
Catalic: Delegated PSI Cardinality with
Applications to Contact Tracing

Thai Duong1, Duong Hieu Phan2, and Ni Trieu3
�

1 Google LLC, USA
thaidn@google.com

2 LTCI, Telecom Paris, Institut Polytechnique de Paris, France
hieu.phan@telecom-paris.fr

3 Arizona State University, USA
nitrieu@asu.edu

Abstract. Private Set Intersection Cardinality (PSI-CA) allows two par-
ties, each holding a set of items, to learn the size of the intersection of
those sets without revealing any additional information. To the best of
our knowledge, this work presents the first protocol that allows one of
the parties to delegate PSI-CA computation to untrusted servers. At the
heart of our delegated PSI-CA protocol is a new oblivious distributed key
PRF (Odk-PRF) abstraction, which may be of independent interest.

We explore in detail how to use our delegated PSI-CA protocol to perform
privacy-preserving contact tracing. It has been estimated that a significant
percentage of a given population would need to use a contact tracing
app to stop a disease’s spread. Prior privacy-preserving contact tracing
systems, however, impose heavy bandwidth or computational demands
on client devices. These demands present an economic disincentive to
participate for end users who may be billed per MB by their mobile
data plan or for users who want to save battery life. We propose Catalic
(ContAct TrAcing for LIghtweight Clients), a new contact tracing system
that minimizes bandwidth cost and computation workload on client
devices. By applying our new delegated PSI-CA protocol, Catalic shifts
most of the client-side computation of contact tracing to untrusted servers,
and potentially saves each user hundreds of megabytes of mobile data
per day while preserving privacy.
Keywords. Private Set Intersection Cardinality, Contact Tracing, Link-
age Attack.

1 Introduction

Private Set Intersection (PSI) is a secure multiparty computation (MPC) tech-
nique that allows several parties, each holding a set of items, to learn the
intersection of their sets without revealing anything else about the items. Over
the past few years, practice has motivated the development of fast implemen-
tations that make PSI practical. As of today, Google runs PSI together with

third-party data providers to find target audiences for advertising and marketing
campaigns [IKN+19]. Private Set Intersection Cardinality (PSI-CA) is a variant
of PSI in which the parties learn the intersection size and nothing else. Recently,
PSI-CA is used in the context of contact tracing to protect against linkage at-
tacks [TSS+20]. In this work, we consider delegated PSI-CA in the semi-honest
model. By “delegated," we refer to cases where the parties outsource their datasets
to an untrusted cloud and let the cloud perform the PSI-CA computation on their
behalf. At the end of the computation, the parties only learn the intersection size,
while the cloud learns nothing. This setting is useful when some of the parties
have limited computing power. For example, when a phone has to intersect its
dataset with a large server-side database, it makes sense to delegate the phone’s
computation to the cloud for efficiency. To the best of our knowledge, this work
is the first to consider delegated PSI-CA in the context of contact tracing to
overcome the computational limitations of mobile devices.

We also explore the use of PSI-CA in privacy-preserving contact tracing (CT),
an emerging technology that can help prevent the further spread of COVID-19
without violating individuals’ privacy. Recently, there has been a significant
amount of work on privacy-preserving CT [TPH+20,CGH+20,vABB+20,RPB20,
Goo20a,MMRV20,LAY+20,AIS20,LTKS20,CDF+20,ABB+20,CKL+20,CBB+20,
TZBS20]. Most contact tracing systems are decentralized and rely on Bluetooth
Low Energy (BLE) wireless radio signals on mobile phones. These systems warn
people about others they have been in contact with who have been diagnosed
with the disease.

Most of the current decentralized CT systems impose a significant mobile
data cost on end-users because they require them to download a large, new
dataset every day. At the current peak, the US has nearly 40,000 new cases daily.
With the current Apple-Google design, users have to download approximately
40,000 (cases) * 14 (keys per case) * 16 (bytes per key) = 8.96 MB each day.
The number of cases could be significantly higher after social restrictions are
lifted. Even with this cost, the current Apple-Google design remains susceptible
to various attacks. For example, if Bob is diagnosed with the disease, he would
upload daily diagnosis keys to the server. In this case, Bob’s anonymous identifier
beacons/tokens, as they are broadcast each day, can be linked to each other.
This is called a linkage attack. The beacons can also be linked across days if Bob
frequently appears at the same place and the same time (i.e., because it is on his
commute route). At the time of writing, Apple and Google have not described
how they are going to address this problem. DP3T has proposed a solution
based on Cuckoo filters, but it requires even more data downloaded (Design
2, [TPH+20]). For 40,000 new daily infections, users would need to download
110 MB each day. Mobile service providers such as Google Fi charge $10/GB.
This means, at 40,000 new cases per day, DP3T’s Design 2 would cost each
user $1/day, and the Apple-Google solution would cost $0.10/day (although we
note that the Apple-Google design is more vulnerable to linkage attacks). Since
contact tracing must be run continuously until a vaccine is available, it may last
for months if not years. Therefore, the total cost to a single user could approach

2

hundreds of dollars. In contrast, the network cost of our Catalic is on the order of
a few hundred kilobytes and is independent of the server dataset size. We present
details on comparisons between the systems’ performance in Section 6.3.

The efficacy of contact tracing is proportional to the number of users. It is
therefore crucial to the success of contact tracing to minimize the cost to these
users. By applying our new lightweight delegated PSI-CA protocol, our Catalic
system allows end users to delegate their computation to untrusted servers. As a
result, the computation workload is almost free and the bandwidth cost is of a
few hundred kilobytes, which is independent of the size of the server’s database.

1.1 Our Contributions & Techniques

We design a modular approach for delegated PSI-CA that is secure against semi-
honest parties. The main building block of our PSI-CA protocol, which we believe
to be of independent interest, is oblivious distributed key PRF (Odk-PRF). Recall
that, in oblivious PRF (OPRF), the sender learns (or chooses) a PRF key k,
and the receiver learns F (k, r), where F is a PRF and r is the receiver’s input.
The sender learns nothing about r, and the receiver learns nothing else. In Odk-
PRF, the PRF key, input, and output are secret-shared among m parties. More
precisely, an oblivious distributed key pseudorandom function (Odk-PRF) is a
protocol that consists of a sender and m receivers. Each receiver has one XOR
secret-shared of input r and learns the local PRF value F (kj , rj), which is the
result of the PRF on a secret-shared ri with a secret-shared key kj . The sender
learns a combined PRF key k =

⊕m
j=1 kj . If anyone collects all m local PRF

evaluations, they can reconstruct the global PRF as F (k, r). Such an actor is
known as a combiner.

Our delegated PSI-CA protocol consists of two major phases. First, in the
distributed PRF phase, the PSI-CA’s receiver (who we will call Alice) distributes
secret shares of her input X = {x1, . . . , xn} to m cloud servers, which run Odk-
PRF with the PSI-CA’s sender (called Bob) to obtain secret shares of the PRF
output. Bob learns the combined PRF key ki from this execution while each
cloud server learns the local PRF value F (ki,j , ri,j) for each share ri,j of xi, where
i ∈ [n], j ∈ [m]. Among the cloud servers, Alice can choose a leader to reconstruct
the PRF output F (ki, xi) for each xi ∈ X. In the second phase, Bob generates a
set of key-value pairs {(F (ki, yi), vi),∀yi ∈ Y } where the key is the PRF output
over his input Y = {y1, . . . , yN} and the value vi is known to Alice. If any
xi ∈ Y , the cloud leader and Bob hold the same F (ki, xi), so the cloud leader can
obliviously obtain the correct value vi by obliviously searching on Bob’s key-value
pairs. Otherwise, if xi 6∈ Y , the corresponding value obtained is random. This
concept can be viewed as Oblivious Programmable PRF, proposed in [KMP+17].
Now with a set of ‘real" or‘fake" values vi, the cloud leader permutes and sends
them to Alice, who can compute how many items are in the intersection (PSI-CA)
by counting how many “real" vi there are, but can’t learn anything about which
specific items were in common (e.g., which vi corresponds to the item xj). Thus,
the intersection set is not revealed. This brief overview ignores many important
concerns — in particular, how Bob can coordinate PRF keys and items without

3

revealing the identities of the items. A more detailed overview of the approach is
presented in Section 4.

We motivate the design of our delegated PSI-CA protocol to build Catalic, a
lightweight contact tracing system. As discussed in the introduction, most current
decentralized systems impose a workload on end-users that has heavy bandwidth
and computational costs. Catalic aims to minimize these costs. We will compare
Catalic with other systems in Section 2.2 and Section 6.3. In Catalic, every client
plays the role of a dealer by dividing each anonymous identifier beacon they
collect into shares and giving each share to a cloud server of their choice. Finally,
using the results of the cloud servers’ computation, clients perform a simple
calculation to check whether there is a match (e.g., one that indicates they are at
risk). The distinguishing property of our system is that it allows the development
of a collaborative and decentralized system of cloud servers all around the world.
These servers are available to help users who have resource-constrained devices.
Users can select among all available servers in the delegation. This choice is
totally hidden from the view of any adversary and thus, unless a majority of all
the servers around the world are corrupted, the whole system preserves privacy.

In summary, we make the following contributions:

– We propose a novel Delegated Private Set Intersection Cardinality (DPSI-
CA) protocol. To the best of our knowledge, it is the first protocol that
allows clients to delegate their PSI-CA computation to cloud servers. The
computation and communication complexity of our DPSI-CA protocol is linear
in the size of the smaller set O(n), and is independent of the larger set’s size.

– We design Catalic, a lightweight contact tracing system, that delegates client-
side computation to untrusted servers. To the best of our knowledge, Catalic
is the first system that outsources computation for contact tracing. Moreover,
Catalic provides strong privacy guarantees that can prevent critical attacks
(e.g., linkage attacks and false-positive claims).

– Finally, we implement building blocks of our PSI-CA protocol and estimate
the protocol’s performance. We show that the computational and network
costs for the client are negligible. With the server database size N = 226, the
client set size n = 212, and 2 cloud servers, without including the time spent
waiting on the server’s response, the client requires a running time of 2.17
milliseconds and only 190.48 KBs of communication. Our experiments show
that Catalic is highly scalable.

2 Related Work and Comparison

2.1 Private Set Intersection

Private set intersection (PSI) has been motivated by many real-world applications
such as contact discovery [CLR17], botnet detection [NMH+10], human genomes
testing [KRT18]. The earliest PSI protocols are based on Diffie-Hellman assump-
tions [Sha80,Mea86,HFH99]. Over the last few years, there has been active work on
efficient secure PSI [DCW13,PSSZ15,FHNP16,RR17,KMP+17,CLR17,PRTY19]

4

with fast implementations that can process millions of items in seconds. How-
ever, these implementations only allow to output the intersection itself. In many
scenarios (e.g, online marketing campaigns) it is preferable to compute some
function of the intersection rather than to reveal the elements in the intersection.
Limited work has focused on this so-called f -PSI problem. In this section, we
focus on f -PSI constructions that support PSI-CA.

All current PSI-CA constructions are built in a setting where the sender and
the receiver directly interact with each other in several interactive rounds to do the
computation. Huang, Katz, and Evans [HEK12] propose an efficient sort-compare-
shuffle circuit construction to implement f -PSI. Pinkas et al [PSWW18,PSTY19]
improve circuit-PSI using several hashing techniques. The main bottlenecks in the
existing circuit-based protocols are the number of string comparisons and that
computing the statistics (e.g., counts) of the associated values is done inside a
generic MPC protocol, which is communication-expensive. Therefore, the current
Diffie-Hellman Homomorphic encryption approach of [IKN+19] is still preferable
in practice [Pos19], due to its more reasonable communication complexity. How-
ever, the protocol of [IKN+19] requires a certain amount of computation, which is
still expensive in the mobile setting. Very recently, [TSS+20] combines DH-based
PSI protocols [HFH99] and Private Information Retrieval [KO97] to reduce the
communication cost of [IKN+19]. Their PSI-CA protocol requires 35 seconds to
securely compute the intersection size for a server database size 5.6× 106 and
client set size 1120.

With the growth of cloud computing, delegating computation to cloud servers
is more practical. There are a few works [Ker12,LNZ+14,ZX15,ATD17,QLS+18,
ATMD19,ATD20] that consider the outsourcing (delegating) setting. Importantly,
their protocols only compute the intersection itself. Most of the constructions
are based on polynomials. Their core idea is that if the set X (respectively, Y) is
represented as a polynomial f (respectively, g) whose roots are the set’s elements,
then the polynomial representation of the intersection X ∩Y is P = f × r+ g× s
where r and s are random polynomials, each of them secretly chosen by each party.
An important property is that an item x ∈ X ∩ Y if and only if f(x) = g(x) = 0.
Consequently, for each item x that appears in both sets X and Y , it holds that
P (x) = f(x) × r(x) + g(x) × s(x) = 0 no matter which values r(x) and s(x)
have. In the outsourcing setting, the parties encrypt and outsource the encrypted
polynomials f and g to cloud servers that help to compute the polynomial P under
homomorphic encryption. The servers then return the encrypted polynomial P
to a receiver who figures out the intersection items by finding all roots of P .
Because the valid roots of the polynomial are the items in the set intersection, it
is not clear how to extend this idea to output only the intersection size without
revealing the common elements. To the best of our knowledge, our DPSI-CA
is the first protocol that allows the client (i.e., the receiver) to delegate their
computation to cloud servers. The computation and communication complexity
of our protocol is independent of the larger set size, and linear in the size of the
smaller set O(n).

5

2.2 Secure Contact Tracing

Global lockdown measures have been imposed all around the world and will
cause severe social and economic problems. To relax the lockdown measures while
keeping the ability to control the spread of the disease, technical tools for contact
tracing have been introduced. The resulting applications try to log every instance
a person is close to another smartphone-owner for a significant period of time.

The first method includes keeping logs of users’ Global Positioning System
(GPS) location data and asking them to scan Quick Response (QR) codes.
However, GPS-based methods carry privacy risks because the GPS data may
be sent to a centralized authority. Almost all nations are now focused on using
another technology - wireless Bluetooth signals - to detect contact matches.

The main principle of Bluetooth-based approaches is to determine who has
been in close physical proximity, determined by Bluetooth signals, to an individual
who is diagnosed with the disease (a ‘diagnosed user’). All methods require users
to continually run a phone application that broadcasts pseudo-random Rolling
Proximity Identifiers (RPI) representing the user and to record RPIs observed
from phones in close proximity. Whenever a user is diagnosed positively with
COVID-19, the application alerts all the devices from which it had received
diagnosis RPIs during the infection window (e.g., 14 days for COVID-19).

There are two main categories of proposals: centralized and decentralized. In a
centralized approach [Tra,Rob,NTK], the server generates RPIs and thus knows
all the RPIs honestly used in the system. The model relies on a trusted third-party
(e.g, a government health authority). It is therefore vulnerable to many privacy
issues. In a decentralized approach like DP3T [TPH+20], PACT [CGH+20] and
Apple/Google [Goo20a], each phone generates its own RPIs that are exchanged
to another phone when a close contact event is detected. The RPI list never
leaves a user’s phone as long as the user is not diagnosed with the disease. This
model removes the need of the trusted server, but is still vulnerable to several
attacks like linkage attacks. For example, an attacker can install BLE-sniffing
devices to different known physical locations and collect RPIs. By keeping track
of when and where they received which tokens, the attacker can identify who has
been diagnosed with the disease as well as the travel route of the individuals [Sei].

Recent analysis has shown that current centralized and decentralized digital
contact tracing proposals come with their own benefits and risks [Vau20]. Against
a malicious authority, the risk of mass surveillance is very high in centralized
systems. This risk is lower in decentralized systems because the users generate
their tokens themselves. However, the decentralized systems also endanger the
anonymity of diagnosed people over other users, as the tokens of diagnosed people
are broadcasted to everyone. [Vau20]: “centralized systems put the anonymity of
all users in high danger, specially against a malicious authority, while decentralized
systems put the anonymity of diagnosed people in high danger against anyone.”

Several solutions have been proposed to prevent against linkage attack as
well as to leverage the best of centralized and decentralized systems. As far as
we know, there are three protocols in this direction.

6

– The Epione system [TSS+20], in which private set intersection protocols are
used on top of decentralized systems: the diagnosis RPIs are not broadcasted.
Instead, the user’s query is done with the back-end server via an interactive
secure computation protocol (PSI-CA). This system achieves both high privacy
and a low volume of data to be downloaded. However, it requires each user
to realize the high computation (w.r.t resource-constrained devices) of a
two-round interactive protocol with the servers.

– The Pronto-C2, proposed by Avitabile et. al. [ABIV20], in which instead of
asking diagnosed people to send RPIs to the back-end server, they construct
a system where smartphones anonymously and confidentially talk to each
other in the presence of the back-end server. Informally, the back-end server
helps users to establish shared Diffie-Hellman keys to check whether they are
in contact with each other. The main shortcoming of this system is that the
client still has to download a large database (as in the DP3T system) and
this is not appropriate for resource-constrained devices.

– Finally, the DESIRE [DES] is presented as an evolution of the ROBERT
protocol used in France [Rob]. In this system, for each contact between two
phones, a Diffie-Hellman key exchange between is established and stored on
each phone, which makes a high barrier for resource-constrained devices.

We observe that none of the above three schemes supports resource-constrained
devices that have limited capacities for computation and storage. Our work solves
this problem by introducing an efficient delegated PSI-CA. Our solution allows
resource-constrained devices to fully perform the functionality of the contact
tracing system while maintaining the user’s privacy.

Catalic can also be considered as a generalization of the Epione system. Indeed,
if the user plays the role of the cloud servers themselves, then Catalic is equivalent
to Epione. This gives us the ability to design a flexible system that allows users
with sufficiently powerful devices who do not trust cloud services to participate
in contact tracing without cloud help.

3 Security Model and Cryptographic Preliminaries

This section introduces the notation, security guarantees, and cryptographic
primitives used in the later sections. In this work, the computational and statistical
security parameters are denoted by κ, λ, respectively. For n ∈ N, we write [n] to
denote the set of integers {1, . . . , n}.

3.1 Security Model

We consider a set of parties who have agreed upon a single functionality to
compute and have also consented to give the final result to some particular party.
At the end of the computation, nothing is revealed by the computational process
except the final output. In the real-world execution, the parties often execute the
protocol in the presence of an adversary who corrupts a subset of the parties. In

7

Parameters: A PRF F , and two parties: receiver and sender.

Behavior:

– Wait for input q from the receiver.
– Sample a random PRF seed k and give it to the sender.
– Give F (k, q) to the receiver.

Fig. 1. The OPRF ideal functionality

the ideal execution, the parties interact with a trusted party that evaluates the
function in the presence of a simulator that corrupts the same subset of parties.
There are two adversarial models and two models of collusion.

– Adversarial model: A semi-honest adversary follows the protocol but is curious
and attempts to obtain extra information from the execution transcript. A
malicious adversary can apply any arbitrary polynomial-time strategy to
deviate from the protocol.

– Collusion security: A colluding model is considered as a single monolithic
adversary that observes the possibility of collusion between the dishonest
parties. Consequently, the model is secure if the joint distribution of those
views can be simulated. In contrast, a non-colluding model is considered
as independent adversaries, each observing the view of each independent
dishonest party. The model is secure if the individual distribution of each
view can be simulated.

In this work, we consider the semi-honest setting. The adversary can corrupt
parties but as long as there are at least two non-corrupted specific servers involved
in the protocol, the privacy of the users will be guaranteed. We describe more
detail on the security of our DPSI-CA protocol and Catalic system in Section 4
and Section 6.3.

3.2 Cryptographic Primitives

Oblivious PRF An oblivious pseudorandom function (OPRF) [FIPR05] is a
protocol in which a sender learns (or chooses) a random PRF seed s while the
receiver learns F (s, r), the result of the PRF on a single input r chosen by the
receiver. The OPRF functionality is described in Figure 1.

Distributed PRF A distributed pseudorandom function (DPRF) is a protocol
in which a PRF secret key sk is shared among n parties. Each party can locally
compute a partial evaluation of the PRF on the same input x. A combiner who
collects t partial evaluations can then reconstruct the evaluation F (sk, x) of the
PRF under the initial secret key.

8

Private Set Intersection Cardinality Private set intersection cardinality (PSI-CA)
is a two-party protocol that allows one party to learn the intersection size of
their private sets without revealing any additional information. In this work, we
consider PSI-CA in an untrusted third-party setting where the computation can
be delegated to the third-party (e.g., cloud servers).

4 Cryptographic Protocols

In this section, we present more detail on our DPSI-CA construction which replies
on our new cryptographic tool Odk-PRF. The DPSI-CA is later used as the main
building block of our Catalic system described in Section 5.2.

4.1 Oblivious Distributed Key PRF

4.1.1 Definition. We introduce a new cryptographic notion of an oblivious
distributed key pseudorandom function (Odk-PRF). Intuitively, the functionality
is a hybrid of the distributed PRF and OPRF, with an additional feature that the
PRF input is secret shared among m parties. Concretely, an oblivious distributed
key PRF (Odk-PRF) is a protocol in which a server learns (or chooses) a random
PRF key k. There are m clients, each has XOR secret share xi of input point
x. In Odk-PRF, each client learns F (ki, xi), the result of the PRF on the secret
share input xi with a secret share key ki of k. A combiner who collects all m
PRF evaluations can then reconstruct the evaluation F (k, x) as the PRF output
on the input x =

m⊕
i=1

xi with the key k =
m⊕
i=1

ki.

We present a formal definition of Odk-PRF functionality by considering the
following algorithms:

– KeyGen takes a security parameter κ, and generates a PRF key as KeyGen(1λ)→
k.

– KeyShare takes a PRF key k as a master key and a number m, and generates
m shared PRF keys as KeyShare(k,m)→ {k1, . . . , km} such that k =

m⊕
i=1

ki.

– KeyEval takes a shared PRF key ki and a (shared) input xi, and gives output
F (ki, xi)→ yi, where F is a PRF.

The correctness of our Odk-PRF is that if k ← KeyGen(1λ) and {k1, . . . , km} ←
KeyShare(k,m), then F (k,

m⊕
i=1

xi) =
m⊕
i=1

F (ki, xi).

The security of the oblivious distributed key PRF (Odk-PRF) guarantees two
following properties:
(1) Similar to the security guarantees of distributed PRF, any strict subset of

the F (ki, xi) hides F (k, x), where x =
m⊕
i=1

xi. Note that the distributed PRF

requires all the xi values and x are the same (i.e, x = x1 = . . . = xm) while
in our Odk-PRF, the xi values are XOR secret shares of x (i.e, x =

m⊕
i=1

xi).

9

(2) Similar to the security guarantees of oblivious PRF, F (k, x) reveals nothing
about both x and k with very high probability (e.g, 2−λ).

4.1.2 OPRF’s Instantiation. In an OPRF functionality for a PRF F , the
receiver provides an input x; the functionality chooses a random key k, gives
k to the sender and F (k, x) to the receiver. In this work, we focus on the
OPRF protocol [OOS17,KKRT16] which is based on inexpensive symmetric-key
cryptographic operations (apart from a constant number of initial public-key
operations). The protocol efficiently generates a large number of OPRF instances,
which makes it a particularly good fit for our eventual contact tracing application.
Note that the protocol of [KKRT16] achieves a slightly weaker variant of OPRF
than what we have defined in Figure 1, but the construction remains secure for
our Odk-PRF protocol.

The work of [KKRT16] introduces BaRK-OPRF where the PRF key is a
related pair (s, k). The first key s is a random secret value chosen by the sender,
and when doing many “OPRF” instances, all instances have the same s (e.g.
related key). The second key has a formula k = t⊕ [C(x)∧ s], where x is an input
to OPRF, C is a pseudo-random function that has minimum distance κ, and ∧
is bit-wise AND operator. In the construction of [OOS17], C is BCH code. The
value t is chosen by the functionality (or the receiver), and has been considered
as a PRF’s output. e.g. the receiver gets F (k, x) = t.

Intuitively, for a BaRK-OPRF instance, the receiver can evaluate it on only one
input (e.g, x) while the sender can evaluate this PRF at any point y by computing
F (k, y) = k ⊕ [C(y) ∧ s]. It is easy to see that F (k, y) = t⊕ [

(
C(y)⊕ C(x)

)
∧ s].

If x = y then F (k, y) = t, and thus, (k, y) = F (k, x) as desired.
Briefly, the BaRK-OPRF construction has an additional key (i.e, the related

key s) rather than the OPRF functionality defined in Figure 1. To adapt the above
OPRF variant for our Odk-PRF definition, we relax our KeyShare and KeyEval
functions as follows. KeyShare only takes the second BaRK-OPRF key k as a mas-
ter key, and generates secret shares of k as before KeyShare(k,m)→ {k1, . . . , km}.
However, the KeyEval takes the shared PRF key ki and the additional related
PRF key s and gives output yi as F

(
(ki, s), xi

)
→ yi.

4.1.3 Odk-PRF Construction from OPRF. We assume that there are m
clients, each holds a value xi∈[m]. When the clients act as PRF’s receiver to provide
m inputs {x1, . . . , xm} to the BaRK-OPRF functionality, the related key s and
keys {k1, . . . , km} are generated accordingly, where ki = ti⊕ [C(xi)∧ s],∀i ∈ [m].
Each client, in turn, obtains F (ki, xi) = ti, the result of the PRF on each single
input xi.

For Odk-PRF, we would like to produce a combined key by XORing all indi-
vidual keys as k =

m⊕
i=1

ki, a combined input value by XORing all corresponding

PRF inputs as x =
m⊕
i=1

xi, and a combined output value by XORing all corre-

10

sponding PRF outputs as t =
m⊕
i=1

ti. To achieve the correctness of our Odk-PRF,

the combined key k should be the same as the second BaRK-OPRF key generated
by evaluating OPRF on the combined input value x. In other words, k must be
written in a formula as k = t⊕ [C(x) ∧ s].

We observe that k =
m⊕
i=1

ki =
m⊕
i=1

ti ⊕ [
(m⊕
i=1

C(xi)
)
∧ s], and if we define

F (k, x) := t then it is necessary to have XOR-homomorphic property for the
function C so that k can be represented as k =

m⊕
i=1

ti ⊕ [C
(m⊕
i=1

xi
)
∧ s] =

t⊕ [C(x)∧s] as desired. By using a linear code [OOS17,PRTY20] for the function
C, surprisingly Odk-PRF is implemented by evaluating OPRF. The Odk-PRF
protocol is presented in Figure 2. All functions KeyGen, KeyShare, and KeyEval
are directly implemented from the protocol. Note that our Odk-PRF can support
any type T (e.g, XOR, AND) of the combination of the individual keys ki as long
as the function C has T-homomorphic property. In this work, we use T as XOR.

Parameters: A server S, and m client C1, . . . , Cm; an OPRF primitive defined in
Figure 1

Inputs: Each client Cm has input xi, the server has no input.

Protocol:

– Each client Ri∈[n] and the server S invoke an OPRF instance:
• Client Ci acts as OPRF’s client with input xi
• Server S acts as OPRF’s sender. The server obtains a key ki and a related key
s which is the same for all OPRF instances.

• Client Ci obtains a PRF value ti
– Server outputs a master key k =

n⊕
i=1

ki and the related key s

Fig. 2. Our Odk-PRF Construction.

The security of Odk-PRF follows in a straightforward way from the security of
its building blocks (e.g. OPRF). In particular, each PRF value ti is independent
of each other. In addition, F (k, x) is indeed equal to

m⊕
i=1

F (ki, xi). Therefore,

any strict subset of the F (ki, xi) reveals nothing about F (k, x). Moreover, since
OPRF is guaranteed to produce output indistinguishable from real, F (k, x)
reveals nothing about both x and k. Thus, we omit the proof of the following
theorem.

Theorem 1. The construction of Figure 2 securely implements the oblivious
distributed key PRF (Odk-PRF) defined in Section 4.1.1 in semi-honest setting,
given the OPRF functionality described in Figure 1.

11

4.2 Delegated PSI-CA

In this section, we propose an efficient delegated PSI-CA in which the computation
is delegated to the cloud servers.

4.2.1 Problem Definition

Definition 1. In a delegated PSI-CA protocol, three kinds of parties are involved:
a client C, a backend server S, and a set of m cloud servers H. We assume that
at most m− 1 cloud servers are colluded, and the backend server does not collude
with any cloud server. The delegated PSI-CA protocol Π computes a PSI-CA as
follows: Π : ⊥ × ({0, 1}?)N × ({0, 1}?)n → ⊥× ⊥ × f|∩| where, ⊥ denotes the
empty output, {0, 1}? denotes the domain of input item, N and n denote the set
size, and f denotes the PSI-CA function. For every tuple of inputs ⊥, a set X
of size n, and a set Y of size N belonging to H, C,S respectively, the function
outputs nothing ⊥ to H and S, and outputs f|∩| = |X ∩ Y | to C.

4.2.2 Technical Overview. The basic idea for our PSI-CA is to have the
backend server S represent a dataset Y as a polynomial P (y) by interpolating
the unique polynomial of degree (N − 1) over the points {(y1, r1), . . . , (yN , rN)},
where R = {r1, . . . , rN} is random and known by both C and S. The backend
server S sends the (plaintext) coefficients of the polynomial to a cloud server H,
who evaluates the received polynomial on each xi ∈ X (assuming X is known by
H) and obtains P (xi) = r′i. It is easy to see that if xi ∈ Y , r′i ∈ R. However, the
cloud server cannot infer any information from r′i since (s)he does not know R.
To allow the client learn only the intersection size, the cloud server H sends a
set {r′1, . . . , r′n} to the client in a randomly permuted order. Shuffling means the
client can count how many items are in the intersection (PSI-CA) by checking
whether r′i ∈ R but learns nothing about which specific item was in common (e.g.
which r′i corresponds to the item xj). Thus, the intersection set is not revealed.

Note that the above brief overview assumes that the cloud server H knows
X in the clear. To allow H to evaluate the polynomial without knowing the
information of X, we propose to use our Odk-PRF primitive. In particular, the
client secret shares its item xi∈[n] to a set of m non-colluding cloud servers, each
Hj∈[m] receives a share xi,j . All cloud servers Hj∈[m] invoke n Odk-PRF instances
with the back-end server S. For each Odk-PRF instance i ∈ [n], the cloud server
Hj∈[m] acts as one of Odk-PRF’s clients with input xi,j and obtains PRF value
ti,j , while the back-end server S acts as a Odk-PRF’s server and obtains Odk-PRF
master key ki and related key s. Let’s Hm be a combiner, who can collect all ti,j
from Hj∈[m−1] and reconstruct PRF value of item xi as F ((ki, s), xi)←

m⊕
j=1

ti,j .

The security of Odk-PRF guarantees that the F ((ki, s), xi) reveals nothing about
xi, ki, and s to the combiner. For the rest of the paper, we omit the related key
s, and use PRF key ki to refer to the pair (ki, s).

Recall that our goal is to have a cloud server (e.g. the combiner) to obtain the
correct ri from the polynomial’s evaluation in a case that xi ∈ Y , and random

12

otherwise. To do so, the polynomial must be generated based on PRF values.
The back-end server S has PRF key ki from the Odk-PRF execution, thus S can
evaluate PRF value on any input. There are n PRF keys ki∈[n] and N elements
yj∈[N]. The total PRFs needed to be evaluated is nN , and thus, the polynomial
has a degree of (nN −1), which is very expensive for interpolation and evaluation
operations.

In order to address the above issue, similar to [PSSZ15], we use a hashing
scheme to place items into several bins and then perform the polynomial’s
operations per bin. However, the cloud servers do not allow to know X, and thus
cannot place the share xi,j into a corresponding bin. Therefore, in our protocol,
the client C is required to map a set of X into the bins. Each C’s bin contains at
most one item. The backend server also hashes its items into bins, each contains
a small number of inputs. The C secretly shares the item in its bin to the cloud
servers, which later allows the cloud leader and the backend server to interpolate
and evaluate the polynomial bin-by-bin efficiently. A more detailed overview of
the approach and the hashing scheme is presented in the following section, prior
to the presentation of the full protocol.

4.2.3 Cryptographic Gadgets. We review the basics of Cuckoo & Simple
hashing scheme [PSSZ15], and Pack & Unpack Message [DCW13,KMP+17] to
improve our DPSI-CA construction.

Cuckoo hashing. In basic Cuckoo hashing, there are β bins denoted B[1 . . . β], a
stash, and k random hash functions h1, . . . , hk : {0, 1}? → [β]. The client uses a
variant of Cuckoo hashing such that each item x ∈ X is placed in exactly one
of β bins. Using the Cuckoo analysis [DRRT18] based on the set size |X|, the
parameters β, k are chosen so that with high probability (1 − 2−λ) every bin
contains at most one item, and no item has to place in the stash during the
Cuckoo eviction (.i.e. no stash is required).

Simple hashing. The backend server maps its input set Y into β bins using the
same set of k Cuckoo hash functions (i.e, each item y ∈ Y appears k times in the
hash table). Using a standard ball-and-bin analysis based on k, β, and the input
size of client |X|, one can deduce an upper bound η such that no bin contains
more than η items with high probability (1− 2−λ).

Pack&Unpack Message. A pack&unpack message consists of two algorithms:

– pack(S) → Π: takes a set S of key-value tuples (ai, bi),∀i ∈ [η], from a
random distribution, then outputs a representation Π.

– unpack(Π, a)→ v: takes a Π and a key a, then outputs value v.

Such a pack&unpack scheme should satisfy the following properties:

– Correctness: if (a, b) ∈ S and Π ← pack(S) then (a, unpack(Π, a)) ∈ S.

13

– Obliviousness: for pack({(a1, b1), . . . , (aη, bη)}) → Π, the distributions of
unpack(Π, a) and unpack(Π, a′) are indistinguishable when the bi values are
uniformly distributed.

There are several pack&unpack constructions presented in [KMP+17], with
different tradeoffs in communication and computation cost. In this work, we use
the following data structures:

1. Polynomial-based construction: pack(S) is implemented by interpolating a de-
gree (η−1) polynomial Π over the points {(a1, b1), . . . , (aη, bη)}. unpack(Π, a)
is implemented by evaluating the polynomial Π on the key a. It is easy to
see that Π satisfies correctness and obliviousness.
The interpolation of the polynomial takes time O(η log(η)2) field opera-
tions [MB72], which can be expensive for large η. The size of Π is O(η).

2. Garbled Bloom filter (GBF) [DCW13]: given a collection of hash functions
H = {h1, . . . , hk | hi : {0, 1}? → [τ]}, a GBF is the array GBF[1 . . . , τ] of
strings. The GBF implements a key-value pair (a, b) in which the value
associated with the key a is b =

∑k
i=1 GBF[hi(a)]. The GBF works as follows.

The GBF is initialized with all entries equal to an empty string ⊥. For
each key-value pair (a, b), let T = {hi(a) | i ∈ [k],GBF[hi(a)] = ⊥} be
the relevant positions of GBF that have not yet been set. Abort if T = ∅.
Otherwise, we choose random values for entries GBF[j], j ∈ [T], subject to∑k
i=1 GBF[hi(a)] = b. For any remaining GBF[j] = ⊥, we replace GBF[j] with

a randomly chosen value. The computation complexity is O(η). The size of Π
is also O(η), however, its constant coefficient is high. The parameters k and
τ are chosen so that the “Abort" event happens with negligible probability
(e.g. 2−λ). We discuss parameter choice for GBF in Section 3.

4.2.4 Delegated PSI-CA Construction. Our semi-honest delegated PSI-CA
protocol is presented in Figure 3, following closely the description in the previous
Section 4.2.2. The construction consists of four phases.

Recall that our construction requires that the client and backend server have
the same set of random items R for computing PSI-CA final output. This can
be done at the setup phase, where the backend server chooses a random seed
s, and sends it to the client. Both parties can generate β random values as
R = {r1, . . . , rβ} ← PRG(s), where β is the number of bins in the Cuckoo’s
table.

In the tokens’ distribution phase, the client hashes items X into β bins using
the Cuckoo hashing scheme. For each bin b ∈ [β], the client secret shares the
item xb in that bin to m cloud servers. To reduce the network costs, the client
can sample m− 1 random seeds si, and sends each of them to one among m− 1
cloud servers Hj∈[m−1] in the setup phase. For the item xb in the bin bth, the
client computes a share xmb ← xb ⊕ PRG(s1||b)⊕ . . .⊕ PRG(sm−1||b), and gives
xmb to the cloud server Hm. Having PRG seed si, other cloud server Hj∈[m−1]

14

Parameters:
– Set size n and N .
– A client C, a backend server S, and m cloud servers H1, . . . ,Hm
– A one-way hash function H : {0, 1}? → {0, 1}?, and Cuckoo and Simple hashing

scheme described in Section 4.2.3.
– A Odk-PRF primitive described in Section 4.1
– pack() and unpack() functions described in Section 4.2.3

Inputs:
– Client C has input X = {x1, . . . , xn}
– Backend server S has input Y = {y1, . . . , yN}
– Cloud server Hj∈[m] has no input.

Protocol:
I. Setup phase
• The backend server S chooses a random seed s, and sends it to the client.
• The client generates β random values R = {r1, . . . , rβ} ← PRG(s)
• The back-end server S generates β random values from PRG(s), permutes

them, and gets {p1, . . . , pβ}
• The client chooses m− 1 random seeds si∈[m−1], and sends si to Hi∈[m−1].

II. Tokens distributed
• The client hashes items X into β bins using the Cuckoo hashing scheme. Let
BC [b] denote the item in the client’s bth bin (or a dummy item for empty bin).

• For each b ∈ [β], and x ∈ BC [b], the client computes xmb ← x
m−1⊕
j=1

PRG(si||b),

and gives xmb to the cloud servers Hm.
• For each b ∈ [β], the cloud server Hi∈[m−1] computes xjb ← PRG(si||b) as a

share of item x ∈ BC [b].
III. Server computation

1. For each b ∈ [β], cloud servers Hj∈[m] and back-end server S invoke an instance
of Odk-PRF where:
• S acts as Odk-PRF’s server and obtains PRF key kb
• Each Hj acts as Odk-PRF’s client with input xjb, and obtains PRF values
tjb.

2. For all j ∈ [m− 1], each Hj sends Tj = {tj1, . . . , t
j
β} to the combiner Hm .

3. For each b ∈ [β], the combiner Hm computes tb =
n⊕
j=1

tjβ

4. Let α = d β
m
e, the combiner Hm divides a set {t1, . . . , tβ} into m subsets

Tj = {t(j−1)α, . . . , tjα−1}, and sends each Tj to Hj ,∀j ∈ [m− 1].
5. The back-end server S hashes items Y into β bins using the Simple hashing.

Let BS [b] denote the set of items in the bth bin
6. For each b ∈ [β], S computes ub,i = F (kb, yi) for all yi ∈ BL[b].
7. For each b ∈ [β],

• S generates a set of points P = {
(
H(ub,i), pb)

)
|yi ∈ BL[b])} for all b ∈

[(j − 1)α, jα − 1], and sends Πb ← pack(P) to the cloud server Hj if
b ∈ [(j − 1)α, jα− 1]

• Hj unpacks the received message using each element tj ∈ Tj as vj ←
unpack(Πb, H(tj)), and then sends it to the combiner Hm

8. After collecting all vj∈[b] from Hj∈[m−1], the combiner Hm permutes the set
V = {v1, . . . , vb} and sends it to C.

IV. Client’s output: σ = |R ∩ V |.

Fig. 3. Our delegated PSI-CA construction.15

can generate the share xjb of xb by computing xjb ← PRG(sj ||b). It is easy to

check that all the xjb,∀j ∈ [m], values are shares of xb as xb =
m⊕
j=1

xjb.

For each bin b ∈ [β], the cloud servers Hj∈[m] and the back-end server S
invoke a Odk-PRF instance such that S acts as a Odk-PRF’s server and obtains
PRF key kb in Step (1,I) while the cloud leader Hm acts as a Odk-PRF’s combiner
and learns tb ← F (kb, xb) as described in Step (3,III). Unlike the brief overview
described in Section 4.2.2, the combiner Hm divides PRF values {t1, . . . , tβ}
into m groups, each group has α = d βme items as Tj = {t(j−1)α, . . . , tjα−1}
except possibly the last group which may have less than α items (without loss of
generality, we assume that β is divisible by m). The combiner Hm sends each set
Tj to the cloud server Hj . The main purpose of this step is to distribute the last
computation phase (e.g. polynomial evaluation) to all cloud servers.

The backend server S hashes its input set Y into β bins using the Simple
hashing. For each b ∈ [β], S computes PRF value ub,i ← F (kb, yi) on every item
yi in that bin with the PRF key kb obtained from the Odk-PRF execution. The
backend server S then generates a set of points Pb = {

(
H(ub,i), rb)

)
|yi ∈ BS [b])}

for the bin BS [b] where H is a one-way hash function known by every participant,
and rb is in the random set R computed in the setup phase. S packs Pb as
Πb ← pack(Pb). If b ∈ [(j − 1)α, jα − 1], the backend server S sends Πb to
the corresponding cloud server Hj . Each cloud server Hj unpacks the received
message using every element tj ∈ Tj as vj ← unpack(Πb, H(tj)), and forwards
the resulting value to the combiner Hm.

After collecting all vj values as V = {v1, . . . , vβ} , Hm permutes the set V
and sends it back to the client, who computes σ = |R ∩ V | as an output of
PSI-CA.

4.2.5 PSI-CA Security and Discussion

Theorem 2. The PSI-CA construction of Figure 3 securely implements the
delegated PSI-CA functionality described in Definition 1 in semi-honest setting,
given the Odk-PRF functionality described in Section 4.1.

Proof. We exhibit simulators for simulating corrupt client, a set of corrupt cloud
servers, and corrupt backend server respectively. We argue the indistinguishability
of the produced transcript from the real execution.

Simulating client. The simulator only sees a set of vπ(i) = unpack(ti)
messages in a randomly permuted order π() : [β]→ [β] chosen by the cloud server
combiner Hm. We consider modifying this view as a set of vi = unpack(tπ−1(i)).
Using the abstraction of the unpack obliviousness we can replace term vi with an
independently random element for each xi 6∈ X ∩ Y . As long as the client and
Hm do not collude, we can replace unpack(tπ−1(i)) with unpack(t) where t is a
PRF value of a common item x ∈ X ∩ Y (i.e, the permutation hides the common
items), and then replace unpack(t) with random element in R. In other words,
the simulator only learns |X ∩ Y | and Y . The simulation is perfect.

16

Simulating cloud servers. Let Adv be a coalition of corrupt cloud servers.
In our protocol, we assume that Adv has at most m− 1 among m cloud servers.
The simulator simulates the view of Adv, which consists of received shares from
the client, Odk-PRF’s randomness, pack messages from the backend server, and
transcripts from the Odk-PRF ideal functionality. We consider two following cases:

– Security for the client C: In Step (II) of our protocol, the client C secretly
shares its input to m cloud servers. Since Adv contains at most m− 1 corrupt
cloud servers, Adv learns nothing from this step, and we can replace the share
with random. Thanks to the cryptographic guarantees of the underlying
Odk-PRF protocol, no information is revealed except the PRF output in
Steps (III,3) and (III,4). We also assume that Adv does not collude with the
backend server, the PRF outputs can be replaced with randoms. In Step
(III,7), Adv evaluates unpack which also produces output indistinguishable
from the real world.

– Security for the back-end server S: In Step (III,7) of our protocol, S packs a set
of key-value pairs P = {

(
H(u), p

)
} via pack functionality, where u = F (k, y)

is a PRF value on the item y ∈ Y with the key k obtained from Odk-
PRF, and p is generated from the secret PRG seed. Because of Odk-PRF
pseudorandomness property, we replace u with random. In our protocol, the
cloud servers do not know the PRG seed, we can also replace p with random.
The pack functionality takes a set of random pairs thus its distribution is
uniform.

In summary, the output of Adv is indistinguishable from the real execution.

Simulating back-end server. When using the abstraction of our Odk-PRF
functionality, the simulation is elementary.

Security Discussion. In our DPSI-CA, we require that the backend server does not
collude with any cloud server. This requirement is for the security guarantee in
Step (III,4) where each cloud server jth can see a subset Tj = {t(j−1)α, . . . , tjα−1}
of PRF outputs of the client’s items in the buckets [(j− 1)α, . . . , jα]. If the cloud
server jth colludes with the back-end server, they can learn which specific items
of these buckets are common by comparing Tj and the set of PRF outputs on
∀y ∈ Y .

Our protocol can be modified to make the above non-colluding requirement
weaker. In particular, we can assume that there is a specific (instead of any)
cloud server (e.g, the combiner Hm) that does not collude with the backend
server. With the new colluding assumption, Hm needs to play role of other cloud
servers to perform unpack in Step (III,7). In other words, we modify our DPSI-CA
construction in Figure 3 by removing Step (III,4). The combiner Hm keeps the
whole set T = {t1, . . . , tβ} locally. The backend server S sends all pack(Pb) to
the combiner Hm (instead of other cloud servers Hj∈[m−1]). The Hm uses T to
evaluate the corresponding pack(Pb) and obtains a set V which is forwarded to
the client as before.

17

The modified protocol improves the security assumption of our DPSI-CA, but
requires more computation on the cloud server combiner’s side. Depending on the
system specifications, the protocol can be adjusted to the appropriate design.

5 Catalic System

Fig. 4. The Overview of our Catalic System. (I) Tokens (RPIs) are exchanged when two
users are in close proximity. (II) When a user is diagnosed by a healthcare provider, the
user receives a certificate which indicates that (s)he tested positive with the disease. (III)
the diagnosed user encrypts a pair of their PRG seed and the certificate using the public
key of the backend server, and sends the encrypted values to the cloud server, who
then permutates and transmits them to the backend server. Using its private key, the
backend server decrypts the received ciphertexts and obtains a set of pairs including the
PRG seed and associated certificate. The backend server checks whether the certificate
is valid using the hospital key. If yes, the backend server generates the diagnosis tokens
using the corresponding PRG. (IV) Each user invokes a DPSI-CA algorithm with the
backend server via cloud servers, where the user’s input is its received tokens and the
server’s input is the list of diagnosis tokens. The user learns only whether (or how many)
tokens there are in common between the two sets.

5.1 System Overview

The Catalic system consists of five main phases. The first three steps are mostly
the same as the BLE-based approaches such as Apple-Google [Goo20a]. In the
third step, we can enhance the privacy w.r.t the prior methods by adding a
Mix-Net system to shuffle the diagnosis tokens/keys. This prevents attackers

18

from linking which tokens belong to which user, and thus protect the privacy
of users who tested positive (so-called diagnosed users). The fourth step is the
heart of our system where we allow a contract tracing app to delegate the secure
matching computation to a decentralized system of untrusted cloud servers. Then
based on the returned values, the user determines whether (s)he has been exposed
to the disease. The secure matching allows Catalic to prevent against the linkage
attack which remains in other systems including Apple-Google [Goo20a] and
DP3T [TPH+20].

The system is diagrammed in Figure 4. Our Catalic model involves computation
by all participants/users and by three kinds of untrustworthy servers: those
of healthcare providers, cloud servers, and a backend server. Similar to other
decentralized contact tracing systems [Goo20a], at some point, the backend server
holds the transmitted diagnosis RPIs T while the ith user holds the received RPIs
T̃i obtained from the “contact" phase. The last step of contact tracing system
aims to securely compare T to every T̃i. If there is a match, the ith user was
in close proximity to a user that has since been diagnosed with the disease. To
perform this task, we integrate our DPSI-CA protocol into Catalic. We formulate
this core component in Figure 5.

Parameters: Four parties: a back-end server, a set of cloud servers, and a user.

Functionality:
– Wait for the server with input set T
– Wait for the user with input set T̃i
– Wait for the cloud servers with no input
– Give the user the intersection size |T̃i ∩T|

Fig. 5. Our DPSI-CA gadget.

Each user delegates the PSI-CA computation to two (or more) non-colluding
cloud servers (e.g., those run by Amazon, Google, or Apple). The backend server
and the cloud servers jointly perform PSI-CA, and return the PSI-CA output to
the user, who determines whether there is a match.

5.2 Catalic Extension

As mentioned in the previous section, each user delegates the PSI-CA computation
to two or many cloud servers. The privacy of the user will be guaranteed if at least
one of these servers is not corrupted. In practice, we can have a large network of
cloud servers that helps the user to do this delegation. In this section, we briefly
describe such a network and leave the concrete design for future work which goes
beyond the scope of automated contact tracing.

DSUSH: Decentralized System of Untrusted Server-Helpers. We describe a decen-
tralized system of untrusted servers as in Figure 6, in which:

19

– Any server can ask to join DSUSH as a cloud server (so-called server-helper).
Each one can be certified by the Authority, say the backend server. Whenever
there is a proof that a cloud server is dishonest, this server will be removed
from the system and blacklisted.

– Assume that the DSUSH has M server-helpers. Any client C can secretly
choose any m among M server-helpers in DSUSH and run the delegated
PSI-CA protocol described in Figure 3 with these m server-helpers.

Fig. 6. DSUSH: Decentralised System of Untrusted Server-Helpers.

Client’s Privacy. To break the privacy of the client C, an outsider adversary
has to corrupt all the m cloud servers chosen by C.

5.2.1 Tracing Traitors for the Reliability of DSUSH. Interestingly, we
can employ techniques from traitor tracing to detect malicious cloud servers in
DSUSH. Any cloud server can be traced if it acts as a malicious server. The
tracing procedure can be realized without any notice: no server can tell if it is
run in a normal process or in a tracing process. Traceability is the main feature
that discourages cloud servers to behave maliciously.

Recall that in our delegated PSI-CA protocol described in Figure 3, the client
can choose m ≥ 2 cloud servers with the following requirements:

– For all j ∈ [m− 1], the server-helper Hj interacts with cloud server-helper
combiner Hm.

– For all j ∈ [m], the server-helper Hj interacts with the backend server S.
– For all j ∈ [m], the server-helper Hj interacts with the client C.

From the above properties, we briefly show that anyone who possesses a
diagnosis RPIs x that belongs to the set of diagnosis RPIs Y = {y1, . . . , yN} at
the back-end server can do the tracing and becomes thus a tracer. Eventually,
the back-end server can generate this special RPI x and add it to the list of the
diagnosis RPIs Y .

20

Testing whether a suspected server-helper is malicious. The trace can test if a
server, say H1, is a malicious as follow:

– Step 1: Tracer plays the role of the client C in the delegated PSI-CA protocol
described in Figure 3. The tracer can choose n − 1 random dummy RPIs
which are thus probably not in the backend server set Y of diagnosis RPIs.
The tracer then defines X that contains x and these n− 1 dummy RPIs.

– Step 2: The tracer sets m = 2, and chooses a trusted server Hm (the tracer
can play himself/herself as the role of Hm) and runs the protocol.

– Step 3: If the result returns at the end of the protocol is different than the
correct value 1 (because x is the only element in the intersection of X and
Y), then H1 is certainly a malicious server.

– The effectiveness of the above tracing technique comes from the fact that
the server H1 only knows Hm but cannot corrupt Hm. The value that H1
receives from the Hm and the server S are exactly the same as in the normal
protocol and thus H1 cannot distinguish a tracing procedure from a normal
procedure.

– If H1 acts maliciously with a probability p then the tracer can detect this
malicious server with probability p for each run of the protocol. By repeating
the protocol k times, one can detect this malicious with probability 1−(1−p)k
which close to 1 for sufficiently large k.

Testing whether a chosen set T of server-helpers contains a malicious server.

– Step 1: Identical as the above test of a suspected server-helper.
– Step 2: The tracer sets m = |T |+ 1, and chooses a trusted server Hm (the

tracer can play himself/herself as the role of Hm) and runs the protocol.
– Step 3: If the result returned at the end of the protocol is different than the

correct value 1, then the T contains at least a malicious server.
– The effectiveness of the above tracing technique comes from the fact that

the server-helpers do not know each other and cannot collude to deter the
computation. The servers in T only know Hm which is trusted and therefore
cannot corrupt Hm. The values that the servers in T receive from the Hm
and the server S are exactly the same as in the normal protocol and thus T
cannot distinguish a tracing procedure from a normal procedure.

– By repeating the protocol many times, the tracer can correctly determine
with overwhelming probability whether T contains a malicious server.

Black-box tracing. We can eventually generalize the above technique to get the
black-box tracing. The tracer first set T to be the whole set in DSUSH. Then if
T contains a malicious server then the tracer performs a binary search from T to
be able to get the malicious servers.

5.2.2 Practical Implementation of DSUSH

21

DSUSH in Google-Apple setting. Google and Apple would allow their cloud
servers all around the world to participate in a DSUSH. If these servers are
trusted then the privacy of the users is preserved. If one of the two firms is
malicious (or half of the servers are corrupted) then the privacy of a user who
runs the delegated PSI-CA protocol described in Figure 3 with m server-helpers
will be broken with probability 1

2m (m should be set around 40) assuming that
the numbers of servers of Google and of Apple are the same and the choice of
m server-helpers of the user is random. If both Google and Apple are malicious
(all the servesr are corrupted) then the privacy of the users will be broken, their
tokens will also be revealed.

DSUSH in a general setting of proximity tracing.

– As far as the user knows an honest server in DSUSH (for example the server
from his friend, his university, etc) then the privacy is preserved.

– If the user randomly chooses a set of m server-helpers then the privacy will
be broken only when all of these m server-helpers are malicious. Given the
traceability, this case is quite improbable.

DSUSH itself could be an interesting platform and we leave a concrete design
with formal proven properties of such a network to the future works.

6 Implementation and Performance

To demonstrate the practicality of our Catalic system, we evaluate each building
block of our DPSI-CA protocol in C++. We run cloud server and backend server on
a single server which has 2x 36-core Intel Xeon 2.30GHz CPU and 256GB of RAM.
For evaluating the performance of the client, we do a number of experiments on
a virtual Linux machine which has Intel Xeon 1.99GHz CPU and 16GB of RAM.

As detailed in Section 4, our Odk-PRF protocol builds on a specific OPRF
variant [KKRT16, OOS17] from the open-source code [Rin]. Our polynomial
pack and unpack implementation uses the NTL library [Sho] with GMP library and
GF2X [GBZT] library installed for speeding up the running time. The implementa-
tion of the building blocks (pack/unpack, end-user’s side) is available on Github:
https://github.com/nitrieu/delegated-psi-ca.

6.1 Parameter Choices

All evaluations were performed with input item of 128 bits, a statistical security
parameter λ = 40 and computational security parameter κ = 128. We perform
DPSI-CA on the range of set sizes N = {222, 224, 226} and n = {210, 211, 212}.

Cuckoo hashing: Based on the experiment analysis [DRRT18], we choose
cuckoo hashing parameters such that no stash is required with sufficiently low
probability. Concretely, in our setting the client places its set into a Cuckoo table
of size β = 1.5n using 3 hash functions while the backend server using the same

22

https://github.com/nitrieu/delegated-psi-ca

set of hash functions and maps its item y into three bins {h1(y), h2(y), h3(y)}
(i.e., item y appears three times in the hash table with the high probability).

Polynomial interpolation and evaluation: Given m cloud servers, our DPSI-CA
protocol requires the backend server to generate m polynomials, each of degree
N ′ ← 3N

m . Each cloud server must evaluate such a polynomial on n′ ← 1.5n
m

points. The best algorithms for interpolation incur O(N ′ log2(N ′)) field operations
which is expensive for a high-degree polynomial since N ′ is typically large (e.g.
N ′ = 224). To speed up the computation complexity of our protocol, we map
N ′ items into θ buckets, each has maximum d items. Instead of interpolating
a polynomial of degree N ′ − 1, we interpolate multiple smaller polynomials of
degree d − 1. Based on the analysis of the parameters [PSTY19], we choose
d = 210, and because of d << N ′ (N ′ = 224) there is a high probability that each
bucket contains the same number of items. [PSTY19] shows that only 3% dummy
items need to pad to the bucket to hide the actual bucket’s size. Accordingly, the
cloud server also maps its items into θ buckets and evaluates θ polynomials of
small-degree d−1. For communication and computation efficiency, the polynomial
field size can be truncated to length λ+ log(N ′n′) bits and the protocol will still
be correct as long as there are no spurious collisions with probability 1− 2−λ. In
our experiment, we set the polynomial field size to be 80 bits to achieve a high
probability of correctness of approximately 1− 2−40.

Garbled Bloom Filter: The false-positive probability for a Garbled Bloom
filter is the same as that of plain Bloom filter which has been well analyzed.
Therefore, we choose 31 hash functions and the Garbled Bloom Filter of size
58N ′ to achieve the false-positive rate (1− e−31

58)31 which is close to 2−λ.

6.2 PSI-CA Performance

We demonstrate the scalability our protocol on the client side by evaluating it on
the range of set sizes n = {210, 211, 212} with the backend server set size N = 226

and the number of cloud servers m = {2, 8, 32, 64}. As mentioned above, the
client maps n items into 1.5n bins using Cuckoo hashing. The client must send a
seed of κ bits to (m−1) cloud servers and 1.5nκ bits to the cloud server combiner
Hm. For communication efficiency, the returned values from the cloud servers
can be truncated to λ+ log(3nN) bits for the correctness probability of 1− 2−λ.

Table 1 presents the performance of our protocol on the client side. Note that
the running time does not include the waiting time for the server’s response. For
n = 212 and m = 2, our protocol costs only 2.17 milliseconds and 190 Kilobytes.
Since the client’s running time depends on the number of cloud servers involved
in DPSI-CA, we are also interested in the protocol performance when increasing
m. While the network cost is mostly stable, the computational cost increases
1.5× if increasing m = 2 to m = 32. However, the client’s running time is still
under a few milliseconds which achieves our ultimate goal.

Table 2 presents the performance of our DPSI-CA protocol the cloud server’s
side on the range of the client set size n = {210, 212} with the back-end server set
size N = {222, 224, 226} and m = 2 cloud servers. We assume that the backend

23

Running Time (milisecond) Communication Cost (kilobyte)
n m = 2 m =8 m = 32 m = 64 m = 2 m = 8 m = 32 m = 64 Asymptotic [bit]
210 0.48 0.48 3.01 5.1 47.63 47.73 48.11 48.62 (m− 1)κ+ 1.5nκ211 0.86 1.21 2.5 7.87 95.25 95.34 95.73 96.24 +1.5n(λ+ log(3nN))212 2.17 2.77 3.01 8.76 190.48 190.58 190.96 191.47
Table 1. Running time in milisecond and communication cost in kilobyte on the client’s
slide in our semi-honest delegated PSI-CA protocol with the back-end server set size
N = 222; n and m are the client set size and the number of cloud servers, respectively.
The running time does not include the waiting time from server’s response.

Parameters Running Time (minute) Communication Cost (megabyte)

Set size N 222 224 226 222 224 226

n 210 212 210 212 210 212 210 212 210 212 210 212

OPRF 0.003 0.003 0.008 0.008 0.034 0.035 0.04 0.09 0.04 0.09 0.04 0.09
Pack & Poly. 3.15 3.24 11.97 12.72 50.3 51.23 64.8 64.8 259.21 259.21 1036.83 1036.83
Unpack GBF 0.44 0.44 1.87 1.89 7.91 7.98 3649 3649 14596 14596 60136 60136

Total Poly. 3.2 3.28 12.1 12.86 50.84 51.78 64.8 64.8 259.21 259.21 1036.83 1036.83
GBF 0.49 0.49 2.00 2.03 8.45 8.53 3649 3649 14596 14596 60136 60136

Table 2. Running time in minute and communication cost in megabyte on the cloud
server’s side in our semi-honest delegated PSI-CA protocol with 2 cloud servers; the
client and back-end server set size is n and N , respectively. The running time does not
include the waiting time for server’s response.

servers uses m threads, each communicates with a single cloud server. In our
PSI-CA protocol, a cloud server requires to evaluate 1.5n Odk-PRF instances,
and unpack 1.5n

m messages. The main cost of the computation is the waiting
time of packing 3N

m messages by the backend server. We implement different
pack and unpack constructions described in Section 4 with the parameter choices
described in Section 6.1. We report the total cost of our protocol by aggregating
the cost of building blocks. Table 2 shows the running time and communication
cost of both polynomial-based and GBF-based DPSI-CA protocols. While the
polynomial-based solution achieves the best communication cost, the GBF-based
approach is fastest in the running time.

6.3 Catalic Discussion and Comparison

As discussed in Section 1, it is very important to design a contact tracing system
that minimizes the client’s effort. In this section we only focus on the performance
comparison on the client’s side. We note that our Catalic provides a reasonable
computation and communication cost on the server’s side, which presents in
Table 2. The performance on the server side can be speed up since our protocol
is very amenable to parallelization. Specifically, our algorithm can be parallelized
at the level of buckets.

We estimate the Catalic performance in which the main computation cost
is dominated by the DPSI-CA algorithm. We compare our Catalic with other

24

Protocols
Linkage Attack System Req. Client
Travel Infection # interactive # Runtime Comm. Cost
Route Status Rounds Servers (ms) (MB)

G&A [Goo20b] yes yes 1/2 1 331.96 7.34
DP3T [TPH+20] no yes 1/2 1 0.02 469.76
PACT [CGH+20] no yes 1/2 1 neg 1073.74
Epione [TSS+20] no no 2 2 394.01 1.27
Our Catalic no no 1 3 0.86 0.095

Table 3. Comparison of contact tracing systems with respect to privacy guarantees,
required computational infrastructure, and computation and communication cost on
the client’s side. Infection status refers to identify who has been diagnosed with the
disease. Travel route refers to recover travel route of the diagnosed individual. The
system requires “# rounds" of interaction between client and server. Each user has
n = 211 tokens/RPIs over 14 days of infection window. There are 215 new diagnosed
case per days. “neg" indicates the negligible cost of plaintext comparison operations in
PACT.

systems include PACT [CGH+20], DP3T [TPH+20], Apple-Google [Goo20b],
and Epione [TSS+20]. Note that PACT and DP3T publicly release tokens/RPIs
of diagnosed users. Therefore, they are vulnerable to linkage attack which allows
attackers to identify who has been diagnosed with the disease by keeping track of
when and where they received which tokens. In the Apple-Google (A&G) approach,
the daily diagnosis keys are publicly available which also allows attackers to
learn the travel routes of the individual. Only Epione [TSS+20] keeps diagnosis
keys/RPIs privately. However, it requires a certain amount of works on the client’s
side which we discuss later.

According to A&G approach, each user has about k = 144 new tokens per day.
For the infection window, each client receives a total of approximately n = 211

over 14 days. If there are about K = 215 = 32, 768 new diagnosed cases per day,
the total of new diagnosis RPIs is approximately N = 226 per day. We report
detailed comparisons in Table 3, and here we describe how to get the numbers.

In A&G approach, the phone (user) has to download 14K new daily-diagnosis
keys per day. Each key contains 128 bits thus the total communication cost is
14 × 215 × 128 (bits)= 7.34 MB. The phone also requires to compute 14Kk =
66, 060, 288 AES operations. Since each AES requires 10 cycles, a phone with
1.99 GHz processor needs 66, 060, 288× 10

1.99×109 = 0.33 seconds to complete the
contact tracing query.

In DP3T approach, the phone (user) has to download a Cuckoo filter of new
diagnosis RPIs per day. To achieve the failure events with error probability 2−λ
per contact tracing instance (in line with our protocol), the false-positive rate of
the Cuckoo filter would be 240+log(n). Therefore, the Cuckoo filter stores for each
item a 56-bit fingerprint. For N = 226 new diagnosis RPIs, the communication
cost is 226 × 56 (bits) = 469.76 MB. In terms of computation cost, the client
requires to compute 2n AES hash functions for table lookup. The total running
time is 0.02 milliseconds.

25

In a simpler version of PACT approach, the phone (user) has to download all
new diagnosis RPIs per day, each token has 128 bits. Therefore, the network cost
is 226 × 128 (bits) = 1073.74 MB for N = 226 new diagnosis RPIs. The PACT’s
client does not do any cryptographic operation, thus, we consider its running
time to be negligible.

In Epione approach, the diagnosis keys/RPIs have never publicly available.
The system also replies on PSI-CA for private matching which allows users to figure
out whether they may have been exposed to the disease and nothing else. Epione
proposes two PSI-CA protocols with different trade-offs in the communication and
time complexity of the protocol and the security guarantees. Their fast variant is
based on two-server PIR. It requires the servers do not collude each other, which
has the same security guarantees in our Catalic. Therefore, we use the numbers
reported in Epione to estimate the cost of their fast variant with the cache. The
Epione’s client needs to send and receive: 2k group elements, each of 256 bits;
2n PIR keys, each of κ log(N ′) = 128× log(218) = 2304 bits where N ′ = 218 is
the bucket size after splitting N = 226 into 28 buckets; 2n PIR answers from
servers, each of 159 (bits). The total communication cost is 1.79 MB. In terms of
computation cost, the client requires to compute 2k group elements and 2n PIR
queries. Using parameters for database shape, and implementation optimization
of Epione, the running time is 394 milliseconds. Note that Epione requires two
rounds of interaction between client and servers. Moreover, the running time of
Epione’s client is linear in the backend server’s database.

In Catalic, Table 1 shows that our protocol requires only 0.86 milliseconds
and 96 Kilobytes on the client’s side. Note that the experiment uses 1 back-end
server and 2 cloud servers, each with a single thread. As discussed in Section 5.2,
if more cloud servers involve in the computation, it improves the security level as
well as the scalability of our Catalic system.

Acknowledgments.

We thank all anonymous reviewers and Ling Ren for insightful feedback. Ni
Trieu was partially supported by NSF award #2031799 and Duong Hieu Phan
was partially supported by the ANR ALAMBIC (ANR16-CE39-0006). Research
conducted in part while Ni Trieu at University of California, Berkeley and Duong
Hieu Phan at University of Limoges.

References

ABB+20. Hannah Alsdurf, Edmond Belliveau, Yoshua Bengio, Tristan Deleu, Prateek
Gupta, Daphne Ippolito, Richard Janda, Max Jarvie, Tyler Kolody, Sekoul
Krastev, Tegan Maharaj, Robert Obryk, Dan Pilat, Valerie Pisano, Ben-
jamin Prud’homme, Meng Qu, Nasim Rahaman, Irina Rish, Jean-Francois
Rousseau, Abhinav Sharma, Brooke Struck, Jian Tang, Martin Weiss, and
Yun William Yu. Covi white paper, 2020.

26

ABIV20. Gennaro Avitabile, Vincenzo Botta, Vincenzo Iovino, and Ivan Visconti.
Towards defeating mass surveillance and sars-cov-2: The pronto-c2 fully
decentralized automatic contact tracing system. Cryptology ePrint Archive,
Report 2020/493, 2020. https://eprint.iacr.org/2020/493.

AIS20. Fraunhofer AISEC. Pandemic contact tracing apps: Dp-3t, pepp-pt ntk,
and robert from a privacy perspective. Cryptology ePrint Archive, Report
2020/489, 2020. https://eprint.iacr.org/2020/489.

ATD17. Aydin Abadi, Sotirios Terzis, and Changyu Dong. Vd-psi: Verifiable del-
egated private set intersection on outsourced private datasets. In Jens
Grossklags and Bart Preneel, editors, Financial Cryptography and Data Se-
curity, pages 149–168, Berlin, Heidelberg, 2017. Springer Berlin Heidelberg.

ATD20. Aydin Abadi, Sotirios Terzis, and Changyu Dong. Feather: Lightweight
multi-party updatable delegated private set intersection. Cryptology ePrint
Archive, Report 2020/407, 2020. https://eprint.iacr.org/2020/407.

ATMD19. A. Abadi, S. Terzis, R. Metere, and C. Dong. Efficient delegated private
set intersection on outsourced private datasets. IEEE Transactions on
Dependable and Secure Computing, 16(4):608–624, 2019.

CBB+20. Claude Castelluccia, Nataliia Bielova, Antoine Boutet, Mathieu Cunche,
Cédric Lauradoux, Daniel Le Métayer, and Vincent Roca. DESIRE: A
Third Way for a European Exposure Notification System Leveraging the
best of centralized and decentralized systems. working paper or preprint,
May 2020.

CDF+20. David Culler, Prabal Dutta, Gabe Fierro, Joseph E. Gonzalez, Nathan
Pemberton, Johann Schleier-Smith, K. Shankari, Alvin Wan, and Thomas
Zachariah. Covista: A unified view on privacy sensitive mobile contact
tracing effort, 2020.

CGH+20. Justin Chan, Shyam Gollakota, Eric Horvitz, Joseph Jaeger, Sham Kakade,
Tadayoshi Kohno, John Langford, Jonathan Larson, Sudheesh Singanamalla,
Jacob Sunshine, and Stefano Tessaro. Pact: Privacy sensitive protocols and
mechanisms for mobile contact tracing, 2020.

CKL+20. Ran Canetti, Yael Tauman Kalai, Anna Lysyanskaya, Ronald L. Rivest,
Adi Shamir, Emily Shen, Ari Trachtenberg, Mayank Varia, and Daniel J.
Weitzner. Privacy-preserving automated exposure notification. Cryptology
ePrint Archive, Report 2020/863, 2020. https://eprint.iacr.org/2020/
863.

CLR17. Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from
homomorphic encryption. In Bhavani M. Thuraisingham, David Evans, Tal
Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 1243–1255. ACM
Press, October / November 2017.

DCW13. Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection
meets big data: an efficient and scalable protocol. In Ahmad-Reza Sadeghi,
Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 789–800.
ACM Press, November 2013.

DES. Inria 3rd-way proposal for a european exposure notification sys-
tem. https://github.com/3rd-ways-for-EU-exposure-notification/
project-DESIRE.

DRRT18. Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. Pir-psi: Scaling
private contact discovery. Proceedings on Privacy Enhancing Technologies,
2018(4), 2018.

27

https://eprint.iacr.org/2020/493
https://eprint.iacr.org/2020/489
https://eprint.iacr.org/2020/407
https://eprint.iacr.org/2020/863
https://eprint.iacr.org/2020/863
https://github.com/3rd-ways-for-EU-exposure-notification/project-DESIRE
https://github.com/3rd-ways-for-EU-exposure-notification/project-DESIRE

FHNP16. Michael J. Freedman, Carmit Hazay, Kobbi Nissim, and Benny Pinkas.
Efficient set intersection with simulation-based security. J. Cryptology,
29(1):115–155, 2016.

FIPR05. Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold.
Keyword search and oblivious pseudorandom functions. In Joe Kilian, editor,
TCC 2005, volume 3378 of LNCS, pages 303–324. Springer, Heidelberg,
February 2005.

GBZT. Pierrick Gaudry, Richard Brent, Paul Zimmermann, and Emmanuel Thomé.
https://gforge.inria.fr/projects/gf2x/.

Goo20a. Apple and google privacy-preserving contact tracing. https://www.apple.
com/covid19/contacttracing, 2020.

Goo20b. Privacy-safe contact tracing using bluetooth low energy. https:
//blog.google/documents/57/Overview_of_COVID-19_Contact_
Tracing_Using_BLE.pdf, 2020.

HEK12. Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are
garbled circuits better than custom protocols?, 2012.

HFH99. Bernardo A. Huberman, Matt Franklin, and Tad Hogg. Enhancing pri-
vacy and trust in electronic communities. In Proceedings of the 1st ACM
Conference on Electronic Commerce, EC ’99, pages 78–86. ACM, 1999.

IKN+19. Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Mariana
Raykova, Shobhit Saxena, Karn Seth, David Shanahan, and Moti Yung.
On deploying secure computing commercially: Private intersection-sum
protocols and their business applications. Cryptology ePrint Archive, Report
2019/723, 2019. https://eprint.iacr.org/2019/723.

Ker12. Florian Kerschbaum. Outsourced private set intersection using homomorphic
encryption. In Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security, ASIACCS ’12, page 85–86, New
York, NY, USA, 2012. Association for Computing Machinery.

KKRT16. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Effi-
cient batched oblivious PRF with applications to private set intersection.
In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016, pages 818–829. ACM
Press, October 2016.

KMP+17. Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and
Ni Trieu. Practical multi-party private set intersection from symmetric-
key techniques. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 1257–1272. ACM Press,
October / November 2017.

KO97. E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database,
computationally-private information retrieval. In Proceedings 38th Annual
Symposium on Foundations of Computer Science, pages 364–373, 1997.

KRT18. Vladimir Kolesnikov, Mike Rosulek, and Ni Trieu. Swim: Secure wildcard
pattern matching from ot extension. In Sarah Meiklejohn and Kazue Sako,
editors, Financial Cryptography and Data Security, pages 222–240, Berlin,
Heidelberg, 2018. Springer Berlin Heidelberg.

LAY+20. Joseph K. Liu, Man Ho Au, Tsz Hon Yuen, Cong Zuo, Jiawei Wang, Amin
Sakzad, Xiapu Luo, and Li Li. Privacy-preserving covid-19 contact tracing
app: A zero-knowledge proof approach. Cryptology ePrint Archive, Report
2020/528, 2020. https://eprint.iacr.org/2020/528.

28

https://gforge.inria.fr/projects/gf2x/
https://www.apple.com/covid19/contacttracing
https://www.apple.com/covid19/contacttracing
https://blog.google/documents/57/Overview_of_COVID-19_Contact_Tracing_Using_BLE.pdf
https://blog.google/documents/57/Overview_of_COVID-19_Contact_Tracing_Using_BLE.pdf
https://blog.google/documents/57/Overview_of_COVID-19_Contact_Tracing_Using_BLE.pdf
https://eprint.iacr.org/2019/723
https://eprint.iacr.org/2020/528

LNZ+14. F. Liu, W. K. Ng, W. Zhang, D. H. Giang, and S. Han. Encrypted set
intersection protocol for outsourced datasets. In 2014 IEEE International
Conference on Cloud Engineering, pages 135–140, 2014.

LTKS20. Xiaoyuan Liu, Ni Trieu, Evgenios M. Kornaropoulos, and Dawn Song.
Beetrace: A unified platform for secure contact tracing that breaks data
silos. IEEE Data Eng. Bull., 43(2):108–120, 2020.

MB72. R. Moenck and Allan Borodin. Fast modular transforms via division. In
13th Annual Symposium on Switching and Automata Theory, College Park,
Maryland, USA, October 25-27, 1972, pages 90–96. IEEE Computer Society,
1972.

Mea86. Catherine A. Meadows. A more efficient cryptographic matchmaking proto-
col for use in the absence of a continuously available third party. In IEEE
Symposium on Security and Privacy, pages 134–137, 1986.

MMRV20. Parthasarathy Madhusudan, Peihan Miao, Ling Ren, and V.N.
Venkatakrishnan. Contrail: Privacy-preserving secure contact trac-
ing. https://github.com/ConTraILProtocols/documents/blob/master/
ContrailWhitePaper.pdf, 2020.

NMH+10. Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and
Nikita Borisov. Botgrep: Finding p2p bots with structured graph analy-
sis. In Proceedings of the 19th USENIX Conference on Security, USENIX
Security’10, page 7, USA, 2010. USENIX Association.

NTK. Pan-european privacy-preserving proximity tracing. https://github.com/
pepp-pt/.

OOS17. Michele Orrù, Emmanuela Orsini, and Peter Scholl. Actively secure 1-out-
of-N OT extension with application to private set intersection. In Helena
Handschuh, editor, CT-RSA 2017, volume 10159 of LNCS, pages 381–396.
Springer, Heidelberg, February 2017.

Pos19. Google Blog Post. Helping organizations do more without
collecting more data. Cryptology ePrint Archive, Report
2020/531, 2019. https://security.googleblog.com/2019/06/
helping-organizations-do-more-without-collecting-more-data.
html.

PRTY19. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. SpOT-light:
Lightweight private set intersection from sparse OT extension. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume
11694 of LNCS, pages 401–431. Springer, Heidelberg, August 2019.

PRTY20. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Psi from paxos:
Fast, malicious private set intersection. Cryptology ePrint Archive, Report
2020/193, 2020. https://eprint.iacr.org/2020/193.

PSSZ15. Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing:
Private set intersection using permutation-based hashing. In Jaeyeon Jung
and Thorsten Holz, editors, USENIX Security 2015, pages 515–530. USENIX
Association, August 2015.

PSTY19. Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai.
Efficient circuit-based PSI with linear communication. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of
LNCS, pages 122–153. Springer, Heidelberg, May 2019.

PSWW18. Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder.
Efficient circuit-based PSI via cuckoo hashing. In Jesper Buus Nielsen and
Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of
LNCS, pages 125–157. Springer, Heidelberg, April / May 2018.

29

https://github.com/ConTraILProtocols/documents/blob/master/ContrailWhitePaper.pdf
https://github.com/ConTraILProtocols/documents/blob/master/ContrailWhitePaper.pdf
https://github.com/pepp-pt/
https://github.com/pepp-pt/
https://security.googleblog.com/2019/06/helping-organizations-do-more-without-collecting-more-data.html
https://security.googleblog.com/2019/06/helping-organizations-do-more-without-collecting-more-data.html
https://security.googleblog.com/2019/06/helping-organizations-do-more-without-collecting-more-data.html
https://eprint.iacr.org/2020/193

QLS+18. S. Qiu, J. Liu, Y. Shi, M. Li, and W. Wang. Identity-based private match-
ing over outsourced encrypted datasets. IEEE Transactions on Cloud
Computing, 6(3):747–759, 2018.

Rin. Peter Rindal. libOTe: an efficient, portable, and easy to use Oblivious
Transfer Library. https://github.com/osu-crypto/libOTe.

Rob. Robert – robust and privacy-preserving proximity tracing protocol. https:
//github.com/ROBERT-proximity-tracing/.

RPB20. Ramesh Raskar, Deepti Pahwa, and Robson Beaudry. Contact tracing:
Holistic solution beyond bluetooth. IEEE Data Eng. Bull., 43(2):67–70,
2020.

RR17. Peter Rindal and Mike Rosulek. Malicious-secure private set intersection via
dual execution. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 1229–1242. ACM Press,
October / November 2017.

Sei. Otto Seiskari. Ble contact tracing sniffer poc. https://github.com/
oseiskar/corona-sniffer.

Sha80. Adi Shamir. On the power of commutativity in cryptography. In Automata,
Languages and Programming, pages 582–595, 1980.

Sho. Victor Shoup. Ntl: A library for doing number theory. http://www.shoup.
net/ntl/.

TPH+20. Carmela Troncoso, Mathias Payer, Jean-Pierre Hubaux, Marcel Salathé,
James Larus, Edouard Bugnion, Wouter Lueks, Theresa Stadler, Apostolos
Pyrgelis, Daniele Antonioli, Ludovic Barman, Sylvain Chatel, Kenneth
Paterson, Srdjan Čapkun, David Basin, Jan Beutel, Dennis Jackson, Marc
Roeschlin, Patrick Leu, Bart Preneel, Nigel Smart, Aysajan Abidin, Seda
Gürses, Michael Veale, Cas Cremers, Michael Backes, Nils Ole Tippenhauer,
Reuben Binns, Ciro Cattuto, Alain Barrat, Dario Fiore, Manuel Barbosa,
Rui Oliveira, and José Pereira. Decentralized privacy-preserving proximity
tracing, 2020.

Tra. Tracetogether, safer together, a singapore government agency website.
https://www.tracetogether.gov.sg/.

TSS+20. Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri, and Dawn Song.
Epione: Lightweight contact tracing with strong privacy. IEEE Data Eng.
Bull., 43(2):95–107, 2020.

TZBS20. Amee Trivedi, Camellia Zakaria, Rajesh Balan, and Prashant Shenoy. Wifi-
trace: Network-based contact tracing for infectious diseases using passive
wifi sensing, 2020.

vABB+20. Sydney von Arx, Isaiah Becker-Mayer, Daniel Blank, Jesse Colligan, Rhys
Fenwick, Mike Hittle, Mark Ingle, Oliver Nash, Victoria Nguyen, James
Petrie, Jeff Schwaber, Zsombor Szabo, Akhil Veeraghanta, Mikhail Voloshin,
Tina White, and Helen Xue. Slowing the spread of infectious diseases using
crowdsourced data. IEEE Data Eng. Bull., 43(2):71–82, 2020.

Vau20. Serge Vaudenay. Centralized or decentralized? the contact tracing dilemma.
Cryptology ePrint Archive, Report 2020/531, 2020. https://eprint.iacr.
org/2020/531.

ZX15. Q. Zheng and S. Xu. Verifiable delegated set intersection operations on
outsourced encrypted data. In 2015 IEEE International Conference on
Cloud Engineering, pages 175–184, 2015.

30

https://github.com/osu-crypto/libOTe
https://github.com/ROBERT-proximity-tracing/
https://github.com/ROBERT-proximity-tracing/
https://github.com/oseiskar/corona-sniffer
https://github.com/oseiskar/corona-sniffer
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
https://www.tracetogether.gov.sg/
https://eprint.iacr.org/2020/531
https://eprint.iacr.org/2020/531

	Catalic: Delegated PSI Cardinality with Applications to Contact Tracing
	Introduction
	Our Contributions & Techniques

	Related Work and Comparison
	Private Set Intersection
	Secure Contact Tracing

	Security Model and Cryptographic Preliminaries
	Security Model
	Cryptographic Primitives

	Cryptographic Protocols
	Oblivious Distributed Key PRF
	Delegated PSI-CA

	Catalic System
	System Overview
	Catalic Extension

	Implementation and Performance
	Parameter Choices
	PSI-CA Performance
	Catalic Discussion and Comparison

