
Circular Security Is Complete for KDM Security

Fuyuki Kitagawa1 and Takahiro Matsuda2

1 NTT Secure Platform Laboratories, Tokyo, Japan
fuyuki.kitagawa.yh@hco.ntt.co.jp

2 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

t-matsuda@aist.go.jp

Abstract. Circular security is the most elementary form of key-dependent
message (KDM) security, which allows us to securely encrypt only a copy
of secret key bits. In this work, we show that circular security is com-
plete for KDM security in the sense that an encryption scheme satisfying
this security notion can be transformed into one satisfying KDM secu-
rity with respect to all functions computable by a-priori bounded-size
circuits (bounded-KDM security). This result holds in the presence of
any number of keys and in any of secret-key/public-key and CPA/CCA
settings. Such a completeness result was previously shown by Applebaum
(EUROCRYPT 2011) for KDM security with respect to projection func-
tions (projection-KDM security) that allows us to securely encrypt both
a copy and a negation of secret key bits.
Besides amplifying the strength of KDM security, our transformation
in fact can start from an encryption scheme satisfying circular security
against CPA attacks and results in one satisfying bounded-KDM security
against CCA attacks. This result improves the recent result by Kitagawa
and Matsuda (TCC 2019) showing a CPA-to-CCA transformation for
KDM secure public-key encryption schemes.

Keywords: key-dependent message security, circular security, chosen
ciphertext security

1 Introduction

1.1 Background

Key-dependent message (KDM) security, introduced by Black, Rogaway, and
Shrimpton [7], guarantees confidentiality of communication even if an adver-
sary can get a ciphertext of secret keys. This notion was formulated in order
to capture situations where there could be correlations between secret keys and
messages to be encrypted. Although it seems that such situations only arise
from bugs or errors, it turned out that they naturally occur in natural us-
age scenarios of encryption schemes such as hard-disc encryption [8], anony-
mous credentials [10], and formal methods [2]. Moreover, until today, a number
of works have shown that KDM security is useful when constructing various
cryptographic primitives including fully homomorphic encryption (FHE) [15],
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non-interactive zero-knowledge (NIZK) proofs/arguments [12,11,25,22], homo-
morphic secret sharing [9], and chosen ciphertext secure encryption schemes and
trapdoor functions [19,23].

KDM security is defined with respect to a function family F . Informally, a
public-key encryption (PKE) scheme is said to be F-KDM(n) secure if confiden-
tiality of messages is protected even when an adversary can see a ciphertext of
f(sk1, · · · , skn) under the s-th public key for any f ∈ F and s ∈ {1, · · · , n},
where n denotes the number of keys. Also, KDM security is considered in both
the chosen plaintext attack (CPA) and chosen ciphertext attack (CCA) settings.

Completeness of Projection-KDM Security. KDM security with respect to the
family of projection functions (projection-KDM security) is one of the most
widely studied notions. A projection function is an elementary function in which
each output bit depends on at most a single bit of an input. Therefore, roughly
speaking, projection-KDM security only guarantees that an encryption scheme
can securely encrypt a copy and a negation of secret key bits.

Although this security notion looks somewhat weak at first glance, Apple-
baum [3] showed that it is complete for KDM security in the sense that we
can construct an encryption scheme satisfying KDM security with respect to
all functions computable by a-priori bounded-size circuits (bounded-KDM se-
curity) based on one satisfying projection-KDM security. The completeness of
projection-KDM security in [3] has generality in the sense that it is insensitive to
the exact setting of KDM security. More specifically, a projection-KDM secure
encryption scheme can be transformed into a bounded-KDM secure one for any
number of keys and in any of secret-key/public-key and CPA/CCA settings.

Moreover, recent works [23,22,25] also showed the power and usefulness of
projection-KDM secure encryption schemes for achieving other security notions
and constructing other primitives. Specifically, Kitagawa, Matsuda, and Tanaka [23]
showed that projection-KDM secure PKE implies IND-CCA secure PKE, and
Kitagawa and Matsuda [22] and Lombardi, Quach, Rothblum,Wichs, andWu [25]
independently showed that it implies a reusable designated-verifier NIZK argu-
ment system for any NP language.

Completeness of Circular Security? The focus in this work is on circular security,
which is another elementary form of KDM security that has been widely studied
from both the positive side [10,15,19,11] and the negative side [1,13,28,24,17,20].
Circular security is a weaker security notion compared to even projection-KDM
security since circular security allows us to securely encrypt only a copy of secret
key bits.3 In this work, we clarify whether this most elementary form of KDM
security is also complete in the above sense or not.

Let us explain the motivations for studying the completeness of circular secu-
rity for KDM security. From the practical aspect, although it is an elementally
form of KDM security, it is known to be sufficient for many practical appli-
cations of KDM security such as anonymous credentials, formal methods, and

3 Note that the phrase “circular security” is sometimes used to mean a (similar but)
different notion, such as security when encrypting key cycles.
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FHE listed above. Thus, studying circular security is expected to give us insights
on these applications. From the theoretical aspect, it has impacts on the study
of public-key cryptography since several recent works [23,22,25] showed that a
projection-KDM secure encryption scheme is useful as a building block for con-
structing two important and central primitives of IND-CCA secure PKE and
reusable designated-verifier NIZK argument systems, among which we will ex-
pand explanations on the former in the paragraph below. Furthermore, studying
whether the ability to securely encrypt only a copy of secret key bits has a similar
power to that to securely encrypt both a copy and a negation of secret key bits at
the same time, is well-motivated from the viewpoint of “negation-complexity” of
cryptographic primitives [16,18]. For example, Goldreich and Izsak [16] showed
that a one-way function can be computed by a monotone circuit and yet a
pseudorandom generator cannot. It is interesting to investigate whether such a
barrier exists in the context of KDM security.

Implications to the Study of CPA vs CCA. The question whether an IND-CCA
secure PKE scheme can be constructed from an IND-CPA secure one has been
standing as a major open question in cryptography. The completeness of cir-
cular security for KDM security also has a deep connection to this question:
Hajiabadi and Kapron [19] tackled the above question, and they built an IND-
CCA secure PKE scheme based on a PKE scheme satisfying circular security and
a randomness re-usability property called reproducibility [6]. Also, Kitagawa et
al. [23] showed that an IND-CCA secure PKE scheme can be constructed from
a projection KDM secure PKE scheme.

The above two results surely made a progress on the study of CCA secu-
rity versus CPA security by showing that an IND-CCA secure PKE scheme
can be constructed from a PKE scheme satisfying only security notions against
“CPA” (i.e. no decryption queries). Here, the above results are incomparable
since the former result requires a structural property while the latter requires
projection-KDM security that is stronger than circular security for the building
block scheme. It is an open question whether we can construct an IND-CCA se-
cure PKE scheme based on a PKE scheme satisfying only circular security with-
out requiring any structural property for the building block scheme. We see that
this question is solved affirmatively if we can prove the completeness of circular
security for KDM security by combining it with the previous results [23,25,22].

1.2 Our Results

In this work, we show that circular security is complete in the sense that an
encryption scheme satisfying this security notion can be transformed into a
bounded-KDM secure one. In this work, unless stated otherwise, circular secu-
rity indicates a security notion that guarantees that an encryption scheme can
securely encrypt a copy of each of secret key bits separately. We show that this
result has the same level of generality as the completeness of projection-KDM
security shown by Applebaum [3]. Namely, we obtain the following theorem.
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Below, we denote circular security against CPA under n key pairs as CIRC(n)

security.

Theorem 1 (Informal). If there exists a CIRC(n) secure PKE (resp. SKE)

scheme, then there exists a bounded-KDM(n)-CCA secure PKE (resp. SKE)
scheme for any number of keys n.

Note that the above theorem implies the completeness of circular security in
both the CPA and CCA settings at the same time since we start with a scheme
satisfying circular security against CPA and obtain a scheme satisfying bounded-
KDM security against CCA. We obtain Theorem 1 in the following way.

How to Obtain Completeness in the Public-Key Setting. We first focus on the
case where there is only a single key pair. In Section 4, as our main technical
result, we show that an encryption primitive called targeted encryption (TE),
formalized by Barak, Haitner, Hofheinz, and Ishai [5], can be constructed from

the combination of a CIRC(1) secure SKE scheme and an IND-CPA secure PKE
scheme. Since both of the building blocks are implied by CIRC(1) secure PKE,
and a TE scheme in turn can be transformed into a bounded-KDM(1)-CPA
secure PKE scheme as shown by Barak et al. [5], this result implies that a

CIRC(1) secure PKE scheme can be transformed into a bounded-KDM(1)-CPA
secure PKE scheme. Once we construct a bounded-KDM(1)-CPA secure PKE
scheme, by combining with the result by Kitagawa and Matsuda [22], we can

transform it into a bounded-KDM(1)-CCA secure PKE scheme, which is stated
in Section 5.

We then turn our attention to the case where there are multiple key pairs.
Similarly to the above, we can construct a bounded-KDM(n)-CPA secure PKE
scheme based on a CIRC(n) secure one for any n through a primitive called
augmented TE [5] that is an extension of TE. However, in the case of multiple
key pairs, there is no transformation from a KDM-CPA secure PKE scheme to
a KDM-CCA secure one regardless of the function family with respect to which
we consider KDM security. Thus, in this case, we cannot easily carry the result
in the CPA setting to that in the CCA setting.

To overcome the above problem, in Section 6, we first introduce a primi-
tive that we call conformed TE (CTE). CTE is an extension of TE (with sev-
eral similarities to augmented TE of Barak et al. [5]) that is conformed to the
construction of a KDM-CCA secure PKE scheme in the presence of multiple
key pairs. We then construct a CTE scheme based on a CIRC(n) secure SKE
scheme and an IND-CPA secure PKE scheme. Finally, in Section 7, we construct
a bounded-KDM(n)-CCA secure PKE scheme from a CTE scheme, a garbling
scheme, an IND-CCA secure PKE scheme, and a (reusable) DV-NIZK argument
system. The last two components are implied by a circular secure PKE scheme
from our result in the case of a single key pair and the results by Kitagawa
and Matsuda [22] and Lombardi et al. [25]. This implies that circular security is
complete in both the CPA and CCA settings even when there are multiple key
pairs. Note that this result improves that of Kitagawa and Matsuda [22] in the
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following two aspects: Not only our construction can start from a circular secure
PKE scheme, but also it works in the case of multiple key pairs.

How to Obtain Completeness in the Secret-Key Setting. From the result shown
by Backes, Pfitzmann, and Scedrov [4], we can transform a bounded-KDM(n)-

CPA secure SKE scheme into a bounded-KDM(n)-CCA secure one for any n.
Thus, in the secret-key setting, all we have to do is to construct a bounded-
KDM(n)-CPA secure SKE scheme based on a CIRC(n) secure one. Similarly to
the public-key setting, this is possible via the secret-key version of TE for the
case of a single key pair and via the secret-key version of augmented TE for
the case of multiple key pairs. These constructions are almost the same as the
public-key counterparts, and thus we omit their formal descriptions in the paper.
(In Section 2, this construction is outlined since we explain a technical overview
of our results using the secret-key version of TE.)

Implications of Our Completeness Result. We obtain the following additional re-
sults: We show that the construction of the bounded-KDM(1)-CPA secure PKE
scheme mentioned above, is in fact a fully black-box construction [27] if we re-
strict the function family to projection functions. Thus, by combining this fact
with the result by Kitagawa et al. [23], we obtain a fully black-box construction
of an IND-CCA secure PKE scheme from a circular secure one.4 Moreover, by
simply combining Theorem 1 with the result independently achieved by Kita-
gawa and Matsuda [22] and Lombardi et al. [25], we see that a reusable DV-NIZK
argument system can also be constructed from a circular secure PKE scheme.

1.3 Paper Organization

The rest of the paper is organized as follows: In Section 2, we give a technical
overview of our results. In Section 3, we review definitions of cryptographic
primitives. In Section 4, we present our construction of TE. In Section 5, we
show several implications of our TE scheme, and in particular the completeness
of circular security for the single-key setting. In Section 6, we introduce CTE
and present its construction. Finally, in Section 7, we present the completeness
of circular security in the multi-key setting using CTE.

2 Technical Overview

In this section, we provide a technical overview of our results. Our main technical
contribution is to show that we can realize TE (and conformed TE) based only
on a circular secure encryption scheme in a completely generic way. Thus, in this
overview, we mainly focus on this part after briefly explaining how to construct a
bounded-KDM secure scheme based on TE. For simplicity, we explain our ideas

4 Note that this result does not simply follow from Theorem 1 since the construction
of KDM-CCA secure PKE used to show it is non-black-box due to the use of a
DV-NIZK argument.
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in this part by showing how to construct the secret-key version of a TE scheme
based only on a CIRC(1) secure SKE scheme. In the following, for a natural
number n, we let [n] denote the set {1, . . . , n}.

2.1 Secret-Key TE

We first introduce the secret-key version of TE [5]. A secret-key TE scheme
consists of the three algorithms TKG, TEnc, and TDec.5 Similarly to an ordinary
SKE scheme, TKG is given a security parameter and outputs a secret key sk.
We let ℓsk denote the secret key length. On the other hand, TEnc and TDec
have a functionality of a somewhat special form. As we will soon see below,
they are optimized for encrypting labels of garbled circuits [29]. In addition
to the secret key sk, TEnc is given an index i ∈ [ℓsk] and a pair of messages
(X0, X1), and outputs a ciphertext as ct← TEnc(sk, i,X0, X1). Correspondingly,
given the secret key sk, the index i ∈ [ℓsk], and the ciphertext ct, TDec outputs
(only) Xsk[i], where sk[i] denotes the i-th bit of sk. (Thus, it is similar to an
oblivious transfer.) For TE, we consider two security notions: security against
the receiver and security against outsiders. Security against the receiver ensures
that ct hides the information of X1⊕sk[i] even against the receiver who holds
sk. Security against outsiders ensures that ct hides both X0 and X1 against
adversaries who do not hold sk.6

Bounded-KDM(1)-CPA Security via TE. As shown by Barak et al. [5], we can

construct a bounded-KDM(1)-CPA secure SKE scheme based on a secret-key
TE scheme by using garbled circuits.7 The construction is fairly simple. The
secret key of the resulting SKE scheme is that of the underlying secret-key
TE scheme itself. When encrypting a message m, we first garble an ℓsk-bit-
input constant function Cm that outputs m for any input. This results in a
single garbled circuit C̃ and 2ℓsk labels (labi,v)i∈[ℓsk],v∈{0,1}. Then, for every index
i ∈ [ℓsk], we encrypt the pair of labels (labi,0, labi,1) under the index i into cti
using TEnc. The resulting ciphertext for the SKE scheme consists of C̃ and
(cti)i∈[ℓsk]. When decrypting this ciphertext, we first obtain (labi,sk[i])i∈[ℓsk] from

(cti)i∈[ℓsk] by using TDec with sk. Then, we evaluate the garbled circuit C̃ with
these labels. This results in m from the correctness of the garbling scheme.

We can prove that the above construction is bounded-KDM(1)-CPA secure.
In a high level, we can generate a simulated encryption of f(sk) without using
sk itself that is indistinguishable from a real ciphertext based on the security

5 Here, we adopt the syntax that is slightly different from the one we use in the
subsequent sections, in that the latter allows to encrypt Xv for each v ∈ {0, 1}
separately. The syntax used here makes the following explanations easier and cleaner.
For the formal definition, see Section 3.3.

6 Hereafter, we refer to adversaries that do not hold the secret key as outsiders.
7 Note that the actual transformation shown by Barak et al. is in the public-key
setting. Also, the following explanations assume that the reader is familiar with a
garbling scheme. See the full version for its formal definition.
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against the receiver of the underlying secret-key TE scheme and the security of
the underlying garbling scheme, where f is a function queried by an adversary
as a KDM-encryption query. We then finish the security proof by relying on the
security against outsiders of the secret-key TE scheme. For more details, see [5].

2.2 Secret-Key TE Based on Circular Secure SKE

Below, we explain how to construct a secret-key TE scheme based on a CIRC(1)

secure SKE scheme. We first show that a secret-key TE scheme can be naturally
realized from a projection-KDM(1) secure SKE scheme. We then show how to
weaken the starting point to a CIRC(1) secure SKE scheme.

Secret-Key TE Based on Projection-KDM Secure SKE. Consider the following
naive way to realize a secret-key TE scheme based on an SKE scheme SKE.
A secret key sk of SKE is used as that of the secret-key TE scheme. When
encrypting (X0, X1) under an index i ∈ [ℓsk], we just encrypt Xsk[i] into ct by
using the encryption algorithm Enc of SKE with the secret key sk. We call this
naive realization Naive. Naive clearly satisfies security against the receiver since
ct is independent of X1⊕sk[i]. However, it is not clear whether we can prove the
security against outsiders of Naive if we only assume that SKE satisfies IND-
CPA security. This is because the encrypted message Xsk[i] is dependent on the
secret key sk. On the other hand, we can prove the security against outsiders
of Naive if SKE satisfies projection-KDM(1)-CPA security which allows us to
securely encrypt both a copy and a negation of sk[i].

To see this in detail, we suppose that Xsk[i] is encrypted by SKE in a bit-by-
bit manner, and its length is µ. We denote the j-th bit of X0 (resp. X1) by X0[j]
(resp. X1[j]). We can classify the indices in [µ] into the following four types:

Type 1: j ∈ [µ] such that X0[j] = X1[j] = 0.
Type 2: j ∈ [µ] such that X0[j] = X1[j] = 1.
Type 3: j ∈ [µ] such that X0[j] = 0 and X1[j] = 1.
Type 4: j ∈ [µ] such that X0[j] = 1 and X1[j] = 0.

We have to generate the following ciphertexts of SKE for each type to encrypt
Xsk[i]:

– For j of Type 1, we have to generate Enc(sk, 0) regardless of the value of
sk[i].

– For j of Type 2, we have to generate Enc(sk, 1) regardless of the value of
sk[i].

– For j of Type 3, we have to generate Enc(sk, sk[i]), that is, an encryption of
a copy of sk[i].

– For j of Type 4, we have to generate Enc(sk, 1⊕ sk[i]), that is, an encryption
of a negation of sk[i].

Namely, when some bit of X0 is 0 and the corresponding bit of X1 is 1, we
have to generate an encryption of a copy of sk[i]. Similarly, when some bit of
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X0 is 1 and the corresponding bit of X1 is 0, we have to generate an encryption
of a negation of sk[i]. However, if SKE is projection-KDM(1)-CPA secure, then
Xsk[i] is hidden from outsiders. Since X1⊕sk[i] is completely hidden (even against
the legitimate receiver), Naive satisfies security against outsiders based on the

projection-KDM(1)-CPA security of SKE.

Replacing Projection-KDM-CPA Secure SKE with Circular Secure SKE. We
now try to realize a secret-key TE scheme based on a circular secure (CIRC(1)

secure) SKE scheme. Recall that CIRC(1) security allows us to securely encrypt
only a copy of secret key bits. Thus, as the first attempt to avoid encrypting
negations of secret key bits, we modify the above construction Naive into the
following construction that we call Naive∗.

In Naive∗, when encrypting (X0, X1) under an index i ∈ [ℓsk], we basically
encrypt Xsk[i] in a bit-by-bit manner in the same way as Naive. However, for
indices j ∈ [µ] of Type 4, we replace the ciphertext of SKE with the special
symbol flip. When receiving the symbol flip instead of the j-th ciphertext,
the receiver sets the value ofXsk[i][j] as 1⊕sk[i]. This is possible since the receiver
has sk and knows the value of sk[i]. Thus, if we modify the construction in this
way, the receiver holding sk can obtain the entire bits of Xsk[i] similarly to Naive.

In Naive∗, we now need to generate encryptions of only a copy of sk[i] and not
those of a negation of sk[i]. However, we cannot prove that Naive∗ satisfies the
two security notions of TE (security against the receiver/outsiders) based on the

CIRC(1) security of SKE. For example, considering security against outsiders, X0

and X1 are partially leaked to outsiders because of the use of the symbol flip.
Concretely, outsiders can know that X0[j] = 1 and X1[j] = 0 for the indices
j of Type 4. A similar problem lies in the argument on security against the
receiver. Concretely, the receiver holding sk can know X1⊕sk[i][j] for the indices
j of Type 4 and either one of Type 1 or 2 depending on the value of sk[i]. The
reason why X1⊕sk[i][j] for the indices j of Type 4 are leaked to the receiver is
clear. The reason why those for the indices j of Type 1 or 2 are leaked to the
receiver is as follows. For example, when sk[i] = 0, the receiver finds that the
value of X1⊕sk[i][j] is 1 for j of Type 2 from the fact that the decrypted message
from the j-th ciphertext is 1 but the symbol flip was not sent for this j.

To summarize, if SKE is CIRC(1) secure, the following properties hold for
Naive∗: X0[j] and X1[j] for the indices j of Type 1, 2, and 3 are hidden but
those for the indices j of Type 4 are leaked to outsiders. Also, X1⊕sk[i][j] for the
indices j of Type 3 and either one of Type 1 or 2 are hidden but the remaining
parts are leaked to the receiver holding sk.

Transforming into a Full-Fledged Secret-Key TE Scheme. A natural question
here is whether the above Naive∗ is useful or not. We show that by using a
leakage-resilient SKE scheme lrSKE, we can transform Naive∗ into an ordinary
secret-key TE scheme sTE. As we will explain later, the type of leakage-resilience
that lrSKE should satisfy is weak, and any IND-CPA secure SKE scheme can be
transformed into one satisfying it. Thanks to this transformation, we can realize
a secret-key TE scheme based only on a CIRC(1) secure SKE scheme.
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The description of sTE is as follows. The secret key sk of sTE is that of Naive∗

itself. When encrypting (X0, X1) under the index i ∈ [ℓsk], we first generate two
keys lrk0 and lrk1 of lrSKE. Then, we encrypt X0 and X1 into lrct0 and lrct1
by using lrSKE with the keys lrk0 and lrk1, respectively. Moreover, we encrypt
(lrk0, lrk1) into ct by using Naive∗ with the key sk. The resulting ciphertext of
sTE is (lrct0, lrct1, ct). When decrypting this ciphertext, we first obtain lrksk[i]
from ct by using Naive∗ with the key sk. We then obtain Xsk[i] by decrypting
ctsk[i] using lrSKE with the key lrksk[i].

We now argue that sTE satisfies (full-fledged) security against the receiver
and that for outsiders. Without loss of generality, we assume that lrk0 and lrk1
are uniformly random n-bit strings. We define Type 1, 2, 3, and 4 for indices in
[n] as before using lrk0 and lrk1 instead of X0 and X1. Since lrk0 and lrk1 are
chosen uniformly at random, these four types appear equally likely. In this case,
ct hides expectedly a 1/2-fraction of bits of lrk1⊕sk[i] against the receiver holding
sk. Also, ct hides expectedly a 3/4-fraction of bits of each of lrk0 and lrk1 against
outsiders. Thus, if lrSKE is resilient against both forms of secret key leakage, sTE
satisfies both security against the receiver and security against outsiders.

Fortunately, the leakage-resilience that lrSKE should satisfy in the above ar-
gument is weak. The amount of leakage is (expectedly) only a constant fraction.
In addition, more importantly, which bits of the secret key are leaked is de-
termined completely at random from the fact that Type 1, 2, 3, and 4 appear
uniformly at random, out of the control of adversaries. Leakage-resilience against
such secret key leakage is weak, and we can transform any IND-CPA secure SKE
scheme into one satisfying it by using the leftover hash lemma [21,14]. From this

fact, sTE can be realized from a CIRC(1) secure SKE scheme.

2.3 Towards the Completeness in the Public-Key Setting

As we mentioned earlier, in the actual technical sections, we deal with the public-
key setting. Namely, we prove Theorem 1 in the PKE setting. We finally explain
how to prove it with the techniques explained so for.

Single-Key Setting. We first construct a (public-key) TE scheme based on a

CIRC(1) secure SKE scheme and an IND-CPA secure PKE scheme both of which
are implied by a CIRC(1) secure PKE scheme. This construction is almost the
same as that of sTE above except that we use a leakage-resilient PKE scheme
instead of a leakage-resilient SKE scheme. By combining this transformation
with the previous results [5,22], we can obtain Theorem 1 in the PKE setting
for the number of key pairs n = 1.

Multi-key Setting. We then move on to the case of multiple key pairs. As men-
tioned before, for achieving the completeness in this setting, we introduce an
extended version of TE that we call conformed TE (CTE). CTE is conformed

to construct KDM(n)-CCA secure PKE schemes for n > 1. Roughly, CTE is TE
that satisfies the following two additional properties.
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– When generating a public/secret key pair, it additionally generates a trap-
door that enables us to recover both a “0-side” message X0 and a “1-side”
message X1 from a ciphertext encrypting (X0, X1). (Recall that in ordinary
TE, the receiver can recover only one of them even having the secret key.)

– A CTE scheme has additional (untargeted and secret-key) encryption and
decryption algorithms, and a ciphertext generated by the additional encryp-
tion algorithm is indistinguishable even under the existence of the above
trapdoor and encryptions of a “key cycle” generated by the additional en-
cryption algorithm. Encryptions of a key cycle are ciphertexts such that the
s-th ciphertext is an encryption of the (s mod n)+1-th secret key under the
s-th secret key when there are n keys. We call this property special weak
circular security.

We remark that a TE scheme satisfying only the second property is almost the
same as augmented TE introduced by Barak et al. [5] to construct a bounded-

KDM(n)-CPA secure PKE scheme for n > 1. Roughly speaking, when construct-
ing a KDM-CCA secure PKE scheme, the first property mainly plays its role
to deal with decryption queries, and the second property plays its role to deal
with multiple key pairs. For the details of the formalization of CTE as well as
its relation to augmented TE, see Section 6.

We construct a CTE scheme based on a CIRC(n) secure SKE scheme and an
IND-CPA secure PKE scheme. Basically, this construction is again an extension
of sTE in which a leakage-resilient PKE scheme is used instead of a leakage-
resilient SKE scheme. The trapdoor of the construction consists of secret keys
of the leakage-resilient PKE scheme. Also, the special weak circular security of
it is proved based on the CIRC(n) security of the underlying SKE scheme.

We finish the proof of Theorem 1 in the public-key setting for n > 1 by con-
structing a bounded-KDM(n)-CCA secure PKE scheme from the combination of
the following four building blocks: (1) a CTE scheme, (2) an IND-CCA secure
PKE scheme, (3) a garbling scheme for circuits, and (4) a reusable DV-NIZK
argument system for NP languages. As we already explained, by Theorem 1 for
n = 1 and results by [22,25], an IND-CCA secure PKE scheme and a reusable
DV-NIZK argument system can be constructed from the combination of an IND-
CPA secure PKE scheme and a CIRC(1) secure SKE scheme. Also, a garbling
scheme for circuits can be constructed from a one-way function. Thus, all the
building blocks can be based on the combination of an IND-CPA secure PKE
scheme and a CIRC(n) secure SKE scheme. This completes the proof of Theo-
rem 1 in the PKE setting for n > 1.

Our construction of bounded-KDM-CCA secure PKE in the multi-key set-
ting can be seen as combining the construction ideas from the two existing con-
structions: the construction of KDM-CPA secure PKE in the multi-key setting
based on an augmented TE scheme by Barak et al. [5], and the construction of
KDM-CCA secure PKE in the single key setting based on an IND-CPA secure
PKE scheme and a projection-KDM secure SKE scheme by Kitagawa and Mat-
suda [22]. However, a simple combination of each of the techniques from [5,22] as



Circular Security Is Complete for KDM Security 11

it is is not sufficient. We bridge the gap with the properties of the CTE scheme.
For the details, see Section 7.

3 Preliminaries

In this section, we review the basic notation, and the definitions as well as
existing results for cryptographic primitives treated in this paper.

3.1 Basic Notation and Notions

For n ∈ N, we define [n] := {1, . . . , n}. For strings x and y, “|x|” denotes the

bit-length of x, “x[i]” (with i ∈ [|x|]) denotes the i-th bit of x, and “(x
?
= y)” is

the operation that returns 1 if x = y and 0 otherwise. For a discrete finite set S,
“|S|” denotes its size, and “x

r←− S” denotes choosing an element x uniformly at
random from S. For a (probabilistic) algorithm A, “y ← A(x)” denotes assigning
to y the output of A on input x, and if we need to specify a randomness r used
in A, we write “y ← A(x; r)”. If furthermore O is a function or an algorithm,
then “AO” means that A has oracle access to O. A function ϵ(λ) : N → [0, 1] is
said to be negligible if ϵ(λ) = λ−ω(1). We write ϵ(λ) = negl(λ) to mean ϵ being
negligible. The character “λ” always denotes a security parameter. “PPT” stands
for probabilistic polynomial time. For a distribution X , the min-entropy of X is
defined by H∞(X ) := − log2( maxx Pr[X = x] ). For distributions X and Y
(forming a joint distribution), the average min-entropy of X given Y is defined

by H̃∞(X|Y) := − log2( Ey←Y [maxx Pr[X = x|Y = y] ] ).

3.2 Public-Key and Secret-Key Encryption

Here, we recall the definitions for public-key and secret-key encryption schemes.
We first introduce the definitions for PKE, and then briefly mention how to
recover those for SKE.

Syntax of Public-Key Encryption. A PKE scheme PKE consists of the three PPT
algorithms (KG,Enc,Dec):8

– KG is the key generation algorithm that takes 1λ as input, and outputs a
public/secret key pair (pk, sk).

– Enc is the encryption algorithm that takes a public key pk and a message m
as input, and outputs a ciphertext ct.

– Dec is the (deterministic) decryption algorithm that takes a public key pk, a
secret key sk, and a ciphertext ct as input, and outputs a message m or the
invalid symbol ⊥.

A PKE scheme PKE = (KG,Enc,Dec) is said to be correct if for all λ ∈ N,
(pk, sk)← KG(1λ), and m, we have Dec(pk, sk,Enc(pk,m)) = m.

We refer to a PKE scheme whose message space is 1-bit as a bit-PKE scheme.

8 In this paper, we only consider (public-key/secret-key) encryption schemes in which
secret keys and messages are bit strings, whose lengths are determined by the security
parameter λ.
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ExptwlrPKE,A,L(λ) :

(f, st)← A0(1
λ)

(pk, sk)← KG(1λ)

b
r←− {0, 1}

b′ ← AOEnc(·,·)
1 (pk, f(sk), st)

Return (b′
?
= b).

OEnc(m0,m1) : // |m0| = |m1|
Return ct← Enc(pk,mb).

Fig. 1. The weak noisy-leakage-resilience experiment for PKE. In the experiment, it is
required that L ≥ H∞(sk)− H̃∞(sk|f(sk), st).

Simple Key Generation. We say that a PKE scheme has simple key generation if
its key generation algorithm KG first picks a secret key sk uniformly at random
(from some prescribed secret key space) and then computes a public key pk
from sk. For PKE with simple key generation, we slightly abuse the notation
and simply write pk← KG(sk) to denote this computation. Any IND-CPA/IND-
CCA secure PKE scheme can be viewed as one with simple key generation by
just regarding a randomness used in the key generation algorithm as sk.

Weak Noisy-Leakage-Resilience. We will use a PKE scheme that satisfies weak
noisy-leakage-resilience (against CPA), formalized by Naor and Segev [26]. In the
weak “noisy” leakage setting, an adversary’s leakage function f must be chosen
before seeing pk, and must satisfy the condition that the average min-entropy of
sk given f(sk) is greater than a pre-determined lower bound.

Formally, for a PKE scheme PKE = (KG,Enc,Dec), a polynomial L = L(λ),
and an adversary A = (A0,A1), consider the experiment described in Figure 1.
In the experiment, A is required to be L-noisy-leakage-respecting, which requires
that L ≥ H∞(sk)− H̃∞(sk|f(sk), st) hold.

Definition 1 (Weak Noisy-Leakage-Resilience). Let L = L(λ) be a poly-
nomial. We say that a PKE scheme PKE is weakly L-noisy-leakage-resilient
if for all PPT L-noisy-leakage-respecting adversaries A = (A0,A1), we have
AdvwlrPKE,A,L(λ) := 2 · |Pr[ExptwlrPKE,A,L(λ) = 1]− 1/2| = negl(λ).

Any IND-CPA secure PKE scheme can be straightforwardly converted into
a weakly noisy-leakage-resilient one by using the leftover hash lemma [21,14].
In fact, Naor and Segev [26] showed this fact for the case of weak “bounded”
leakage-resilience (where the output-length of a leakage function is bounded),
and it is easy to see that their proof carries over to the case of weak noisy-
leakage-resilience. Furthermore, this conversion is fully black-box and preserves
the simple key generation property. (It works for SKE as well.) Since we will use
this fact in Section 5, we state it formally, whose formal proof is given in the full
version.

Lemma 1. Assume that there exists an IND-CPA secure PKE scheme with
simple key generation whose secret key length is ℓsk = ℓsk(λ). Then, for any
polynomials L = L(λ) and ℓ′sk = ℓ′sk(λ) satisfying ℓ′sk− (L+ ℓsk) = ω(log λ), there
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Exptkdmcca
PKE,F,A,n(λ) :

Lkdm ← ∅
∀s ∈ [n] : (pks, sks)← KG(1λ)

b
r←− {0, 1}

b′ ← AOkdm(·,·,·),Odec(·,·)((pks)s∈[n])

Return (b′
?
= b).

Okdm(α, f0, f1) : // α ∈ [n], f0, f1 ∈ F
m← fb((sk

s)s∈[n])
ct← Enc(pkα,m)
Lkdm ← Lkdm ∪ {(α, ct)}
Return ct.

Odec(α, ct) : // α ∈ [n]
If (α, ct) ∈ Lkdm then return ⊥.
Return Dec(pkα, skα, ct).

Fig. 2. The KDM-CCA experiment for PKE.

exists a weakly L-noisy-leakage-resilient PKE scheme with simple key generation
whose secret key length is ℓ′sk. Furthermore, the construction is fully black-box.9

For example, from an IND-CPA secure PKE scheme with simple key generation
with secret key length ℓsk, for any constant β ∈ [0, 1), we can construct a scheme
whose secret key length is ℓ′sk and satisfies weak (βℓ′sk)-noisy-leakage-resilience
by setting the term ω(log λ) simply as λ and setting ℓ′sk :=

ℓsk+λ
1−β .

KDM-CCA/CPA Security. We recall KDM-CCA/CPA security for PKE.

Definition 2 (KDM-CCA/CPA Security). Let PKE = (KG,Enc,Dec) be
a PKE scheme whose secret key length and message length are ℓsk and µ, re-
spectively. Let n = n(λ) be a polynomial, and F be a family of functions with
domain ({0, 1}ℓsk)n and range {0, 1}µ. We say that PKE is KDM-CCA secure

with respect to F in the n-key setting (F-KDM(n)-CCA secure) if for all PPT
adversaries A, we have Advkdmcca

PKE,F,A,n(λ) := 2 · |Pr[Exptkdmcca
PKE,F,A,n(λ) = 1]−1/2| =

negl(λ), where the experiment Exptkdmcca
PKE,F,A,n(λ) is described in Figure 2.

KDM-CPA security with respect to F in the n-key setting (F-KDM(n)-CPA
security) is defined analogously, except that A is disallowed to use Odec.

Function Families for KDM Security. In this paper, the function families for
KDM security that we will specifically treat are as follows.

– P (Projection functions): A function is said to be a projection function if
each of its output bits depends on at most a single bit of its input. We denote
by P the family of projection functions.

– Bsize (Circuits of a-priori bounded size size): We denote by Bsize, where size =
size(λ) is a polynomial, the function family each of whose members can be
described by a circuit of size size.

9 A fully black-box construction of a primitive Q from another primitive P means that
(1) the construction of Q treats an instance of P as an oracle, and (2) the reduction
algorithm (for proving the security of the construction of Q) treats the adversary
attacking the construction of Q and the instance of P as oracles. (See [27] for the
formal treatment.)
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ExptcircPKE,A,n(λ) :

∀s ∈ [n] : (pks, sks)← KG(1λ)

b
r←− {0, 1}

b′ ← AOcirc(·,·)((pks)s∈[n])

Return (b′
?
= b).

Ocirc(α, cmd) : // α ∈ [n],
// cmd ∈ ([n]× [ℓsk]) ∪ {zero, one}

m1 ←


skβ [i] if cmd = (β, i) ∈ [n]× [ℓsk]

0 if cmd = zero

1 if cmd = one

m0 ← 0
Return ct← Enc(pkα,mb)

Fig. 3. The circular security experiment for bit-PKE.

Circular Security. In this paper, we also treat circular security (against CPA),
which we consider for bit-encryption schemes. Although it is a special case of
KDM security, it is convenient for us to introduce a separate definition in the
form we use in this paper.

Definition 3 (Circular Security for Bit-PKE). Let n = n(λ) be a polyno-
mial. Let PKE = (KG,Enc,Dec) be a bit-PKE scheme with the secret key length

ℓsk. We say that PKE is circular secure in the n-key setting (CIRC(n) secure) if
for all PPT adversaries A, we have AdvcircPKE,A,n(λ) := 2 · |Pr[ExptcircPKE,A,n(λ) =

1]−1/2| = negl(λ), where the experiment ExptcircPKE,A,n(λ) is described in Figure 3.

Our definition here follows the definition called “circular security with respect
to indistinguishability of oracles” formalized by Rothblum [28], with a slight
modification to the interface of the oracle: In addition to capturing the multi-
key setting, the circular-encryption oracle Ocirc in our definition accepts the
special commands “zero” and “one” (returning an encryption of 0 and that
of 1, respectively, in the case b = 1) to explicitly capture ordinary IND-CPA
security. This is for convenience and clarity: A bit-encryption scheme satisfies
our definition if and only if it simultaneously satisfies the original definition in
[28] (without the augmentation of the oracle interface) and IND-CPA security.

Secret-Key Encryption. An SKE scheme SKE consists of the three PPT algo-
rithms (K,E,D):

– K is the key generation algorithm that takes 1λ as input, and outputs a
secret key sk.

– E is the encryption algorithm that takes a secret key sk and a message m as
input, and outputs a ciphertext ct.

– D is the (deterministic) decryption algorithm that takes a secret key sk and
a ciphertext ct as input, and outputs a message m or the invalid symbol ⊥.

An SKE scheme SKE = (K,E,D) is said to be correct if for all λ ∈ N, sk← K(1λ)
and m, we have D(sk,E(sk,m)) = m.

We refer to an SKE scheme whose message space is 1-bit as a bit-SKE scheme.
Weak noisy-leakage-resilience, KDM security, and circular security for (bit-

)SKE are defined analogously to those defined for (bit-)PKE, with the following
natural adaptions in the security experiments:
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– All of (pk, sk) ← KG(1λ), Enc(pk, ·), and Dec(pk, sk, ·) in the experiments
for PKE are replaced with sk ← K(1λ), E(sk, ·), and D(sk, ·) in the experi-
ments for SKE, respectively. We do the same treatment for those with the
superscripts s, α ∈ [n].

– All the public keys pk and pks (s ∈ [n]) given as input to an adversary in
the experiments for PKE are replaced with 1λ in the experiments for SKE.

Results from [23,22]. We recall the results on IND-CCA/KDM-CCA secure PKE
from [23,22], which we will use in Section 5.

Theorem 2 ([23]). If there exist an IND-CPA secure PKE scheme and a

P-KDM(1)-CPA secure SKE scheme, then there exists an IND-CCA secure PKE
scheme. Furthermore, the construction is fully black-box.

Theorem 3 ([22]). If there exist an IND-CPA secure PKE scheme and a

P-KDM(1)-CPA secure SKE scheme, then for any polynomial size = size(λ),

there exists a Bsize-KDM(1)-CCA secure PKE scheme.

We note that [22] also showed a construction of a multi-key-KDM-CCA se-
cure PKE scheme by additionally assuming (passive) RKA-KDM security with
respect to projection functions for the underlying SKE scheme. We do not for-
mally recall it here since it is not known if it follows from the multi-key version
of ordinary P-KDM security and our result in Section 7 improves it in terms of
the strength of assumptions.

3.3 Targeted Encryption

Here, we recall targeted encryption (TE) [5]. A TE scheme TE consists of the
three PPT algorithms (TKG,TEnc,TDec):

– TKG is the key generation algorithm that takes 1λ as input, and outputs a
public/secret key pair (pk, sk), where |sk| =: ℓsk.

– TEnc is the encryption algorithm that takes a public key pk, an index i ∈ [ℓsk],
a bit v ∈ {0, 1}, and a message m as input, and outputs a ciphertext ct.

– TDec is the (deterministic) decryption algorithm that takes a public key pk,
a secret key sk ∈ {0, 1}ℓsk , an index i ∈ [ℓsk], and a ciphertext ct as input,
and outputs a message m or the invalid symbol ⊥.

As the correctness for a TE scheme, we require that for all λ ∈ N, (pk, sk) ←
TKG(1λ), i ∈ [ℓsk], and m, we have TDec(pk, sk, i,TEnc(pk, i, sk[i],m)) = m.

Barak et al. [5] defined two kinds of security notions for TE: security against
the receiver and security against outsiders. We recall them here.

Security against the Receiver. As the name suggests, this is a security notion
against a receiver who holds a secret key. More specifically, this security notion
ensures that for every i ∈ [ℓsk], if a message is encrypted under the position
(i, 1⊕ sk[i]), its information does not leak to the receiver of the ciphertext who
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ExptreceiverTE,A (λ) :

(i∗ ∈ [ℓsk], st)← A0(1
λ)

(pk, sk)← TKG(1λ)

b
r←− {0, 1}

b′ ← AOTEnc(·,·)
1 (pk, sk, st)

Return (b′
?
= b).

OTEnc(m0,m1) : // |m0| = |m1|
ct← TEnc(pk, i∗, 1⊕ sk[i∗],mb)
Return ct.

ExptoutsiderTE,A (λ) :

(i∗ ∈ [ℓsk], v
∗ ∈ {0, 1}, st)← A0(1

λ)

(pk, sk)← TKG(1λ)

b
r←− {0, 1}

b′ ← AOTEnc(·,·)
1 (pk, st)

Return (b′
?
= b).

OTEnc(m0,m1) : // |m0| = |m1|
ct← TEnc(pk, i∗, v∗,mb)
Return ct.

Fig. 4. The experiments for TE: Security against the receiver (left) and security against
outsiders (right).

holds a secret key sk. For convenience, we introduce the multi-challenge version of
this security notion, which can be shown to be equivalent to the single-challenge
version defined in [5] via a query-wise hybrid argument.

Formally, for a TE scheme TE = (TKG,TEnc,TDec) and an adversary A =
(A0,A1), consider the experiment ExptreceiverTE,A (λ) described in Figure 4 (left). We
emphasize again that since this security is considered against a receiver, an
adversary is given a secret key sk as input.10

Definition 4 (Security against the Receiver). We say that a TE scheme
TE satisfies security against the receiver if for all PPT adversaries A, we have
AdvreceiverTE,A (λ) := 2 · |Pr[ExptreceiverTE,A (λ) = 1]− 1/2| = negl(λ).

Security against Outsiders. This security notion simply ensures that ciphertexts
generated under any pair (i, v) ∈ [ℓsk] × {0, 1} do not leak the information of
encrypted messages. Again, we introduce the multi-challenge version for this
security notion, which is equivalent to the single-challenge version formalized in
[5].

Formally, for a TE scheme TE = (TKG,TEnc,TDec) and an adversary A =
(A0,A1), consider the experiment ExptoutsiderTE,A (λ) described in Figure 4 (right).

Definition 5 (Security against Outsiders). We say that a TE scheme TE
satisfies security against outsiders if for all PPT adversaries A, we have
AdvoutsiderTE,A (λ) := 2 · |Pr[ExptoutsiderTE,A (λ) = 1]− 1/2| = negl(λ).

Result from [5]. Barak et al. [5] showed the following result, which we will use
in Section 5.

Theorem 4 ([5]). If there exists a TE scheme satisfying security against the
receiver and security against outsiders, then for any polynomial size = size(λ),

there exists a Bsize-KDM(1)-CPA secure PKE scheme. Furthermore, there is a

10 The original definition by Barak et al. [5] considered statistical security (i.e. security
against computationally unbounded adversaries), but it was remarked there that
computational security suffices for their construction of KDM-CPA secure PKE.
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fully black-box construction of a P-KDM(1)-CPA secure PKE scheme from a TE
scheme satisfying the two security notions.

We remark that the result on the fully black-box construction can be extended
to any function family such that a canonical description of a circuit computing
any function in the family can be learned and reconstructed (with overwhelming
probability) by just making polynomially many oracle queries to the function.
(This is because in the security proof in [5], what is garbled is a function queried
as a KDM-encryption query.) We only state it for P-KDM security since it is
sufficient for our purpose.

We also remark that [5] also showed that their construction achieves KDM-
CPA security in the multi-key setting by additionally assuming that the un-
derlying TE scheme is an augmented TE scheme satisfying circular security in
the multi-key setting. We do not recall this result and the formal definition of
augmented TE since we do not use them directly. In Section 6, we introduce con-
formed TE, which is also an extension of TE in a similar manner to augmented
TE but has several differences. For the details, see the explanation there.

3.4 Additional Primitives

Here, we briefly recall the syntax of a DV-NIZK argument system and a garbling
scheme used in Section 7. Due to the space limitation, we omit the formal security
definitions in the proceedings version. See the full version for them.

Designated-Verifier Non-interactive Zero-Knowledge Arguments. Let L be an
NP language associated with the corresponding NP relation R. A DV-NIZK ar-
gument system DVNIZK for L consists of the three PPT algorithms (DVKG,P,V):
DVKG is the key generation algorithm that takes 1λ as input, and outputs a pub-
lic proving key pk and a secret verification key sk; P is the proving algorithm
that takes a public proving key pk, a statement x, and a witness w as input,
and outputs a proof π; V is the (deterministic) verification algorithm that takes
a secret verification key sk, a statement x, and a proof π as input, and outputs
either accept or reject.

For correctness, we require that for all λ ∈ N, (pk, sk) ← DVKG(1λ), and
(x,w) ∈ R, we have V(sk, x,P(pk, x, w)) = accept.

We require that a DV-NIZK argument system satisfy (adaptive) soundness
and (adaptive) zero-knowledge. As in [22,25], we consider the reusable setting,
where the security experiment for soundness (resp. zero-knowledge) allows an
adversary to make multiple verification (resp. proving) queries. A DV-NIZK
argument system satisfying these versions of soundness and zero-knowledge is
called reusable. The formal definitions are given in the full version.

Garbling. Let C = {Cn}n∈N be a family of circuits, where the input length
of each member in Cn is n. A garbling scheme GC for C consists of the three
PPT algorithms (Garble,Eval,Sim): Garble is the garbling algorithm that takes
as input 1λ and (the description of) a circuit C ∈ Cn, where n = n(λ) is a
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polynomial. Then, it outputs a garbled circuit C̃ and 2n labels (labi,v)i∈[n],v∈{0,1};

Eval is the (deterministic) evaluation algorithm that takes a garbled circuit C̃
and n labels (labi)i∈[n] as input, and outputs an evaluation result y; Sim is the

simulator algorithm that takes 1λ, the size parameter size (where size = size(λ)
is a polynomial), and a string y as input, and outputs a simulated garbled circuit

C̃ and n simulated labels (labi)i∈[n].
For correctness, we require that for all λ, n ∈ N, x ∈ {0, 1}n, and C ∈ Cn,

the following two conditions hold: (1) Eval(C̃, (labi,x[i])i∈[n]) = C(x) holds for

all (C̃, (labi,v)i∈[n],v∈{0,1}) output by Garble(1λ,C), and (2) Eval(C̃, (labi)i∈[n]) =

C(x) holds for all (C̃, (labi)i∈[n]) output by Sim(1λ, |C|,C(x)), where |C| denotes
the size of C.

4 Targeted Encryption from Circular Security and
Leakage-Resilience

In this section, as our main technical result, we show how to construct a TE
scheme from the combination of a circular secure bit-SKE scheme (in the single-
key setting) and a weakly noisy-leakage-resilient PKE scheme.

Construction. Our construction uses the following building blocks:

– Let SKE = (K,E,D) be a CIRC(1) secure bit-SKE scheme with the secret-
key length ℓk for some polynomial ℓk = ℓk(λ). We assume that there exists a
special symbol flip that is perfectly distinguishable from possible outputs
of E.

– Let PKE = (KG,Enc,Dec) be a weakly L-noisy-leakage-resilient PKE scheme
with simple key generation whose secret-key length is ℓsk for some polynomial
ℓsk = ℓsk(λ). We assume L = 0.6ℓsk.

Using these building blocks, we construct a TE scheme TE = (TKG,TEnc,
TDec), whose secret key length is ℓk, as described in Figure 5.

Correctness. The correctness of TE follows from that of the building blocks
SKE and PKE. Specifically, since TEnc(PK, i, SK[i] = k[i],m) just computes
Enc(pki,k[i],m) and TDec(PK,SK, i, ct) computes Dec(pki,k[i], sk

′, ct) in its last

step, it suffices to see that sk′ computed in TDec always equals to ski,k[i] for any
i ∈ [ℓk]. Indeed, for every j ∈ [ℓsk], we have

– If (ski,0[j], ski,1[j]) = (1, 0), then note that this case implies ski,k[i][j] =
1⊕ k[i]. On the other hand, ei,j = flip holds by the design of TKG. Hence,
TDec sets sk′[j]← 1⊕ k[i] = ski,k[i][j].

– Otherwise (i.e. (ski,0[j], ski,1[j]) ̸= (1, 0)), ei,j is just an encryption of ski,k[i][j].
Thus, TDec decrypts it as sk′[j] = D(k, ei,j) = ski,k[i][j].

Hence, we have sk′[j] = ski,k[i][j] for every j ∈ [ℓsk], namely, sk′ = ski,k[i] holds.
Thus, TE satisfies correctness.
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TKG(1λ) :
k← K(1λ)
∀i ∈ [ℓk]:

∀v ∈ {0, 1}: ski,v
r←− {0, 1}ℓsk ; pki,v ← KG(ski,v)

∀j ∈ [ℓsk]:

ei,j ←

{
flip if (ski,0[j], ski,1[j]) = (1, 0)

E(k, ski,k[i][j]) otherwise

PK← (pki,0, pki,1, ei,1, . . . , ei,ℓsk)i∈[ℓk]; SK← k
Return (PK, SK).

TEnc(PK, i, v,m) :
(pki,0, pki,1, ei,1, . . . , ei,ℓsk)i∈[ℓk] ← PK
Return ct← Enc(pki,v,m).

TDec(PK,SK = k, i, ct) :
(pki,0, pki,1, ei,1, . . . , ei,ℓsk)i∈[ℓk] ← PK
∀j ∈ [ℓsk]:

sk′[j]←

{
1⊕ k[i] if ei,j = flip

D(k, ei,j) otherwise

Return m← Dec(pki,k[i], sk
′, ct).

Fig. 5. The construction of a TE scheme TE from a circular secure bit-SKE scheme
SKE and a weakly noisy-leakage-resilient PKE scheme PKE.

Security. We now show that TE satisfies the two security notions for TE.

Theorem 5. If PKE is weakly (0.6ℓsk)-noisy-leakage-resilient, then TE satisfies
security against the receiver.

Proof of Theorem 5. Let A = (A0,A1) be any PPT adversary that attacks
the security against the receiver of TE. We show that for A, there exists a
PPT (0.6ℓsk)-noisy-leakage-respecting adversary B such that AdvreceiverTE,A (λ) =

AdvwlrPKE,B,0.6ℓsk(λ), which implies the theorem. The description of B = (B0,B1) is
as follows.

B0(1λ): B0 first runs (i∗, st)← A0(1
λ). Next, B0 computes k← K(1λ), and picks

ski∗,k[i∗]
r←− {0, 1}ℓsk . Let P := {j ∈ [ℓsk] | ski∗,k[i∗][j] = 1⊕k[i∗]} and ℓ := |P |,

and suppose P is {p1, . . . , pℓ} such that 1 ≤ p1 < · · · < pℓ ≤ ℓsk. B0 defines
the leakage function fP : {0, 1}ℓsk → {0, 1}ℓ by

fP (z) := (z[p1], . . . , z[pℓ]) ∈ {0, 1}ℓ.

Then, B0 sets stB as all the information known to B0, and terminates with
output (fP , stB).

BOEnc(·,·)
1 (pk′, fP (sk

′) = (sk′[p1], . . . , sk
′[pℓ]) ∈ {0, 1}ℓ, stB): (where (pk′, sk′) denotes

the key pair generated in B’s experiment) B1 first computes pki∗,k[i∗] ←
KG(ski∗,k[i∗]), and regards pk′ as pki∗,1⊕k[i∗] (correspondingly, implicitly re-

gards sk′ as ski∗,1⊕k[i∗] ∈ {0, 1}ℓsk). Then, for every j ∈ [ℓsk], B1 generates
ei∗,j by

ei∗,j ←

{
flip if j ∈ P ∧ sk′[j] = k[i∗]

E(k, ski∗,k[i∗][j]) otherwise
.



20 F. Kitagawa and T. Matsuda

Note that by the definition of P , we have ski∗,k[i∗][j] = 1⊕k[i∗] if and only if
j ∈ P . Furthermore, by the definition of the leakage function fP (·), we have
sk′[j] = ski∗,1⊕k[i∗][j] for all j ∈ P . Hence, we have

j ∈ P ∧ sk′[j] = k[i∗] ⇐⇒ (ski∗,k[i∗][j], ski∗,1⊕k[i∗][j]) = (1⊕ k[i∗], k[i∗])

⇐⇒ (ski∗,0[j], ski∗,1[j]) = (1, 0).

Hence, the generation of ei∗,j is in fact exactly the same as in ExptreceiverTE,A (λ).
Then, B1 generates the remaining components in PK = (pki,0, pki,1, ei,1, . . . ,
ei,ℓsk)i∈[ℓk] (i.e. the components for the positions i ∈ [ℓk] \ {i∗}) by itself

exactly as TKG(1λ) does.
Now, B1 runs A1(PK,SK = k, st). When A1 submits an encryption query
(m0,m1), B1 just forwards it to its own encryption oracle OEnc(·, ·), and
returns whatever returned from the oracle to A1.
When A1 terminates with output b′, B1 terminates with output b′.

The above completes the description of B. As mentioned above, B generates
the key pair (PK,SK) with exactly the same distribution as that in the actual
experiment for security against the receiver. Since B embeds its instance pk′ to
the position (i∗, 1⊕ k[i∗]), it is straightforward to see that B perfectly simulates
the security experiment for A so that A’s the challenge bit is that of B’s, and
thus B’s advantage is exactly the same as that of A’s.

It remains to confirm that B is a (0.6ℓsk)-noisy-leakage-respecting adversary,

namely, 0.6ℓsk ≥ H∞(sk′) − H̃∞(sk′|fP (sk′), stB) = ℓsk − H̃∞(sk′|fP (sk′), stB)
or equivalently 2−H̃∞(sk′|fP (sk′),stB ) ≤ 2−0.4ℓsk holds. To see this, firstly note
that stB output by B0 is independent of the choice of sk′

r←− {0, 1}ℓsk , and thus

we have H̃∞(sk′|fP (sk′), stB) = H̃∞(sk′|fP (sk′)). Thus, it is sufficient to show

2−H̃∞(sk′|fP (sk′)) ≤ 2−0.4ℓsk . Next, notice that P is distributed uniformly over
2[ℓsk] (i.e. all the subsets of [ℓsk]), since P is determined by the random choice of

ski∗,k[i∗]
r←− {0, 1}ℓsk . Thus, we have

2−H̃∞(sk′|fP (sk′)) = E
P

r←−2[ℓsk], y
r←−{0,1}|P |

[
max
x∗

Pr
sk′

r←−{0,1}ℓsk
[sk′ = x∗|fP (sk′) = y]

]
= E

P
r←−2[ℓsk]

[
2−ℓsk+|P |

]
= 2−2ℓsk ·

∑
P ′⊆[ℓsk]

2|P
′| = 2−2ℓsk ·

ℓsk∑
k=0

(
ℓsk
k

)
· 2k

(∗)
= 2−2ℓsk · 3ℓsk = 2−(2−log2 3)ℓsk

(†)
< 2−0.4ℓsk ,

where the equality (*) uses
∑n

k=0

(
n
k

)
xk = (1 + x)n, and the inequality (†) uses

log2 3 < 1.6. Hence, B is (0.6ℓsk)-noisy-leakage-respecting. □ (Theorem 5)

Theorem 6. If SKE is CIRC(1) secure and PKE is (0.6ℓsk)-noisy-leakage-resilient,
then TE satisfies security against outsiders.
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Proof of Theorem 6. Let A = (A0,A1) be any PPT adversary that attacks the
security against outsiders of TE. We show that there exist PPT adversaries Bc
and Bw (where the latter is (0.6ℓsk)-noisy-leakage-respecting) satisfying

AdvoutsiderTE,A (λ) ≤ 2 · AdvcircSKE,Bc,1(λ) + AdvwlrPKE,Bw,0.6ℓsk
(λ), (1)

which implies the theorem.
To this end, we consider the following two games Game 1 and Game 2.

Game 1: This is the experiment for security against outsiders ExptoutsiderTE,A (λ).
Game 2: Same as Game 1, except that every invocation of E(k, ·) during the

generation of PK is replaced with E(k, 0).

For t ∈ {1, 2}, let SUCt be the event that A succeeds in guessing the challenge
bit (i.e. b′ = b occurs) in Game t. By the definitions of the games and events
and the triangle inequality, we have

AdvoutsiderTE,A (λ) = 2·
∣∣∣Pr[SUC1]− 1

2

∣∣∣ ≤ 2·
∣∣∣Pr[SUC1]−Pr[SUC2]∣∣∣+2·

∣∣∣Pr[SUC2]− 1

2

∣∣∣. (2)

In the following, we show how the terms appearing in Equation 2 are bounded.

Lemma 2. There exists a PPT adversary Bc such that AdvcircSKE,Bc,1(λ) = |Pr[SUC1]
− Pr[SUC2]|.

Proof of Lemma 2. The description of Bc is as follows. Below, k and β denote
the secret key and the challenge bit, respectively, chosen in Bc’s experiment.
Furthermore, since there is only a single key in the experiment of Bc, we simplify
the interface of the circular-encryption oracle Ocirc to take just cmd ∈ [ℓk] ∪
{zero, one} as input.

BOcirc(·)
c (1λ): Bc first runs (i∗, v∗, st)← A0(1

λ). Next, for every i ∈ [ℓk], Bc does
the following:
1. For both v ∈ {0, 1}, pick ski,v

r←− {0, 1}ℓsk and compute pki,v ← KG(ski,v).
2. For the positions j ∈ [ℓsk] for which (ski,0[j], ski,1[j]) = (1, 0) holds, set

ei,j ← flip.
3. For the remaining positions j ∈ [ℓsk] with (ski,0[j], ski,1[j]) ̸= (1, 0), set

cmdj ←


zero if (ski,0[j], ski,1[j]) = (0, 0)

one if (ski,0[j], ski,1[j]) = (1, 1)

i if (ski,0[j], ski,1[j]) = (0, 1)

,

submit cmdj to Bc’s oracle Ocirc(·), and receive ei,j as the answer from
Ocirc.
Note that if (ski,0[j], ski,1[j]) = (0, 1) then ski,k[i][j] = k[i] holds, and
the latter is trivially true for the cases (ski,0[j], ski,1[j]) ∈ {(0, 0), (1, 1)}.
Thus, Ocirc computes ei,j as follows:

ei,j ←

{
E(k, ski,k[i][j]) if β = 1

E(k, 0) if β = 0
.
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Therefore, if β = 1 (resp. β = 0), then ei,j for every j ∈ [ℓsk] is computed
exactly as in Game 1 (resp. Game 2).

Then, Bc sets PK ← (pki,0, pki,1, ei,1, . . . , ei,ℓsk)i∈[ℓk], picks b
r←− {0, 1}, and

runs A1(PK, st).
Bc answers encryption queries (m0,m1) from A1 by returning
ct← Enc(pki∗,v∗ ,mb) to A1.

When A1 terminates with output b′, Bc terminates with output β′ ← (b′
?
=

b).

The above completes the description of Bc. It is straightforward to see that if
β = 1 (resp. β = 0), then Bc simulates Game 1 (resp. Game 2) perfectly for A.
Since Bc outputs β′ = 1 if and only if A succeeds in guessing the challenge bit
(i.e. b′ = b occurs), we have

AdvcircSKE,Bc,1(λ) =
∣∣∣Pr[β′ = 1|β = 1]− Pr[β′ = 1|β = 0]

∣∣∣ = ∣∣∣Pr[SUC1]− Pr[SUC2]
∣∣∣.

□ (Lemma 2)

Lemma 3. There exists a PPT (0.6ℓsk)-noisy-leakage-respecting adversary Bw
such that AdvwlrPKE,Bw,0.6ℓsk

(λ) = 2 · |Pr[SUC2]− 1/2].

Proof Sketch of Lemma 3. The reduction algorithm Bw for the proof of this
lemma proceeds very similarly to B used in the proof of Theorem 5, with the
following differences:

– Bw embeds its instance pk′ into the position (i∗, v∗) output by A0 (rather
than (i∗, 1⊕ k[i∗])), which means that (pk′, sk′) now corresponds to (pki∗,v∗ ,
ski∗,v∗); Bw generates the key pair of the opposite position, namely (pki∗,1⊕v∗ ,
ski∗,1⊕v∗) by itself.

– Bw defines the set P by P := {j ∈ [ℓsk]|ski∗,1⊕v∗ [j] = v∗}, and uses it to
define the leakage function fP (·) exactly B in the proof of Theorem 5 does.
Note that since we have the correspondence sk′ = ski∗,v∗ , the leakage fP (sk

′)
is (ski∗,v∗ [j])j∈P .

– For every j ∈ [ℓsk], Bw generates ei∗,j by

ei∗,j ←

{
flip if j ∈ P ∧ sk′[j] = 1⊕ v∗

E(k, 0) otherwise
.

Then, by the definition of P and the correspondence sk′ = ski∗,v∗ , we have

j ∈ P ∧ sk′[j] = 1⊕ v∗ ⇐⇒ (ski∗,1⊕v∗ [j], ski∗,v∗ [j]) = (v∗, 1⊕ v∗)

⇐⇒ (ski∗,0[j], ski∗,1[j]) = (1, 0).

Thus, ei∗,j is generated exactly as in Game 2.

Then, it is straightforward to see that Bw is (0.6ℓsk)-noisy-leakage-respecting
and simulates Game 2 perfectly for A, and its advantage in attacking the weak
noisy-leakage-resilience of PKE is exactly 2 · |Pr[SUC2]− 1/2|. □ (Lemma 3)

Combining Lemmas 2 and 3 with Equation 2, we can conclude that there
exist PPT adversaries Bc and Bw satisfying Equation 1. □ (Theorem 6)
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5 Implications of Our TE Scheme

In this section, we explain the implications of our TE scheme in Section 4.

Completeness of Circular Security for KDM Security in the Single-Key Setting.
Note that our construction of TE is a fully black-box construction from the
building blocks. Moreover, by appropriately setting parameters, we can con-
struct a PKE scheme with simple key generation whose secret key length is ℓsk
and that satisfies weak (0.6ℓsk)-noisy-leakage-resilience, based on any IND-CPA
secure PKE scheme via Lemma 1. Hence, the following theorem follows from the
combination of Theorems 4, 5, and 6, and Lemma 1.

Theorem 7. If there exist an IND-CPA secure PKE scheme and a CIRC(1)

secure bit-SKE scheme, then for any polynomial size = size(λ), there exists a

Bsize-KDM(1)-CPA secure PKE scheme. Furthermore, there exists a fully black-
box construction of a P-KDM(1)-CPA secure PKE scheme from an IND-CPA
secure PKE scheme and a CIRC(1) secure bit-SKE scheme.

Combining Theorem 7 with Theorem 3, we obtain the following completeness
theorem for KDM security in the single-key setting. This improves the results of
[3] and [22] in terms of assumptions.

Theorem 8. If there exists an IND-CPA secure PKE scheme and a CIRC(1)

secure bit-SKE scheme, then for any polynomial size = size(λ), there exists a

Bsize-KDM(1)-CCA secure PKE scheme.

In Section 7, we will show that a similar completeness theorem for KDM
security in the multi-key setting can be established. For the result, we will rely
on the results on IND-CCA secure PKE and a reusable DV-NIZK argument
system11 for NP languages stated below.

Additional Results on IND-CCA PKE and DV-NIZK. As stated in Theorem 7,
a P-KDM(1)-CPA secure PKE scheme can be constructed from an IND-CPA
secure PKE and a CIRC(1) secure bit-SKE scheme in a fully black-box manner.
Hence, combined with Theorem 2, we obtain the following result on IND-CCA
secure PKE, which improves the results of [23] and [19] in terms of assumptions.

Theorem 9. There exists a fully black-box construction of an IND-CCA secure
PKE scheme from an IND-CPA secure PKE scheme and a CIRC(1) secure bit-
SKE scheme.

Finally, combining Theorem 7 with the results in [22,25] that a reusable
DV-NIZK argument system for all NP languages can be constructed from the
combination of IND-CPA secure PKE and P-KDM(1)-CPA secure SKE, we also
obtain the following result that improves [22] and [25] in terms of assumptions.

11 The formal definitions for IND-CCA security and a reusable DV-NIZK argument
system are given in the full version.
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Theorem 10. If there exists an IND-CPA secure PKE scheme and a CIRC(1)

secure bit-SKE scheme, then there exists a reusable DV-NIZK argument system
for all NP languages.

6 Conformed Targeted Encryption

In this section, we introduce an encryption primitive that we call conformed
targeted encryption (CTE). This is an extension of an ordinary TE, and has some
similar flavor to augmented TE formalized by Barak et al. [5]. Our definitional
choice of CTE is made so that (1) it can be achieved from the combination of
an IND-CPA secure PKE scheme and a circular secure bit-SKE scheme, and
(2) it is sufficient as a building block for constructing a KDM-CCA secure PKE
scheme in the multi-key setting.

In Section 6.1, we give the definitions for CTE and explain its difference with
augmented TE formalized by Barak et al.. In Section 6.2, we show how our TE
scheme presented in Section 4 can be extended to be a CTE scheme satisfying
all the requirements.

6.1 Definitions

Syntax and Correctness. A conformed targeted encryption (CTE) scheme TE

consists of the six algorithms (CKG,CEnc,CDec, ĈDec,CSEnc,CSDec):

– CKG, CEnc, and CDec are defined similarly to the key generation, encryp-
tion, and decryption algorithms of a TE scheme, respectively, except that in
addition to a public/secret key pair (pk, sk), CKG also outputs a trapdoor
td. This process is written as (pk, sk, td)← CKG(1λ).

– ĈDec is the trapdoor-decryption algorithm that takes td, an index i ∈ [ℓsk], a
bit v ∈ {0, 1}, and a ciphertext ct (supposedly generated by CEnc) as input,
and outputs a message m.

– CSEnc and CSDec are the additional secret-key encryption and decryption
algorithms, respectively, where they use a secret key sk generated by CKG.
We denote c̃t to indicate that it is a ciphertext generated by CSEnc.

As the correctness for a CTE scheme, we require that for all λ ∈ N and (pk, sk, td)
← CKG(1λ), the following conditions are satisfied:

1. CDec(pk, sk, i,CEnc(pk, i, sk[i],m)) = m holds for all i ∈ [ℓsk] and m.

2. ĈDec(td, i, v,CEnc(pk, i, v,m)) = m holds for all (i, v) ∈ [ℓsk]× {0, 1} and m.

3. CDec(pk, sk, i, ct) = ĈDec(td, i, sk[i], ct) holds for all i ∈ [ℓsk] and ct (not
necessarily in the support of CEnc).

4. CSDec(sk,CSEnc(sk,m)) = m holds for all m.

Note that the first condition of correctness ensures that (CKG,CEnc,CDec)
constitutes a TE scheme when td in the output of CKG is discarded. We also
remark that the third condition of correctness is required to hold for all values
of ct not necessarily in the support of CEnc. Looking ahead, this property plays
an important role in our construction of KDM-CCA secure PKE in Section 7.
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Exptsp−wcirc
CTE,A,n(λ) :

∀s ∈ [n] : (pks, sks, tds)← CKG(1λ)
(c̃t

s
)s∈[n] ← EncCycle((sks)s∈[n])

b
r←− {0, 1}

b′ ← AOCSEnc(·,·,·)((pks, tds, c̃t
s
)s∈[n])

Return (b′
?
= b).

EncCycle((sks)s∈[n]) :

∀s ∈ [n] : c̃t
s ← CSEnc(sks, sk(s mod n)+1)

Return (c̃t
s
)s∈[n].

OCSEnc(α,m0,m1) : // α ∈ [n], |m0| = |m1|
c̃t← CSEnc(skα,mb)
Return c̃t.

Fig. 6. The experiment for defining special weak circular security for a CTE scheme.

Security Definitions for CTE. For a CTE scheme, we require two security no-
tions: security against the receiver and special weak circular security (in the
multi-key setting).12 The former is defined in exactly the same way as that for
TE, except that we just discard and ignore the trapdoor td generated from CKG.
Thus, we omit its formal description.

The latter security notion, special weak circular security, requires that the
additional secret-key encryption/decryption algorithms (CSEnc,CSDec) satisfy
a weak form of circular security in the multi-key setting. Specifically, in the n-
key setting, we require that messages encrypted by CSEnc be hidden even in
the presence of public keys {pks}s∈[n], trapdoors {tds}s∈[n], and encryptions of

a “key cycle” {CSEnc(sks, sk(s mod n)+1)}s∈[n]. We call it weak since except for
giving {(pks, tds)}s∈[n] to an adversary, our definition is the same as the definition
of weak circular security formalized by Cash, Green, and Hohenberger [13].

Formally, let n = n(λ) be a polynomial. For a CTE scheme (CKG,CEnc,

CDec, ĈDec,CSEnc,CSDec), n, and an adversary A, consider the experiment

Exptsp−wcircCTE,A,n(λ) described in Figure 6. Note that in the experiment, OCSEnc is
an ordinary (challenge) encryption oracle. Thus, except for the encryptions of

a key cycle {CSEnc(sks, sk(s mod n)+1)}s∈[n], A is not allowed to directly obtain
encryptions of key-dependent messages.

Definition 6 (Special Weak Circular Security). Let n = n(λ) be a polyno-
mial. We say that a CTE scheme CTE satisfies special weak circular security in
the n-key setting (special weak CIRC(n) security) if for all PPT adversaries A,
we have Advsp−wcircCTE,A,n(λ) := 2 · |Pr[Exptsp−wcircCTE,A,n(λ) = 1]− 1/2| = negl(λ).

Relation to Augmented TE. As mentioned earlier, Barak et al. [5] introduced the

notion of augmented TE, and used it to construct a Bsize-KDM(n)-CPA-secure
PKE scheme for any polynomials n = n(λ) and size = size(λ). An augmented
TE scheme is a TE scheme with the additional public-key encryption/decryption
algorithms, for which Barak et al. assumed circular security in the n-key setting.
(Their definition requires that encryptions of a key cycle of length n are indis-
tinguishable from encryptions of some fixed messages.)

12 We can also consider security against outsiders for CTE. However, we do not for-
malize it since we need not use it in our construction of KDM-CCA secure PKE.
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We observe that their security proof goes through even if (1) the additional
encryption/decryption algorithms are of secret-key, and (2) we only require weak
circular security in the n-key setting [13], which requires that IND-CPA security
holds in the presence of encryptions of a key cycle of length n.

Our formalization for CTE is based on these observations, but CTE has an
additional syntactical extension involving a trapdoor generated in the key gen-
eration algorithm, together with the additional correctness requirements. This
plays an important role in the security proof for our Bsize-KDM(n)-CCA secure
PKE scheme presented in Section 7. We also remark that we do not require
CTE to satisfy security against outsiders, while it is necessary for augmented
TE used in the construction of KDM-CPA secure PKE in [5]. Our construction
of KDM-CCA secure PKE does not require security against outsiders for the
underlying CTE scheme because of the other building blocks. (See Section 7.)

6.2 Construction

Let n = n(λ) be a polynomial for which we would like our CTE scheme CTE

to satisfy special weak CIRC(n) security. Let PKE = (KG,Enc,Dec) and SKE =
(K,E,D) be PKE and SKE schemes as in Section 4, respectively, where we now

require SKE to be CIRC(n) secure.

Our construction of a CTE scheme CTE = (CKG,CEnc,CDec, ĈDec,CSEnc,
CSDec) based on PKE and SKE, is a simple extension of our TE scheme TE
= (TKG,TEnc,TDec) presented in Section 4. Specifically, each algorithm of CTE
operates as follows:

– CKG computes a public/secret key pair (PK,SK) in exactly the same way as
TKG, and additionally outputs td := (pki,v, ski,v)i∈[ℓk],v∈{0,1} as a trapdoor.

– CEnc and CDec are exactly TEnc and TDec, respectively.

– ĈDec(td, i, v, ct) := Dec(pki,v, ski,v, ct).
– CSEnc and CSDec use E and D to encrypt/decrypt a message/ciphertext in

a bit-wise fashion. More specifically, CSEnc(SK = k,m ∈ {0, 1}µ) outputs
c̃t = (c̃tt)t∈[µ], where c̃tt ← E(k,m[t]) for each t ∈ [µ]; CDec(SK = k, c̃t =

(c̃tt)t∈[µ]) computes m[t]← D(k, c̃tt) for each t ∈ [µ], and outputs m.

Correctness. The first condition of correctness is exactly the same as the cor-
rectness for TE. The third condition of correctness holds because sk′ computed
in CDec(PK,SK = k, i, ·) is ski,k[i] as we saw for the correctness of TE. The sec-
ond and fourth conditions of correctness are trivially satisfied because of the
correctness of PKE and SKE, respectively.

Security. The following theorems guarantee that CTE satisfies the two kinds of
security notions for CTE. We omit the proof of Theorem 11 since it is exactly
the same as that of Theorem 5.

Theorem 11. If PKE is weakly (0.6ℓsk)-noisy-leakage-resilient, then CTE satis-
fies security against the receiver.



Circular Security Is Complete for KDM Security 27

Theorem 12. Let n = n(λ) be a polynomial. If SKE is CIRC(n) secure, then

CTE satisfies special weak CIRC(n) security.

Proof Sketch of Theorem 12. This is straightforward to see by noting that
CSEnc directly uses E to encrypt a given message in a bit-wise fashion, and the
trapdoor td consists only of key pairs of the underlying PKE scheme PKE and
thus is independent of a secret key SK = k.

More specifically, for s ∈ [n], let SKs = ks denote the s-th secret key. Then,
consider a modified security experiment, which proceeds similarly to the ex-
periment for the special weak CIRC(n) security of CTE, except that for every
s ∈ [n], all invocations of E(ks, ·) (which include those during the execution of
EncCycle((SKs = ks)s∈[n]), those during the execution of (PKs,SKs = ks, tds)←
CKG(1λ), and those for encryption queries from an adversary) are replaced with
E(ks, 0). Note that this modified experiment is independent of the challenge bit

b, and thus any adversary has zero advantage. Furthermore, by the CIRC(n)

security of SKE, for any PPT adversary, its advantage in the original special
weak CIRC(n) security experiment is negligibly close to that in the modified
experiment. □ (Theorem 12)

7 KDM-CCA Security in the Multi-key Setting

In this section, we show the completeness of circular security in the multi-key
setting. Specifically, we show the following theorem:

Theorem 13. Let n = n(λ) be a polynomial. Assume that there exist an IND-

CPA secure PKE scheme and a CIRC(n) secure bit-SKE scheme. Then, for any
polynomial size = size(λ), there exists a Bsize-KDM(n)-CCA secure PKE scheme.

Note that this result improves the result by Kitagawa and Matsuda [22] (recalled
as Theorem 3) in terms of the strength of assumptions and the number of keys.

As explained earlier, we will show the above theorem by constructing a
Bsize-KDM(n)-CCA secure PKE scheme from the building blocks that are all
implied by an IND-CPA secure PKE scheme and a CIRC(n) secure bit-SKE
scheme. Our construction can be seen as combining the construction ideas from
the bounded-KDM(n)-CPA secure PKE scheme from an augmented TE scheme
by Barak et al. [5] and the bounded-KDM(1)-CCA secure PKE scheme from

an IND-CPA secure PKE scheme and a projection-KDM(1)-CPA secure SKE
scheme by Kitagawa and Matsuda [22]. The latter construction in fact uses an
IND-CCA secure PKE scheme, a garbling scheme, and a reusable DV-NIZK
argument system as additional building blocks, which are implied by the as-
sumption used in [22]. Construction-wise, roughly speaking, our construction is
obtained by replacing the underlying IND-CPA secure scheme of the Kitagawa-
Matsuda construction with a CTE scheme.

Construction. To construct a Bsize-KDM(n)-CCA secure PKE scheme, we use
the following building blocks all of which are implied by the combination of an
IND-CPA secure PKE scheme and a CIRC(n) secure SKE scheme:
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– Let CTE = (CKG,CEnc,CDec, ĈDec,CSEnc,CSDec) be a CTE scheme whose
secret key length is ℓsk. Let ℓẽ denote the length of a ciphertext when en-
crypting a message of length ℓsk by using CSEnc. We denote the randomness
space of CEnc by R.

– Let PKEcca = (KGcca,Enccca,Deccca) be an IND-CCA secure PKE scheme.
– Let GC = (Garble,Eval,Sim) be a garbling scheme for circuits.13

– Let DVNIZK = (DVKG,P,V) be a reusable DV-NIZK argument system for
the following NP language L:14

L =

 (
pk, (cti,v)i∈[ℓsk],v∈{0,1}

) ∣∣∣∣∣∣
∃(labi, ri,0, ri,1)i∈[ℓsk] s.t.

∀(i, v) ∈ [ℓsk]× {0, 1} :
cti,v = CEnc(pk, i, v, labi; ri,v)

 .

Let µ = µ(λ) be a polynomial that denotes the length of messages to be en-
crypted by our constructed PKE scheme. Let n = n(λ) and size = size(λ) ≥
max{n · ℓsk, µ} be polynomials for which we wish to achieve Bsize-KDM(n)-CCA
security. Finally, let pad = O(n · (|CSDec|+ ℓẽ) + size) ≥ size be the size param-
eter for the underlying garbling scheme (which is the size of a circuit that will
be specified in the security proof), where |CSDec| denotes the size of the circuit
computing CSDec.

Using these ingredients, we construct our proposed PKE scheme PKEkdm =
(KGkdm,Enckdm,Deckdm) whose message space is {0, 1}µ as described in Figure 7.

Correctness. The correctness of PKEkdm follows from that of the building blocks.
Specifically, let (PK,SK) = ((pk, pkcca, pkdv, c̃t), sk) be a key pair output by
KGkdm, let m ∈ {0, 1}µ be any message, and let CT ← Enckdm(PK,m) be an
honestly generated ciphertext. Due to the correctness of CTE, PKEcca, and
DVNIZK, each decryption/verification done in the execution of Deckdm(PK,SK,
CT) never fails, and just before the final step of Deckdm, the decryptor can recover

a garbled circuit Q̃ and the labels (labi)i, which is generated as (Q̃, (labi)i) ←
Sim(1λ, pad,m). Then, by the correctness of GC, we have Eval(Q̃, (labi)i) = m.

Security. The following theorem guarantees the Bsize-KDM(n)-CCA security of
PKEkdm. Combined with Theorems 9, 10, 11, and 12, it implies Theorem 13.

Theorem 14. Let n = n(λ), µ = µ(λ), and size = size(λ) ≥ max{n · ℓsk, µ} be
any polynomials. Also, let pad = O(n · (|CSDec|+ ℓẽ) + size) ≥ size (which is the
size of a circuit that will be specified in the proof), where |CSDec| denotes the size
of the circuit computing CSDec. Assume that CTE satisfies security against the
receiver and special weak CIRC(n) security, PKEcca is IND-CCA secure, GC is a
secure garbling scheme, and DVNIZK is a reusable DV-NIZK argument system
(satisfying soundness and zero-knowledge) for the NP language L. Then, PKEkdm

is Bsize-KDM(n)-CCA secure.

13 For the formal security definition of a garbling scheme, see the full version.
14 Intuitively, a statement (pk, (cti,v)i∈[ℓsk],v∈{0,1}) of the language L constitutes a (ℓsk×

2)-matrix of ciphertexts such that the pair (cti,0, cti,1) in the i-th row encrypt the
same plaintext labi for each i ∈ [ℓsk].
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KGkdm(1
λ) :

(pk, sk, td)← CKG(1λ)
(pkcca, skcca)← KGcca(1

λ)

(pkdv, skdv)← DVKG(1λ)
c̃t← CSEnc(sk, (skcca, skdv))
PK← (pk, pkcca, pkdv, c̃t); SK← sk
Return (PK, SK).

Deckdm(PK, SK = sk,CT) : (⋆)

(pk, pkcca, pkdv, c̃t)← PK
(skcca, skdv)← CSDec(sk, c̃t)

(Q̃, (cti,v)i,v, π)← Deccca(pkcca, skcca,CT)
x← (pk, (cti,v)i,v)
If V(skdv, x, π) = reject then return ⊥.
∀i ∈ [ℓsk] : labi ← CDec(pk, sk, i, cti,sk[i])

Return m← Eval(Q̃, (labi)i).

Enckdm(PK,m) :
(pk, pkcca, pkdv, c̃t)← PK

(Q̃, (labi)i)← Sim(1λ, pad,m)
∀(i, v) ∈ [ℓsk]× {0, 1} :

ri,v
r←− R

cti,v ← CEnc(pk, i, v, labi; ri,v)
x← (pk, (cti,v)i,v)
w ← (labi, ri,0, ri,1)i
π ← P(pkdv, x, w)

CT← Enccca(pkcca, (Q̃, (cti,v)i,v, π))
Return CT.

Fig. 7. The construction of a Bsize-KDM(n)-CCA secure PKE scheme PKEkdm from a
CTE scheme CTE, an IND-CCA secure PKE scheme PKEcca, a garbling scheme for
circuits GC, and a reusable DV-NIZK argument system DVNIZK. The notations like
(Xi,v)i,v and (Xi)i are abbreviations for (Xi,v)i∈[ℓsk],v∈{0,1} and (Xi)i∈[ℓsk], respectively.
(⋆) If CSDec, CDec, or Deccca returns ⊥, then Deckdm returns ⊥ and terminate.

Overview of the Proof. Due to the space limitation, the formal proof is given in
the full version. Here, we give an overview of the proof.

The proof uses a sequence of games argument. The first game is the original
Bsize-KDM(n)-CCA experiment regarding PKEkdm. Let A be a PPT adversary,
and for s ∈ [n], let (PKs = (pks, pkscca, pk

s
dv, c̃t

s
),SKs = sks) denote the s-th

public/secret key pair.

We first invoke the zero-knowledge of DVNIZK to change the security game
so that the simulator S = (S1,S2) is used to generate each (pksdv, sk

s
dv) at key

generation, and generate π in the response to KDM-encryption queries.

Next, we deal with the KDM-encryption queries (α, f0, f1), and make the
behavior of the KDM-encryption oracle (essentially) independent of the secret
keys {sks}s∈[n]. If there existed only a single key pair (PK,SK = sk), then
we could change the generation of the CTE-ciphertexts (cti,v)i,v in the KDM-

encryption oracle so that we garble the KDM function fb by (Q̃, (labi,v)i,v) ←
Garble(1λ, fb) and then encrypt labi,v by cti,v ← CEnc(pks, i, v, labi,v) for every

(i, v) ∈ [ℓsk] × {0, 1}. Since Eval(Q̃, (labi,sk[i])i∈[ℓsk]) = fb(sk), this can go unno-
ticed by A due to the security of GC and the security against the receiver of CTE,
and the behavior of the resulting KDM-encryption oracle becomes independent
of the secret key sk. However, we cannot take this rather simple approach in the
multi-key setting, since the KDM-function fb here is a function that takes all
keys {sks}s∈[n] as input, while we need to garble a circuit that takes a single key
skα as input. Here, we rely on the clever technique of Barak et al. [5] to transform
the KDM function fb to a circuit Q so that Q(skα) = fb((sk

s)s∈|n|) holds, by
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using encryptions of the key cycle {ẽs = CSEnc(sks, sk(s mod n)+1)}s∈[n]. Specif-
ically, Q has α, fb, and {ẽs}s∈[n] hardwired, and it on input skα decrypts the
encryptions of the key cycle one-by-one to recover all keys {sks}s∈[n] and then
outputs fb((sk

s)s∈[n]). Then, we can garble Q instead of garbling fb directly,
and the argument goes similarly to the above. This change necessitates that the
subsequent games generate the encryptions of the key cycle.

Then, we deal with the decryption queries (α,CT), and make the behavior
of the decryption oracle independent of the secret keys {sks}s∈[n]. To achieve
this, notice that the only essential part that we need to use the secret key skα in
the decryption procedure is the step of executing labi ← CDec(pkα, skα, cti,sk[i])
for every i ∈ [ℓsk]. To eliminate the dependency on skα in this step, in the next

game we replace the above step with labi ← ĈDec(tdα, i, skα[i], cti,skα[i]) for every
i ∈ [ℓsk]. This makes no change in the behavior of the decryption oracle due to
the third condition of the correctness of CTE. Next, we further change this step

to always decrypt the “0-side” ciphertext cti,0 as labi ← ĈDec(tdα, i, 0, cti,0) for
every i ∈ [ℓsk]. Now the behavior of the decryption oracle becomes independent
of the secret keys {sks}s∈[n]. The behavior of the decryption oracle could differ

between the change only if ĈDec(tdα, i∗, 0, cti∗,0) ̸= ĈDec(tdα, i∗, 1, cti∗,1) holds
for some i∗ ∈ [ℓsk] and yet the proof π recovered from CT is valid. Let us call
such a query a bad decryption query. If A does not make a bad decryption
query, this change of the behavior of the decryption oracle cannot be noticed
by A. Similarly to [22], we bound the probability of a bad query occurring to
be negligible using a deferred analysis technique and postpone to bound it in a
later (in fact the final) game, together with the second correctness condition of
CTE. See the formal proof for this argument.

Now, since the behavior of the KDM-encryption and decryption oracles be-
come independent of the secret keys {sks}s∈[n], the remaining steps in which we

use the secret keys are to generate {c̃ts}s∈[n] in public keys, and to generate the
encryptions of the key cycle {ẽs}s∈[n]. Then, we can rely on the special weak

CIRC(n) security of CTE to ensure that c̃t
s
is indistinguishable from an encryp-

tion of a garbage that contains no information on (skscca, sk
s
dv) in the presence of

the trapdoors {tds}s∈[n] and the encryptions of the key cycle {ẽs}s∈[n]. Finally,
we invoke the IND-CCA security of PKEcca to conclude that A’s advantage in
the final game is negligible.

For all the details, see the formal proof in the full version.
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