
Towards Efficiency-Preserving Round Compression in
MPC

Do fewer rounds mean more computation?

Prabhanjan Ananth1, Arka Rai Choudhuri2[0000−0003−0452−3426], Aarushi Goel2, and
Abhishek Jain2

1 University of California, Santa Barbara
prabhanjan@cs.ucsb.edu

2 Johns Hopkins University
{achoud,aarushig,abhishek}@cs.jhu.edu

Abstract. Reducing the rounds of interaction in secure multiparty computation
(MPC) protocols has been the topic of study of many works. One popular ap-
proach to reduce rounds is to construct round compression compilers. A round
compression compiler is one that takes a highly interactive protocol and trans-
forms it into a protocol with far fewer rounds. The design of round compression
compilers has traditionally focused on preserving the security properties of the
underlying protocol and in particular, not much attention has been given towards
preserving their computational and communication efficiency. Indeed, the recent
round compression compilers that yield round-optimal MPC protocols incur large
computational and communication overhead.
In this work, we initiate the study of efficiency-preserving round compression
compilers, i.e. compilers that translate the efficiency benefits of the underlying
highly interactive protocols to the fewer round setting. Focusing on the honest
majority setting (with near-optimal corruption threshold 1

2
− ε, for any ε > 0),

we devise a new compiler that yields two round (i.e., round optimal) semi-honest
MPC with similar communication efficiency as the underlying (arbitrary round)
protocol. By applying our compiler on the most efficient known MPC protocols,
we obtain a two-round semi-honest protocol based on one-way functions, with
total communication (and per-party computation) cost Õ(s+ n4) – a significant
improvement over prior two-round protocols with cost Õ(nτs+ nτ+1d), where
τ ≥ 2, s is the size of the circuit computing the function and d the corresponding
depth. Our result can also be extended to handle malicious adversaries, either
using stronger assumptions in the public key infrastructure (PKI) model, or in the
plain model using an extra round.
An artifact of our approach is that the resultant protocol is “unbalanced” in the
amount of computation performed by different parties. We give evidence that this
is necessary in our setting. Our impossibility result makes novel use of the “MPC-
in-the-head” paradigm which has typically been used to demonstrate feasibility
results.

1 Introduction

Understanding the minimal rounds of interaction required to carry out a cryptographic
task has been the subject of extensive study over the past few decades. While ad-hoc

techniques are often used to obtain low round complexity solutions, a more systematic
approach adopted in the literature is to build a round compression compiler. As the
name suggests, a round compression compiler transforms a highly interactive protocol
into one with far fewer rounds. The celebrated compiler of Fiat and Shamir [22] is
one such example that transforms a public-coin interactive proof system into a non-
interactive one (in the random oracle model).

Recently, a sequence of works have designed round compression compilers to re-
solve major open problems in cryptography. For instance, the recent result on non-
interactive zero knowledge proofs for NP from learning with errors was designed by
instantiating the Fiat-Shamir methodology [11, 38]. In the context of secure multiparty
computation (MPC) [40, 29, 6, 12] – the focus of this work – a recent sequence of
exciting works devised novel round compression compilers to construct round-optimal
MPC protocols based on minimal assumptions [25, 7, 1, 3, 4, 2, 24].

Rounds vs Computation in MPC. In this work, we continue the study of round com-
pression in MPC. Starting from [5], round compression in MPC has been extensively
studied over the years in a variety of models. Traditionally, most works have focused
on devising compilers that preserve the security properties of the underlying protocol.
However, not much emphasis has been placed on preserving the computational and
communication efficiency.

Indeed, the recent round compression compilers that yield round-optimal MPC
[25, 7, 1, 3, 24, 2, 4] incur a large overhead in computation and communication. Some
of these compilers work in the setting where a majority of parties are allowed to be dis-
honest, while others require a majority of the parties to be honest. In this work, we focus
on the latter setting, referred to as honest majority. In this setting, consider an arbitrary
round MPC protocol with total computational work W = W (n, s), where n denotes
the number of parties executing the protocol and s denotes the size of the circuit imple-
menting the function being computed. Then, applying the compilers of [1, 3, 24, 2, 4]
on such a protocol yields a two round protocol with total communication and per-party
computation Õ(nτ ·W), where τ ≥ 2, ignoring multiplicative factors in security param-
eter. Plugging in the most efficient known multi-round MPC protocols [26, 16, 15] with
total cost Õ(s+nd) (where d is the circuit depth), we obtain a two round protocol with
significantly worse total communication (and per-party computation) Õ(nτs+nτ+1d).

The above state of affairs raises the question: does round compression necessarily
require high computational and communication cost? If not, can we design efficiency-
preserving round compression compilers for MPC that preserve both the security as
well as the computational and communication efficiency of the underlying protocol?

1.1 Our Results

We study efficiency-preserving round compression compilers for MPC. As a first step
in this direction, we narrow our focus on the honest majority setting.

Our main result stated below holds with respect to semi-honest adversaries. Later,
we also discuss extensions to the case of malicious adversaries.

Theorem 1 (Informal). Let n be the number of parties and let λ be the security pa-
rameter, such that n is polynomially related to λ. Assuming one-way functions, there is

2

a round compression compiler that transforms a semi-honest secure MPC protocol Π
for any n-party functionality F into a two-round semi-honest secure protocol Π ′ for F
with the following properties:

– If Π tolerates corruption threshold ε, then Π ′ tolerates ε′, for arbitrary constants
ε′ < ε < 1

2 .
– If the total computation cost of Π is W = W (n, s), where s is the circuit size

representation of F , then the amortized per-party computation cost and total com-
munication cost of Π ′ is

Õ
(
(W (log2(n), s) + n4)

)
,

where the Õ notation suppresses polynomial factors in λ and polylog factors in n.

To handle smaller values of n, we can use a hybrid mode of compilation: if n is small,
simply use existing compilers; for larger values of n, one should use our compiler.

Comparison with Prior Work. Our compiler performs significantly better than pre-
vious compilers [3, 4, 1] that yield two-round protocols with total communication and
per-party computation cost of Õ(nτW (n, s)), where τ ≥ 2. All of these existing two
round compilers [3, 4, 1] rely on the following high level idea3- they view the entire
computation done in the underlying protocol as a circuit and then require all the parties
to communicate at least one-bit for each gate in this circuit, with every other party over
pair-wise private channels in the first round. This adds a multiplicative overhead of at
least n2 in the complexity of the resulting protocol. Infact, the exact overhead in these
compilers might even be more than n2, because these are not the only messages that the
parties compute and send in those compilers. However, for comparison, it suffices for
us to use a conservative approximation, i.e., τ ≥ 2.

On the other hand, by applying our compiler on the most asymptotically efficient
MPC protocols [26, 16, 15] with total computation cost W (n, s) = Õ(s + nd), we
obtain a two-round protocol with total communication and per-party computation cost
Õ(s+ n4). In contrast, applying previous compilers on the same protocols yields two-
round protocols with total communication and per-party computation cost Õ(nτ · s +
nτ+1d), where τ > 2.

Extensions. With suitable modifications to the above compiler, we can obtain addi-
tional results that achieve different tradeoffs, both in the case of semi-honest and mali-
cious adversaries.

– Semi-honest: The above compiler can be easily modified such that the total (as
opposed to amortized per-party) computation cost is Õ(W (log2(n), s) + n4), at
the cost of increasing a round of interaction. 4

3 While this idea is made explicit in [3, 4], it is easy to observe that [1] also implicitly uses the
same idea.

4 If there are only a constant number of parties that are recipients of the output, then the resultant
protocol from Theorem 1 already achieves this result.

3

– Malicious: The above compiler can also be easily modified to work against mali-
cious adversaries, yielding either two round protocols in the PKI model assuming
verifiable random functions [37], or three round protocols in the plain model with-
out additional assumptions. Both these protocols achieve the standard notion of
security with abort, assuming that the underlying protocol also achieves the same
security.

Impossibility of Balanced Protocols. Our compiler utilizes a committee-based ap-
proach which has been used in many prior works in the larger round setting. A caveat
of this approach is that it results in unbalanced protocols where a small subset of par-
ties (namely, the committee members) perform much of the “heavy” computation, while
other parties only do “light” computation. Furthermore, this approach also yields a sub-
optimal corruption threshold (i.e., n > 2t + 1, where t is the number of corrupted
parties). In view of this, we investigate whether this is inherent.

We give evidence that our approach is “tight” by showing that there exists some
functionality for which there does not exist a balanced constant round (even insecure)
MPC protocol with total computational cost Õ(s). In contrast, our compiler yields an
unbalanced constant-round secure MPC protocol with roughly the same total cost (ig-
noring additive terms).

1.2 Our Techniques

In this section we describe the main ideas underlying our results. In Section 1.2.1 we
give an overview of our techniques for designing efficiency-preserving round-compression
compilers. Later, in Section 1.2.2, we describe ideas for proving impossibility of bal-
anced constant-round MPC protocols with total computation cost Õ(s). Throughout
this section we assume τ ≥ 2, and is hereby omitted for clarity of exposition.

1.2.1 Efficiency-Preservation via Committees

We now proceed to describe the techniques used in our compiler. At a high-level, we
devise a two step approach:

– Step 1: Special two round MPC. First, given a potentially highly interactive MPC
protocol with total computational work W = W (n, s), where s is the size of the
circuit and n is the number of parties, we apply a round-compression compiler to
obtain a special two round protocol with some specific structural properties. The
total computational complexity of this special MPC is proportional to Õ(nτ ·W).5

Even though it does not achieve our desired efficiency, its structural properties are
crucially used in the second step.

5 While special MPC with total computation proportional to Õ(nτ · W) can be constructed
(as we discuss later), the second step of our approach is actually less sensitive to the exact
asymptotic complexity of special MPC. In particular, the exact dependence on n is not very
important as long the total computation in special MPC has only linear dependence on W .

4

– Step 2: Efficiency boost. We then leverage the structural properties of the special
two round MPC to transform it into a new protocol with the same round complexity,
but improved asymptotic computational and communication complexity.

We postpone the discussion on the structural properties required from the two round
protocol. Instead, we first focus on Step 2; the efficiency boosting transformation would
then guide us towards identifying these structural properties.

Starting Ideas for Efficiency Boost. We first focus on the semi-honest setting, and
defer the malicious case to later. Given a special two-round MPC, our starting idea
for improving its efficiency is to use the classical committee-based approach, where
the bulk of the computation is “delegated” to a small committee of parties, while the
remaining parties do very little work.

More specifically, the main idea in a committee-based approach is to first elect a
“small” committee, while ensuring that a majority of the parties in the committee are
honest and letting these elected parties run the actual protocol. Since the parties not
elected to the committee are no longer doing any work, we need a mechanism to allow
these parties to transfer their inputs to the committee members. To ensure privacy of
their inputs, the parties who are not elected in the committee, secret-share their inputs
amongst the committee members. The elected committee then runs an MPC computing
a modified functionality F ′, that collects all the secret shares of all the non-elected par-
ties, reconstructs their inputs, and computed the original functionF . Unlike the original
function F , F ′ requires inputs from only the elected committee members, which as de-
scribed above, also implicitly contains the remaining parties’ inputs. Since the cost of
the computation is dominated by the number of parties involved in the “heavy” com-
putation, it suffices to use a committee of size poly-logarithmic in the total number of
parties to yield non-trivial savings in the total cost.

In order to prevent an adversary from corrupting a majority of the members in the
committee, it is important to choose the committee at random. This means that the iden-
tities of the committee members are unknown to all parties at the start of the protocol;
instead, we must implement a committee election mechanism during the protocol exe-
cution. Let Π be the two-round protocol obtained by applying the round-compression
compiler in the first step. Now, applying the committee-based approach over Π , we get
the following five round protocol Π ′:

1. Round 1. Each party tosses an appropriately biased coin to decide whether or not
it will be in the committee and reveals the result to all other parties.

2. Round 2. The parties that are not part of the committee secret share their inputs
amongst the committee members.

3. Round 3. The committee members compute and send their first round messages in
π.

4. Round 4. The committee members compute and send their second round messages
in π.

5. Round 5. The committee members reconstruct the output and then send the output
to all other parties.

Since the bulk of the computation is performed by the committee members, the amor-
tized per-party computation in Π ′ depends only on polylog(n) as opposed to poly(n).

5

The main problem however, is that Π ′ requires five rounds, while we seek a two round
protocol.

Committee-Based Approach in Two-Rounds. Towards obtaining a two round pro-
tocol, we start with the observation that if protocol Π allows for public reconstruction
of output based on the transcript of the last round, then Rounds 4 and 5 of Π ′ can be
parallelized. Indeed, this property is satisfied by the protocol output by our compiler in
Step 16 and is also true for other recent round-compression compilers [25, 7, 2]. While
this yields a saving of one round, it is not clear how to proceed further. Indeed, to ob-
tain a two-round protocol, the task of electing a committee and sharing of inputs by
the remaining parties must be parallelized with the computation done by the committee
members using Π . In other words, Rounds 1,2 and 3 must seemingly be executed in
the first round of Π ′, and Round 4 in the second round. This, however, raises some
fundamental challenges:

1. Challenge 1: Sharing of Inputs. If the committee election happens in parallel with
input sharing, the non-committee members (henceforth referred to as the clients)
would not know the identities of the committee members (henceforth referred to as
the servers) at the time of distributing their inputs. How can the clients secret share
their inputs with the servers, without knowing their identities? It seems like there is
no way to get around this, which means that the servers must start their computa-
tion without knowing their “entire input”. But parallelizing committee election and
input sharing is crucial both for the correctness and security. Indeed, in any two
round MPC protocol, the private inputs of all parties must be “fixed” in the first
round to prevent input resetting attacks [32].

2. Challenge 2: Blind Computation. All known two-round honest majority MPC
protocols based on minimal assumptions [1, 2, 3, 24, 4] necessarily rely on the use
of private channels in the first round. Since the committee election and computa-
tion must happen simultaneously, it is not clear how the servers would exchange
private channel messages in the first round without knowing each other’s identities.
It seems like we require the servers to start their computation “in the blind”.

To address these two challenges, we require some structural properties fromΠ . We now
describe them.

Special Two Round MPC. We require the following two structural properties from
the special two round MPC in Step 1:

1. Decomposability: The first round messages of each party in a special two round
MPC protocol can be decomposed into: (i) “light” messages that depend on the
input but whose computational complexity is independent of W , and (ii) “heavy”
messages that are independent of the input but whose computational complexity
may depend on W . The light and heavy messages may share common randomness.

2. Independence: The private channel messages in a special two round MPC protocol
should be independent of the inputs of the parties.

6 Protocols obtained by applying the compiler from [1] always satisfy this property, while the
compilers in [3, 4], yield protocols that satisfy the “public reconstruction of outputs” property
only when applied to a (multi-round) protocols that also satisfy this property.

6

At a first glance, these properties may seem quite unconventional and strong. Indeed,
our main technical contribution is in identifying these rather unconventional and spe-
cific structural properties of two-round protocols and then leveraging these properties
for efficiency gains in the setting of two rounds. In particular, as we describe below,
the decomposability property, with additional delegation of computation techniques, is
used to address Challenge 1 and the independence property is used to address Challenge
2. Moreover, as we discuss later, these properties can, in fact, be achieved generically.

Solving Challenge 1. Towards explaining our main ideas, let us first consider a simpler
scenario where Π only consists of broadcast channel messages (we deal with private
channel messages later while addressing challenge 2). As noted earlier, the main issue
in parallelizing input distribution and committee election is that the servers cannot know
their entire input in the first round, yet the first round messages of the protocol must fix
the inputs of all the parties. Moreover, the second round messages of all parties can also
depend on the entire first round transcript (which in turn must depend on the inputs).

To address these problems, a natural starting idea is to require the clients to aid
the servers in the computation of the first and second round messages of Π while still
achieving the desired efficiency. Let us first focus on the second round messages of
Π; specifically, that of a particular server (say) Si. Our first idea is to run a separate
helper protocol involving all parties (servers and clients) to help compute the second
round messages of Si. This helper protocol can take the input shares from all clients
and the randomness from all servers to first internally compute the first round messages
of all servers and then compute and output the second round message of Si. A naive
implementation of this approach, however, runs into an obvious problem: since the per-
party complexity for computing second round messages of the servers in Π is Õ(nτ ·
W), the size of the functionality implemented by the helper protocol, and thereby the
per-party computation performed by the clients, also has the same total complexity of
Õ(nτ ·W).

Towards addressing this problem, we first use a delegation of computation approach
implemented via garbled circuits and a modified two-round helper protocol as follows:

– We require the server Si to garble and send its second round next-message function
of Π in the second round of Π ′. This circuit takes as input the entire first round
transcript of Π and computes, and outputs, Si’s second round messages in Π .

– The input wire labels for this garbled circuit are computed via a modified two-
round helper protocol for a specific functionality. This functionality takes as input,
secret-shares from the clients and randomness used to compute the first round mes-
sages from the servers. It also takes as input all of the garbled circuit input wire
labels from Si. It internally computes the first round message of all servers and
then selects and outputs the corresponding input wire labels.

Thus far we have ignored the first round messages and an observant reader may notice
that this solution still does not suffice; indeed, since the size of the first round mes-
sages in Π is also proportional to Õ(nτ ·W), the clients still need to spend the same
computational effort.

Our main conceptual idea to overcome this problem is to leverage the decompos-
ability property of special MPC. Recall that the decomposability property requires that

7

in the first round, each party sends computationally light messages depend on its in-
put and computationally heavy messages that are independent of its input. We leverage
this property as follows: we require the servers to compute (on their own) and send the
heavy messages in the first round, which can then be hardwired in the circuit that Si
garbles in the second round. The helper protocol involving all parties is now only re-
quired to compute the input wire labels corresponding to the light messages, as opposed
to the entire first round messages, which is efficient. Moreover, this also ensures that the
inputs of all parties are indeed fixed in the first round, which is necessary for security.

Finally, we remark that if the light messages inΠ can be computed using a degree-1
computation over the parties’ inputs, then we can use lightweight protocols such as [36]
(satisfying security with abort) for quadratic functionalities to further reduce the work
done by clients. We later show that our compiler from Step 1 achieves this property as
well.

Solving Challenge 2. While so far we have only considered the simplified setting of
broadcast-only protocols, in reality, our protocol Π from the first step (necessarily)
consists of both the broadcast and P2P messages. As described earlier, this creates the
challenge that the servers cannot send P2P messages to each other in the first round
without knowing their identities. Since the computation must start in the first round
itself, we need a mechanism for “computing in the blind”.

We implement such a mechanism by allowing the servers to encrypt their private
channel messages and broadcasting them in the first round and then enabling others
to somehow compute on these encrypted messages. To help compute on the encrypted
messages, we again utilize a delegation of computation approach:

– Each server garbles a circuit that takes the decryption key as input and decrypts the
corresponding first round encrypted message that was intended for it and computes
its second round message.

– Wire labels corresponding to the decryption key are computed via a helper protocol
involving all properties, similar to the solution to the previous challenge. Since
the helper protocol is only responsible for computing labels corresponding to the
decryption keys, the total work done by the parties (especially clients) in this helper
protocol does not depend upon the complexity of the next-message functions of the
parties in Π .

An observant reader, however, may notice that this approach fails completely, if the
P2P messages in Π were dependent on the input. Indeed, since the servers do not have
access to their entire input in the first round, it is unclear how they would compute and
encrypt these messages in such a case.

Our next conceptual idea to overcome this problem is to leverage the independence
property of special MPC. Recall that this property requires all of the private channel
messages in Π to be independent of the inputs. Given this property, the above solution
already works.

Realizing Special Two Round MPC. Recall that a special two-round MPC must sat-
isfy the following requirements:

1. Structural Properties: It must satisfy the decomposability and independence prop-
erties defined earlier.

8

2. Complexity: The total communication complexity of the special MPC must be
Õ(nτ ·W). (As discussed earlier, the key requirement here is the linear dependence
onW , whereas the exact multiplicative dependence on n is less important since this
special MPC is only executed by polylog(n)-sized) committee of parties.)

We address each of these requirements separately. There is a surprisingly simple ap-
proach for achieving the structural properties generically. Specifically, we show that
any two-round protocol π with the delayed-function property7 can be made to achieve
these structural properties without affecting its asymptotic efficiency. The idea is to have
each party Pi sample a random mask ri for its input xi, and broadcast xi ⊕ ri in the
first round. Additionally, the parties run π on a modified functionality f ′x1⊕ri,...,xn⊕rn
that has x1 ⊕ ri, . . . , xn ⊕ rn hardwired in its description, such that

f ′x1⊕ri,...,xn⊕rn(r1, . . . , rn) = f(x1, . . . , xn),

where f is the original functionality. It is easy to see that because of this simple mod-
ification, the first round messages of party Pi in the modified protocol Π can now
be decomposed into a “light” message xi ⊕ ri that depends on its input and “heavy”
messages which correspond to its first round messages in π. Moreover, because of the
delayed-function property of π, these “heavy” first round messages in Π are indepen-
dent of their actual inputs. This already achieves decomposability. With regards to in-
dependence property, we first note that the above transformation already ensures that
the first round private channel messages in Π are independent of the parties’ inputs.
However, their second round private channel messages may still depend on their inputs.
Towards this, we observe that any two-round protocol that makes use of private chan-
nel messages in the second round can be modified into one that only uses broadcast
channel messages in the second round. This can be done by letting the parties exchange
one-time pads with each other in the first round, and then broadcasting their second
round messages encrypted under these one-time pads. With this modification, we can
also achieve independence.

Since the above approach works generically with any protocol that satisfies the
delayed-function property, it can also be applied to a delayed-function variant of [3, 4,
1]. We note that while [1] already satisfies the delayed function property, the two-round
compilers of [3, 4] do not. A simple modification to this construction can yield two-
round protocols with delayed-function property without compromising its efficiency.
We refer the reader to the full version for details on this modification.

Moreover, when applied to an interactive protocol with total computation W , the
compilers of [1, 3, 4] already yield two-round protocols with total communication at
least Õ(nτ ·W). Hence, in summary, either of the recent two-round protocols [1, 3, 4]
in the honest majority setting, with the above modifications, can be used to obtain a
two-round special MPC with all of the required properties.

Summary (so far). Putting the above solutions together, we now obtain a two-round
semi-honest protocol that achieves total communication complexity Õ(W (polylog(n), s)+

7 At a high level, a two-round MPC protocol satisfies the delayed-function property if the first
round messages of the honest parties are computed independent of the functionality, but may
depend on the size of the circuit implementing the functionality.

9

n4)8 and total computation complexity Õ(nW (polylog(n), s) + n5) if we elect a com-
mittee of size polylog(n). The computation complexity is higher than the communica-
tion complexity. This is because in order to reconstruct the output, all the parties must
locally compute on all the second round messages of all parties, which adds a multi-
plicative overhead of n to the computation complexity. We note that we are limited to
this computation complexity in two rounds, since we do not know of any two round
compilers with better and more efficient output reconstruction algorithms. However, if
we add another round such that only one of the parties the output at the second round
and broadcasts it to others in the third round, we can get optimal computational effi-
ciency.9

Handling Malicious Adversaries. The above approach only works against semi-
honest adversaries. For the malicious setting, we need to start with a malicious special
two round MPC protocol.We are now faced with the following additional issues in the
malicious setting:

1. Input Consistency. Recall that in the semi-honest protocol proposed above, the
servers are required to use the same randomness as input in multiple sub-protocols:
(1) for computing its “heavy” first round messages inΠ and (2) in the helper proto-
col for computing its “light” first round messages. Since the light messages depend
on the inputs of clients, if a malicious server does not use the input randomness
consistently in the two sub-protocols, it could potentially change the input share of
an honest client.

2. Malicious Secure Committee Election. Our naive way of doing a committee elec-
tion where the parties can randomly elect themselves to be in the committee, clearly
does not work in the malicious setting. A corrupt party can always elect it self to
be in the committee.

Towards describing our solution to the first problem, let us first address why simply
compiling a maliciously secure protocol Π with the compiler described above is not
sufficient. Recall that in general, a maliciously secure protocol cannot prevent adver-
sarial parties from choosing their inputs arbitrarily. However, in the above compiler,
since the underlying (maliciously secure) protocol Π is only run amongst the commit-
tee members and their inputs also contain input shares of the honest clients, we cannot
afford to let them choose their entire input arbitrarily.

To prevent this, we make use of one-time message authentication codes (MACs).
The honest clients compute a MAC over each of their input shares. For the MAC’s to
be verified, they must be checked, and hence require the key. However, providing a
(potentially corrupt) server with the MAC key defeats the purpose, since there is no
longer any security. Therefore, for each input share, we shall create MACs with each
of the server keys, i.e., one corresponding to each server. These keys are sent to the
respective servers, while the input share and all the corresponding MAC tags are sent
only to the designated server. The functionality computed by the protocolΠ is modified

8 For this technical overview, some details of the protocol are omitted. The resultant protocol
incurs an additive term of n4, which is elaborate upon in the technical section.

9 Alternatively, if the number of parties computing the output are already a constant, then even
the two round protocol achieves optimal computation.

10

to first check if for each input share that it gets as input, all its corresponding MACs are
valid. As long as there is an honest party, for which the adversary does not have access
to the key, it cannot create a mauled tag that will verify with that key. We use the
helper protocols exactly as described earlier with the only exception that now instead
of just their input shares, the clients also communicate these MACs and MAC keys to
the servers via the helper protocol.

To implement a maliciously secure committee election protocol, we use the follow-
ing standard techniques:

– Using VRFs: We use the strategy from Algorand [27] based on verifiable ran-
dom functions (VRFs) [37]. This is implemented in the reusable10 correlated ran-
domness model where the adversarial corruption may happen after the setup. We
note that since VRFs are known from non-interactive witness indistinguishability
proofs (NIWIs) [8, 30], we get a resulting maliciously secure two-round proto-
col in the correlated randomness model based on NIWI, whose communication
complexity is Õ(W (polylog(n), s) + nτ+4) and total computation complexity is
Õ(nW (polylog(n), s) + nτ+5). 11

– Feige’s Lightest Bin Protocol [21]: This gives a statistically secure committee
election protocol. However each party learns whether or not it is in the committee
only at the end of this protocol, so it adds another round at the start of the two-
round protocol. As a result we get a three-round maliciously secure protocol in the
plain model, whose communication complexity is Õ(W (polylog(n), s) + nτ+4)
and total computation complexity is Õ(nW (polylog(n), s) + nτ+5).

Comparison with Existing Maliciously Secure Compilers: By applying our com-
piler on the most asymptotically efficient MPC protocols [26, 16, 15] with total compu-
tation cost W (n, s) = Õ(s + nd), we obtain a two-round protocol with total commu-
nication and per-party computation cost Õ(s + nτ+4). In contrast, applying previous
maliciously secure compilers on the same protocols yields two-round protocols with
total communication and per-party computation cost Õ(nτ · s+nτ+1d+nτ+2), where
τ > 2.

1.2.2 Impossibility of Balanced Protocols
While our approach gives an efficiency preserving compiler in 3 rounds, a drawback of
our compiler is that it yields unbalanced protocols with sub-optimal corruption thresh-
old of t < n/2. This is a consequence of our committee-based approach. Next, we
provide some evidence towards the fact that a committee-based approach is necessary.
In particular, we show that it is impossible to obtain a constant round MPC protocol
with equal division of labor, where the total work done by parties is Õ(|C|), where |C|
is the size of the circuit implementing the functionality. We show this impossibility us-
ing the player emulation methodology [33, 13, 35]. To the best of our knowledge, this
is the first time that this paradigm is used for proving a negative result.
10 A simpler solution using non-reusable correlated randomness can be obtained using regular

digital signatures which are known from one-way functions.
11 As for the semi-honest setting, the additive term will be elaborated upon in the technical sec-

tions.

11

Let us assume that there exists an r−round MPC protocol Π , where the total work
done by each party is approximately Õ(|C|)/n, where r is some constant. In other
words, the size (and depth) of the circuit implementing the next-message function of
each party is Õ(|C|)/n. In every round, we can recursively use protocolΠ to implement
the next-message function of each party. The total number of rounds in the resulting
protocol is r2, while the total work done by each party in each round is still Õ(|C|)/n,
it can now be computed using n-parallel circuits each of depth Õ(|C|)/n2.

If we repeat this approach of recursively replacing the next-message function of
each party in each round with an execution of Π for k iterations, we get a proto-
col with rk rounds where in each round, the next message function of each party
can be computed using a circuit of depth Õ(|C|)/nk. Let k, c be constants such that
Õ(|C|)/nk = c. In each round the total computation done by the parties can be viewed
as an execution of n-parallel circuits, each of depth at most c. Overall, the total work
done by the parties in the final protocol, can be viewed as an execution of n−parallel
circuits, each of depth at most c · rk = O(1).

This approach can be used to reduce any arbitrary-depth circuit C into a constant-
depth circuit, which is a contradiction since we know that functions like parity are not
computable in constant depth.

1.3 Related Work

The study of multiparty computation was initiated in the seminal works of [40, 29,
6, 12]. Beaver et al. [5] initiated the study of constant round protocols in the honest
majority setting. Subsequently, there has been extensive work in the study of constant
round protocols, resulting in round optimal protocols both in the honest majority and
dishonest majority settings [23, 25, 7, 1, 3, 24, 2, 4].

Further, the design of efficient protocols have been studied in both the computational
and information theoretic settings [14, 34, 17, 16, 15, 18, 41, 39, 9, 20]. Some of these
results [16, 15] achieve optimal computational and communication complexity of Õ(s).
Similar to us, their results also have an additive factors which are polynomial in both
the security parameter and number of parties.

Committee based techniques have been used primarily in the context of scalable
computation, where the goal is to build secure computation protocols that scale well
with a large number of parties. Of these, the works of [39, 9, 41, 10, 19] seek to reduce
computational and communication complexity work in the large round setting. See [39]
and the references therein for for a detailed survey of the use of committee based tech-
niques in the context of scalable computation. To the best of our knowledge no prior
works apply committee based approaches in the two round setting. This is perhaps un-
surprising given the recency of the two round protocols based on standard assumptions.

1.4 Full Version

Due to space constraints, preliminaries, details of the proofs, and complexity calcula-
tions have been omitted from this manuscript, and can be found in the full version of
the paper.

12

2 Two-Round Efficiency Preserving Compiler in the Client-Server
Model

In order to describe our compiler in a manner that easily extends to the malicious setting,
we will present our solution in two steps, spread across Sections 2 and 3. In this section,
we construct a maliciously secure efficiency preserving, round compression compiler in
the Client-Server model. Recall that in the client-server model, every party is designated
to be either a client or a server, and is additionally aware of the roles of all the other
parties. The clients share their inputs among all the servers (servers may additionally
have inputs), who in turn do the computation and broadcast the result. Later in Section
3, we will show how this protocol in the client-server model can be extended to obtain
an efficiency preserving compiler in the plain model, namely, where the parties do not
have any pre-designated roles assigned to them.

The rest of this section is organized as follows. First, we present a two-round special
MPC with some specific structural properties in Section 2.1. Then in Section 2.2, we
make use of the properties of this protocol to present a two-round, maliciously secure,
efficiency preserving compiler in the client server model.

2.1 Special Two-Round MPC

As discussed in the technical overview, given an interactive protocol with total compu-
tation workW , as a starting step, we need to transform it into a two-round special MPC
protocol that satisfies the following properties:

1. Decomposability: The first round messages of each party inΠ can be decomposed
into “light” messages that depend on the input but not W , and “heavy” messages
that depend on W but not on the input; however they may share common random-
ness.

2. Independence: The private channel messages in Π are independent of the inputs.
3. Complexity: The total computation complexity of the resulting protocol should

only be linearly dependent on W .

We state the following lemma proven in the full version of our paper.

Lemma 1. Let λ be the security parameter. There is a round compression compiler
that transforms a maliciously (and semi-honest, resp.) secure MPC protocol π for any
n-party functionality F into a two-round maliciously (and semi-honest, resp) secure
protocol Π for F with the following properties:

1. If π tolerates corruption threshold ε, then Π tolerates ε′, for arbitrary constants
ε′ < ε < 1/2.

2. If the computational cost of π is W = W (n, s), where s is the circuit size repre-
sentation of F , then the amortized per-party computational cost of Π is O(nτW)
and the per-party communication cost of Π is O(nτ−1W).

3. Each party in Π sends messages over both private channels and a broadcast chan-
nel in the first round. While in the second round, each party only sends messages
over a broadcast channel.

13

4. Each party Pi inΠ broadcasts its masked input (xi⊕γi) in the first round, where xi
is its input and γi is a random value. The rest of its first round broadcast messages
are independent of its input but may depend on ri.

5. The private channel message of each party Pi in Π is independent of its input xi
but may depend on ri.

Remark 1. We note that we consider the computation of functions represented by cir-
cuits consisting of AND, OR and NOT gates.

2.2 From Special MPC to Efficiency Preserving Compiler in the Client-Server
Model

Now that we have a two-round protocol Π with the desired structural properties from
Lemma 1, we use it to present a two-round maliciously secure, efficiency preserving
compiler in the client-server model. Since our protocol works in the client server model,
for ease of presentation we use indices with different fonts for referring to specific
servers and clients: i ∈ n for servers (double-struck) and i ∈ n for clients (bold).

Protocol Overview. At a high level, givenn servers and n clients, wheren+n = n, the
semi-honest protocol works as follows. Each client generates n additive secret shares
of its input - one for each server. The servers then engage in a single execution of the
two round protocol Π to compute the function. As mentioned in the introduction, this
doesn’t work directly and requires servers delegating their second round computation
to a garbled circuit. The corresponding keys for the circuit are computed by a two round
helper protocol Πhelp that all parties participate in.

For security against malicious adversaries, we must prevent a malicious server from
modifying the input shares of an honest client and make use of one-time message au-
thentication codes (MACs) to enforce consistency checks. So, in addition to secret shar-
ing their inputs, the clients compute n MAC’s on each of their shares using a different
MAC key. The functionality computed by the protocol Π first checks if inputs and their
corresponding MACs are valid. Only if this check succeeds, does it start computing
on them. We use the helper protocol Πhelp exactly as described earlier with the only
addition that now instead of just their input shares, the clients also communicate these
MACs and MAC keys to the servers via the helper protocol.

Formally, we prove the following theorem. In this theorem we also enlist additional
properties achieved by our resulting protocol. These properties are crucially used by our
compiler in Section 3 to obtain an efficiency preserving compiler in the plain model.
We refer the reader to Section 3 for a detailed discussion on the relevance of these
properties.

Theorem 2. Let n be the number of parties and λ be the security parameter. Assuming
one-way functions, there is a round compression compiler that transforms a maliciously
(and semi-honest, resp.) secure MPC protocol Π for any n-input functionality F into a
two-round maliciously (and semi-honestly, resp.) secure protocol Φ for F in the client-
server model with the following properties:

14

1. Let n be the number of servers and n = n − n be the number of clients. If the
computational cost of π is W =W (n, s), where s is the circuit size representation
of F , then the amortized per-party computational cost and total communication of
maliciously (and semi-honest, resp.) secure protocol Φ is Õ(W (n, s)+nτ+4), (and
Õ(W (n, s) + n4), resp.), where the Õ notation suppresses suppresses polynomial
factors in λ and n.

2. If π tolerates corruption threshold ε, then Φ tolerates ε′, for arbitrary constants
ε′ < ε < 1/2 corruptions in the server set and ε corruptions in the client set.

3. Each party can send messages over both private channels and a broadcast channel
in the first round in Φ. While in the second round, each party only sends messages
over a broadcast channel.

4. The private channel messages sent by clients inΦ are independent of the role (clien-
t/server) of the receiving party in the protocol.

5. The total length of messages sent by all clients is O(n2nn3λ3) in the semi-honest
case and Õ(nτ−1n3n3λ3 + nn3nτ+1λ) in the malicious case.

6. The private channel messages sent by servers in Φ can be divided into messages
that are independent of the role (client/server) of the receiving party and ones that
are specifically intended for other server parties.

7. The total length of messages sent by all servers in Φ is O(n4nnλ3 + nτ+1Wλ) in
the semi-honest case and Õ(nτ−1n5nλ3+n3nnτ+1λ)+nτ+1Wλ in the malicious
case.

We now give a constructive proof of theorem 2 using the protocol described below.

2.2.1 Construction
We start by establishing some notations that will be used throughout this section.

Notations. We use various underlying protocols for different functionalities in our
construction. We use ΠX to denote the underlying protocol used for computing func-
tionality FX . The rth next message function of protocol ΠX is denoted by Πr

X . We
use multiple instantiations of these underlying protocols. In the rth round of the yth

instantiation of ΠX , we use M
r,y
X [i, j] to the message that server i sends to client j and

M
r,y
X [i] denotes the message that it broadcasts. IyX [i] denotes the input of server i in the
yth instantiation of ΠX . Often times, we replace some indices in the above notations
with symbols such as •, � or ∗ to denote a set. For instance Mr,yX [i, •] = {Mr,yX [i, j]}j∈n.
Similarly, � is used to denote all servers and ∗ is used for referring to all clients and
all parties respective. The collection of labels (of a garbled circuit) are denoted as
lab := {labi,0, labi,0}i∈[L]. Projection of a string of c ∈ {0, 1,⊥}L is defined as
Projection(c, lab) = {labi,c[i]}i∈[L], where labi,⊥ is defined to be ⊥. The output of
Projection is treated as a string. For convenience, we also specify that ⊥ under the
XOR operation remains unchanged. Specifically, ∀b ∈ {0, 1}, b ⊕ ⊥=⊥. Wherever
necessary, we augment the protocol description with comments denoted as //comment.

Next, we list the building blocks used in our construction.

Building Blocks. The main primitives required in this construction for computing an
n-input functionality F are the following:

15

1. An unconditionally secure message authentication scheme (MAC,Verify).
2. A two-round protocol Πaug [4] for n parties output by the compiler in Lemma 1,

for the function Faug defined in Figure 1.

Function: Faug

Parties: n parties P1, · · · , Pn.
Inputs: Each party has input Xi := xi||

{
x[j, i]||

{
tag`j→i

}
`∈[n] ||

{
kij→`

}
`∈[n]

}
j∈[n]

Output:

– ∀i, ` ∈ [n], j ∈ [n], check if Verify
(
x[j, i], tag`j→i, k

`
j→i

)
= 1

If all checks verify, set xj :=
⊕n

i=1 x[j, i], output := F
(
{xi}i∈[n], {xj}j∈[n]

)
– Else, if any of the checks failed, set output to be ⊥.

Return output.

Fig. 1: The augmented function Faug

Faug takes inputs from n parties, and parses each input as: (1)its own input; (2)
input shares (from parties not involved in the computation of F ′); (3) MAC tags for
each share; (4) MAC keys to verify tags.12

Upon aggregation the functionality checks if all the MAC tags verify. If the ver-
ification succeeds, input shares are used to reconstruct inputs of the parties not
involved in the computation. Output the result on evaluating F on the inputs (both
parties’ own and reconstructed).

Remark 2. Throughout this work, B will be used to denote broadcast messages.

3. A Garbled Circuit scheme GC = {Gen,Garb,Eval} based on one-way functions.
4. A two-round maliciously secure honest majority protocol [4]Πhelp computing func-

tion Fhelp, which helps the client select labels, of a garbled circuit, corresponding
to its input share.

Function: Fhelp

Parties: Clients C = {C1, · · · , Cn} and servers S = {S1, · · · , Sn}
Inputs:

– Client Ci (called sender) has input xi.
– Server Sj (called receiver) has input γj and {yjw,0, y

j
w,1}w∈[|xi|]

– Each server Sk ∈ S \ {Sj} (called label receiver) has input {ykw,0, ykw,1}w∈[|xi|].
– Each client Ck ∈ C \ {Ci}, (called helper) has no input.

Output: ∀Sk ∈ S, set outkhelp = Projection(xi[w] ⊕ γj[w], {ykw,0, ykw,1}w∈[|xi|]).
Output outhelp := {outkhelp}k∈[n] to all parties.

Fig. 2: The function Fhelp

12 The MAC keys correspond to tags held by other parites.

16

Fhelp separates out its participants into two sets, clients and servers. In addition, it
designates two special parties: clientCi, and server Sj.Ci provides input xi, and Sj

provides input γj. Additionally, all servers (including Sj) provide as input labels to
a garbled circuit. The other clients do not have any inputs. The functionality outputs
to all parties the projection of the labels corresponding to xi ⊕ γj. Since the parties
have asymmetric roles, the next message function of this protocol additionally takes
one of these labels as input (sen, rec, lrec, hel) to specify the exact role of the party.

Protocol. For each i ∈ [n], server i has input xi and for each i ∈ [n], client i has
input xi. For simplicity we assume that each these inputs are of length 1. Our protocol
easily extends to the setting with longer inputs. We assume that every party samples a
sufficiently long random string at the start of the protocol, which is used appropriately
throughout the protocol. Therefore we remove the randomness from protocol descrip-
tion and assume that it is implicit in all the algorithms used in the protocol.

Round 1. Each client Ci for i ∈ [n] computes the following:

1. Computes n additive shares of xi:
⊕n

j=1 x[i, j] = xi

2. Authentication tags for each share: ∀j, ` ∈ [n], sample k`i→j ←$ {0, 1}λ and compute
tag`i→j := MAC(k`i→j, x[i, j]).

3. Aggregate inputs: ∀j ∈ [n], Ihelp[i, j] := x[i, j] ◦ {tag`i→j}`∈[n] ◦ {kji→`}`∈[n]

4. First round of Πhelp:
(a) ∀j ∈ [n]: (i, j)-th instance as sender, M1,(i,j)help [i, ∗]← Π1

help(i, sen, Ihelp[i, j])

(b) ∀j ∈ [n] \ {i},k ∈ [n]: (j,k)-th instance as helper, M1,(j,k)help [i, ∗]← Π1
help(i, hel,⊥)

5. ∀j ∈ [n], send M
1,(•,�)
help [i, j] to server Sj.

6. ∀j ∈ [n], send M
1,(•,�)
help [i, j] to client Cj.

Each server Si for i ∈ [n] computes the following:

1. Sets Iaug[i] := xi ◦ Ihelp[•, i], where Ihelp[•, i] = ⊥ of appropriate length.
//This indicates the missing inputs that are contributed by the clients.

2. Computes first round messages of Π with random mask γi ←$ {0, 1}|Iaug[i]|:(
(Iaug[i]⊕ γi), M1aug[i, �], M1aug[i]

)
← Π1

aug(i, Iaug[i], γi)

3. Samples wire labels for a garbled circuit: labi[•, �]← Gen(1λ).
4. First round of Πhelp:

(a) ∀j ∈ [n]: (j, i)-th instance as receiver, set I(j,i)help [i] = γi|j ◦ labi[j, i] and computes

M
1,(j,i)
help [i, ∗]← Π1

help

(
i, rec, I

(j,i)
help [i]

)
//γi|j denotes the part of γi that is used to mask input Iaug[i, j].

(b) ∀k ∈ [n] \ {i}, j ∈ [n]: (j,k)th instance as label receiver, set I(j,k)help [i] = labi[j,k]

and computes M1,(j,k)help [i, ∗]← Π1
help

(
i, lrec, I

(j,k)
help [i]

)
5. ∀j ∈ [n], send M

1,(•,�)
help [i, j], M1aug[i, j] to server Sj

6. ∀j ∈ [n], send M
1,(•,�)
help [i, j] to client Cj.

7. Broadcast M1[i] :=
(
M1aug[i], (Iaug[i]⊕ γi)

)
Round 2.

17

– Each client Ci for i ∈ [n] computes and broadcasts second round messages of Πhelp:

∀k ∈ [n], j ∈ [n], (j,k)-th instance: M2,(j,k)help [i]← Π2
help

(
i, M

1,(j,k)
help [∗, i]

)
– Each server Si for i ∈ [n]:

1. Second round of Πhelp: ∀k ∈ [n], j ∈ [n] (j,k)-th instance: computes M2,(j,k)help [i] ←
Π2

help

(
i, M

1,(j,k)
help [∗, i]

)
2. Garbled circuit: sets ckti := P

[
i, M1aug[�], M1aug[�, i], {(Iaug[j]⊕ γj)}j∈[n]

]
and com-

putes P̃i ← Garb
(
Pi, labi[•, �]

)
, where program P is as defined in figure 3.

3. Broadcast
(
M
2,(•,�)
help [i], P̃i

)
Output Computation. Each every client and server computes the following:

1. Output of Πhelp: ∀j ∈ [n],k ∈ [n] l̃abi[j,k] := Π3
help

(
Mhelp,(j,k)[∗]

)
2. Evaluate garbled circuits: ∀i ∈ [n], M2aug[i] := Eval(P̃i, l̃abi[�, •])
3. Output of Π , y := Π3

aug(M
2
aug[�])

4. Output y.

Program: P

Input: {Ihelp[k, j]⊕ γj|k}k∈[n],j∈[n]

Hardcoded: i, M1aug[�], M1aug[�, i], {(Iaug[j]⊕ γj)}j∈[n]

Function:

– For each j ∈ [n], update Iaug[j]⊕ γj with values {Ihelp[k, j]⊕ γj|k}k∈[n].
– Compute and output the second round messages using these updated values of the first

round.
M
2
aug[i]← Π2

aug

(
i, M1aug[�], M1aug[�, i], {(Iaug[j]⊕ γj)}j∈[n]

)
Fig. 3

The security proof of the protocol can be found in in the full version.

Semi Honest Protocol. We note that for the semi-honest variant of the above protocol,
the MAC checks are no longer needed. Therefore, Fhelp can be simplified. The rest of
the protocol remains the same, except that we can instantiate the underlying protocols
used in this protocol with their semi-honest variants.

Complexity. Note that there are n · n instances of Πhelp. Given that Πhelp imple-
ments a quadratic functionality, the resulting circuit computed by each instance has size
O(λ2 · n2). Also, each instance is run by all n parties. Importantly, the circuit size
is independent of s, size of circuit representing the underlying protocol. There is also
a single instance of Πaug computing a circuit of size s with n parties. From the de-
scribed properties of the underlying protocols, this gives us a protocol with the desired
complexity. The details of the exact calculations are presented in the full version.

18

3 Efficiency Preserving Compiler in the Plain Model

In this section we go from the compiler in the client-server model in Section 2 to present
our main result, namely an efficient two-round compiler in the plain model. Formally
we prove the following theorem.

Theorem 3. Let n be the number of parties and λ be the security parameter, such that
n is polynomially related to λ and let k be set to log2(n).

1. Assuming one-way functions, there is a round compression compiler that trans-
forms a semi-honest MPC protocol π for any n-party functionality F into a two-
round semi-honest protocol Π ′ for F with the following properties:

(a) If π tolerates corruption threshold ε, then Π ′ tolerates ε′, for arbitrary con-
stants ε′ < ε < 1

2 .
(b) If the computational cost of π is W = W (n, s), where s is the circuit size

representation of F , then the amortized per-party computational cost and to-
tal communication cost of Π ′ is O

(
(W (k, s+ kn) + n4λ2) · λ · k3

)
. We will

denote this by Õ(W (k, s + kn)kτ−2 + n4), where the Õ notation suppresses
polynomial factors in k and λ. For most known protocols, the additive term in
the circuit size (kn) will be suppressed by the additive term of n4 simplifying
the expression to Õ(W (k, s) + n4).

2. Assuming one-way functions, there is a round compression compiler that trans-
forms a maliciously secure MPC protocol π for any n-party functionality F into a
three-round maliciously secure protocol Π ′ for F that satisfies properties 1(a) and
amortized per-party computational cost Õ(W (k, s) + nτ+4).

3. Assuming NIWIs, there is a round compression compiler that transforms a mali-
ciously secure MPC protocol π for any n-party functionality F into a two-round
maliciously secure protocol Π ′ in the reusable correlated randomness setup model
for F that satisfies properties 1(a) and amortized per-party computational cost
Õ(W (k, s) + nτ+4).

Overview. We now present an overview of the compiler that builds on the protocol
output by the compiler from Section 2 (Theorem 2) in the client-server model to get
a compiler in the plain model. Along the way, we shall discuss the relevant properties
used from Theorem 2. We shall do this in two steps.

1. Phase one: Compile the protocol in Section 2 to a protocol in the Felection-hybrid
model. In this model, at the start of the protocol, each party receives a bit from
Felection indicating whether it is in the committee. The functionality Felection is
described in Figure 4.

2. Phase two: Instantiate Felection based on the desired security properties of the final
protocol.

19

Function: Felection

Parameter: k
Parties: P := {P1, . . . , Pn}
Inputs: Parties do not have inputs.

Select, in expectation, a random k-sized subset of the parties to be elected to the committee.

Output: For each Pi: if Pi was selected, send 1. Else, send 0.

Fig. 4: The randomized functionality that selects a k-sized committee in expectation

The main challenge in going from the client-server model to the plain model is that
parties are no longer aware of the roles of the other parties, i.e. which parties are clients
and which are servers. To get around this issue, we will leverage the fact that Felection
guarantees that every party knows whether it is a server, but doesn’t know its index in
the server set.

Since the party doesn’t know its role (index) in the server (resp. client) set, it com-
putes messages assuming all n (resp. n) roles. At the end of the first round, when all
parties are aware of the elected committee based on the messages sent, the irrelevant
messages are discarded. But a problem with this approach is that the protocol involves
private messages, which require knowledge of the recipient’s role. Based on the prop-
erties listed in Theorem 2 from Section 2, we can divide the private messages into two
categories which are handled differently:

private message independent of the role of the receiving party . This is the case for
all private messages sent by the clients, and some of the private messages sent by the
servers. This is an easy setting to handle since these messages can be sent privately
without the need to know the recipient’s role.

private message intended for the parties in the server set . This is of concern only
to parties that are elected into the committee. Since a party is not aware of other elected
parties, these messages cannot be sent privately. Instead, the party masks these mes-
sages, and broadcasts the masked messages. But we want the designated party to re-
ceive the mask, and unmask the message to proceed with the computation. We seem to
be back where we started, but we use a solution similar to Section 2, where the second
round computation of the server parties are delegated to a garbled circuit. Now, the party
generating the mask initiates a helper protocol that will enable the appropriate party’s
garbled circuit to receive the mask, thereby allowing to proceed with the computation.
To ensure there is no complexity blow-up by involving all parties, we make sure that
the size of the computation involving all parties is independent of the underlying cir-
cuit. This is easily done by utilizing a pseudo-random generator (PRG) to generate the
masks.

The relevance of the other properties listed in Theorem 2 is in the efficiency of the
resultant protocol.

20

3.1 Phase One: Felection-hybrid Model

In this section, we shall perform the first step of our compilation. Namely, we shall
compile the protocol in Section 2 from the client-server model to a protocol in the
Felection-hybrid model. To differentiate from the client-server models, we shall refer to
parties “elected” to be in the server set to be a part of a committee.

Building Blocks. The main primitives required in this construction are the following:

1. The two-round protocol Πfc-s from Section 2 in the client-server model.
For this section, we shall use the following notation to refer to the first round mes-
sages ofΠfc-s . There are special first round messages13 that are privately sent among
the servers, these will be denoted by an additional S: M1fc-s

[i, j,S] indicates the spe-
cial message sent from server indexed by i to the server indexed by j. Other mes-
sages are denoted as previous sections with M1fc-s

[i, j] indicating a message from
party i to j (with appropriate font to differentiate between clients and severs).
Broadcast messages correspondingly defined. Additionally, as before, we group
messages corresponding clients (•), servers (�) or all parties (∗).

2. A Garbled Circuit scheme GC = {Gen,Garb,Eval}.
3. A two-round maliciously secure honest majority protocol ΠmOT computing func-

tion FmOT described in Figure 5.
FmOT is similar to a multi-party variant of oblivious transfer. There are two desig-
nated parties, sender (sen) and receiver (rec) with inputs b and (x0, x1) respectively,
while all other parties are referred to as helper (hel) parties. FmOT outputs xb to all
the parties.
Our protocol will use multiple instance of the ΠmOT protocol, which is indexed by
indices corresponding to (sender, receiver).

Function: FmOT

Parties: P := {P1, . . . , Pn}
Inputs:

– Party Pi (also called the receiver) has input {xi,0, xi,1}i∈[q]
– Party Pj (also called the sender) has input b ∈ {0, 1}q .
– For each Pk ∈ P \ {Pi, Pj} (also called the helper parties) have no inputs.

Output: Every party receives
{
xi,b[i]

}
i∈[q]

Fig. 5: The function FmOT where Pi acts as the sender and Pj acts as receiver

4. A pseudo-random generator PRG : {0, 1}λ → {0, 1}poly(λ).

As explained earlier, prior to sending the first round messages, a party is only aware
if it is in the committee, but not its role (index) in the committee (or outside). In our

13 This will correspond to the messages whose size depend on the size of the circuit being com-
puted.

21

protocol, depending on whether party Pi is in the committee (resp. outside), Pi com-
putes the first round message for every possible role in the committee (resp. outside).
The index of the sender in the protocol message is thus denoted by (i, j) (resp. (i, j)) to
indicate Pi’s message for role j in the committee (resp. role j outside).

Although no party is aware of the roles of the other parties at the start of the first
round of the protocol, there is an implicit mapping from the set of all parties to the
corresponding role in the committee (or outside). Q (resp. Q) denotes this mapping. At
the end of the first round, all parties will be able to locally compute both the mappings
and discard the relevant messages. We shall also abuse notation slightly and use Q and
Q to denote the corresponding sets.

Protocol. Let P = {P1, · · · , Pn} be the set of parties in the protocol and let the
corresponding inputs be x1, · · · , xn. We now give a formal description of the protocol
in the Felection-hybrid model. We assume parties sample appropriate random strings in
the protocol description.

Initialization-Election. At the start of the protocol, each party Pi receives a bit from Felection.
If the received bit is 1, then Pi is a committee member, else it is a non-committee member.

Round 1. Each non-committee member Pi for i ∈ Q computes the following:

1. For i ∈ [n] compute the first round of the following assuming role i:
– Client message in Πfc-s : M

1
fc-s [(i, i), ∗]← Π1

fc-s(i, xi)

– ∀j,k ∈ [n], (j,k)-th instance of ΠmOT as helper: M1,(j,k)mOT [(i, i), ∗]← Π1
mOT(hel,⊥)

2. For every j, send
(
i, M1fc-s [(i, •), j], M

1,(�,�)
mOT [(i, •), j]

)
to Pj privately.

3. Broadcast M1fc-s [(i, •), B].

Each committee members Pi for i ∈ Q computes the following:

1. For i ∈ [n] compute the first round of the following assuming role i:
(a) First round server messages in Πfc-s : M

1
fc-s [(i, i), ∗], M

1
fc-s [(i, i), �, S]← Π1

fc-s(i, xi)
(b) Sample PRG seeds s[(i, i), �]
(c) Wire labels for a garbled circuit: lab(i,i)[�, (i, i)]← Gen(1λ)
(d) ∀j ∈ [n]: ct[(i, i), j] := M1fc-s [(i, i), j, S]⊕ PRG(s[(i, i), j])
(e) First round of ΠmOT, for every j ∈ [n],

i. (i, j)-th instance as sender: M1,(i,j)mOT [(i, i), ∗]← Π1
mOT(sen, s[(i, i), j]).

ii. (j, i)-th instance as receiver: M1,(j,i)mOT [(i, i), ∗]← Π1
mOT(rec, lab(i,i)[j, (i, i)]).

iii. for every k ∈ [n], (j,k)-th instance as helper: M1,(j,k)mOT [(i, i), ∗]← Π1
mOT(hel,⊥

).
2. For every j ∈ [n], send

(
i, M1fc-s [(i, �), j], M

1,(�,�)
mOT [(i, �), j]

)
to Pj .

3. Broadcast msg1i :=
(
i, M1fc-s [(i, �), B], ct[(i, �), �]

)
At the end of Round 1. Each party locally computes the mappings Q and Q, discards the
extra messages and updates sender index from (i,Q(i)) to i(= Q(i)) for Pi in the committee
and (i,Q(i)) to i(= Q(i)) for Pi not in the committee.

Round 2. Each committee member Pi for i ∈ Q sets i := Q(i) and computes:

1. A garbled circuit as Pi ← Garb(Pi, labi[�, i]) where Pi is computed as
Pi := Pplain[xi, ct[�, i], M1fc-s [∗, B], M1fc-s [∗, i]] where Pplain defined in Figure 6.

22

2. ∀j,k ∈ [n], (j,k)-th instance of ΠmOT: M2,(j,k)mOT [i, B]← Π2
mOT(M

1,(j,k)
mOT [∗, i]).

3. Broadcast Pi, M
2,(�,�)
mOT [i, B]

Each non-committee member Pi for i ∈ Q sets i := Q(i) and computes:

1. Client messages in Πfc-s : M
2
fc-s [i, B]← Π2

fc-s(M
1
fc-s [∗, B], M1fc-s [∗, i])

2. ∀j,k ∈ [n], (j,k)-th instance of ΠmOT: M2,(j,k)mOT [i, B]← Π2
mOT(M

1,(j,k)
mOT [∗, i]).

3. Broadcast M2fc-s [i, B], M
2,(�,�)
mOT [i, B].

Output Computation. Each party does the following:

1. ∀j,k ∈ [n] output of ΠmOT: l̃abk[j,k]← Πout
mOT(M

2,(j,k)
mOT [∗, B]).

2. ∀i ∈ [n], evaluate the garbled circuits: M2fc-s [i, B]← Eval(Pi, l̃abk[�,k])
3. Output y ← Πout

fc-s(M
2
fc-s [∗, B])

Program: Pplain

Input: s[�, i]
Hardcoded: xi, ct[�, i], M1fc-s [∗, B], M1fc-s [∗, i]
Function:

– For each j ∈ [n], M1fc-s [j, i, S] := ct[j, i]⊕ PRG(s[j, i])
– Compute server messages in Πfc-s : M

2
fc-s [i, B]← Π2

fc-s(M
1
fc-s [∗, B], M1fc-s [∗, i], M

1
fc-s [∗, i, S])

– Output M2fc-s [i, B]

Fig. 6: Program Pplain unmasks the first round messages sent via broadcast, and com-
putes the second round messages of Πfc-s .

The security proof of the protocol can be found in the full version of the paper.

Complexity. Note that there are n2 instances of ΠmOT, where the sender has inputs
of length O(λ), while the receiver has inputs of length O(λ2). Given that ΠmOT im-
plements a quadratic functionality, the resulting circuit computed by each instance has
size O(λ2). Also, each instance is run by all n parties. Importantly, the circuit size is
independent of s, size of circuit representing the underlying protocol. There is an addi-
tional overhead of parties not knowing their own role in the committee. Finally, there
is a single instance of Πfc-s computed by all parties. The cost then follows from the
properties of the underlying protocols and the details are presented in the full version.

3.2 Phase Two

We can now complete the description of our compiler by instantiating the randomized
functionality Felection used in the protocol described in the Felection-hybrid model. We
consider three different settings, which will lead to corresponding results. The settings
are (a) semi-honest; (b) malicious in the reusable correlated randomness model; (c)
malicious in the plain model.

23

Semi-honest. For the semi-honest setting, the protocol idea is simple: every party
tosses appropriately biased coins to determine if it is in the committee. The only thing
left to do is to determine the right parameters so that we have a committee with poly-
logarithmic size and honest majority. This is a non-interactive process, and the resultant
protocol is given below. The committee size will be (1− δ) · k, where δ is any non-zero
constant.

Round 1. Each party does the following:
– Toss a coin that outputs 1 with probability p = k

n . If output 1, it assumes it is a
part of the committee and computes the messages

– If it is in the committee, pick an element ai←$Zq , from an exponentially sized
field Zq . This is to pick the relative position within the committee and trim the
committee if needed.

– All parties compute the client messages, and the parties that assumed they were
in the committee additionally compute server messages. This is because the
committee might be larger than the final size, and a party make not make it to
the final committee.

– Only parties that assumed they were in the committee broadcast their ai value.
Round 2. On receiving the first round messages, each party knows both (a) which par-

ties are in the committee; and (b) the relative roles of each party in the committee.
This follows from picking the committee to be the ordered set of first (1 − δ) · k
parties based on their broadcast ai. It then executed the rest of the protocol appro-
priately.

Since each party independently samples coins to determine if it is in the committee,
the expected party size is k. If we set k = Ω(log2(n)), from the Chernoff bound, other
than with negligible probability, the size of the committee is> (1−δ) log2(n), and thus
will not end up with a smaller committee. By a similar argument, it is easy to see that
other than with negligible probability, honest majority is maintained in the committee.
This gives us a resultant two round semi-honest protocol in the plain model.

Lemma 2. Assuming the that the fraction of adversarial parties are bounded by
(
1
2 − ε

)
for some ε > 0, our constructed protocol is a two round semi-honest protocol.

Remark 3. While our protocol is proven in the malicious setting, we instantiate the
underlying protocols with their corresponding semi-honest versions. The semi-honest
versions also satisfy Lemma 1.

The security of the protocol follows from the composition theorem for semi-honest
protocols [28].

Malicious in the reusable correlated randomness model. We consider the setting of
the reusable correlated randomness model, where the trusted set up can select the pub-
lic and private keys for a verifiable random function (VRF) [37]. We then follow the
same strategy of selecting a committee as done in Algorand [27]. While they select
committees by weight, we set the weights for each party to be identical (say 1).

Specifically, the trusted parties select public/private key pairs (pki, ski) for each
party i, and a random seed. Additionally, a threshold τ is picked based on the required
size of the committee.

24

Round 1. Each party receives the public key for all parties, and a public/private key
pair (pki, ski) unique to it. It then evaluates the VRF to determine if it is in the
committee. It then computes the first round messages of the Phase one protocol,
and also broadcasts the messages indicating it is in the committee.

Round 2. Compute the second round messages of the Phase one protocol.

We allow the adversary to adaptively pick the parties it corrupts having seen only the
public keys for all parties and the private keys for the parties it has corrupted thus far.

As stated in [27], we have the following two properties. Given a random seed, VRF
outputs a pseudorandom value. Hence the parties are randomly picked into the com-
mittee. An adversary that does not know the secret key ski for party i cannot guess if
i was chosen at all (more precisely, the adversary cannot guess any better than just by
randomly guessing).

This lets us allow the adversary to adaptively corrupt parties based on the public
keys, seed and the secret keys of the parties it has corrupted thus far. This would give us
a two round protocol, maliciously secure against an adaptive adversary in the presence
of trusted set up.

Lemma 3. Assuming the that the fraction of adversarial parties are bounded by
(
1
2 − ε

)
for some ε > 0, our constructed protocol is a two round protocol in the trusted set up
model secure against malicious adversaries.

We note that the best known constructions for VRFs are based on non-interactive
witness indistinguishable proofs (NIWIs) [8, 30], which are in turn known from the
assumption of bilinear maps [31].

Malicious in the plain model. In the malicious setting, we cannot let the parties lo-
cally sample coins. Instead, we run Feige’s lightest bin protocol [21] to determine the
committee. The protocol gives a method of selecting a committee of approximately k
parties for a given parameter k. It is a single round protocol, where the parties broadcast
their choice of a random bin in the set

[
n
k

]
. This adds an additional round to the start of

the protocol.

Round 1. Every party broadcasts a random bin in the set
[

n
log2(n)

]
.

Round 2. Each party knows whether they are in the committee based on the received
broadcast, by picking the (1 − δ) · k lightest bins. In fact at the end of this round,
we get a stronger property that every party is aware of the role of every party in the
protocol, i.e. whether a given party is in the committee.
Now each party can compute first round messages of the protocol from Phase one.

Round 3. Each party computes second round messages of the protocol from Phase one.

The following lemma from [21] is relevant to us.

Lemma 4 ([21]). For k = log2 n, if the number of corrupted parties is βn, for any
constant δ > 0, other than with negligible probability in n, the size of the committee C
will be elected such that:

bound on size: (1− β − δ) log2 n ≤ |C| ≤ log2 n;

25

honest parties in committee: # honest parties in the committee is≥ ((1−β−δ) log2 n).

In our setting, β <
(
1
2 − ε

)
, which guarantees an honest majority in the committee.

This gives us a resultant three round maliciously secure protocol in the plain model.

Lemma 5. Assuming the that the fraction of adversarial parties are bounded by
(
1
2 − ε

)
for some ε > 0, our constructed protocol is a three round protocol secure against ma-
licious adversaries.

The security of the protocol follows from the sequential composition theorem [28].

Remark 4. We note that both Fhelp and FmOT resemble the multiparty homomorphic
OT (M-OT) functionality described in [1]. These functionalities can be seen as spe-
cial cases of the M-OT functionality, but we’ve described them separately for ease of
notation.

4 Impossibility Result

In this section we prove our impossibility result showing that our committee based
approaches are inherent to the results we achieve.

Theorem 4. There exists an n-party function F , such that there does not exist an n-
party, r-round balanced scalable (possibly insecure) MPC protocol, where each party
does asymptotically equal amount of work, computing a circuit C of size s, where r is
some constant, and the protocol can be represented by a circuit of size Õ(s) defined
over the basis {AND,OR,NOT}.

Proof. We make a novel use of the “MPC in the head” paradigm [35] to prove this
theorem.

Let us assume for contradiction that for every n-party functionality F , there exists
an r-round scalable MPC protocolΠ computingF , where r is a constant and each party
can be represented as a circuit over the basis {AND,OR,NOT} of size Õ(s)/n. Let
Π.NMFi,j be the next-message function of party i (for each i ∈ [n]) in round j (for each
j ∈ [r]). Since r is a constant, the size of the circuit implementing the next-message
function of each party i ∈ [n] in each round j ∈ [r] is

|Π.NMFi,j| =
Õ(s)

rn
=
Õ(s)

n

Hence, depth of each next message function |Π.NMFi,j |d=Õ(s)/n.

Base Step. We now modify Π to Π1 as follows: for each i ∈ [n], j ∈ [r], we execute
MPC protocol Π (let us denote this execution by Π1,i,j) to implement Π.NMFi,j . The
size of the circuit implementing the next-message function of each party i′ ∈ [n] in
each round j′ ∈ [r] of this sub-protocol Π1,i,j is

|Π1,i,j .NMFi′,j′ |=
Õ(|Π.NMFi,j |)

n =
Õ(s)

n2

26

Hence, depth of each next message function in each sub-protocol |Π1,i,j .NMFi′,j′ |d=

Õ(s)/n2.
The total number of rounds in the resulting protocol Π1 is r2 and in each round

j′ ∈ [r2], the next message function of each party i′ ∈ [n] is

Π1.NMFi′,j′=Π1,1,j .NMFi′,j′ ||...||Π1,n,j .NMFi′,j′

where j = j′ mod r. Note that since this is a parallel composition of n circuits, each
of depth Õ(s)/n2, the depth of each next message function in the modified protocol
Π1 = Õ(s)/n2.

Let p be a constant such that Õ(s)/np is some constant c. Now for each k ∈
{2, . . . , p− 1}, we perform the following recursion step.

Recursion Step. We modify the rk-round protocol Πk−1 to obtain Πk as follows: for
each i ∈ [n], j ∈ [rk], we execute MPC protocol Π (let us denote this execution by
Πk,i,j) to implement Πk−1.NMFi,j . Similar to before, the depth of the circuit imple-
menting the next-message function of each party i′ ∈ [n] in each round j′ ∈ [r] of this
sub-protocol Πk,i,j is

|Πk,i,j .NMFi′,j′ |d=
Õ(|Πk−1.NMFi,j |d)

n =
Õ(s)

nk+1

The total number of rounds in the resulting protocol Π1 is r2 and in each round
j′ ∈ [rk+1], the next message function of each party i′ ∈ [n] is

Πk.NMFi′,j′=Πk,1,j .NMFi′,j′ ||...||Πk,n,j .NMFi′,j′

where j = j′ mod r. Again since this is a parallel composition of n circuits, each of
depth Õ(s)/nk+1, the depth of each next message function in the resulting modified
protocol Π1 = Õ(s)/nk+1.

Protocol Πp−1. The depth of the next message function of each party in each round, in
the final rp-round protocol Πp−1 is

Õ(s)

np
= c

Thus the final modified protocol Πp−1 can be viewed as a circuit of depth (c ×
No. of rounds) = c · rp = O(1). Moreover, the size of this circuit is poly(s).

This means that every n-party functionality F representable by a polynomial-sized
circuit, also admits a constant-depth polynomial-sized circuit over the basis {AND,OR,
NOT} and thus is in AC0. However note that there are functions like parity and majority
that are not in AC0. Therefore, this is a clear contradiction.

Acknowledgments

Arka Rai Choudhuri, Aarushi Goel and Abhishek Jain are supported in part by DARPA/ARL
Safeware Grant W911NF-15-C-0213, NSF CNS-1814919, NSF CAREER 1942789,

27

Samsung Global Research Outreach award and Johns Hopkins University Catalyst award.
Arka Rai Choudhuri is also supported by NSF Grants CNS-1908181, CNS-1414023,
and the Office of Naval Research Grant N00014-19-1-2294. Aarushi Goel is also sup-
ported in part by NSF Grants CNS-1653110 and CNS-1801479 and the Office of Naval
Research under contract N00014-19-1-2292.

References

1. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Round-optimal secure multi-
party computation with honest majority. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 395–424. Springer, Heidelberg (Aug 2018).
https://doi.org/10.1007/978-3-319-96881-0 14

2. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Two round information-theoretic MPC with
malicious security. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol.
11477, pp. 532–561. Springer, Heidelberg (May 2019). https://doi.org/10.1007/978-3-030-
17656-3 19

3. Applebaum, B., Brakerski, Z., Tsabary, R.: Perfect secure computation in two rounds. In:
Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol. 11239, pp. 152–174.
Springer, Heidelberg (Nov 2018). https://doi.org/10.1007/978-3-030-03807-6 6

4. Applebaum, B., Brakerski, Z., Tsabary, R.: Degree 2 is complete for the round-complexity
of malicious MPC. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol.
11477, pp. 504–531. Springer, Heidelberg (May 2019). https://doi.org/10.1007/978-3-030-
17656-3 18

5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (ex-
tended abstract). In: 22nd ACM STOC. pp. 503–513. ACM Press (May 1990).
https://doi.org/10.1145/100216.100287

6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In: 20th ACM STOC. pp. 1–10.
ACM Press (May 1988). https://doi.org/10.1145/62212.62213

7. Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious trans-
fer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part II. LNCS, vol. 10821, pp. 500–532. Springer, Heidelberg (Apr / May 2018).
https://doi.org/10.1007/978-3-319-78375-8 17

8. Bitansky, N.: Verifiable random functions from non-interactive witness-indistinguishable
proofs. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 567–594.
Springer, Heidelberg (Nov 2017). https://doi.org/10.1007/978-3-319-70503-3 19

9. Boyle, E., Chung, K.M., Pass, R.: Large-scale secure computation: Multi-party com-
putation for (parallel) RAM programs. In: Gennaro, R., Robshaw, M.J.B. (eds.)
CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 742–762. Springer, Heidelberg (Aug 2015).
https://doi.org/10.1007/978-3-662-48000-7 36

10. Boyle, E., Goldwasser, S., Tessaro, S.: Communication locality in secure multi-party
computation - how to run sublinear algorithms in a distributed setting. In: Sahai, A.
(ed.) TCC 2013. LNCS, vol. 7785, pp. 356–376. Springer, Heidelberg (Mar 2013).
https://doi.org/10.1007/978-3-642-36594-2 21

11. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G., Rothblum, R., Wichs, D.:
Fiat–shamir: from practice to theory. STOC (2019)

12. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th ACM STOC. pp. 11–19. ACM Press (May 1988).
https://doi.org/10.1145/62212.62214

28

https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-030-17656-3_19
https://doi.org/10.1007/978-3-030-17656-3_19
https://doi.org/10.1007/978-3-030-03807-6_6
https://doi.org/10.1007/978-3-030-17656-3_18
https://doi.org/10.1007/978-3-030-17656-3_18
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/62212.62213
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1007/978-3-662-48000-7_36
https://doi.org/10.1007/978-3-642-36594-2_21
https://doi.org/10.1145/62212.62214

13. Cohen, G., Damgård, I.B., Ishai, Y., Kölker, J., Miltersen, P.B., Raz, R., Rothblum, R.D.:
Efficient multiparty protocols via log-depth threshold formulae. In: Annual Cryptology Con-
ference. pp. 185–202. Springer (2013)

14. Damgård, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (Aug 2006).
https://doi.org/10.1007/11818175 30

15. Damgård, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and the
computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 445–465. Springer, Heidelberg (May / Jun 2010). https://doi.org/10.1007/978-
3-642-13190-5 23

16. Damgård, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable multiparty compu-
tation with nearly optimal work and resilience. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 241–261. Springer, Heidelberg (Aug 2008). https://doi.org/10.1007/978-3-
540-85174-5 14

17. Damgård, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty computation. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590. Springer, Heidelberg (Aug
2007). https://doi.org/10.1007/978-3-540-74143-5 32

18. Dani, V., King, V., Movahedi, M., Saia, J.: Brief announcement: breaking the o(nm) bit bar-
rier, secure multiparty computation with a static adversary. In: ACM Symposium on Prin-
ciples of Distributed Computing, PODC ’12, Funchal, Madeira, Portugal, July 16-18, 2012.
pp. 227–228 (2012)

19. Dani, V., King, V., Movahedi, M., Saia, J.: Quorums quicken queries: Efficient asynchronous
secure multiparty computation. In: ICDCN. Lecture Notes in Computer Science, vol. 8314,
pp. 242–256. Springer (2014)

20. Dani, V., King, V., Movahedi, M., Saia, J., Zamani, M.: Secure multi-party computation in
large networks. Distributed Computing 30(3), 193–229 (2017)

21. Feige, U.: Noncryptographic selection protocols. In: 40th FOCS. pp. 142–153. IEEE Com-
puter Society Press (Oct 1999). https://doi.org/10.1109/SFFCS.1999.814586

22. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature
problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp. 186–194. Springer,
Heidelberg (Aug 1987). https://doi.org/10.1007/3-540-47721-7 12

23. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguisha-
bility obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer,
Heidelberg (Feb 2014). https://doi.org/10.1007/978-3-642-54242-8 4

24. Garg, S., Ishai, Y., Srinivasan, A.: Two-round MPC: Information-theoretic and black-box.
In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol. 11239, pp. 123–151.
Springer, Heidelberg (Nov 2018). https://doi.org/10.1007/978-3-030-03807-6 5

25. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assump-
tions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp.
468–499. Springer, Heidelberg (Apr / May 2018). https://doi.org/10.1007/978-3-319-78375-
8 16

26. Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computation: From pas-
sive to active security via secure SIMD circuits. In: Gennaro, R., Robshaw, M.J.B. (eds.)
CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 721–741. Springer, Heidelberg (Aug 2015).
https://doi.org/10.1007/978-3-662-48000-7 35

27. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling byzantine
agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on Operating Sys-
tems Principles, Shanghai, China, October 28-31, 2017. pp. 51–68 (2017)

28. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge
University Press (2004)

29

https://doi.org/10.1007/11818175_30
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-540-85174-5_14
https://doi.org/10.1007/978-3-540-85174-5_14
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1109/SFFCS.1999.814586
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-030-03807-6_5
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-662-48000-7_35

29. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness
theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC. pp. 218–229.
ACM Press (May 1987). https://doi.org/10.1145/28395.28420

30. Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to con-
structing and proving verifiable random functions. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017, Part II. LNCS, vol. 10678, pp. 537–566. Springer, Heidelberg (Nov 2017).
https://doi.org/10.1007/978-3-319-70503-3 18

31. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-knowledge. J.
ACM 59(3), 11:1–11:35 (2012)

32. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: Computing without si-
multaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 132–150.
Springer, Heidelberg (Aug 2011). https://doi.org/10.1007/978-3-642-22792-9 8

33. Hirt, M., Maurer, U.: Player simulation and general adversary structures in perfect multiparty
computation. Journal of cryptology 13(1), 31–60 (2000)

34. Hirt, M., Nielsen, J.B.: Robust multiparty computation with linear communication complex-
ity. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 463–482. Springer, Heidelberg
(Aug 2006). https://doi.org/10.1007/11818175 28

35. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from secure mul-
tiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009)

36. Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal interac-
tion. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594. Springer, Heidelberg
(Aug 2010). https://doi.org/10.1007/978-3-642-14623-7 31

37. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th FOCS. pp. 120–
130. IEEE Computer Society Press (Oct 1999). https://doi.org/10.1109/SFFCS.1999.814584

38. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for np from (plain) learning with
errors. Tech. rep., Cryptology ePrint Archive, Report 2019/158, 2019. https://eprint. iacr.
org . . . (2019)

39. Saia, J., Zamani, M.: Recent results in scalable multi-party computation. In: SOFSEM 2015:
Theory and Practice of Computer Science - 41st International Conference on Current Trends
in Theory and Practice of Computer Science, Pec pod Sněžkou, Czech Republic, January
24-29, 2015. Proceedings. pp. 24–44 (2015)

40. Yao, A.C.C.: How to generate and exchange secrets. In: Foundations of Computer Science,
1986., 27th Annual Symposium on. pp. 162–167. IEEE (1986)

41. Zamani, M., Movahedi, M., Saia, J.: Millions of millionaires: Multiparty computation in
large networks. IACR Cryptology ePrint Archive 2014, 149 (2014), http://eprint.
iacr.org/2014/149

30

https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/978-3-319-70503-3_18
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/11818175_28
https://doi.org/10.1007/978-3-642-14623-7_31
https://doi.org/10.1109/SFFCS.1999.814584
http://eprint.iacr.org/2014/149
http://eprint.iacr.org/2014/149

	Towards Efficiency-Preserving Round Compression in MPC5pt Do fewer rounds mean more computation?

