapsulation algorithm takes as

input dk and C, and outputs key K.
• π′ ← KEM.Vf(vk, C) . The tag re-generation algorithm takes as input
vk and C, and outputs tag π′.

The key K is finally output if π′ = π. Otherwise, ⊥ is output.

Remark. Our syntax mainly covers KEMs of the following features. First, the
generation of key ciphertext (KEM.Cg) is independent of the public key. Al-
though this is quite general for most KEM constructions, it fails to cover KEMs
that require public key for ciphertext generation. For example, the lattice-based
KEM in [26] produces ciphertexts depending on the encapsulation key and thus
it is not captured by our framework. Second, the separation of ciphertext and tag
clearly indicates explicit-rejection KEMs, i.e., all inconsistent ciphertexts get im-
mediately rejected by the decapsulation algorithm. Although explicit-rejection
variants are generally popular, some special setting requires implicit-rejection
KEMs, where inconsistent ciphertexts yield one uniform key and hence will be
rejected by the authentication module of the encryption scheme. Concrete exam-
ples could be found in [20]. Nevertheless, in Section 5.2, we show that our defined
KEM framework already covers many known KEM constructions derived from
popular schemes, such as the Cramer-Shoup scheme[13], the Kurosawa-Desmedt
scheme[23], and the Hofheinz-Kiltz scheme[20].

13

4.2 Our Non-Black-Box ASA on KEMs

Following the above module-level syntax, we first identify and formalize two
new non-black-box properties for KEMs, which essentially enable our extremely
efficient ASA against KEMs.

Non-black-box properties formulations. Our notions, namely universal de-
cryptability and key-pseudo-randomness, are actually met by all known KEMs
that could be interpreted using our module-level syntax. Here we explicitly define
them as they are vital to our proposed ASA.

The first non-black-box assumption, i.e., universal decryptability, says that
any key ciphertext C output by KEM.Cg is decryptable via KEM.Kd with any
dk output by KEM.Ek.

Definition 4 (Universal Decryptability). Let KEM = (KEM.Setup, KEM.Gen,
KEM.Enc, KEM.Dec) be a KEM defined in Fig. 2. We say KEM is universally
decryptable if for any n ∈ N, pp←$KEM.Setup(1n), for any r←$KEM.Rg(pp)
and C := KEM.Cg(r), we have

KEM.Kd(dk,C) = KEM.Kg(ek, r)

holds for any (ek, dk)←$KEM.Ek(pp).

The second notion, i.e., key-pseudo-randomness, indicates that the key pro-
duced by KEM.Kg is computationally indistinguishable from a random key.

Definition 5 (Key-Pseudo-Randomness). Let KEM = (KEM.Setup, KEM.Gen,
KEM.Enc, KEM.Dec) be a KEM as defined in Fig. 2. We say KEM is εprk-key-
pseudo-random if for any PPT adversary A, we have

Advprkkem,A(n) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr

b = b′ :

pp←$KEM.Setup(1n)
r←$KEM.Rg(pp)
C := KEM.Cg(r)
(ek, dk)←$KEM.Ek(pp)
b←$ {0, 1},K0←$Kkem

K1 := KEM.Kg(ek, r)
b′ ← A(ek,Kb, C)

− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ εprk.

Remark. One may note that for those KEMs that are only IND-CPA-secure
(i.e., no tag generation/verification is involved in key encapsulation/decapsulation),
our formalized notions of universal decryptability and key-pseudo-randomness
are actually the typical properties of “perfect correctness” and “IND-CPA secu-
rity” respectively for KEMs that follows the above module-level syntax. Here we
explicitly redefine them for generality consideration since we are also interested
in exploring effective ASAs on IND-CCA-secure KEMs.

The proposed attack. We now describe our proposed (asymmetric) ASA. Let
KEM = (KEM.Setup, KEM.Gen, KEM.Enc,KEM.Dec) be a KEM. Consider a
sequential execution of KEM.Enc. Suppose pp←$KEM.Setup(1n) and

(pk = (ek, tk), sk = (dk, vk)) ←$KEM.Gen(pp).

14

ASA.Gen(pp)

(psk, ssk)←$KEM.Ek(pp)
Return (psk, ssk)

ASA.Rec(pk, ssk, Ci, Ci-1) /*i > 1*/

t := KEM.Kd(ssk, Ci-1)
ri := Hk̂(t)
Ki := KEM.Kg(ek, ri)
Return Ki

ASA.Enc(pk, psk, τ) /*i-th execution*/

If τ = ε then
ri ←$KEM.Rg(pp)

Else

t := KEM.Kg(psk, τ)

ri := Hk̂(t)

Ki := KEM.Kg(ek, ri)
Ci := KEM.Cg(ri)
πi := KEM.Tg(tk, ri)
τ := ri

Return (Ki, ψi = (Ci, πi))

Fig. 3. The generic ASA on KEMs. The grey background highlights the difference
between ASA.Enc and KEM.Enc.

Let (Ki, ψi = (Ci, πi)) denote the output of the i-th execution of KEM.Enc, for
which the internal randomness is denoted as ri←$ KEM.Rg(pp). That is, Ki :=
KEM.Kg(ek, ri), Ci := KEM.Cg(ri), and πi := KEM.Tg(tk, ri).

Our ASA on KEM is depicted in Fig. 3. Below are more details.

Subversion Key Generation (ASA.Gen). The subversion key generation algorithm
runs (psk, ssk) ←$KEM.Ek(pp). Note that psk is hard-wired in the subverted
key encapsulation algorithm ASA.Enc while ssk is kept by the subverter. Our
ASA also makes use of a family of keyed hash function H := {Hk̂}k̂∈K̂, where
each Hk̂ maps Kkem to Rkem (both Kkem and Rkem are defined by pp). Therefore,

the hash function key k̂ is also hard-wired in the subverted algorithm ASA.Enc.

Subverted Encapsulation (ASA.Enc). As depicted in the right of Fig. 3, the sub-
verted encapsulation algorithm ASA.Enc takes the public key pk, the hard-wired
key psk and the internal state τ as input. The initial value of τ is set as τ := ε.
Then for the i-th execution (i ≥ 1), ASA.Enc executes the same as KEM.Enc
does except of:

– For algorithm KEM.Enc, the randomness ri is generated via running KEM.Rg
to sample ri←$Rkem uniformly.

– For algorithm ASA.Enc, if τ = ε, the randomness ri is generated via running
KEM.Rg; otherwise, ri is generated via firstly running t := KEM.Kg(psk, τ)
and then computing ri := Hk̂(t). The internal state τ is then updated to ri.

The generation of ciphertext Ci and the session key Ki still follow the legitimate
procedure, i.e., by running algorithm KEM.Cg and KEM.Kg respectively.

Session Key Recovery (ASA.Rec). The left down part of Fig. 3 depicts the en-
capsulated key recovery algorithm ASA.Rec run by the subverter. To recover the
session key encapsulated in the subverted ciphertext Ci (i > 1), the subverter
first uses ssk to decrypt the ciphertext Ci-1 to recover t and then computes ri,
based on which the key Ki—encapsulated in Ci—could be trivially computed.

15

It is worth noting that the subverted ciphertext Ci is in fact not used in the run-
ning of ASA.Rec to recover the underlying key Ki. The core idea of the session
key recovery is to recover the randomness ri by using ssk to decapsulate Ci-1
which is actually the associated ciphertext of Ci.

4.3 Formal Analysis

LetKEM = (KEM.Setup, KEM.Gen, KEM.Enc,KEM.Dec) be a KEM andASA =
(ASA.Gen, ASA.Enc,ASA.Rec) be an ASA on KEM described in Fig. 3. Then we
have the following results.

Theorem 1. The ASA depicted in Fig. 3 preserves the decryptability of KEM.

Proof. This clearly holds as ASA.Enc is the same as the original algorithm
KEM.Enc except of the internal randomness generation. Particularly, the gen-
eration of ciphertext and key essentially remain unchanged in ASA.Enc.

Theorem 2. The ASA depicted in Fig. 3 is session-key-recoverable if KEM is
universally decryptable.

Proof. Note that the notion of session-key-recoverability is defined for the sub-
verted ciphertext ψ which has the associated ciphertexts Φ, i.e., Φψ 6= ∅. That
is, here we consider the session-key-recoverability for all subverted ciphertext
Ci where i ≥ 2. By the fact that KEM is universally decryptable, we have
that KEM.Kd(ssk, Ci-1) = KEM.Kg(psk, ri-1) holds for all ri-1 ∈ Rkem (i ≥ 2)
and Ci-1 := KEM.Cg(ri-1), and for all (psk, ssk)←$KEM.Ek. Note that the ran-
domness recovered in ASA.Rec equals to that from ASA.Enc. Therefore, for any
(pk, sk)←$KEM.Gen and any (Ki, ψi = (Ci, πi)) ←$ ASA.Enc(pk, psk, ri-1), we
have ASA.Rec(pk, ssk, Ci, Ci-1) = Ki.

Theorem 3. Assume KEM is εprk(n)-key-pseudo-random and H is εes(n)-entropy
smoothing, then our ASA depicted in Fig. 3 satisfies (u, q, ε)-undetectability
where q is the query number by the adversary in the detection game and

ε ≤ (q − 1)(εprk(n) + εes(n)).

Proof. We prove this theorem via a sequence of games. Suppose that the adver-
sary A makes q queries in total to the oracle OEnc in the security game. We define
a game sequence: {G0,G1,1,G1,2,G2,1,G2,2, · · · ,Gq-1,1,Gq-1,2}. G0 is the real
game and depicted in Fig. 4 while {G1,1,G1,2,G2,1,G2,2, · · · ,Gq-1,1,Gq-1,2} are
described in Fig. 5. Note that in the following illustrations, we also let G0,2 de-
note the game G0 for the consideration of notational consistency. Let Advx be
the advantage function with respect to A in Game Gx. Below we provide more
details of G0, Gj−1,1 and Gj−1,2 for all j ∈ [2, q]. Note that in all games Gj−1,1
and Gj−1,2 (j ∈ [2, q]), an internal counter i (initialized to 0) is set for the
encapsulation oracle and increments upon each query by the adversary.

16

Game G0(n)

pp←$KEM.Setup(1n)
{(pk`, sk`)}u`=1 ←$KEM.Gen(pp), (psk, ssk)←$KEM.Ek(pp)
τ := ε, b←$ {0, 1}, b′ ← AOEnc

(
{(pk`, sk`)}u`=1 , psk

)
Return (b = b′)

OEnc (pk` = (ek`, tk`))

If (b = 1) then
(K,ψ)←$KEM.Enc(pk`)

Else
If τ = ε then
r←$KEM.Rg(pp)

Else
t := KEM.Kg(psk, τ)
r := Hk̂(t)

K := KEM.Kg(ek`, r), C := KEM.Cg(r), π := KEM.Tg(tk`, r)
τ := r, ψ := (C, π)

Return (K,ψ)

Fig. 4. Games G0 in the proof of Theorem 3

– Game G0 (i.e., G0,2): This game is the real game and thus we have

Advu-detasa,U (n) = Adv0.

– Game Gj-1,1 is identical to Gj-2,2 except that for the case of b = 0, to
generate the response for the j-th query of A, the challenger picks t←$Kkem

instead of computing t := KEM.Kg(psk, τ). We claim that from the view
of A, Gj-1,1 is indistinguishable from Gj-2,2 if KEM is key-pseudo-random.
That is, |Advj-2,2 − Advj-1,1| ≤ εprk(n). See Lemma 1 for more details.

– Game Gj-1,2 is identical to Gj-1,1 except that for the case of b = 0, to gen-
erate the response for the j-th query of A,r is derived by r←$KEM.Rg(pp)
(i.e., r←$Rkem) instead of r := Hk̂(t). We claim that from the view of A,
Gj-1,2 is indistinguishable from Gj-1,1 if H is entropy smoothing. That is,
|Advj-1,2 − Advj-1,1| ≤ εes(n). See Lemma 2 for more details.

Lemma 1 (Gj-1,1 ≈c Gj-2,2). For all j ∈ [2, q] and all PPT adversary A,

|Advj-2,2 − Advj-1,1| ≤ εprk(n).

Proof. To prove this transition, we construct an adversary Bj-1 attacking the
property of key-pseudo-randomness ofKEM. Suppose that Bj-1 receives (pp∗, ek∗,
K∗, C∗) from the challenger in the game defined in Definition 5. Its goal is to
tell whether K∗ is the key encapsulated in C∗ or a random value.
Bj-1 then simulates the detection game to interact with A via the procedure

depicted in Fig. 6. Bj-1 first sets psk = ek∗ as the public subversion key and
simulates the encapsulation oracle (denoted by Osim

Enc) for A. Precisely, if b = 0,

17

Game Gj-1,1(n), Gj-1,2(n) (j ∈ [2, q])

pp←$KEM.Setup(1n)
{(pk`, sk`)}u`=1 ←$KEM.Gen(pp)

(psk, ssk)←$KEM.Ek(pp),τ := ε, i := 0
b←$ {0, 1}, b′ ← AOEnc

(
{(pk`, sk`)}u`=1 , psk

)
Return (b = b′)

OEnc (pk` = (ek`, tk`))

i := i+ 1

If (b = 1) then
(K,ψ)←$KEM.Enc(pk`)

Else
If i < j then
r←$KEM.Rg(pp)

Else
If i = j then
t←$Kkem, r := Hk̂(t)

r←$KEM.Rg(pp)

Else
t := KEM.Kg(psk, τ), r := Hk̂(t)

K := KEM.Kg(ek`, r), C := KEM.Cg(r), π := KEM.Tg(tk`, r)
τ := r, ψ := (C, π)

Return (K,ψ)

Fig. 5. Games G1,1,G1,2,G2,1,G2,2, · · · ,Gq-1,1,Gq-1,2 in the proof of Theorem 3.
Game Gj-1,2 contains the corresponding boxed statements, but game Gj-1,1 does not.

for each query with input pk` = (ek`, tk`), O
sim
Enc performs depending on the

internal counter i as follows.

– Case 1: i = (j − 1). Bj-1 sets C = C∗, computes K := KEM.Kd(dk`, C
∗)

and π := KEM.Vf(C∗, vk`), and returns (K,C, π).
– Case 2: i < (j-1). Bj-1 runs the algorithm KEM.Enc, i.e., KEM.Rg,KEM.Cg

and KEM.Tg sequentially, updates τ and returns the output.
– Case 3: i = j. Bj-1 sets t = K∗, computes r := Hk̂(t), K := KEM.Kg(ek`, r),
C := KEM.Cg(r) and π := KEM.Tg(tk`, r), updates τ and returns (K,C, π).

– Case 4: i > j. Bj-1 sets t := KEM.Kg(psk, τ), computes r := Hk̂(t), runs
K := KEM.Kg(ek`, r), C := KEM.Cg(r) and π := KEM.Tg(tk`, r), updates τ
and returns (K,C, π).

Finally, Bj-1 outputs 1 if A outputs b′ = b otherwise outputs 0.
One could note that if K∗ is the key encapsulated in C∗, then the game

simulated by Bj-1 is exactly the game Gj-2,2 from the view of A. Otherwise,
the simulated game is Gj-1,1 from the view of A. Therefore, we have |Advj-2,2−
Advj-1,1| ≤ εprk(n).

18

Bj-1(pp∗, ek∗,K∗, C∗)

pp := pp∗, psk := ek∗, τ := ε, i := 0, {(pk`, sk`)}u`=1 ←$KEM.Gen(pp)

b←$ {0, 1}, b′ ← AO
sim
Enc

(
{(pk`, sk`)}u`=1 , psk

)
Return (b = b′)

Osim
Enc (pk` = (ek`, tk`))

i := i+ 1
If (b = 1) then

(K,ψ)←$KEM.Enc(pk`)
Else

If i = (j − 1) then
C := C∗, K := KEM.Kd(dk`, C

∗)
π := KEM.Vf(C∗, vk`), ψ := (C, π)

Else
If i < (j − 1) then
r←$KEM.Rg(pp)

Else
If i = j then
t := K∗, r := Hk̂(t)

Else
t := KEM.Kg(psk, τ),r := Hk̂(t)

K := KEM.Kg(ek`, r), C := KEM.Cg(r), π := KEM.Tg(tk, r)
τ := r, ψ := (C, π)

Return (K,ψ)

Fig. 6. Adversary B attacking the key-pseudo-randomness of KEM in the proof of
Lemma 1.

Lemma 2 (Gj-1,2 ≈c Gj-1,1). For all j ∈ [2, q] and all PPT adversary A,

|Advj-1,1 − Advj-1,2| ≤ εes(n).

Proof. To prove this transition, we construct an adversary Dj-1 attacking the
entropy smoothing hash function Hk̂ : Kkem → Rkem. Suppose that Dj-1 re-

ceives (k̂, y∗) from the challenger. Its goal is to tell whether y∗ = Hk̂(x) where
x←$Kkem, or y∗←$Rkem.
Dj-1 then simulates the detection game to interact with A via the procedure

depicted in Fig. 7. Dj-1 simulates the encapsulation oracle (denoted by Osim
Enc) for

A. Precisely, if b = 0, for each query with input pk` = (ek`, tk`), O
sim
Enc performs

depending on the internal counter i as follows.

– Case 1: i < j. Dj-1 runs the algorithm KEM.Enc, i.e., runs KEM.Rg,KEM.Cg
and KEM.Tg sequentially, updates τ and returns the output.

– Case 2: i = j. Dj-1 sets r := y∗, runs K := KEM.Kg(ek`, r), C := KEM.Cg(r)
and π := KEM.Tg(tk`, r), updates τ and returns (K,C, π).

– Case 3: i > j. Dj-1 sets t := KEM.Kg(psk, τ), computes r := Hk̂(t), runs
K := KEM.Kg(ek`, r), C := KEM.Cg(r) and π := KEM.Tg(tk`, r), updates τ
and returns (K,C, π).

19

Dj-1(k̂, y∗)

pp←$KEM.Setup(1n)
{(pk`, sk`)}u`=1 ←$KEM.Gen(pp), (psk, ssk)←$KEM.Ek(pp)

τ := ε, i := 0, b←$ {0, 1}, b′ ← AO
sim
Enc

(
{(pk`, sk`)}u`=1 , psk

)
Return (b = b′)

Osim
Enc (pk` = (ek`, tk`))

i := i+ 1
If (b = 1) then

(K,ψ)←$KEM.Enc(pk`)
Else

If i < j then
r←$KEM.Rg(pp)

Else
If i = j then
r := y∗

Else
t := KEM.Kg(psk, τ), r := Hk̂(t)

K := KEM.Kg(ek`, r), C := KEM.Cg(r), π := KEM.Tg(tk`, r)
τ := r, ψ := (C, π)

Return (K,ψ)

Fig. 7. Adversary D attacking the entropy smoothing hash function Hk̂ in the proof
of Lemma 2.

Finally, Dj-1 outputs 1 if A outputs b′ = b otherwise outputs 0.

One could note that from the view of A, if y∗ = Hk̂(x) where x←$Kkem, then
the game simulated by Dj-1 is exactly the game Gj-1,1. Otherwise, the simulated
game is Gj-1,2. Hence, we have |Advj-1,2 − Advj-1,1| ≤ εes(n).

Summary. Note that in Game Gq-1,2, for all queries to OEnc, the challenger
always runs the algorithm KEM.Enc to generate the response and thus the view
of the detector A actually does not depend on the chosen bit b. Therefore,

Advq-1,2 ≤ negl(n) .

Putting all the above together, we have

Advu-detasa,U (n) = Adv0
= |Adv0 − Adv1,1 + Adv1,1 − Adv1,2 + Adv1,2 − Adv2,1 + · · ·

+Advq-2,2 − Advq-1,1 + Advq-1,1 − Advq-1,2 + Advq-1,2|
≤ |Adv0 − Adv1,1|+ |Adv1,1 − Adv1,2|+ |Adv1,2 − Adv2,1|+ · · ·

+|Advq-2,2 − Advq-1,1|+ |Advq-1,1 − Advq-1,2|+ Advq-1,2|
≤ (q − 1)(εprk(n) + εes(n)).

This completes the proof of Theorem 3.

20

5 Instantiations

In this section, we describe some popular KEM constructions that are subvertible
to our proposed generic ASA.

5.1 KEMs from Hash Proof Systems

Syntax of HPS [13]. Let X , Y be sets and L ⊂ X be a language. Let Λhk :
X → Y be a hash function indexed with hk ∈ HK where HK is a set. We
say a hash function Λhk is projective if there exists a projection ϕ : HK →
HP such that, (1) for every x ∈ L, the value of Λhk(x) is uniquely deter-
mined by ϕ(hk) and x; and (2) for any x ∈ X \ L, it is infeasible to com-
pute Λhk(x) from ϕ(hk) and x. Formally, a hash proof system HPS consists of
(HPS.Setup,HPS.Gen,HPS.Pub,HPS.Priv):

• HPS.Setup(1n). The parameter generation algorithm takes as input 1n, and
outputs pp = (X ,Y,L,HK, HP, Λ(·) : X → Y, ϕ : HK → HP).
• HPS.Gen(pp). The key generation algorithm takes as input pp. It outputs

the secret hashing key hk←$HK and the public key hp := ϕ(hk) ∈ HP.
• HPS.Pub(hp, x, w). The public evaluation algorithm takes as input hp =
ϕ(hk), a language element x ∈ L with the witness w of the fact that x ∈ L.
It outputs the hash value y = Λhk(x).
• HPS.Priv(hk, x). The private evaluation algorithm takes as input hk, an el-

ement x ∈ X . It outputs the hash value y = Λhk(x).

It is generally assumed that one could efficiently sample elements from X . In
this work, for sampling x ∈ L, we explicitly define the following algorithms.

• HPS.Wit(pp). The witness sampling algorithm takes as input pp. It outputs
a witness w as w←$W where W is the witness space included in pp.
• HPS.Ele(w). The language element generation algorithm takes as input w.

It outputs the language element x ∈ L.

Note that here we require the language element generation only takes as
input the witness (and public parameter) and mainly consider the HPS where
the projection key is independent from the language element, which is also known
as KV-type HPS [22].

Correctness. For all pp←$HPS.Setup, all (hk, hp) ←$HPS.Gen, all w←$HPS.Wit(pp)
and x := HPS.Ele(w), it holds that HPS.Pub(hp, x, w) = Λhk(x) = HPS.Priv(hk, x).

Subset Membership Problem. We say the subset membership problem is hard in
HPS if it is computationally hard to distinguish a random element L from a
random element from X \ L. A formal definition appears in Appendix A.1.

Computational Smoothness. We say HPS satisfies computational smoothness if
the hash value of a random element from X \ L looks random to an adversary
only knowing the projection key. A formal definition appears in Appendix A.1.

KEMs from HPS [23,20]. Kurosawa and Desmedt [23] proposed a generic
KEM based on HPS. Their paradigm is later explicitly given by Hofheinz and

21

Kiltz in [20]. Let HPS = (HPS.Setup, HPS.Gen, HPS.Pub,HPS.Priv,HPS.Wit,
HPS.Ele) be an HPS. The constructed KEM KEM = (KEM.Setup, KEM.Gen,
KEM.Enc,KEM.Dec) is as follows.

– KEM.Setup(1n). Run pp←$HPS.Setup(1n), output the public parameter pp.
– KEM.Gen(pp). Run (hk, hp)←$HPS.Gen(pp), set ek := hp, dk := hk, output

(pk = ek, sk = dk).
– KEM.Enc(pk). Run the following sub-algorithms.
• KEM.Rg(pp) : Run w←$HPS.Wit(pp), and return r := w;
• KEM.Cg(r) : Run x := HPS.Ele(r), and return C := x;
• KEM.Kg(ek, r) : Run y := HPS.Pub(ek, C, r), and return K := y.

Output (K,C).
– KEM.Dec(sk, C). Run y := HPS.Priv(dk,C), output K := y.

For their generic construction, we have the following result.

Theorem 4. The above generic construction KEM is universally decryptable
and key-pseudo-random if HPS is of computational smoothness and the subset
membership problem is hard in HPS.

We defer the detailed proof to Appendix A.2.

5.2 Concrete KEMs

Below we present some known KEM constructions subvertible by our ASA.

Cramer-Shoup KEMs [13]. In [13], Cramer and Shoup designed a hybrid
encryption framework based on KEMs and provided instantiations based on
various hardness assumptions.

The DDH-Based. Let G be a cyclic group of prime order p, and g1, g2 are gen-
erators of G. Fig. 8 shows the DDH-based KEM proposed in [13]. The public
parameter is pp = (G, p, g1, g2). The key space Kkem is G and the randomness
space Rkem is Z∗p. H : G2 → Z∗p is a collision resistant hash function.

KEM.Gen KEM.Enc KEM.Dec

KEM.Ek KEM.Tk KEM.Rg KEM.Kg KEM.Cg KEM.Tg KEM.Kd KEM.Vf

(x1, x2)←$

Z2
p;

h = g
x1
1 g

x2
2 ;

ek = h;

dk = (x1, x2)

(y1, y2, z1, z2)
←$Z4

p;

c = g
y1
1 g

y2
2 ;

d = g
z1
1 g

z2
2 ;

tk = (c, d);

vk = (y1, y2,
z1, z2)

r ←$Z∗p K = hr C = (u1, u2)

= (gr1 , g
r
2)

t = H(C);

π = (cdt)r
K = u

x1
1 u

x2
2

t = H(C);

π′ = u
y1+z1t
1

·uy2+z2t
2

Fig. 8. The DDH-Based KEM from Cramer-Shoup Encryption Scheme [13]

The DCR-Based. Let p, q, p′, q′ denote distinct odd primes with p = 2p′ + 1 and
q = 2q′ + 1. Let N = pq and N ′ = p′q′. The group Z∗N2 = GN · GN ′ · G2 · G

22

where each group Gρ is a cyclic group of order ρ, and G is the subgroup of
Z∗N2 generated by (−1 mod N2). Let η←$Z∗N2 and g = −η2N . Fig. 9 shows
the DCR-based KEM proposed in [13]. The public parameter is pp = (N, g).
The key space Kkem is Z∗N2 and the randomness space Rkem is {0, · · · , bN/2c}.
H : Z∗N2 → Rkem is a target collision resistant hash function.

KEM.Gen KEM.Enc KEM.Dec

KEM.Ek KEM.Tk KEM.Rg KEM.Kg KEM.Cg KEM.Tg KEM.Kd KEM.Vf

x←${
0, · · · , bN2/2c

}
;

h = gx;

ek = h; dk = x

y ←$ {0, · · · ,
bN2/2c};
z ←$ {0, · · · ,
bN2/2c};
c = gy ; d = gz ;

tk = (c, d);
vk = (y, z)

r ←$ {0, · · · ,
bN/2c} K = hr C = gr

t = H(C);

π = (cdt)r
K = Cx

t = H(C);

π′ = Cy+zt

Fig. 9. The DCR-Based KEM from Cramer-Shoup Encryption Scheme [13]

The QR-Based. Let p, q, p′, q′ be distinct odd primes with p = 2p′ + 1 and q =
2q′ + 1. Let N = pq and N ′ = p′q′. Group Z∗N = GN ′ ·G2 ·G where each group
Gρ is a cyclic group of order ρ, and G is the subgroup of Z∗N generated by (−1
mod N). Let η←$Z∗N and g = η2. Fig. 10 describes the QR-based KEM proposed

in [13]. The public parameter is pp = (N, g, k, k̂). The key space Kkem is (Z∗N)k

and the randomness space Rkem is {0, · · · , bN/4c}. Let Ω = {0, . . . , bN/2c}.
H : Z∗N → {0, 1} is an efficiently computable injective map.

KEM.Gen KEM.Enc KEM.Dec

KEM.Ek KEM.Tk KEM.Rg KEM.Kg KEM.Cg KEM.Tg KEM.Kd KEM.Vf

x←$Ωk;

h = gx;

ek = h;

dk = x

y ←$Ωk̂

z←$Ωk̂

c = gy;

d = gz;

tk = (c,d);

vk = (y, z)

r ←$ {0,
· · · , bN/4c}

∀i ∈ [1, k] :
Ki = hr

i ;
K = {K1,
· · · , Kk}

C = gr

t = H(C);

∀i ∈ [1, k̂] :
πi = cri · d

t·r
i ;

π = {π1,
· · · , πk̂}

∀i ∈ [1, k] :
Ki = Cxi ;
K = {K1,
· · · , Kk}

t = H(C);

∀i ∈ [1, k̂] :
π′i = Cyi · Ct·zi ;
π′ = {π′1,
· · · , π′

k̂
}

Fig. 10. The QR-Based KEM from Cramer-Shoup Encryption Scheme [13].
x = {x1, · · · , xk},h = {h1, · · · , hk},y = {y1, · · · , yk̂}, z = {z1, · · · , zk̂}, c =
{c1, · · · , ck̂},d = {d1, · · · , dk̂}.

Kurosawa-Desmedt KEM [23]. In [23], Kurosawa and Desmedt designed a
KEM that is not CCA-secure whereas the resulting hybrid encryption scheme
is CCA secure. In [20], Hofheinz and Kiltz generalized the Kurosawa-Desmedt
KEM to be based on the k-linear assumption. Here we show the generalized

23

Kurosawa-Desmedt KEM in its implicit-rejection variant. Let G be a cyclic group
of prime order p, and g1, · · · , gk, ĝ are randomly chosen generators of G. Fig. 11
depicts the generalized Kurosawa-Desmedt KEM based on k-linear assumption.
The public parameter is pp = (G, p, k, g1, · · · , gk, ĝ). The key space Kkem is G
and the randomness space Rkem is Zkp. H : Gk+1 → Z∗p is a target collision
resistant hash function. Note that DDH assumption is equivalent to the 1-linear
assumption, and the scheme instantiated with k = 1 precisely reproduces the
Kurosawa-Desmedt KEM[23].

KEM.Gen KEM.Enc KEM.Dec

KEM.Ek KEM.Tk KEM.Rg KEM.Kg KEM.Cg KEM.Tg KEM.Kd KEM.Vf

(z, ẑ)←$ (Z∗p)
2;

∀i ∈ [1, k] :
(xi, yi)←$ (Z∗p)

2;

hi = g
xi
i ĝz ;

ĥi = g
yi
i ĝẑ ;

ek = (h, ĥ);

dk = (x,y, z, ẑ)

-
∀i ∈ [1, k] :
ri ←$Z∗p;

t = H(C);

K =∏k
i=1(h

t
iĥi)

ri

C = (u1,
· · · , uk, u)

= (g
r1
1 , · · · ,

g
rk
k ,

ĝr1+···+rk)

-

t = H(C)

K = uzt+ẑ·∏k
i=1 u

xit+yi
i

-

Fig. 11. Generalized Kurosawa-Desmedt KEM based on k-Linear Assumption [23,20].
x = {x1, · · · , xk},y = {y1, · · · , yk},h = {h1, · · · , hk}, ĥ = {ĥ1, · · · , ĥk}}

Hofheinz-Kiltz KEMs[20]. In [20], Hofheinz and Kiltz formalized a new no-
tion of CCCA (constrained chosen-ciphertext security) security for KEM and
designed a new CCCA-secure KEM from the DDH assumption. As depicted by
Fig. 12, the construction (the public parameter is pp = (G, p, g)) is almost the
same as the DDH-based one by Cramer and Shoup [13] except that the cipher-
text consists of only one group element. Therefore, the DDH-based KEM by
Hofheinz and Kiltz is also subvertible by our ASA.

KEM.Gen KEM.Enc KEM.Dec

KEM.Ek KEM.Tk KEM.Rg KEM.Kg KEM.Cg KEM.Tg KEM.Kd KEM.Vf

x←$Zp;

h = gx;

ek = h; dk = x

(y, z)←$Z2
p;

c = gy ; d = gz ;

tk = (c, d), vk = (y, z)

r ←$Z∗p K = hr C = gr
t = H(C);

π = (cdt)r
K = Cx

t = H(C);

π′ = Cy+zt

Fig. 12. Hofheinz-Kiltz KEM based on k-Linear Assumption [20]

Remark. In [21], Hofheinz and Kiltz generalized their DDH-based KEM to the
k-linear based one. We remark that their k-linear version is not subvertible by
our ASA as all the group generators must be parts of the public key and thus
the public subversion key cannot be generated before the public key is generated
by the user. Moreover, an implicit-rejection variant of the above DDH-based

24

KEM (Fig. 12) is also proposed in [21], we claim that it is not subvertible to our
ASA either as the key ciphertext depends on the public key and thus is not of
universal decryptability. For more details we refer the reader to [21].

6 Discussions on Countermeasures

In this section, we mainly discuss how to design KEMs secure against ASAs.
Indeed, as we have discussed previously, there exist several KEMs that are not
subvertible by our ASA [21,26]. Nevertheless, we generally consider the security
of KEMs against a wider range of possible subversion attacks in the real world.
Noting that almost all known ASAs are mainly due to the free choice of random-
ness in the cryptographic algorithm, current defense approaches could be roughly
classified as two types, depending on whether the randomness is permitted.

6.1 Abandoning Randomized Algorithms

Some prior works [7,6,3,5,14] have suggested to use deterministic schemes that
produce unique output (e.g., unique ciphertext for encryption). For such schemes,
any subversion attack could be detected via comparing the output of the (pos-
sibly) subverted algorithm with the expected output of the legitimate one at
running time. The notion of unique-ciphertext public-key encryption has been
proposed by Bellare and Hoang [5] as a useful primitive to resist undetectable
subversion attacks. Unfortunately, although abandoning randomized algorithms
could well resist subversions, it naturally makes some desirable security notions
unachievable. In particular, it is a common wisdom that the conventional IND-
CPA security is impossible for deterministic encryption.

6.2 Permitting Randomized Algorithms with Further Assumptions

Some other approaches permitting randomized algorithms have been proposed
to defeat subversions. Note that it is generally impossible for randomized algo-
rithms to resist subversion attacks without making further assumptions (regard-
ing trusted component assumptions and architectural requirements). Indeed, all
current generic approaches that permit randomized algorithms require various
assumptions. Here we mainly introduce three generic techniques using which
one could possibly secure KEM against subversion. Note that all these defensive
techniques rely on different assumptions and thus are generally incomparable.

(1) Split-program methodology [27,28,29,12,2]. The split-program method-
ology is introduced by Russell et al.[27,28] where an algorithm is decomposed
into several functional components that are executed independently (as in thresh-
old cryptography or multiparty computation elements is often assumed, and as
can be implemented based on well isolated enclaves architecturally). It mainly
relies on a so-called watchdog that is trustworthy for detecting subversions of
each individual component of the randomized algorithm. Particularly, in the
split-program model, the adversary is required to supply implementations of all

25

components to the watchdog who has the specification of these components.
The watchdog ’s goal is to test whether the (possibly subverted) implementation
of each individual component is compliant with the specification via black-box
testing. The split-program methodology is generally applicable for every ran-
domized algorithm and has nice properties in resisting the complete subversion
including subverted key generation. Note that Russell et al.’s PKE construction
[28] trivially implies an IND-CPA-secure KEM with subversion resilience in the
offline watchdog model. However, it remains unknown how to achieve stronger
security (e.g., IND-CCA security) for KEMs in the subversion setting.

(2) Cryptographic reverse firewall [25,11,17]. Cryptographic reverse fire-
wall was firstly introduced by Mironov and Stephens-Davidowitz [25] to secure
arbitrary two-party protocol that are run on possibly subverted machines. The
reverse firewall model requires an on-line external party to re-randomize all in-
coming/outgoing communication of the randomized algorithm. This model is
quite powerful in the sense that it could secure the fully black-box use of (possi-
bly subverted) algorithms without complex detection mechanisms. However, it
requires a source of trusted randomness, and may not be readily applicable to
every existing protocol as it requires some “re-randomizable” structure of the
cryptographic scheme. In [17], Dodis et al. showed how to design secure message
transmission protocols on corrupted machines. Their CPA-secure rerandomizable
PKE trivially implies IND-CPA-secure KEMs with reverse firewalls. However, as
pointed out by Dodis et al., such a construction usually requires the computation
of public-key operations on the entire plaintext and thus is inefficient.

(3) Self-guarding mechanism [18]. The self-guarding mechanism, introduced
by Fischlin and Mazaheri [18], assumes the existence of a good initial phase when
the randomized algorithm is not subverted. It could be viewed as an alternative
approach to reverse firewall, but does not depend on external parties and applies
more smoothly to some primitives like symmetric encryption. The core idea is
to use samples gathered from its underlying primitives during their good initial
phase in addition to basic operations to resist subversion attacks that are later
on mounted on the primitives. That is, self-guarding mechanism mainly counter
subversion attacks that are triggered to wake up at a later point in time. Here we
roughly discuss how to construct self-guarding KEMs. Once a set of fresh samples
are gathered at the good initial phase, for each output (K,ψ) of the possibly
subverted encapsulation algorithm, a sample (K$, ψ$) is first randomly chosen
(and deleted) from the set, and then K$ is used to mask ψ while ψ$ is appended
to the updated ciphertext. To decapsulate the key K, K$ is first recovered to
remove the mask in the ciphertext and thereafter the recovered ciphertext is
decrypted. Note that the security of KEM in this setting is inherently bounded
by the number of samples collected during the good initial phase.

Note that in [19], Giacon et al. introduced the notion of KEM combiners as
an approach to garner trust from different KEM constructions instead of relying
on a single one. We remark that their proposed combiners could be potentially
used to restore security against subversion attacks by assuming at least one of the
underlying KEMs is not subverted. Further, there are several other approaches

26

for protecting specific primitives against subversions, e.g., anonymous attestation
protocols by Camenisch et al. [9], and backdoored pseudorandom generators by
Dodis et al. [15].

Acknowledgement. We would like to thank all anonymous reviewers for their
valuable comments. Part of this work was done while Rongmao Chen was visiting
COSIC in KU Leuven, Belgium. Rongmao Chen is supported in part by the
National Natural Science Foundation of China (Grant No. 61702541 and Grant
No. 61872087), and the Young Elite Scientists Sponsorship Program by China
Association for Science and Technology. Xinyi Huang is supported in part by
the National Natural Science Foundation of China (Grant No. 61822202).

References

1. Armour, M., Poettering, B.: Subverting decryption in AEAD. In: 17th IMA In-
ternational Conference on Cryptography and Coding. pp. 22–41. LNCS, Springer,
Heidelberg (Dec 2019). https://doi.org/10.1007/978-3-030-35199-1 2

2. Ateniese, G., Francati, D., Magri, B., Venturi, D.: Public immunization against
complete subversion without random oracles. In: ACNS 19. pp. 465–485. LNCS,
Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-21568-2 23

3. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In:
Ray, I., Li, N., Kruegel:, C. (eds.) ACM CCS 15. pp. 364–375. ACM Press (Oct
2015). https://doi.org/10.1145/2810103.2813635

4. Auerbach, B., Bellare, M., Kiltz, E.: Public-key encryption resistant to parameter
subversion and its realization from efficiently-embeddable groups. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 348–377. Springer,
Heidelberg (Mar 2018). https://doi.org/10.1007/978-3-319-76578-5 12

5. Bellare, M., Hoang, V.T.: Resisting randomness subversion: Fast deterministic and
hedged public-key encryption in the standard model. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 627–656. Springer,
Heidelberg (Apr 2015). https://doi.org/10.1007/978-3-662-46803-6 21

6. Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the state:
Strongly undetectable algorithm-substitution attacks. In: Ray, I., Li, N.,
Kruegel:, C. (eds.) ACM CCS 15. pp. 1431–1440. ACM Press (Oct 2015).
https://doi.org/10.1145/2810103.2813681

7. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption
against mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (Aug 2014).
https://doi.org/10.1007/978-3-662-44371-2 1

8. Berndt, S., Liskiewicz, M.: Algorithm substitution attacks from a stegano-
graphic perspective. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu,
D. (eds.) ACM CCS 17. pp. 1649–1660. ACM Press (Oct / Nov 2017).
https://doi.org/10.1145/3133956.3133981

9. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation with subverted
TPMs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403,
pp. 427–461. Springer, Heidelberg (Aug 2017). https://doi.org/10.1007/978-3-319-
63697-9 15

10. Checkoway, S., Niederhagen, R., Everspaugh, A., Green, M., Lange, T., Ristenpart,
T., Bernstein, D.J., Maskiewicz, J., Shacham, H., Fredrikson, M.: On the practical
exploitability of dual EC in TLS implementations. pp. 319–335 (2014)

27

https://doi.org/10.1007/978-3-030-35199-1_2
https://doi.org/10.1007/978-3-030-21568-2_23
https://doi.org/10.1145/2810103.2813635
https://doi.org/10.1007/978-3-319-76578-5_12
https://doi.org/10.1007/978-3-662-46803-6_21
https://doi.org/10.1145/2810103.2813681
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1145/3133956.3133981
https://doi.org/10.1007/978-3-319-63697-9_15
https://doi.org/10.1007/978-3-319-63697-9_15

11. Chen, R., Mu, Y., Yang, G., Susilo, W., Guo, F., Zhang, M.: Cryptographic reverse
firewall via malleable smooth projective hash functions. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 844–876. Springer,
Heidelberg (Dec 2016). https://doi.org/10.1007/978-3-662-53887-6 31

12. Chow, S.S.M., Russell, A., Tang, Q., Yung, M., Zhao, Y., Zhou, H.S.: Let
a non-barking watchdog bite: Cliptographic signatures with an offline watch-
dog. In: PKC 2019, Part I. pp. 221–251. LNCS, Springer, Heidelberg (2019).
https://doi.org/10.1007/978-3-030-17253-4 8

13. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (Apr / May 2002).
https://doi.org/10.1007/3-540-46035-7 4

14. Degabriele, J.P., Farshim, P., Poettering, B.: A more cautious approach to secu-
rity against mass surveillance. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054,
pp. 579–598. Springer, Heidelberg (Mar 2015). https://doi.org/10.1007/978-3-662-
48116-5 28

15. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treatment
of backdoored pseudorandom generators. In: Oswald, E., Fischlin, M. (eds.) EU-
ROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 101–126. Springer, Heidelberg (Apr
2015). https://doi.org/10.1007/978-3-662-46800-5 5

16. Dodis, Y., Gennaro, R., H̊astad, J., Krawczyk, H., Rabin, T.: Randomness extrac-
tion and key derivation using the CBC, cascade and HMAC modes. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494–510. Springer, Heidelberg (Aug
2004). https://doi.org/10.1007/978-3-540-28628-8 30

17. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse
firewalls—secure communication on corrupted machines. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 341–372. Springer, Heidelberg
(Aug 2016). https://doi.org/10.1007/978-3-662-53018-4 13

18. Fischlin, M., Mazaheri, S.: Self-guarding cryptographic protocols against algo-
rithm substitution attacks. In: 31st IEEE Computer Security Foundations Sym-
posium, CSF 2018, Oxford, United Kingdom, July 9-12, 2018. pp. 76–90 (2018).
https://doi.org/10.1109/CSF.2018.00013

19. Giacon, F., Heuer, F., Poettering, B.: KEM combiners. In: Abdalla, M., Dahab,
R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 190–218. Springer, Heidelberg
(Mar 2018). https://doi.org/10.1007/978-3-319-76578-5 7

20. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (Aug 2007). https://doi.org/10.1007/978-3-540-74143-5 31

21. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
Cryptology ePrint Archive, Report 2007/288 (2007), http://eprint.iacr.org/

2007/288
22. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key

exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (Mar 2011). https://doi.org/10.1007/978-3-642-19571-6 18

23. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (Aug 2004). https://doi.org/10.1007/978-3-540-28628-8 26

24. Kwant, R., Lange, T., Thissen, K.: Lattice klepto - turning post-quantum crypto
against itself. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719,
pp. 336–354. Springer, Heidelberg (Aug 2017). https://doi.org/10.1007/978-3-319-
72565-9 17

28

https://doi.org/10.1007/978-3-662-53887-6_31
https://doi.org/10.1007/978-3-030-17253-4_8
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-46800-5_5
https://doi.org/10.1007/978-3-540-28628-8_30
https://doi.org/10.1007/978-3-662-53018-4_13
https://doi.org/10.1109/CSF.2018.00013
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/978-3-540-74143-5_31
http://eprint.iacr.org/2007/288
http://eprint.iacr.org/2007/288
https://doi.org/10.1007/978-3-642-19571-6_18
https://doi.org/10.1007/978-3-540-28628-8_26
https://doi.org/10.1007/978-3-319-72565-9_17
https://doi.org/10.1007/978-3-319-72565-9_17

25. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 657–686.
Springer, Heidelberg (Apr 2015). https://doi.org/10.1007/978-3-662-46803-6 22

26. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) Post-
Quantum Cryptography - 6th International Workshop, PQCrypto 2014. pp. 197–
219. Springer, Heidelberg (Oct 2014). https://doi.org/10.1007/978-3-319-11659-4 -
12

27. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Cliptography: Clipping the power
of kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016,
Part II. LNCS, vol. 10032, pp. 34–64. Springer, Heidelberg (Dec 2016).
https://doi.org/10.1007/978-3-662-53890-6 2

28. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Generic semantic security against
a kleptographic adversary. In: Thuraisingham, B.M., Evans, D., Malkin, T.,
Xu, D. (eds.) ACM CCS 17. pp. 907–922. ACM Press (Oct / Nov 2017).
https://doi.org/10.1145/3133956.3133993

29. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Correcting subverted random oracles.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 241–271. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-
96881-0 9

30. Young, A., Yung, M.: The dark side of “black-box” cryptography, or: Should we
trust capstone? In: Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp. 89–103.
Springer, Heidelberg (Aug 1996). https://doi.org/10.1007/3-540-68697-5 8

31. Young, A., Yung, M.: Kleptography: Using cryptography against cryptography. In:
Fumy, W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 62–74. Springer, Heidel-
berg (May 1997). https://doi.org/10.1007/3-540-69053-0 6

32. Young, A., Yung, M.: The prevalence of kleptographic attacks on discrete-log based
cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp. 264–
276. Springer, Heidelberg (Aug 1997). https://doi.org/10.1007/BFb0052241

A Omitted Definitions and Proof

A.1 Hash Proof System

Below we formally define the subset membership problem and computational
smoothness for HPSs.

(1). Subset membership problem. We say the subset membership problem is hard
in HPS if it is computationally hard to distinguish a random element L from a
random element from X \ L. Formally, for any PPT algorithm A,

Advsmp
hps,A(n) := |Pr[A(X , L, x) = 1|x←$L]−

Pr[A(X , L, x) = 1|x←$X \ L] | ≤ negl(n) .

(2). Computational smoothness. We say HPS is of computational smoothness if
the hash value of a random element from X\L looks random to an adversary only
knowing the projection key. Formally, for any PPT algorithm A, its advantage

29

https://doi.org/10.1007/978-3-662-46803-6_22
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1145/3133956.3133993
https://doi.org/10.1007/978-3-319-96881-0_9
https://doi.org/10.1007/978-3-319-96881-0_9
https://doi.org/10.1007/3-540-68697-5_8
https://doi.org/10.1007/3-540-69053-0_6
https://doi.org/10.1007/BFb0052241

Advsmooth
hps,A (n) defined as below is negligible.

Advsmooth
hps,A (n) :=

∣∣∣∣∣∣∣∣∣∣∣
Pr

b′ = b :

pp←$HPS.Setup(1n);
(hp, hk)←$HPS.Gen(pp);
x←$X \ L; b←$ {0, 1};
y0 ←$Y;
y1 := HPS.Priv(hk, x);
b′ ← A(pp, hp, x, yb)

−
1

2

∣∣∣∣∣∣∣∣∣∣∣
.

A.2 Proof of Theorem 4

Theorem 4 The generic construction of KEM depicted in section5.1 is univer-
sally decryptable and key-pseudo-random if HPS is computationally smooth and
the subset membership problem is hard in HPS.

Proof. The property of universal decryptability clearly holds due to the projec-
tion property of HPS. We now prove the key-pseudo-randomness via games:
{G0,G1,G2,G3}. Let Advx be the advantage of A in Game Gx. Below we
provide more details of each game.

– Game G0: This is the real game and thus Advprkkem,A(n) = Adv0.
– Game G1: Same as G0 except that instead of computingK1 := KEM.Kg(ek, r),

the challenger computes K1 := KEM.Kd(dk,C). One can see that from the
view of the adversary, G1 is identical to G0 due to the property of universal
decryptability. Therefore, we have Adv1 = Adv0.

– Game G2: Same as G1 except that the challenger chooses C ←$X \L. One
can see that from the view of the adversary, G2 is indistinguishable from G1

due to the hard subset membership problem in HPS. Therefore, we have
|Adv2 − Adv1| ≤ Advsmp

hps,A(n).
– Game G3: Same as G2 except that the challenger chooses K1←$Kkem in-

stead of computing K1 := KEM.Kd(dk,C). Below we show that a distin-
guisher between both games could be turned into an attacker A′ against
the smoothness of KEM. Precisely, when A′ receives (pp, hp, x∗, y∗) from
its challenger, it sets ek := hp, C := x and K1 := y∗. One can note that
if y∗ := HPS.Priv(hk, x∗), then the simulation is Game G2, otherwise it is
Game G3. This yields |Adv3 − Adv2| ≤ Advsmooth

hps,A (n).

In Game G3, the view of the adversary actually does not depend on the
chosen bit b and thus we have Adv3 = 0. Putting all the above together,

Advprkkem,A(n) = Adv0
= |Adv0 − Adv1 + Adv1 − Adv2 + Adv2 − Adv3 + Adv3|
≤ |Adv0 − Adv1|+ |Adv1 − Adv2|+ |Adv2 − Adv3|+ Adv3
≤ Advsmp

hps,A(n) + Advsmooth
hps,A (n).

This completes the proof of the theorem.

30

	Subvert KEM to Break DEM: Practical Algorithm-Substitution Attacks on Public-Key Encryption

