
Quantum Circuit Implementations of AES
with Fewer Qubits

Jian Zou1,2, Zihao Wei3,4, Siwei Sun3,4?, Ximeng Liu1,2, Wenling Wu5

1Mathematics and Computer Science of Fuzhou University,
Fuzhou, Fujian Province, China

2Key Lab of Information Security of Network Systems (Fuzhou University),
Fujian Province, China fzuzoujian15@163.com, snbnix@gmail.com

3State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

4School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
weizihao@iie.ac.cn, siweisun.isaac@gmail.com

5Institute of Software, Chinese Academy of Sciences, Beijing, China
wwl@tca.iscas.ac.cn

Abstract. We propose some quantum circuit implementations of AES
with the following improvements. Firstly, we propose some quantum cir-
cuits of the AES S-box and S-box−1, which require fewer qubits than
prior work. Secondly, we reduce the number of qubits in the zig-zag
method by introducing the S-box−1 operation in our quantum circuits of
AES. Thirdly, we present a method to reduce the number of qubits in the
key schedule of AES. While the previous quantum circuits of AES-128,
AES-192, and AES-256 need at least 864, 896, and 1232 qubits respec-
tively, our quantum circuit implementations of AES-128, AES-192, and
AES-256 only require 512, 640, and 768 qubits respectively, where the
number of qubits is reduced by more than 30%.

Key words: AES, S-box, S-box−1, quantum circuit, circuit complexity

1 Introduction

In the post-quantum era, we need to study the security of cryptographic sys-
tems against quantum attackers. In fact, many cryptographic schemes turn out
to be less secure against attacks based on quantum computing. Some asymmet-
ric cryptographic primitives face devastating attacks due to Shor’s algorithm
[24]. In contrast, the impact of quantum computing on secret-key cryptography
seems to be less severe. Most of the existing works are based on Grover’s algo-
rithm [12] and Simon’s algorithm [25]. Grover’s algorithm can solve the search
problem with quadratic speed-up, while Simon’s algorithm can find the hidden
period with polynomially many quantum queries. In such attacks, the corre-
sponding quantum oracle of the target cipher has to be implemented. Due to
the importance of AES, it is one of the most studied ciphers [11,17,3,18,15] in

? Corresponding author.

the context of efficient synthesis of quantum circuits. These implementations can
be potentially used in some quantum attacks against symmetric-key primitives
involving AES [4,13,16,9]. In this paper, we construct some quantum circuits of
AES with fewer qubits, and the techniques involved may provide more flexible
qubit and circuit depth trade-offs for the quantum circuits of AES.

A quantum oracle for any classical vectorial Boolean function can be con-
structed with the Clifford + T gate set, which consists of the Hadamard gate
(H), Phase gate (S), controlled-NOT gate (CNOT), and non-clifford T gate.
There are some works on synthesizing optimal reversible circuits, such as re-
versible Boolean functions. Shende et al. [22] considered the synthesis of 3-bit
reversible logic circuits using NOT gate, CNOT gate, and Toffoli gate. Golu-
bitsky et al. [10] proposed an optimal 4-bit reversible circuits composed with
NOT gate, CNOT gate, Toffoli gate, and the 4-bit Toffoli gate. The goal of syn-
thesizing the optimal quantum circuit implementation is to reduce the circuit
depth and number of qubits [11,17,3,18]. According to our current understand-
ing of fault-tolerant quantum computing, the metric of T -depth is probably the
most important. However, before practical quantum computers are built, the
method for reducing the cost with respect to the number of qubits is also very
meaningful, and it may provides more flexible qubit and depth trade-offs.

Recently, the construction of efficient quantum circuits of AES has attracted
much attention. In [8], Datta et al. presented a reversible implementation of AES.
In [15], Jaques et al. proposed a method to minimize the depth-times-width cost
metric for quantum circuits of AES. In [11], Grassl et al. proposed a quantum
circuit of AES aiming at the lowest possible number of qubits. In [17], Kim et al.
showed some time-memory trade-offs for key search on AES. In [3], Almazrooie
et al. presented a new quantum circuit of AES-128. By utilizing the classical
algebraic structure of the S-box [5], Langenberg et al. in [18] showed a new way
to construct the quantum circuit of AES’s S-box, based on which Langenberg et
al. proposed an efficient quantum circuit of AES-128. Compared to Almazrooie
et al.’s and Grassl et al.’s estimates, the circuit proposed by Langenberg et al.
could reduce the number of qubits and Toffoli gates simultaneously. Langenberg
et al.’s work shows that we can construct an improved quantum circuit of AES
by constructing a more efficient classical circuit of AES.

There are several works on how to reduce the gate number of AES in the
classical setting [14,7,1,19,28]. In [14], Itoh and Tsujii proposed the tower field
architecture for calculating multiplicative inverse in F2, which was a powerful
technique for designing compact hardware implementation of S-box. By using
the tower field technique, Canright in [7] showed an efficient method for comput-
ing the multiplicative inverse of the input. In [6], Boyar and Peralta proposed a
depth 16 circuit for the S-box in AES by using the tower field implementation.

Contribution. Firstly, we propose an improved quantum circuit for the S-box−1

of AES based on the improved classical circuit of the inverse of the AES S-
box [28,29]. Also, by exploiting some useful linear relationship, we propose some
improved qubit-depth trade-offs for the quantum circuits of S-box/S-box−1 of

2

AES. The improvements of the S-box and its inverse lead to corresponding im-
provements of the quantum circuits of the round function and the key-schedule
algorithm of AES. Taking AES-128 as an example, we can generate W4i by XOR-
ing SubWord(RotWord(W4i−1)), Rcon(i/s), W4i−1, W4i−5, W44i−9 to W4i−13

(for 4 ≤ i ≤ 10). In other words, we can obtain W4i without introducing new
qubits or cleaning up W4i−13 (for 4 ≤ i ≤ 10). That is, our quantum circuit for
the key schedules of AES-128/-192/-256 need 128/192/256 qubit, and 6 ancillas
qubits, which require fewer qubits than the previous works [11,3,18,15].

Secondly, we propose an improved zig-zag method with fewer qubits. To
compute the output of the AES round function, we need 256 qubits to store
the 128 qubits input and the 128 qubits output of the round function. In other
words, we need at least 256 qubits in the zig-zag method. By using our quantum
circuits of AES’s S-box and S-box−1, we propose an improved zigzag method for
AES-128/-192/-256 with 256 qubits, which matches the minimum values. That
is, our improved zig-zag method require 256/256/256 qubits for AES-128/-192/-
256, while the prior work needed at least 528/656/656 qubits for AES-128/-192/-
256, respectively.

We summarize the quantum resources to implement AES in Table 1. The
Toffoli/CNOT/NOT means the number of Toffoli gates, CNOT gates, and
NOT gates, and # qubits means the number of qubits. We will adopt the same
notations in the following tables. As shown in Table 1, our quantum circuit
implementations of AES require fewer qubits than the prior works. Also, our
quantum circuits of AES-128/-256 can obtain the best trade-off of T ·M , where
T is the Toffoli depth and M is the number of qubits.

Table 1. Summary of the quantum resources to implement AES

Algorithm # qubits Toffoli Depth # Toffoli # CNOT # NOT T ·M Source

AES-128

984 12672 151552 166548 1456 12469248 [11]

976 not reported 150528 192832 1370 not reported [3]

864 1880 16940 107960 1570 1624320 [18]

512 2016 19788 128517 4528 1032192 Sect. 6.1

AES-192

1112 11088 172032 189432 1608 12329856 [11]

896 1640 19580 125580 1692 1469440 [18]

640 2022 22380 152378 5128 1294080 Sect. 6.2

AES-256

1336 14976 215040 233836 1943 20007936 [11]

1232 2160 23760 151011 1992 2661120 [18]

768 2292 26774 177645 6103 1760256 Sect. 6.2

Remark. In this work, the Toffoli-count and Toffoli-depth are involved in our
metric. A more fine-grained and accurate approach is to implement the entire
circuit with the Clifford+T set, count the number of T gate, and measure the
T -depth as was done in [15]. In [15], the quantum circuit was implemented with

3

Q# [26] and the cost of the quantum circuit was estimated by the resource esti-
mator of Q#. However, it seems that there are some issues with the resource es-
timator (see https://github.com/microsoft/qsharp-runtime/issues/192).
So we do not use it here.

Outline. In Section 2, we present the definitions of some quantum gates. Section
3 not only makes a brief introduction to AES, but also shows the algebraic struc-
tures of AES’s S-box/S-box−1. In Section 4, we propose our improved quantum
circuits of AES’s S-box and S-box−1. Section 5 shows our improved ideas for the
zig-zag method and the key schedule of AES. In Section 6, we show our improved
quantum circuit implementations of AES. We conclude this paper in Section 7.

2 Notations

The classical circuits allow wires to be joined together, such as a = a ⊕ b and
a = a∧b. Obviously these operations are not reversible and not unitary. Different
from the classical circuits, quantum circuits shall be reversible and unitary, which
can be constructed by replacing classical gates with quantum gates. For example,
we shall simulate AND gates with the Toffoli gate, while a XOR gate can be
simulated with the CNOT gate.

Some prior works [2] showed that the quantum circuit consisting only of
Clifford gates were not advantageous over classical computing. In other words,
we shall adopt some non-Clifford gates (i.e. Toffoli gate) to obtain the quantum
benefit. Also, some works [23,27] showed the Toffoli gate and Clifford gates were
universal. That is, we can implement any quantum computation by these gates.
As shown in [20], the Clifford groups are much cheaper than the Toffoli gate (or
T -gate). As a result, [11,17,18] defined the Toffoli depth as the time cost of the
algorithm, while the memory cost is the total number of logical qubits required
to perform the quantum algorithm. Similar to [11,17,18], we define the time and
memory cost of our quantum circuit implementation of AES as follows.

Definition 1. A unit of quantum computational time cost is defined as the time
for running a nonparallelizable logical Toffoli gate.

Definition 2. The space cost of the quantum circuit is defined as the number
of logical qubits for the entire quantum computational.

Apart from the two definitions, we also clarify three kinds of qubits to avoid
the confusions.

1. Data qubits are written as the input message, such as the round key or the
input plaintext.

2. Ancilla qubits (or called garbage qubits) are initialized qubits those assist
certain operation, which get written unwanted information after a certain
operation. Note that we shall clean up the ancilla qubits at the end of the
quantum circuit.

4

https://github.com/microsoft/qsharp-runtime/issues/192

3. Output qubits contain the output information of a certain operation. Note
that we do not need to clean up the output qubits.

Based on the definitions of three types of qubits, we adopt the following two
strategies to reduce the number of qubits. First, we shall avoid applying the Tof-
foli gate to ancilla qubits, because these wires shall be cleaned up. However, we
do not need to clean up the output qubits. As a result, we shall apply the Toffoli
gates to output qubits to avoid involving them in the cleanup process. Second,
some ancilla qubits remained idle until the end of the quantum circuit. By un-
computing these wires, we can reuse these ancilla qubits instead of introducing
new ancilla qubits, which can reduce the number of qubits.

3 The AES Block Cipher

AES [21] is a family of iterative block ciphers based on the SPN structure. Its
members with 128-bit, 192-bit, and 256-bit keys are denoted as AES-128 (10-
round), AES-192 (12-round), and AES-256 (14-round), respectively. We will
show the round function and key schedule of AES in the following. We refer
the reader to [21] for the full description of AES.

3.1 Specification of AES

The AES round function consists the following four operations: AddRoundKey◦
MixColumns ◦ ShiftRows ◦ SubBytes, where

• AddRoundKey exclusive-ors each round key to the state;
• SubBytes is the only non-linear transformation in AES, which applies an

8-bit S-box to the 16 bytes of the state in parallel. The algebraic structure
of S-box is shown in Section 3.2.
• ShiftRows cyclically rotates the cells of the i-th row to the left by i-byte

(for 0 ≤ i ≤ 3).
• MixColumns does a linear transformation on each column of the state with

the MDS matrix

M =

[
0x02 0x03 0x01 0x01
0x01 0x02 0x03 0x01
0x01 0x01 0x02 0x03
0x03 0x01 0x01 0x01

]
.

Similar to the encryption procession of AES, the decryption process of AES
also consists of four operations AddRoundKey ◦ InvMC ◦ InvShiftRows ◦
InvSubBytes, where

• AddRoundKey exclusive-ors the round key to the state;
• InvSubBytes is the inverse operation of SubBytes;
• InvShiftRows cyclically rotates the cells of the i-th row to the right by
i-byte (for 0 ≤ i ≤ 3).

• InvMC does a linear transformation on each column with the MDS matrix

M−1 =

[
0x0E 0x0B 0x0D 0x09
0x09 0x0E 0x0B 0x0D
0x0D 0x09 0x0E 0x0B
0x0B 0x0D 0x09 0x0E

]
.

5

The key schedules of AES-128/-192/-256 are described in Algorithm 1 and
Algorithm 2. The parameters s and t used in the key schedules of AES-128 are
s = 4, t = 43, while AES-192 adopts s = 6, t = 51.

Algorithm 1 The key schedules of AES-128 and AES-192

For i = s till i = t do
If i ≡ 0 mod s, then

Wi = Wi−s ⊕ SubWord(RotWord(Wi−1))⊕Rcon(i/s);
else Wi = Wi−s ⊕Wi−1.

Algorithm 2 The key schedules of AES-256

For i = 8 till i = 59 do
If i ≡ 0 mod 8, then

Wi = Wi−8 ⊕ SubWord(RotWord(Wi−1))⊕Rcon(i/8);
If i ≡ 4 mod 8, then

Wi = Wi−8 ⊕ SubWord(Wi−1);
else Wi = Wi−8 ⊕Wi−1.

The operations RotWord, Rcon and SubWord used in Algorithm 1 and
Algorithm 2 are explained as follows.

• RotWord cyclically rotates the four bytes to the left by 1-byte;
• Rcon exclusive-ors the constant to each byte of the word;
• SubWord applies an S-box operation to each byte of the word.

3.2 The algebraic structures of the S-box of AES

There are several ways to implement the S-box of AES. In [5], Boyar and Per-
alta showed an efficient way to compute AES’s S-box by using the tower field
architecture. Since we do not find a circuit with fewer AND gate than the clas-
sical circuit proposed by Boyar and Peralta [5], we adopt their classical circuit
to construct our quantum circuit of AES’s S-box in the Sect. 4. Their circuit
represents AES’s S-box as S(x) = BS · FS(US · x), where the matrix US takes
x0, x1, · · · , x7 as input and outputs x7, y1, · · · , y21.

y14 = x3 ⊕ x5, y13 = x0 ⊕ x6, y9 = x0 ⊕ x3, y8 = x0 ⊕ x5,

t0 = x1 ⊕ x2, y1 = t0 ⊕ x7, y4 = y1 ⊕ x3, y12 = y13 ⊕ y14,

y2 = y1 ⊕ x0, y5 = y1 ⊕ x6, y3 = y5 ⊕ y8, t1 = x4 ⊕ y12,

y15 = t1 ⊕ x5, y20 = t1 ⊕ x1, y6 = y15 ⊕ x7, y10 = y15 ⊕ t0,

y11 = y20 ⊕ y9, y7 = x7 ⊕ y11, y17 = y10 ⊕ y11, y19 = y10 ⊕ y8,

y16 = t0 ⊕ y11, y21 = y13 ⊕ y16, y18 = x0 ⊕ y16.

The function FS : F22
2 → F18

2 takes x7, y1, · · · , y21 as input and outputs z0, z1, · · · , z17.

6

t2 = y12 · y15, t3 = y3 · y6, t4 = t3 ⊕ t2, t5 = y4 · x7,

t6 = t5 ⊕ t2, t7 = y13 · y16, t8 = y5 · y1, t9 = t8 ⊕ t7,

t10 = y2 · y7, t11 = t10 ⊕ t7, t12 = y9 · y11, t13 = y14 · y17,

t14 = t13 ⊕ t12, t15 = y8 · y10, t16 = t15 ⊕ t12, t17 = t4 ⊕ y20,

t18 = t6 ⊕ t16, t19 = t9 ⊕ t14, t20 = t11 ⊕ t16, t21 = t17 ⊕ t14,

t22 = t18 ⊕ y19, t23 = t19 ⊕ y21, t24 = t20 ⊕ y18,

t25 = t21 ⊕ t22, t26 = t21 · t23, t27 = t24 ⊕ t26, t28 = t25 · t27,

t29 = t28 ⊕ t22, t30 = t23 ⊕ t24, t31 = t22 ⊕ t26, t32 = t31 · t30,

t33 = t32 ⊕ t24, t34 = t23 ⊕ t33, t35 = t27 ⊕ t33, t36 = t24 · t35,

t37 = t36 ⊕ t34, t38 = t27 ⊕ t36, t39 = t29 · t38, t40 = t25 ⊕ t39,

t41 = t40 ⊕ t37, t42 = t29 ⊕ t33, t43 = t29 ⊕ t40, t44 = t33 ⊕ t37,

t45 = t42 ⊕ t41, z0 = t44 · y15, z1 = t37 · y6, z2 = t33 · x7,

z3 = t43 · y16, z4 = t40 · y1, z5 = t29 · y7, z6 = t42 · y11,

z7 = t45 · y17, z8 = t41 · y10, z9 = t44 · y12, z10 = t37 · y3,

z11 = t33 · y4, z12 = t43 · y13, z13 = t40 · y5, z14 = t29 · y2,

z15 = t42 · y9, z16 = t45 · y14, z17 = t41 · y8.

The matrix BS takes z0, z1, · · · , z17 as input and outputs s0, s1, · · · , s7.

t46 = z15 ⊕ z16, t47 = z10 ⊕ z11, t48 = z5 ⊕ z13, t49 = z9 ⊕ z10,

t50 = z2 ⊕ z12, t51 = z2 ⊕ z5, t52 = z7 ⊕ z8, t53 = z0 ⊕ z3,

t54 = z6 ⊕ z7, t55 = z16 ⊕ z17, t56 = z12 ⊕ t48, t57 = t50 ⊕ t53,

t58 = z4 ⊕ t46, t59 = z3 ⊕ t54, t60 = t46 ⊕ t57, t61 = z14 ⊕ t57,

t62 = t52 ⊕ t58, t63 = t49 ⊕ t58, t64 = z4 ⊕ t59, t65 = t61 ⊕ t62,

t66 = z1 ⊕ t63, s0 = t59 ⊕ t63, s6 = t56 ⊕ t62, s7 = t48 ⊕ t60,

t67 = t64 ⊕ t65, s3 = t53 ⊕ t66, s4 = t51 ⊕ t66, s5 = t47 ⊕ t65,

s1 = t64 ⊕ s3, s2 = t55 ⊕ t67.

3.3 Our Improved Classical Circuit of the S-box−1 of AES

By using the tower technique, we propose an improved implementation of the S-box−1

(see in Table 2), which can be used to construct our quantum circuit of AES’s S-box−1.
We can express AES’s S-box−1 as S−1(x) = B′ ·F ′(U ′ ·x), where the matrix U ′ ∈ F 8×22

2

takes x0, x1, · · · , x7 as input and outputs y0, y1, · · · , y21, where Ui = xi (for 0 ≤ i ≤ 7).

y5 = U1, y4 = U5 ⊕ U0, y13 = U2 ⊕ y5, y6 = y4 ⊕ y13,

y9 = y5 ⊕ y4, y20 = U4 ⊕ y4, y18 = U6, y2 = y6 ⊕ y18,

t0 = U1 ⊕ U0, y7 = U4 ⊕ t0, y17 = y6 ⊕ y7, y16 = U7 ⊕ t0,

y3 = y2 ⊕ y16, y15 = y5 ⊕ y7, y11 = y9 ⊕ y17, y19 = y17 ⊕ y16,

t1 = U3 ⊕ t0, y1 = y20 ⊕ t1, y14 = y3 ⊕ y1, y12 = U2 ⊕ t1,

y0 = y2 ⊕ y12, y10 = y14 ⊕ y12, y8 = y1 ⊕ y0, y21 = U7 ⊕ y12.

The non-linear function F ′ : F22
2 → F18

2 takes y0, y1, · · · , y21 as input and outputs
z0, z1, · · · , z17.

7

t2 = y7 · y3, t3 = y17 · y16, t4 = y6 · y2, t5 = y15 · y14,

t6 = y13 · y12, t7 = y11 · y10, t8 = y5 · y1, t9 = y9 · y8,

t10 = y4 · y0, t11 = t2 ⊕ t3, t12 = t4 ⊕ t3, t13 = t5 ⊕ t6,

t14 = t5 ⊕ t7, t15 = t8 ⊕ t9, t16 = t10 ⊕ t9, t17 = t11 ⊕ t13,

t18 = t17 ⊕ y21, t19 = t12 ⊕ t14, t20 = t19 ⊕ y20, t21 = t15 ⊕ t13,

t22 = t21 ⊕ y19, t23 = t16 ⊕ t14, t24 = t23 ⊕ y18,

t25 = t18 ⊕ t20, t26 = t20 · t24, t27 = t22 ⊕ t26, t28 = t25 · t27,

t29 = t18 ⊕ t28, t30 = t22 ⊕ t24, t31 = t18 ⊕ t26, t32 = t30 · t31,

t33 = t22 ⊕ t32, t34 = t24 ⊕ t33, t35 = t27 ⊕ t33, t36 = t22 · t35,

t37 = t36 ⊕ t34, t38 = t27 ⊕ t36, t39 = t29 · t38, t40 = t39 ⊕ t25,

t41 = t33 ⊕ t37, t42 = t33 ⊕ t29, t43 = t37 ⊕ t40, t44 = t42 ⊕ t43,

t45 = t29 ⊕ t40, z17 = y3 · t33, z16 = y16 · t41, z15 = y2 · t37,

z14 = y12 · t43, z13 = y14 · t42, z12 = y10 · t44, z11 = y1 · t29,

z10 = y8 · t45, z9 = y0 · t40, z8 = y7 · t33, z7 = y17 · t41,

z6 = y6 · t37, z5 = y13 · t43, z4 = y15 · t42, z3 = y11 · t44,

z2 = y5 · t29, z1 = y9 · t45, z0 = y4 · t40.

The matrix B′ takes z0, z1, · · · , z17 as input and outputs s0, s1, · · · , s7.

t46 = z5 ⊕ z3, t47 = z6 ⊕ t46, t48 = z8 ⊕ t47, t49 = z17 ⊕ z11,

t50 = t48 ⊕ t49, t51 = z16 ⊕ z10, s5 = t50 ⊕ t51, t52 = z15 ⊕ z12,

t53 = z15 ⊕ z9, s2 = t50 ⊕ t53, t54 = z16 ⊕ z13, t55 = t52 ⊕ t54,

s7 = t48 ⊕ t55, t56 = z2 ⊕ z1, t57 = z2 ⊕ z0, s0 = t46 ⊕ t57,

t58 = s2 ⊕ t56, t59 = z5 ⊕ z4, t60 = z8 ⊕ z7, s3 = t58 ⊕ t60,

t61 = z14 ⊕ z11, t62 = t51 ⊕ t52, s4 = t61 ⊕ t62, t63 = s5 ⊕ t59,

t64 = t55 ⊕ s0, t65 = t58 ⊕ t63, s6 = t64 ⊕ t65, t66 = s2 ⊕ s7,

t67 = s4 ⊕ t65, s1 = t66 ⊕ t67.

Table 2. Summary of the resources to implement AES’s S-box−1

Algorithm # XOR/XNOR XOR3 # NAND # AND # NOR # NOT Source

S-box

96 0 0 36 0 0 [19]

80 0 34 0 6 0 [7]

83 0 0 32 0 0 [5]

81 0 0 32 0 0 [1]

69 0 33 0 8 0 [28]

51 9 33 0 8 0 [28]

S-box−1

87 0 0 34 0 0 [1]

81 0 34 0 0 6 [7]

82 0 0 32 0 4 Sect. 3.3

8

4 The Quantum Circuits for the basic AES operations

4.1 Quantum Circuits for three linear transformations of AES

As pointed out in [11], the three linear transformations of AES can be imple-
mented with the CNOT gates as follows. We just adopt their quantum circuit
of three linear transformations in our quantum circuits of AES.

1. AddRoundKey: The AddRoundKey transformation xors 128-bit roundkey
to the state, which can be executed with 128 CNOT gates in parallel.

2. ShiftRows: Since the ShiftRows transformation just permutes the order of
the sixteen bytes of AES, we do not need any quantum gates to execute
these operations.

3. MixColumns: The MixColumns transformation operates a column (32 bits)
at a time, which can be specified with a 32×32 matrix. The resultant circuit
of MixColumns has 277 CNOT gates with a total depth of 39, which can be
estimated by an LUP-decomposition [11].

In the following, we present our improved quantum circuit implementations of
AES’s S-box and S-box−1. The details of our implementation of AES S-box and
S-box−1 are available at https://github.com/Asiacrypt2020submission370/
aes/.

4.2 Improved Quantum Circuit Implementations of AES’s S-box

In this subsection, we propose some improved quantum circuit implementations
of AES’s S-box. Our quantum circuit of AES’s S-box considers the following
two cases: |x〉|0a〉−→|x〉|S(x)〉|0a−8〉 and |x〉|b〉|0a−8〉−→|x〉|S(x)⊕b〉|0a−8〉. Note
that the prior works [11,18] only considered |x〉|0a〉−→|x〉|S(x)〉|0a−8〉.

Firstly, we improve the quantum circuit sending |x〉|08〉 to |x〉|S(x)〉. In this
part, we propose an improved quantum circuit of AES’s S-box, which requires
fewer qubits than the prior work. In detail, our quantum circuit of AES’s S-box
requires only 6 ancilla qubits, which maps |x〉|014〉 to |x〉|S(x)〉|06〉. The prior
work needed at least 16 ancilla qubits to compute the Sbox, which maps |x〉|024〉
to |x〉|S(x)〉|016〉. Our improved quantum circuits of AES’s S-box adopt the fol-
lowing two new observations, which are based on the algebraic structures of the
S-box (see Section 3.2).

Observation 1. As shown in section 3.2, the 18 values of z0, · · · , z17 can be
obtained with the knowledge of t29, t33, t37, t40, t41, t42, t43, t44, t45 and
x7, y0, · · · , y17, where y0, · · · , y17 are the linear combination of x0, x1, · · · , x7.
Besides, t41, t42, t43, t44, t45 can be obtained by the linear combination of
t29, t33, t37, t40. In other words, we can obtain z0, · · · , z17 only with the knowl-
edge of t29, t33, t37, t40 and x0, x1, · · · , x7.

9

https://github.com/Asiacrypt2020submission370/aes/
https://github.com/Asiacrypt2020submission370/aes/

Observation 2. The s0, s1, · · · , s7 can be obtained by a linear combination of
z0, · · · , z17 as follows, where s̄ applies the NOT operation on s.

s0 = z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z9 ⊕ z10 ⊕ z15 ⊕ z16,

s1 = z0 ⊕ z1 ⊕ z6 ⊕ z7 ⊕ z9 ⊕ z10 ⊕ z15 ⊕ z16,

s2 = z0 ⊕ z2 ⊕ z6 ⊕ z8 ⊕ z12 ⊕ z14 ⊕ z15 ⊕ z17,

s3 = z0 ⊕ z1 ⊕ z3 ⊕ z4 ⊕ z9 ⊕ z10 ⊕ z15 ⊕ z16,

s4 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z9 ⊕ z10 ⊕ z15 ⊕ z16,

s5 = z0 ⊕ z2 ⊕ z3 ⊕ z4 ⊕ z7 ⊕ z8 ⊕ z10 ⊕ z11 ⊕ z12 ⊕ z14 ⊕ z15 ⊕ z16,

s6 = z4 ⊕ z5 ⊕ z7 ⊕ z8 ⊕ z12 ⊕ z13 ⊕ z15 ⊕ z16,

s7 = z0 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z12 ⊕ z13 ⊕ z15 ⊕ z16.

The above two observations explore the linear relationship between differ-
ent parameters in the algebraic structure of AES’s S-box. According to Obser-
vation 1, we can obtain z0, · · · , z17 with the knowledge of t29, t33, t37, t40 and
x0, x1, · · · , x7. Obviously, we can obtain t29, t33, t37, t40 by storing all ti (for
2 ≤ i ≤ 40), which requires 39 ancilla qubits (see in Section 3.2). Algorithm 3
can output t29, t33, t37, t40 with 6 ancilla qubits by reusing some ancilla qubits.

As shown in our Algorithm 3 can be constructed with 6 ancilla qubit, 17 Tofoli
gates, and 93 CNOT gates, while our previous Algorithm 3 required 6 ancilla
qubits, 21 Toffoli gates, and 109 CNOT gates to calculate the same values. There
are several ti can be computed in parallel as follows. First, we can compute t7
and t9 in parallel. Second, we can compute t2 and t18 in parallel. Third, t29 and
t37 can also computed in parallel. To sum up, the Toffoli depth of Algorithm 3
is 14.

Since Algorithm 3 need to recompute t36 and t2, we can obtain a new depth-
qubit tradeoff of Algorithm 3 as follows. First, we observe that our new Algorithm
3 shall compute t36 three times. If we introduce a new ancilla qubit to store t36,
we do not need to recompute t36. That is, we can save two Toffoli gates and two
Toffoli depth by storing t36 in a new ancilla qubit. Second, our new Algorithm 3
need to compute t2 twice. If we introduce a new ancilla qubit to store t2, we can
save one Toffoli gates and one Toffoli depth. That is, we can obtain a new depth-
qubit tradeoff i of our new Algorithm 3 with 14 − i Toffoli depth, 6 + i ancilla
qubits, 17− (i + 1) Toffoli gates, and 93 + (i + 1) CNOT gates (for 1 ≤ i ≤ 2).

Algorithm 3 Output t29, t33, t37, t40 of S-box with 6 ancilla qubits

Input, U [i] = x[i]; (for 0 ≤ i ≤ 7);
Input T [j] = 0; (for 0 ≤ j ≤ 5);

1: U [0] = U [0]⊕ U [6];
2: U [6] = U [6]⊕ U [2]⊕ U [4]⊕ U [5];
3: T [0] = (U [0] · U [6])⊕ T [0];
4: T [1] = T [1]⊕ T [0];
5: U [1] = U [1]⊕ U [2]⊕ U [7];
6: U [2] = U [2]⊕ U [1]⊕ U [4]⊕ U [5]⊕ U [6];
7: T [1] = (U [1] · U [2])⊕ T [1];
8: U [0] = U [0]⊕ U [1]⊕ U [2]⊕ U [3];

9: U [6] = U [6]⊕ U [1]⊕ U [7];
10: T [2] = (U [0] · U [6])⊕ T [2];
11: T [3] = T [3]⊕ T [2];
12: U [5] = U [5]⊕ U [3];
13: U [0] = U [0]⊕ U [2]⊕ U [4]⊕ U [6]⊕ U [7];
14: T [3] = (U [5] · U [0])⊕ T [3];
15: T [1] = T [1]⊕ T [3];
16: U [0] = U [0]⊕ U [3]⊕ U [4];
17: T [1] = T [1]⊕ U [0];
18: U [0] = U [0]⊕ U [1]⊕ U [2]⊕ U [6]⊕ U [7];

10

19: U [6] = U [6]⊕ U [7];
20: T [0] = (U [0] · U [6])⊕ T [0];
21: U [0] = U [0]⊕ U [2]⊕ U [5];
22: U [5] = U [5]⊕ U [0]⊕ U [3]⊕ U [4];
23: T [4] = (U [0] · U [5])⊕ T [4];
24: T [3] = T [3]⊕ T [4];
25: U [0] = U [0]⊕ U [1]⊕ U [3];
26: U [5] = U [5]⊕ U [7];
27: T [3] = (U [0] · U [5])⊕ T [3];
28: U [1] = U [1]⊕ U [2]⊕ U [4]⊕ U [5]⊕ U [6];
29: T [3] = T [3]⊕ U [1];
30: U [1] = U [1]⊕ U [2]⊕ U [4]⊕ U [6];
31: U [0] = U [0]⊕ U [2];
32: T [2] = (U [1] · U [0])⊕ T [2];
33: T [0] = T [0]⊕ T [2];
34: T [2] = T [2]⊕ T [4];
35: U [0] = U [0]⊕ U [1]⊕ U [2]⊕ U [3]⊕ U [5];
36: U [5] = U [5]⊕ U [7];
37: T [4] = (U [0] · U [5])⊕ T [4];
38: U [2] = U [2]⊕ U [3]⊕ U [4]⊕ U [5]⊕ U [6];
39: T [0] = T [0]⊕ U [2];
40: U [1] = U [1]⊕ U [3]⊕ U [5]⊕ U [7];
41: T [2] = (U [1] · U [7])⊕ T [2];
42: U [0] = U [0]⊕ U [2]⊕ U [4]⊕ U [6]⊕ U [7];
43: T [2] = T [2]⊕ U [0];

44: T [4] = (T [1] · T [3])⊕ T [4];
45: T [1] = T [1]⊕ T [0];
46: T [4] = T [4]⊕ T [2];
47: T [5] = (T [1] · T [4])⊕ T [5];
48: T [5] = T [5]⊕ T [0];
49: T [1] = T [1]⊕ T [0]⊕ T [5];
50: T [4] = T [4]⊕ T [2]⊕ T [0];
51: T [5] = T [5]⊕ T [4];
52: T [1] = (T [0] · T [5])⊕ T [1];
53: T [3] = T [3]⊕ T [2];
54: T [2] = (T [3] · T [4])⊕ T [2];
55: T [4] = (T [0] · T [5])⊕ T [4];
56: T [3] = (T [2] · T [4])⊕ T [3];
57: T [4] = (T [0] · T [5])⊕ T [4];
58: T [5] = T [5]⊕ T [4];
59: U [3] = U [3]⊕ U [2]⊕ U [4]⊕ U [5]⊕ U [6];
60: U [4] = U [4]⊕ U [0]⊕ U [3]⊕ U [7];
61: U [2] = U [2]⊕ U [6];
62: U [5] = U [5]⊕ U [7];
63: U [6] = U [6]⊕U [0]⊕U [1]⊕U [3]⊕U [4]⊕U [5];
64: Output U [0] = y19, U [1] = y4, U [2] = y2,

U [3] = y5, U [4] = y14, U [5] = y6, U [6] =
y21, U [7] = x7 and T [0] = t24, T [1] = t37,
T [2] = t29, T [3] = t40, T [4] = t27, T [5] =
t33.

Note that Langenberg et al. in [18] also utilized the linear relationship be-
tween zi and sj (for 0 ≤ i ≤ 17 and 0 ≤ j ≤ 7) to reduce the number of Toffoli
gates. However, they did not explore the whole linear relationship like Observa-
tion 2. As a result, they needed to introduce a new ancilla qubit Z in their work.
According to Observation 2, we can construct Algorithm 4 for AES’s S-box with
the output of Algorithm 3.

Algorithm 4 Compute AES’s S-box, when the output qubits are zero.

Input T [0] = t29, T [1] = t37, T [2] = t40,
T [3] = t33, T [4] = t24, T [5] = t27;
Input U [0] = y5, U [1] = y19, U [2] = y14,
U [3] = y2, U [4] = y6, U [5] = y21, U [6] = y4,
U [7] = x7;

1: U [1] = U [1]⊕ U [0]⊕ U [4]⊕ U [2];
2: T [3] = T [3]⊕ T [1];
3: S[5] = (T [3] · U [1])⊕ S[5];
4: S[6] = S[6]⊕ S[5];
5: U [1] = U [1]⊕ U [0]⊕ U [4]⊕ U [2];
6: T [3] = T [3]⊕ T [1];
7: S[2] = (T [2] · U [2])⊕ S[2];
8: S[5] = S[2]⊕ S[5];
9: S[2] = S[2]⊕ S[6];
10: S[4] = (T [1] · U [5])⊕ S[4];
11: S[1] = S[1]⊕ S[4];
12: S[3] = S[3]⊕ S[4];
13: U [5] = U [5]⊕ U [7];
14: T [1] = T [1]⊕ T [5];
15: S[7] = (T [1] · U [5])⊕ S[7];
16: S[1] = S[1]⊕ S[7];
17: S[3] = S[3]⊕ S[7];
18: S[4] = S[4]⊕ S[7];
19: U [5] = U [5]⊕ U [7];
20: T [1] = T [1]⊕ T [5];
21: S[7] = (T [5] · U [7])⊕ S[7];

22: S[2] = S[2]⊕ S[7];
23: S[5] = S[5]⊕ S[7];
24: S[6] = S[6]⊕ S[7];
25: U [1] = U [1]⊕U [3]⊕U [0]⊕U [4]⊕U [5]⊕U [6];

26: S[7] = (T [2] · U [1])⊕ S[7];
27: S[2] = S[2]⊕ S[7];
28: S[4] = S[4]⊕ S[7];
29: S[5] = S[5]⊕ S[7];
30: U [1] = U [1]⊕U [3]⊕U [0]⊕U [4]⊕U [5]⊕U [6];

31: U [2] = U [2]⊕ U [3];
32: T [3] = T [3]⊕ T [2];
33: S[7] = (T [3] · U [2])⊕ S[7];
34: S[2] = S[2]⊕ S[7];
35: S[5] = S[5]⊕ S[7];
36: U [2] = U [2]⊕ U [3];
37: T [3] = T [3]⊕ T [2];
38: S[7] = (T [3] · U [3])⊕ S[7];
39: S[6] = S[6]⊕ S[7];
40: U [6] = U [6]⊕ U [3]⊕ U [2];
41: T [2] = T [3]⊕ T [2];
42: S[0] = (T [2] · U [6])⊕ S[0];
43: S[4] = S[4]⊕ S[0];
44: S[6] = S[6]⊕ S[0];
45: S[7] = S[7]⊕ S[0];

11

46: U [6] = U [6]⊕ U [3]⊕ U [2];
47: T [2] = T [3]⊕ T [2];
48: U [1] = U [1]⊕ U [0]⊕ U [4]⊕ U [2]⊕ U [5];
49: S[0] = (T [3] · U [1])⊕ S[0];
50: S[1] = S[1]⊕ S[0];
51: S[2] = S[2]⊕ S[0];
52: S[3] = S[3]⊕ S[0];
53: S[4] = S[4]⊕ S[0];
54: S[5] = S[5]⊕ S[0];
55: S[6] = S[6]⊕ S[0];
56: U [1] = U [1]⊕ U [0]⊕ U [4]⊕ U [2]⊕ U [5];
57: U [3] = U [7] ⊕ U [3] ⊕ U [0] ⊕ U [4] ⊕ U [5] ⊕

U [6]⊕ U [1];
58: T [5] = T [5]⊕ T [2];
59: S[0] = (T [5] · U [3])⊕ S[0];
60: S[2] = S[2]⊕ S[0];
61: S[5] = S[5]⊕ S[0];
62: S[6] = S[6]⊕ S[0];
63: U [3] = U [7] ⊕ U [3] ⊕ U [0] ⊕ U [4] ⊕ U [5] ⊕

U [6]⊕ U [1];
64: T [5] = T [5]⊕ T [2];
65: U [3] = U [7]⊕ U [3]⊕ U [2]⊕ U [5]⊕ U [6];
66: T [5] = T [5]⊕ T [2]⊕ T [1]⊕ T [3];
67: S[0] = (T [5] · U [3])⊕ S[0];
68: S[3] = S[3]⊕ S[0];
69: S[4] = S[4]⊕ S[0];
70: S[5] = S[5]⊕ S[0];
71: S[6] = S[6]⊕ S[0];
72: U [3] = U [7]⊕ U [3]⊕ U [2]⊕ U [5]⊕ U [6];
73: T [5] = T [5]⊕ T [2]⊕ T [1]⊕ T [3];
74: U [2] = U [2]⊕ U [3]⊕ U [4];
75: T [5] = T [5]⊕ T [1];
76: S[0] = (T [5] · U [2])⊕ S[0];
77: S[5] = S[5]⊕ S[0];

78: U [2] = U [2]⊕ U [3]⊕ U [4];
79: T [5] = T [5]⊕ T [1];
80: U [1] = U [1]⊕ U [3]⊕ U [4]⊕ U [2];
81: S[0] = (T [1] · U [1])⊕ S[0];
82: S[2] = S[2]⊕ S[0];
83: S[6] = S[6]⊕ S[0];
84: S[7] = S[7]⊕ S[0];
85: U [1] = U [1]⊕ U [3]⊕ U [4]⊕ U [2];
86: U [1] = U [1]⊕ U [2];
87: T [5] = T [5]⊕ T [2];
88: S[0] = (T [5] · U [1])⊕ S[0];
89: S[2] = S[2]⊕ S[0];
90: U [1] = U [1]⊕ U [2];
91: T [5] = T [5]⊕ T [2];
92: T [5] = T [5]⊕ T [2]⊕ T [1]⊕ T [3];
93: S[0] = (T [5] · U [4])⊕ S[0];
94: S[1] = S[1]⊕ S[0];
95: S[3] = S[3]⊕ S[0];
96: S[4] = S[4]⊕ S[0];
97: S[5] = S[5]⊕ S[0];
98: S[6] = S[6]⊕ S[0];
99: S[7] = S[7]⊕ S[0];
100: T [5] = T [5]⊕ T [2]⊕ T [1]⊕ T [3];
101: U [1] = U [1]⊕ U [4]⊕ U [2];
102: T [3] = T [3]⊕ T [1];
103: S[2] = (T [3] · U [1])⊕ S[2];
104: U [1] = U [1]⊕ U [4]⊕ U [2];
105: T [3] = T [3]⊕ T [1];
106: S[5] = (T [5] · U [1])⊕ S[5];

107: Compute S[1]; S[2]; S[6]; S[7];
108: Adopt Algorithm 3 to set T [i] = 0 (for

0 ≤ i ≤ 5) and U [j] = xj (for 0 ≤ j ≤ 7);
109: Output S[0], S[1], S[2], S[3], S[4], S[5],

S[6], S[7].

We can obtain the time and memory cost of Algorithm 4 as follows.

1. It needs 18 Toffoli gates and 140 CNOT gates to obtain zi for 1 ≤ i ≤ 17.
2. Since Algorithm 4 adopt Algorithm 3 twice to clean up the ancilla qubits,

we can obtain a new depth-qubit trade-off i of Algorithm 4 as follows.
a. When i = 0, Algorithm 4 can compute the output of S-box with 6 ancilla
qubits, 52 Toffoli gates, 326 CNOT gates, and 4 NOT gates. The Toffoli
depth of Algorithm 4 in this case is 2× 14 + 13 = 41.
b. When 1 ≤ i ≤ 2, Algorithm 4 can compute the output of S-box with 6 + i
ancilla qubits, 52−2(i+ 1) Toffoli gates, 326 + 2(i+ 1) CNOT gates, 4 NOT
gates. The Toffoli depth of Algorithm 4 in this case is 41− 2i.

Next, we improve the quantum circuit sending |x〉|b〉 to |x〉|S(x)⊕ b〉. In this
part, we propose a new quantum circuit of AES’s S-box, which maps |x〉|b〉|07〉
to |x〉|S(x) ⊕ b〉|07〉 with the output of Algorithm 3. Since the qubits encoding
b are not necessarily zero, we cannot adopt Algorithm 4 directly. According to
Observation 2, this problem can be solved by introducing a new ancilla qubit Z,
which can be used to store each zi. After filling Z with zi, we just XOR Z to sj
according to linear relationship in Observation 2. Note that we shall clean up Z
each time so as to store new zi.

Since this Algorithm 5 is similar to Algorithm 4, we just give a brief descrip-
tion of Algorithm 5 in the following pseudo code.

12

Algorithm 5 Compute AES’s S-box, when output qubits are not zero.

Input: the output of Algorithm 3;
1: Z = Toffoli(t41, y10, Z);
2: S[2] = CNOT (S[2], Z);
3: S[5] = CNOT (S[5], Z);
4: S[6] = CNOT (S[6], Z);
5: Z = Toffoli(t41, y10, Z);
6: Z = Toffoli(t29, y2, Z);
7: S[2] = CNOT (S[2], Z);
8: S[5] = CNOT (S[5], Z);
9: Z = Toffoli(t29, y2, Z);
10: Z = Toffoli(t37, y6, Z);
11: S[1] = CNOT (S[1], Z);
12: S[3] = CNOT (S[3], Z);
13: S[4] = CNOT (S[4], Z);
14: Z = Toffoli(t37, y6, Z);
15: Z = Toffoli(t44, y15, Z);
16: S[1] = CNOT (S[1], Z);
17: S[2] = CNOT (S[2], Z);
18: S[3] = CNOT (S[3], Z);
19: S[5] = CNOT (S[5], Z);
20: S[7] = CNOT (S[7], Z);
21: Z = Toffoli(t44, y15, Z);
22: Z = Toffoli(t33, x7, Z);
23: S[2] = CNOT (S[2], Z);
24: S[4] = CNOT (S[4], Z);
25: S[5] = CNOT (S[5], Z);
26: S[7] = CNOT (S[7], Z);
27: Z = Toffoli(t33, x7, Z);
28: Z = Toffoli(t29, y7, Z);
29: S[4] = CNOT (S[4], Z);
30: S[6] = CNOT (S[6], Z);
31: S[7] = CNOT (S[7], Z);
32: Z = Toffoli(t29, y7, Z);
33: Z = Toffoli(t43, y13, Z);
34: S[2] = CNOT (S[2], Z);
35: S[5] = CNOT (S[5], Z);
36: S[6] = CNOT (S[6], Z);
37: S[7] = CNOT (S[7], Z);
38: Z = Toffoli(t43, y13, Z);
39: Z = Toffoli(t40, y5, Z);
40: S[6] = CNOT (S[6], Z);
41: S[7] = CNOT (S[7], Z);
42: Z = Toffoli(t40, y5, Z);
43: Z = Toffoli(t43, y16, Z);
44: S[0] = CNOT (S[0], Z);
45: S[3] = CNOT (S[3], Z);
46: S[5] = CNOT (S[5], Z);
47: S[7] = CNOT (S[7], Z);
48: Z = Toffoli(t43, y16, Z);
49: Z = Toffoli(t40, y1, Z);
50: S[0] = CNOT (S[0], Z);
51: S[3] = CNOT (S[3], Z);
52: S[4] = CNOT (S[4], Z);

53: S[5] = CNOT (S[5], Z);
54: S[6] = CNOT (S[6], Z);
55: Z = Toffoli(t40, y1, Z);
56: Z = Toffoli(t42, y11, Z);
57: S[0] = CNOT (S[0], Z);
58: S[1] = CNOT (S[1], Z);
59: S[2] = CNOT (S[2], Z);
60: Z = Toffoli(t42, y11, Z);
61: Z = Toffoli(t45, y17, Z);
62: S[0] = CNOT (S[0], Z);
63: S[1] = CNOT (S[1], Z);
64: S[5] = CNOT (S[5], Z);
65: S[6] = CNOT (S[6], Z);
66: Z = Toffoli(t45, y17, Z);
67: Z = Toffoli(t44, y12, Z);
68: S[0] = CNOT (S[0], Z);
69: S[1] = CNOT (S[1], Z);
70: S[3] = CNOT (S[3], Z);
71: S[4] = CNOT (S[4], Z);
72: Z = Toffoli(t44, y12, Z);
73: Z = Toffoli(t37, y3, Z);
74: S[0] = CNOT (S[0], Z);
75: S[1] = CNOT (S[1], Z);
76: S[3] = CNOT (S[3], Z);
77: S[4] = CNOT (S[4], Z);
78: S[5] = CNOT (S[5], Z);
79: Z = Toffoli(t37, y3, Z);
80: Z = Toffoli(t42, y9, Z);
81: S[0] = CNOT (S[0], Z);
82: S[1] = CNOT (S[1], Z);
83: S[2] = CNOT (S[2], Z);
84: S[3] = CNOT (S[3], Z);
85: S[4] = CNOT (S[4], Z);
86: S[5] = CNOT (S[5], Z);
87: S[6] = CNOT (S[6], Z);
88: S[7] = CNOT (S[7], Z);
89: Z = Toffoli(t42, y9, Z);
90: Z = Toffoli(t45, y14, Z);
91: S[0] = CNOT (S[0], Z);
92: S[1] = CNOT (S[1], Z);
93: S[3] = CNOT (S[3], Z);
94: S[4] = CNOT (S[4], Z);
95: S[5] = CNOT (S[5], Z);
96: S[6] = CNOT (S[6], Z);
97: S[7] = CNOT (S[7], Z);
98: Z = Toffoli(t45, y14, Z);
99: S[5] = Toffoli(t33, y4, S[5]);
100: S[2] = Toffoli(t41, y8, S[2]);

101: Compute S[1]; S[2]; S[6]; S[7];
102: Adopt Algorithm 3 to set T [i] = 0 (for

0 ≤ i ≤ 5) and U [j] = xj (for 0 ≤ j ≤ 7);
103: Output S[0], S[1], S[2], S[3], S[4], S[5],

S[6], S[7].

Similar to Algorithm 4, we can obtain the time and memory cost of Algorithm
5 as follows

1. Algorithm 5 calculates each zi (for 0 ≤ i ≤ 17) in the same order as Algo-
rithm 4. That is, Algorithm 5 needs the same cost to compute each ti and
yj as Algorithm 4.

13

2. Since z11 (or z17) only appears in S5 (or S2) (see in Observation 2), we can
store z11 (or z17) in S5 (or S2) without affecting the other output qubits. In
other words, we can compute z11 and z17 in parallel with other zi. Because
we do not need to store z11 and z17 in Z, we just need to clean up Z sixteen
times so as to store new zi. That is, Algorithm 5 needs 34 Toffoli gates to
calculate each zi (for 0 ≤ i ≤ 17).

3. Algorithm 5 shall adopt Algorithm 3 twice to compute S-box and clean up
these ancilla qubits.

Similar to Algorithm 4, We can obtain a new depth-qubit trade-off i of Al-
gorithm 5 as follows.

1. When i = 0, Algorithm 5 can compute the output of S-box with 7 ancilla
qubits, 68 Toffoli gates, 352 CNOT gates, 4 NOT gates, and 60 Toffoli depth.

2. When 1 ≤ i ≤ 2, we can compute S-box with 7+i ancilla qubits, 68−2(i+1)
Toffoli gates, 352 + 2(i + 1) CNOT gates, 4 NOT gates, and 60− 2i Toffoli
depth.

4.3 Improved Quantum Circuit Implementation of the S-box−1

Here we propose an new quantum circuit of AES’s S-box−1 with 7 ancilla qubits,
which maps |x〉|S(x)〉|07〉 to |x⊕S−1(S(x))〉|S(x)〉|07〉 = |08〉|S(x)〉|07〉. We can
adopt our quantum circuit of S-box−1 to remove some state values. We will use
this property to improve the zig-zag method. Our quantum circuit of AES’s S-
box−1 benefits from the following observations, which are based on our improved
classical circuit of AES’s S-box−1.

Observation 3. The 18-bit z0, · · · , z17 for computing S-box−1 can be obtained
with the knowledge of t29, t33, t37, t40, t41, t42, t43, t44, t45 and y0, · · · , y21.
Note that y0, · · · , y21 are the linear combination of x0, · · · , x7. Besides, t41, t42,
t43, t44, t45 can be obtained by the linear combination of t29, t33, t37, t40. That
is, we can obtain z0, · · · , z17 with the knowledge of t29, t33, t37, t40 and x0, · · · , x7.

Observation 4. The 8-bit output of S-box−1 s0, · · · , s7 can be seen as a linear
combination of the 18-bit z0, · · · , z17 as follows.

s0 = z0 ⊕ z2 ⊕ z3 ⊕ z5

s1 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z13 ⊕ z14 ⊕ z16 ⊕ z17

s2 = z3 ⊕ z5 ⊕ z6 ⊕ z8 ⊕ z9 ⊕ z11 ⊕ z15 ⊕ z17

s3 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z7 ⊕ z9 ⊕ z11 ⊕ z15 ⊕ z17

s4 = z10 ⊕ z11 ⊕ z12 ⊕ z14 ⊕ z15 ⊕ z16

s5 = z3 ⊕ z5 ⊕ z6 ⊕ z8 ⊕ z10 ⊕ z11 ⊕ z16 ⊕ z17

s6 = z0 ⊕ z1 ⊕ z3 ⊕ z4 ⊕ z9 ⊕ z10 ⊕ z12 ⊕ z13

s7 = z3 ⊕ z5 ⊕ z6 ⊕ z8 ⊕ z12 ⊕ z13 ⊕ z15 ⊕ z16

14

According to Observation 3, we can obtain z0, · · · , z17 by t29, t33, t37, t40 and
x0, · · · , x7. We propose Algorithm 6 to compute the t29, t33, t37, t40. As shown
in Algorithm 6, we can compute the z0, · · · , z17 of the S-box−1 with 6 ancilla
qubits, 17 Toffoli gates, 110 CNOT gates and 12 NOT gates.

Algorithm 6 Compute t29, t33, t37, t40 of S-box−1 with 6 ancilla qubits

Input U [0] = x7, U [1] = x6, U [2] = x5,
U [3] = x4, U [4] = x3, U [5] = x2, U [6] = x1

U [7] = x0;
Input T [j] = 0; (for 0 ≤ j ≤ 5);

1: U [7] = U [7]⊕ U [3];
2: U [6] = U [6]⊕U [5]⊕U [4]⊕U [3]⊕U [1]⊕U [0];

3: T [0] = (U [6] · U [7])⊕ T [0];
4: T [2] = T [2]⊕ T [0];

5: U [5] = U [5]⊕ U [3]⊕ U [2];
6: U [7] = U [7] ⊕ U [6] ⊕ U [5] ⊕ U [4] ⊕ U [3] ⊕

U [2]⊕ U [1];
7: T [0] = (U [5] · U [7])⊕ T [0];
8: T [1] = T [1]⊕ T [0];

9: U [7] = U [7]⊕ U [2]⊕ U [0];
10: U [6] = U [6]⊕U [5]⊕U [4]⊕U [3]⊕U [2]⊕U [0];

11: U [6] = U [6];
12: T [2] = (U [6] · U [7])⊕ T [2];
13: T [3] = T [3]⊕ T [2];
14: U [5] = U [5]⊕ U [6]⊕ U [2]⊕ U [1];
15: U [7] = U [7] ⊕ U [6] ⊕ U [5] ⊕ U [4] ⊕ U [3] ⊕

U [2]⊕ U [1];
16: T [0] = (U [5] · U [7])⊕ T [0];
17: T [2] = (U [5] · U [7])⊕ T [2];
18: U [7] = U [7]⊕ U [3]⊕ U [4];

19: U [5] = U [5]⊕ U [7]⊕ U [1]⊕ U [0];
20: T [1] = (U [5] · U [7])⊕ T [1];
21: T [3] = (U [5] · U [7])⊕ T [3];
22: U [5] = U [5]⊕ U [6]⊕ U [3]⊕ U [0];
23: U [7] = U [7]⊕ U [5]⊕ U [2]⊕ U [1]⊕ U [0];
24: T [0] = (U [5] · U [7])⊕ T [0];

25: U [7] = U [7]⊕ U [5]⊕ U [3]⊕ U [1]⊕ U [0];

26: U [1] = U [1]⊕ U [7];
27: T [1] = (U [7] · U [1])⊕ T [1];
28: U [1] = U [1]⊕ U [7]⊕ U [6]⊕ U [3];

29: U [4] = U [4]⊕ U [3]⊕ U [2]⊕ U [1];
30: T [2] = (U [1] · U [4])⊕ T [2];

31: U [5] = U [5]⊕ U [3]⊕ U [2]⊕ U [1];

32: U [6] = U [6]⊕ U [4];
33: T [3] = (U [6] · U [5])⊕ T [3];
34: U [7] = U [7]⊕ U [3]⊕ U [4]⊕ U [1]⊕ U [0];
35: T [0] = T [0]⊕ U [7];
36: U [5] = U [5]⊕ U [3];
37: T [1] = T [1]⊕ U [5];
38: U [7] = U [7]⊕ U [4]⊕ U [1];
39: T [2] = T [2]⊕ U [7];
40: U [6] = U [6]⊕ U [3]⊕ U [4]⊕ U [1];
41: T [3] = T [3]⊕ U [6];
42: T [4] = (T [1] · T [3])⊕ T [4];
43: T [3] = T [3]⊕ T [2];
44: T [4] = T [4]⊕ T [0];
45: T [5] = T [5]⊕ T [2];
46: T [5] = (T [3] · T [4])⊕ T [5];
47: T [4] = T [4]⊕ T [0];
48: T [4] = T [4]⊕ T [2];
49: T [3] = T [3]⊕ T [2];
50: T [5] = T [5]⊕ T [4];
51: T [4] = (T [5] · T [2])⊕ T [4];
52: T [2] = (T [1] · T [3])⊕ T [2];
53: T [1] = T [0]⊕ T [1];
54: T [0] = (T [1] · T [2])⊕ T [0];
55: T [1] = (T [0] · T [4])⊕ T [1];
56: T [4] = T [4]⊕ T [2];
57: T [2] = T [2]⊕ T [5];
58: T [3] = T [3]⊕ T [2];
59: T [4] = T [4]⊕ T [3];

60: U [7] = U [7]⊕ U [6]⊕ U [5]⊕ U [2]⊕ U [1];
61: U [5] = U [5]⊕U [7]⊕U [3]⊕U [2]⊕U [1]⊕U [0];

62: U [5] = U [5];
63: U [6] = U [6]⊕ U [3]⊕ U [4]⊕ U [1];
64: U [0] = U [0]⊕ U [5]⊕ U [3]⊕ U [7];
65: U [3] = U [6]⊕ U [5]⊕ U [3]⊕ U [4]⊕ U [1];

66: U [2] = U [6]⊕ U [5]⊕ U [3]⊕ U [4]⊕ U [2]⊕ U [0];
67: Output U [0] = y7, U [1] = y5, U [2] = y4,

U [3] = y6, U [4] = y1, U [5] = y2, U [6] = y0,
U [7] = y3; and T [0] = t29, T [1] = t40, T [2] =
t33, T [3] = t34, T [4] = t37, T [5] = t35.

As shown in the above, we can obtain the 14 outputs of Algorithm 6 with 7
ancilla qubits, 17 Toffoli gates, 110 CNOT gates and 12 NOT gates. The Toffoli
depth of Algorithm 6 is 14, because we can compute some ti in parallel as follows.
First, we can compute the two t6 in parallel. Second, we can compute the two
t7 in parallel. Third, we can compute the t8 and t10 in parallel.

Similar to Algorithm 3, we can obtain a new depth-qubit trade-off of Al-
gorithm 6 by introducing more ancilla qubits. Note that Algorithm 6 need to
compute t6, t7, t26 twice. If we introduce 3 more ancilla qubits to store these
values, we do not need to recompute t6, t7, t26 again. That is, we can obtain a
new depth-qubit trade-off of Algorithm 6, which needs 7+ i ancilla qubits, 17− i

15

Toffoli gates, 110+ i CNOT gates and 12 NOT gates (for 0 ≤ i ≤ 3). The Toffoli
depth of this new trade-off Algorithm 6 is 13 (for 1 ≤ i ≤ 3).

After obtaining the 14-bit output of Algorithm 6, we can construct Algorithm
7 by using Observation 4. Since our algorithm for S-box−1 can not make sure
the output bits are zero, we shall introduce a new ancilla qubit Z to store each
zi in this algorithm.

Algorithm 7 Compute the 8-bit output of the S-box−1 of AES

Input T [0] = t29, T [1] = t40, T [2] = t33,
T [3] = t34, T [4] = t37, T [5] = t35;
Input U [0] = y7, U [1] = y5, U [2] = y4,
U [3] = y6, U [4] = y1, U [5] = y2, U [6] = y0,
U [7] = y3.

1: Z = (T [1] · U [2])⊕ Z;
2: S[0] = S[0]⊕ Z;
3: S[6] = S[6]⊕ Z;
4: Z = (T [1] · U [2])⊕ Z;
5: T [0] = T [0]⊕ T [1];
6: U [2] = U [2]⊕ U [1];
7: Z = (T [0] · U [2])⊕ Z;
8: S[1] = S[1]⊕ Z;
9: S[3] = S[3]⊕ Z;
10: S[6] = S[6]⊕ Z;
11: Z = (T [0] · U [2])⊕ Z;
12: T [0] = T [0]⊕ T [1];
13: U [2] = U [2]⊕ U [1];
14: Z = (T [0] · U [1])⊕ Z;
15: S[0] = S[0]⊕ Z;
16: S[1] = S[1]⊕ Z;
17: S[3] = S[3]⊕ Z;
18: Z = (T [0] · U [1])⊕ Z;
19: T [4] = T [4]⊕ T [1]⊕ T [0]⊕ T [2];
20: U [2] = U [2]⊕ U [3]⊕ U [1]⊕ U [0];
21: Z = (T [4] · U [2])⊕ Z;
22: S[0] = S[0]⊕ Z;
23: S[2] = S[2]⊕ Z;
24: S[3] = S[3]⊕ Z;
25: S[5] = S[5]⊕ Z;
26: S[6] = S[6]⊕ Z;
27: S[7] = S[7]⊕ Z;
28: Z = (T [4] · U [2])⊕ Z;
29: T [4] = T [4]⊕ T [1]⊕ T [0]⊕ T [2];
30: U [2] = U [2]⊕ U [3]⊕ U [1]⊕ U [0];
31: T [0] = T [0]⊕ T [2];
32: U [1] = U [1]⊕ U [0];
33: Z = (T [0] · U [1])⊕ Z;
34: S[1] = S[1]⊕ Z;
35: S[6] = S[6]⊕ Z;
36: Z = (T [0] · U [1])⊕ Z;
37: T [0] = T [0]⊕ T [2];
38: U [1] = U [1]⊕ U [0];
39: T [4] = T [4]⊕ T [1];
40: U [3] = U [3]⊕ U [2];
41: Z = (T [4] · U [3])⊕ Z;
42: S[0] = S[0]⊕ Z;
43: S[1] = S[1]⊕ Z;
44: S[2] = S[2]⊕ Z;
45: S[3] = S[3]⊕ Z;
46: S[5] = S[5]⊕ Z;
47: S[7] = S[7]⊕ Z;
48: Z = (T [4] · U [3])⊕ Z;
49: T [4] = T [4]⊕ T [1];

50: U [3] = U [3]⊕ U [2];
51: Z = (T [4] · U [3])⊕ Z;
52: S[2] = S[2]⊕ Z;
53: S[3] = S[3]⊕ Z;
54: S[5] = S[5]⊕ Z;
55: S[7] = S[7]⊕ Z;
56: Z = (T [4] · U [3])⊕ Z;
57: Z = (T [2] · U [0])⊕ Z;
58: S[2] = S[2]⊕ Z;
59: S[5] = S[5]⊕ Z;
60: S[7] = S[7]⊕ Z;
61: Z = (T [2] · U [0])⊕ Z;
62: Z = (T [1] · U [6])⊕ Z;
63: S[2] = S[2]⊕ Z;
64: S[3] = S[3]⊕ Z;
65: S[6] = S[6]⊕ Z;
66: Z = (T [1] · U [6])⊕ Z;
67: T [1] = T [1]⊕ T [0];
68: U [6] = U [6]⊕ U [4];
69: Z = (T [1] · U [6])⊕ Z;
70: S[4] = S[4]⊕ Z;
71: S[5] = S[5]⊕ Z;
72: S[6] = S[6]⊕ Z;
73: Z = (T [1] · U [6])⊕ Z;
74: T [1] = T [1]⊕ T [0];
75: U [6] = U [6]⊕ U [4];
76: Z = (T [0] · U [4])⊕ Z;
77: S[2] = S[2]⊕ Z;
78: S[3] = S[3]⊕ Z;
79: S[4] = S[4]⊕ Z;
80: S[5] = S[5]⊕ Z;
81: Z = (T [0] · U [4])⊕ Z;
82: T [4] = T [4]⊕ T [1]⊕ T [0]⊕ T [2];
83: U [7] = U [7]⊕ U [6]⊕ U [5]⊕ U [4];
84: Z = (T [4] · U [7])⊕ Z;
85: S[4] = S[4]⊕ Z;
86: S[6] = S[6]⊕ Z;
87: S[7] = S[7]⊕ Z;
88: Z = (T [4] · U [7])⊕ Z;
89: T [4] = T [4]⊕ T [1]⊕ T [0]⊕ T [2];
90: U [7] = U [7]⊕ U [6]⊕ U [5]⊕ U [4];
91: T [0] = T [0]⊕ T [2];
92: U [7] = U [7]⊕ U [4];
93: Z = (T [0] · U [7])⊕ Z;
94: S[1] = S[1]⊕ Z;
95: S[6] = S[6]⊕ Z;
96: S[7] = S[7]⊕ Z;
97: Z = (T [0] · U [7])⊕ Z;
98: T [0] = T [0]⊕ T [2];
99: U [7] = U [7]⊕ U [4];
100: T [1] = T [1]⊕ T [4];
101: U [6] = U [6]⊕ U [5];
102: Z = (T [1] · U [6])⊕ Z;
103: S[1] = S[1]⊕ Z;

16

104: S[4] = S[4]⊕ Z;
105: Z = (T [1] · U [6])⊕ Z;
106: T [1] = T [1]⊕ T [4];
107: U [6] = U [6]⊕ U [5];
108: Z = (T [4] · U [5])⊕ Z;
109: S[2] = S[2]⊕ Z;
110: S[3] = S[3]⊕ Z;
111: S[4] = S[4]⊕ Z;
112: S[7] = S[7]⊕ Z;
113: Z = (T [4] · U [5])⊕ Z;
114: T [4] = T [4]⊕ T [2];
115: U [7] = U [7]⊕ U [5];
116: Z = (T [4] · U [7])⊕ Z;
117: S[1] = S[1]⊕ Z;
118: S[4] = S[4]⊕ Z;
119: S[5] = S[5]⊕ Z;
120: S[7] = S[7]⊕ Z;
121: Z = (T [4] · U [7])⊕ Z;

122: T [4] = T [4]⊕ T [2];
123: U [7] = U [7]⊕ U [5];
124: Z = (T [2] · U [7])⊕ Z;
125: S[1] = S[1]⊕ Z;
126: S[2] = S[2]⊕ Z;
127: S[3] = S[3]⊕ Z;
128: S[5] = S[5]⊕ Z;
129: Z = (T [2] · U [7])⊕ Z;
130: T [4] = T [4]⊕ T [2];
131: U [0] = U [0]⊕ U [3];
132: S[3] = (T [4] · U [0])⊕ S[3];
133: T [4] = T [4]⊕ T [2];
134: U [0] = U [0]⊕ U [3];
135: Adopt the Algorithm 6 to set T [i] = 0 (for

0 ≤ i ≤ 5) and U [j] = xj (for 0 ≤ j ≤ 7);
136: Output S[0], S[1], S[2], S[3], S[4], S[5],

S[6], S[7].

The time and space cost of Algorithm 7 can be computed as follows. First,
Algorithm 7 needs 35 Toffoli gates and 115 CNOT gates to compute each zi for
0 ≤ i ≤ 17. Second, Algorithm 7 needs to adopt Algorithm 6 twice to compute
S-box−1 and clean up the ancilla qubits, which set T [i] = 0 and U [j] = xj for
0 ≤ i ≤ 5 and 0 ≤ j ≤ 7. To sum up, Algorithm 7 can output S-box−1 with
7 ancilla qubits, 69 Toffoli gates, 335 CNOT and 24 NOT gates. The depth of
Algorithm 7 is 62. Given more ancilla qubits, we can also propose a new depth-
qubit trade-off of Algorithm 7, which needs 7 + i ancilla qubits, 69 − 2i Toffoli
gates, 335 + 2i CNOT, and 24 NOT gates (for 0 ≤ i ≤ 3). The Toffoli depth of
the above algorithm is 60 (for 1 ≤ i ≤ 3).

5 Our Strategies for the Zig-zag method and the Key
Schedule of AES

5.1 Zig-zag method with Improved Depth-Qubit Trade-Offs

The prior quantum circuit of AES [11,3,18] adopted the zig-zag method to reduce
the number of qubits. As shown in Fig. 1, the prior zig-zag method needed 512
qubits by reusing some qubits. However, they could not remove the Round 4,
Round 7 and Round 9, unless the entire process was reversed. The reason for
this drawback is that the prior work only considered the encryption algorithm
in their zig-zag method. That is, they should know Round i− 1 so as to remove
Round i. In this subsection, we propose an improved zig-zag method (see in
Fig. 2), which just needs 256 qubits. We can achieve this goal by applying our
quantum circuit of S-box−1 in our zig-zag method.

Denote the j-th output of the 16 S-box in Round i as sij (for 0 ≤ j ≤ 15),

while the j-th byte of Round i − 1 is denoted as ri−1
j (for 0 ≤ j ≤ 15). Given

|ri−1〉|0128〉, we can explain how to obtain Round i and remove Round i − 1
within these 256 qubits.

1. Given |ri−1〉, we can compute the first r bytes of si0, si1, · · · , sir−1 with our
Algorithm 4. We can store si0, si1, · · · , sir−1 in the first 8 · r qubits of |0128〉,

17

)*+

)*+

)*+

)*+

,)

,*

,)-

,.

,/

,0

,1

,2

,+

,3

)*+

)*+

)*+

)*+

)*+

)*+

4#$"#$

 !"#$!%#&'()*!+#)+,(#

 !"#$%&'(

)*+

)*+

)*+

)*+

,)

,*

,.

,/

4#$"#$

-!./0'.&1#+*23

,0

,1

,2

,)-,+

,3

,.5)

,*5)

,)5)

,15)

,05) ,+5)

Fig. 1. Comparison between the pipeline architecture and the zig-zag method.
The round i is indicated by Ri, while R−1

i means to remove the round i.

while the left |0128−8·r〉 qubits can be used for ancilla qubits. We can choose
r to obtain a improved depth-qubits trade-off for our quantum circuit.

2. After computing si0, · · · , sir−1, we can remove the first r bytes in Round i−1

by using our Algorithm 7. That is, we can compute |sij〉|r
i−1
j 〉|07〉 Algorithm 7−→

|sij〉|r
i−1
j ⊕ Sbox−1(sij)〉|07〉 for 0 ≤ j ≤ r − 1). Note that we can still use

the left |0128−8·r〉 qubits as ancilla qubits. Since ri−1
j = Sbox−1(sij), we have

|sij〉|r
i−1
j ⊕ Sbox−1(sij)〉|07〉 = |sij〉|08〉|07〉

3. These re-zero |08·r〉 in Round i−1 can be used as ancilla qubits for obtaining
sir, sir+1, · · · , si15 and removing the left 16− r bytes in Round i− 1.

4. After computing the 16 bytes of si0, si1, · · · , si15, we can compute the 16 bytes
of Round i by computing AK ◦MC ◦SR(Si), where Si is the 16 bytes output
of the S-box in Round i, and AK, MC and SR are the abbreviations for
AddRoundKey, MixColumns and ShiftRows.

After generating Round i, we can compute Round i + 1 and remove Round
i in a similar way. We can assign the newly calculated Round i + 1 to these
128 re-initialized zero qubits of Round i− 1. We can compute the ciphertext of
AES-128 by repeating the above operation 10 times. Obviously, we can construct
the zig-zag method for AES-192/-256 with 256 qubits in a similar way, where
the prior zig-zag method needs 656 qubits for AES-192/-256 both.

18

 !"#$%&'(

)*+

)*+

,)

,*

,-

,.

/#$"#$

,0

,1

,2

,+

,3

,)4

,)5)

,*5)

,-5)

,.5)

,05)

,15)

,25)

,+5)

,35)

678$%) 678$%* 678$%-

Fig. 2. Our method for improving the zig-zag method. The round i is indicated
by Ri, while R−1

i means to remove the round i.

5.2 Improved Quantum Circuits for the Key Schedule of AES

In this subsection, we propose some improved quantum circuit implementations
for the key schedule of AES-128/-192/-256.

Our Strategy for The Key Schedule of AES-128. Our quantum circuit
for the key-schedule of AES-128 only requires 128 qubits, while the prior works
needed at least 224 qubits. We can achieve this improvement by combining
our quantum circuit of S-box (Algorithm 5) with the property proposed by
Langenberg et al. [18] (see Table 3).

We take W16 as an example to explain Table 3, where W16 : W15,W11,W7,W3.
It means W16 can be computed with the knowledge of W15,W11,W7, and W3.
According to Algorithm 1, we can rewrite W16 as W16 = W15 ⊕W11W7 ⊕W3 ⊕
SubWord(RotWord(W15)) ⊕ Rcon(4). We can obtain the other Wi in Table 3
similarly.

According to Table 3, we can compute all Wj (for 4 ≤ i ≤ 43) with these
ten 32-bit W4i+3 (for 1 ≤ i ≤ 10). In [11], Grassl et al. just stored these ten
32-bit W4i+3 (for 1 ≤ i ≤ 10) with 32 × 10 = 320 qubits to generate each
roundkey of AES-128. In [18], Langenberg et al. showed that they could generate
all round keys of AES-128 with 224 qubits by reusing some qubits as follows.
After computing seven 32-qubit words W7, W11, W15, W19, W23, W27, W31, they
just cleaned up W7 so as to assign W32 to these 32 re-zero qubits. Then they
could compute W33, W34 and W35 one by one with the knowledge of W19, W23,
W27, W31. Obviously, they could compute the left round-keys similarly.

When the output qubits were not zero, Langenberg et al. could not apply
their quantum circuit of S-box to compute AES’s S-box. As a result, they should
remove W7 to generate W32. Based on Algorithm 5, our improved quantum
circuit for the key schedule of AES-128 can be explained as follows.

1. As shown in Section 6, we can generate four 32-qubit words W7, W11, W15,
W19 in the 128 zero qubits.

2. Since we have no zero qubits left, we shall remove W7, W11, W15, W19 to gen-
erate new W4i+3 (for 5 ≤ i ≤ 10). In detail, we can compute W20 by XORing
SubWord(RotWord(W19)), Rcon(5), W19,W11, W15 to W7. We shall adopt
Algorithm 5 to compute SubWord, because the output qubits are not zero.

19

As a result, we can assign the newly calculated W20 to W7 without intro-
ducing new qubits.

3. After generating W20, we can compute W21, W22 and W23 one by one with
W11, W15, W19 (see Table 3). Since we only store W23 in the memory, we
can assign the newly calculated W20+j to W20+j−1 (for 1 ≤ j ≤ 3).

4. The left round keys Wi (for 24 ≤ i ≤ 43) can be generated in a similar
way. After generating W4i−1, W4i−5, W4i−9, and W4i−13, we can assign the
newly calculated W4i to W4i−13 (for 5 ≤ i ≤ 10) without introducing new
qubits. After computing W4i, we can generate W4i+1, W4i+2, W4i+3 as fol-
lows: W4i+1 = W4i ⊕ W4i−1 ⊕ W4i−9, W4i+2 = W4i+1 ⊕ W4i−1 ⊕ W4i−5,
W4i+3 = W4i+2 ⊕ W4i−1. We can assign the newly calculated W4i+j to
W4i+j−1 (for 1 ≤ j ≤ 3).

Our Strategy for The Key Schedule of AES-192 and AES-256. Similar
to AES-128, we can obtain a property for AES-192 (or AES-256) in Table 4 (or
Table 5).

The quantum circuit for the key schedule of AES-192 is similar to AES-
128. After generating W11, W17, W23, W29, W35 and W41 in the 192 qubits, we
can compute W42 by xoring SubWord(RotWord(W41)), Rcon(7), W35, W17 to
W11. Then we can compute the round-key W42+j (for 1 ≤ j ≤ 5) one by one
with the knowledge of W42+j−1, W17, W23, W29, W35 and W41. Obviously, we
can compute left round keys for AES-192 in a similar way. To sum up, we can
compute the 12 round-key of AES-192 with 192 qubits.

The quantum circuit for the key schedule of AES-256 can be constructed as
follows. After generating the eight round-keys W11, W15, W19, W23, W27, W31,
W35 and W39 in the quantum memory, we can compute W40 for AES-256 by
XORing SubWord(RotWord(W39)), Rcon(5), W35, W27, W19 to W11. Then we
can compute the round-key W40+j (1 ≤ j ≤ 3) for Round 10 one by one with
the knowledge of W39, W35, W27, W19. Similar to W40, we can obtain the left
round key W44, W48, W52, and W56 without introducing new qubits. To sum up,
we can compute the 14 round-key of AES-256 with 256 qubits.

Table 3. The keys required to construct each round-key of AES-128.

W4 : W3,W0 W5 : W4,W1 W6 : W5,W2 W7 : W6,W3

W8 : W7,W3,W2,W1 W9 : W8,W7,W3,W2 W10 : W7,W3 W11 : W10,W7

W12 : W11,W7,W2 W13 : W12,W11,W3 W14 : W13,W11,W7 W15 : W14,W11

W16 : W15,W11,W7,W3 W17 : W16,W15,W7 W18 : W17,W15,W11 W19 : W18,W15

W20 : W19,W15,W11,W7 W21 : W20,W19,W11 W22 : W21,W19,W15 W23 : W22,W19

W24 : W23,W19,W15,W11 W25 : W24,W23,W15 W26 : W25,W23,W19 W27 : W26,W23

W28 : W27,W23,W19,W15 W29 : W28,W27,W19 W30 : W29,W27,W23 W31 : W30,W27

W32 : W31,W27,W23,W19 W33 : W32,W31,W23 W34 : W33,W31,W27 W35 : W34,W31

W36 : W35,W31,W27,W23 W37 : W36,W35,W27 W38 : W37,W35,W31 W39 : W38,W35

W40 : W39,W35,W31,W27 W41 : W40,W39,W31 W42 : W41,W39,W35 W43 : W42,W39

20

Table 4. The keys required to construct round-key of AES-192.

W6 : W5,W0 W7 : W6,W1 W8 : W7,W2

W9 : W8,W3 W10 : W9,W4 W11 : W10,W5

W12 : W11,W1,W2,W3,W4,W5 W13 : W12,W11,W2,W3,W4,W5 W14 : W13,W11,W3,W4,W5

W15 : W14,W11,W4,W5 W16 : W15,W11,W5 W17 : W16,W11

W18 : W17,W11,W2,W4 W19 : W18,W17,W3,W5 W20 : W19,W17,W11,W4

W21 : W20,W17,W5 W22 : W21,W17,W11 W23 : W22,W17

W24 : W23,W17,W3,W4 W25 : W24,W23,W4,W5 W26 : W25,W23,W17,W11,W5

W27 : W26,W23,W11 W28 : W27,W23,W17 W29 : W28,W23

W30 : W29,W23,W4 W31 : W30,W29,W5 W32 : W31,W29,W23,W17,W11

W33 : W32,W29,W17 W34 : W33,W29,W23 W35 : W34,W29

W36 : W35,W29,W11,W5 W37 : W36,W35,W11 W38 : W37,W35,W29,W23,W17

W39 : W38,W35,W29 W40 : W39,W35,W29 W41 : W40,W35

W42 : W41,W35,W17,W11 W43 : W42,W41,W17 W44 : W43,W41,W35,W29,W23

W45 : W44,W41,W35 W46 : W45,W41,W35 W47 : W46,W41

W48 : W47,W41,W23,W17 W49 : W48,W47,W23 W50 : W49,W47,W41,W35,W29

W51 : W50,W47,W41

Table 5. The keys required to construct round-key of AES-256.

W8 : W7,W0 W9 : W8,W1 W10 : W9,W2 W11 : W10,W3

W12 : W11,W4 W13 : W12,W5 W14 : W13,W6 W15 : W14,W7

W16 : W15,W11,W3,W2,W1 W17 : W16,W11,W3,W2 W18 : W17,W11,W3 W19 : W18,W11

W20 : W19,W15,W7,W6,W5 W21 : W20,W15,W7,W6 W22 : W21,W15,W7 W23 : W22,W15

W24 : W23,W19,W11,W2 W25 : W24,W19,W3 W26 : W25,W19,W11 W27 : W26,W19

W28 : W27,W23,W15,W6 W29 : W28,W23,W7 W30 : W29,W23,W15 W31 : W30,W23

W32 : W31,W27,W19,W11,W3 W33 : W32,W31,W11 W34 : W33,W27,W19 W35 : W34,W27

W36 : W35,W31,W23,W15,W7 W37 : W36,W35,W15 W38 : W37,W31,W23 W39 : W38,W31

W40 : W39,W35,W27,W19,W11 W41 : W40,W39,W19 W42 : W41,W35,W27 W43 : W42,W35

W44 : W43,W39,W31,W23,W15 W45 : W44,W43,W23 W46 : W45,W39,W31 W47 : W46,W39

W48 : W47,W43,W35,W27,W19 W49 : W48,W47,W27 W50 : W49,W43,W35 W51 : W50,W43

W52 : W51,W47,W39,W31,W23 W53 : W52,W51,W31 W54 : W53,W47,W39 W55 : W54,W47

W56 : W55,W51,W43,W35,W27 W57 : W56,W55,W35 W58 : W57,W51,W43 W59 : W58,W51

6 Improved Quantum Circuit Implementations of AES

6.1 Our Improved Quantum Circuit of AES-128.

As shown in Fig. 2, we can divide our quantum circuit of AES-128 into three
parts. Part 1 only contains Round 1, which does not need the S-box−1 operation.
Part 2 contains Round 2, Round 3 and Round 4. Part 3 contains the left 6 rounds,
which shall use Algorithm 5 to compute the round-keys.

After denoting rji and sj+1
i as the i-th byte of Round j and the S-box opera-

tions in Round j + 1 (for 0 ≤ j ≤ 9 and 0 ≤ i ≤ 15), the time and memory cost
of each parts can be computed as follows.

The time and space cost of Part 1. We just compute Round 1 and remove
Round 0 in Part 1 (see in Fig. 3).

1. We can obtain Round 0 by implementing at most 128 Pauli-X gates (or
called NOT gate) on the input keys W0, W1, W2, W3.

21

 !"#$%

&''()*

)+''(,)

,-''(./

.0''(+,

+.''(/1

0&''(1*

1+''()))

))-''()-/

)-0''().,

)..''()*1

)+&''()/*

)/+''()1)

)1-''(-&/

-&0''(--,

--.''(-,1

-.&''(-**

-*+''(-/)

-/-''(-0/

-00''(,&,

,&.''(,)1

,-&''(,,*

,,+''(,*)

,*-''(,+/

,+0''(,0,

,0.''(,11

.&&''(.)*

.)+''(.,)

.,-''(../

..0''(.+,

.+.''(./1

.0&''(.1*

.1+''(*))

2&

2)

2-

2,

2/

2))

2)*

&

&

&

&

&

&

&

&

3)*
4
5
6#
7

4
5
6

4
5
6#
77
8'

!
"
#$
%

3&

3-

3/

3))

9
#:
;
<
7!
=
5

>
<
!
5
?
')

2. 2* 2+ 2/

@5A!$'BCD

)-0

)-0

>)

>-

>,

>.

E!$A!$

>*

>+

>/

>0

>1

>)&

>)()

>-()

>,()

>.()

>*()

>+()

>/()

>0()

>1()

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

>
<
!
5
?
'&

2&

2)

2-

2,
>
<
!
5
?
')

2.

F
8!
7#
(G

F
8!
7#
(G

2/

2)

2-

2,

Fig. 3. Our method for computing Round 1.

2. We can adopt Algorithm 4 in parallel to compute s1
i (for 0 ≤ i ≤ 15), because

we have 384 zero qubits (from the 128 to 511 qubits in initial state in Fig. 3).
Since we need 128 qubits to store these 16 bytes s1

i (for 0 ≤ i ≤ 15), we have
384− 128 = 256 qubits left for ancilla qubits. In other words, we can obtain
a depth-qubit trade-off i = 2 for these 16 S-box operations. That is, we
can implement these 16 S-box operations with 128 ancilla qubits, 736 Toffoli
gates and 5,312 CNOT gates. The Toffoli depth of these 16 S-box operations
is 41− 4 = 37, because we can implement the 16 S-box in parallel.

3. After obtaining s1
i (for 0 ≤ i ≤ 15), we can apply at most 128 NOT gates to

Round 0 so as to obtain W0, W1, W2, W3 again. Then we can compute the
round-key W4, W5, W6, W7 for Round 1 with the knowledge of W0, W1, W2,
W3. Similar to step 2, we can obtain a depth-qubit trade-off i = 2 for these
4 S-box operations for W4, because we have 224 ancilla qubits left. That is,
we need 184 Toffoli gates and 1328 CNOT gates to implement these 4 S-box
operations. The Toffoli depth of this operation is 37.

22

4. We not only require 3×32 = 96 CNOT gates and 1 NOT gate to produce W4,
W5, W6, W7, but also need 128 CNOT gates to implement the AddRoundKey
operation. In addition, we still need 277×4 = 1108 CNOT gates to implement
4 times MixColumns operations.

To sum up, we can implement Part 1 with 920 Toffoli gates, 7,972 CNOT
gates, and 337 NOT gates. Since the 16 S-box in Round 1 and W4 cannot be
implemented in parallel, the Toffoli depth of the above operation is 74.

The time and space cost of Part 2 Part 2 contains three similar rounds
from Round 2 to Round 4.

 !"#$%

&''()*

)+''(,)

,-''(./

.0''(+,

+.''(/1

0&''(1*

1+''()))

))-''()-/

)-0''().,

)..''()*1

)+&''()/*

)/+''()1)

)1-''(-&/

-&0''(--,

--.''(-,1

-.&''(-**

-*+''(-/)

-/-''(-0/

-00''(,&,

,&.''(,)1

,-&''(,,*

,,+''(,*)

,*-''(,+/

,+0''(,0,

,0.''(,11

.&&''(.)*

.)+''(.,)

.,-''(../

..0''(.+,

.+.''(./1

.0&''(.1*

.1+''(*))

2&

2)

2-

2,

2/

2))

2)*

3
4
!
5
6
',

&

&

&

&

&

&

&

&

7)*

2)+&

&

8
5
9#
::
;

8

3
4
!
5
6
',

3
4
!
5
6
'.

<=$>

')(0

<=$>

')(0

&

&

&

&

<=$>

')(0

<=$>

')(0

8
5
9#
::
;

2)+
&

3
4
!
5
6
',

3
4
!
5
6
'.

&

&

&

&

&

&

&

&

8
5
9#
::
;

<=$>

'1()+

<=$>

'1()+

3
4
!
5
6
',

3
4
!
5
6
'.

2)+

&

&

&

&

8
5
9#
::
;

<=$>

'1()+

<=$>

'1()+

3
4
!
5
6
'.
7&

7-

7/

7))

&

&

&

&

&

&

&

&

?
#@
A
4
:!
B
5

3
4
!
5
6
'.

2)1

&

&

&

&

&

&

&

&

2)+ 2)/2)02)1

2)+

8

7)*

7))

2)+
&

2&

2)

2-

2,

2/

2))

2)*

C$;$>&

2&

2)

2-

2,

2/

2))

2)*

2&

2)

2-

2,

2/

2))

2)*

2&

2)

2-

2,

2/

2))

2)*

2&

2)

2-

2,

2/

2))

2)*

2&

2)

2-

2,

2/

2))

2)*

2&

2)

2-

2,

2/

2))

2)*

2)+ 2)+

C$;$>) C$;$>- C$;$>, C$;$>. C$;$>*

D5E!$'F>=

)-0

)-0

3)

3-

3,

3.

G!$E!$

3*

3+

3/

30

31

3)&

3)()

3-()

3,()

3.()

3*()

3+()

3/()

30()

31()

8

Fig. 4. Our method for computing Round 4 and removing Round 3 of AES-128.

23

In the following, we show the time and memory cost of computing Round 4
and removing Round 3, which can be divided into 5 phases (see in Fig. 4).

1. We can compute s4
0, · · · , s4

7 in Round 4 and the first two bytes S-box op-
erations of W16, which requires 80 qubits to store these 10 bytes output of
S-box. Since we have 160 zero qubits (the 224-255 and 384-511 qubits in
state0 in Fig. 4), we have 160 − 80 = 80 qubits left for ancilla qubits. As a
result, we can obtain a depth-qubit trade-off i = 2 for these 10 S-box opera-
tions. That is, we can implement these 10 S-box operations with 80 ancilla
qubits, 460 Toffoli gates, 3320 CNOT gates and 40 NOT gates. The Toffoli
depth of these 10 S-box operations is 37.

2. We can remove r3
0, · · · , r3

7 in Round 3 by adopting Algorithm 7. Since we
have 80 zero qubits (the 240-255 and 448-511 qubits in state1 in Fig. 4),
we can obtain a depth-qubit trade-off i = 3 for these 8 S-box−1 operations.
That is, we can implement these 8 S-box−1 operations with 80 ancilla qubits,
504 Toffoli gates, 2728 CNOT gates and 192 NOT gates. The Toffoli depth
of the 8 S-box−1 operations is 60.

3. We can compute s4
8 · · · , s4

15 in Round 4 and the last two bytes of W16, which
requires 80 qubits to store these 10 bytes output of S-box. Since we have
144 zero qubits (the 240-319 and 448-511 qubits in state2 in Fig. 4), we have
144 − 80 = 64 qubits left for ancilla qubits. In other words, we can obtain
the depth-qubit trade-off i = 1 (and i = 0) for the first 4 S-box (the left 6
S-box) operations. That is, we can implement the first 4 S-box operations
with 4 ∗ 7 =28 ancilla qubits, 192 Toffoli gates, 1320 CNOT gates and 16
NOT gates, while the left 6 S-box operations can be implemented with 36
ancilla qubits, 312 Toffoli gates, 1956 CNOT gates and 24 NOT gates. To
sum up, we can implement these 10 S-box operations with 64 ancilla qubits,
504 Toffoli gates, 3276 CNOT gates and 40 NOT gates. The Toffoli depth of
these 10 S-box operations is 41.

4. We can remove the r3
8, · · · , r3

15 in Round 3 by adopting Algorithm 7. Since
we have 64 zero qubits here (the 256-319 qubits in state3 in Fig. 4), we can
obtain a depth-qubit trade-off i = 1 for these 8 S-box−1 operations. That
is, we can implement these 8 S-box−1 operations with 64 ancilla qubits, 544
Toffoli gates, 2688 CNOT gates and 192 NOT gates. The Toffoli depth of
the 8 S-box−1 operations is 61.

5. We shall implement the MixColumns and AddRoundKey operations so as
to obtain Round 4. The MixColumns operation for 128-bit state requires
277× 4 = 1108 CNOT operations. According to the round-key algorithm of
AES-128, after the SubWord operation, we still need 32 × 8 = 256 CNOT
gates and 1 NOT gate to compute W16, W17, W18, W19. As a result, we can
implement the AddRoundKey operation with 256+128=384 CNOT gates
and 1 NOT gate.

To sum up, we need 2012 Toffoli gates, 13504 CNOT gates and 465 NOT
gates to obtain Round 4 and remove Round 3. The Toffoli depth of the above
five steps is 199. Since the time and memory cost of the left two rounds in Part
2 is similar to the above operation, we just provide some results and ignore

24

the details. First, we require 1928 Toffoli gates, 13556 CNOT gates and 465
NOT gates to obtain Round 3 and remove Round 2. The Toffoli depth of this
transformation is 194. Second, we require 1968 Toffoli gates, 13548 CNOT gates
and 465 NOT gates to obtain Round 2 and remove Round 1, while the Toffoli
depth is 157.

The time and space cost of Part 3. Part 3 contains 6 similar rounds op-
erations. In the following, we will show the time and memory cost of obtaining
Round 5 and removing Round 4.

 !"#$%

&''()*

)+''(,)

,-''(./

.0''(+,

+.''(/1

0&''(1*

1+''()))

))-''()-/

)-0''().,

)..''()*1

)+&''()/*

)/+''()1)

)1-''(-&/

-&0''(--,

--.''(-,1

-.&''(-**

-*+''(-/)

-/-''(-0/

-00''(,&,

,&.''(,)1

,-&''(,,*

,,+''(,*)

,*-''(,+/

,+0''(,0,

,0.''(,11

.&&''(.)*

.)+''(.,)

.,-''(../

..0''(.+,

.+.''(./1

.0&''(.1*

.1+''(*))

2
#3
4
5
6!
7
8

9
5
!
8
:
'*

&

&

&

&

&

&

&

&

;-& ;-) ;-- ;-,

<$=$>& <$=$>) <$=$>- <$=$>, <$=$>. <$=$>*

?8@!$'A>B

)-0

)-0

9)

9-

9,

9.

C!$@!$

9*

9+

9/

90

91

9)&

9)()

9-()

9,()

9.()

9*()

9+()

9/()

90()

91()

D
8
E#
66
=

FB$>

')(0

FB$>

')(0

D
8
E#
66
=

FB$>

')(0

9
5
!
8
:
'*

&

&

&

&

;&

;)

;-

;,

;/

;))

;)*

;)1

;/

;-&

;&

;)

;-

;,

;))

;)*

;)1

;-&

;/

&

&

&

&

&

&

&

&

9
5
!
8
:
'.

9
5
!
8
:
'.

FB$>

')(0

9
5
!
8
:
'*

9
5
!
8
:
'.

&

&

&

&

&

&

&

&

;&

;)

;-

;,

;))

;)*

;)1

;-&

;-&
;-&

;/

D
8
E#
66
=

FB$>

'1()+

FB$>

'1()+

9
5
!
8
:
'*

9
5
!
8
:
'.

&

&

&

&

;&

;)

;-

;,

;))

;)*

;)1

;-&

D
8
E#
66
=

FB$>

'1()+

FB$>

'1()+

9
5
!
8
:
'*

&

&

&

&

;&

;)

;-

;,

;))

;)*

;)1

;-&

&

&

&

&

;&

;)

;-

;,

;))

;)*

;)1

;-,

Fig. 5. Our method for computing Round 5 and removing Round 4 of AES-128.

25

Then we can compute the time and memory cost of the other rounds in Part
3 in a similar way. As shown in Fig. 5, we can divide the above transformation
into 5 phases.

1. We can compute the s5
0, · · · , s5

7 in Round 5 and the first two S-box operations
of W20. Since we have 128 zero bits (from the 256 to 383 qubits in state0 in
Fig. 5), we have 128-64= 64 qubits left for ancilla qubits, because we need
|0〉⊗64 qubits to store s5

0, · · · , s5
7. Since Algorithm 4 and Algorithm 5 require

6 and 7 ancilla qubits respectively, we need 6× 8 + 2× 7 = 62 qubits to run
Algorithm 4 eight times and Algorithm 5 twice in parallel. Then we have
64 − 48 − 14 = 2 ancilla qubits left, which can introduce one more ancilla
qubit for the first 2 S-box of W20. That is, we can implement the first 2
S-box of W20 with 16 ancilla qubits, 128 Toffoli gates, 706 CNOT gates and
8 NOT gates, while the 8 S-box of Round 5 can be implemented with 48
ancilla qubits, 416 Toffoli gates, 2608 CNOT gates and 32 NOT gates. To
sum up, we can implement these 10 S-box operations with 64 ancilla qubits,
544 Toffoli gates, 3314 CNOT gates and 40 NOT gates. The Toffoli depth of
these 10 S-box operations is 56, which is determined by Algorithm 5.

2. We can remove the r4
0, · · · , r4

7 in Round 4 by computing eight times S-box−1

operations with Algorithm 7. Since we have 64 qubits left for ancilla qubits
(see in state1 in Fig. 5), we can obtain a depth-qubit trade-off i = 1 for these
8 S-box−1 operations. That is, we can implement these 8 S-box−1 operations
with 64 ancilla qubits, 536 Toffoli gates, 2696 CNOT gates and 192 NOT
gates. The Toffoli depth of these 8 S-box−1 operations is 60, because we can
implement these 8 S-box−1 in parallel.

3. We can compute the s5
8, · · · , s5

15 in Round 5 and the last two bytes of W20.
Similar to Step 1, we also have 2 ancilla qubits left, which can obtain a
depth-qubit trade-off i = 1 for the last 2 S-box operations in W20. Similar to
step 1, we can implement these 10 S-box operations with 64 ancilla qubits,
544 Toffoli gates, 3264 CNOT gates and 40 NOT gates. The Toffoli depth of
these 10 S-box operations is 56.

4. We shall remove the r4
8, · · · , r4

15 of Round 4 in state3 by implementing eight
times S-box−1 operations with Algorithm 7. Since we have 64 ancilla qubits
here, we can implement these 8 S-box−1 operations with 64 ancilla qubits,
536 Toffoli gates, 2696 CNOT gates and 192 NOT gates. The Toffoli depth
of the 8 S-box−1 operation is 60.

5. We shall implement the MixColumns and AddRoundKey operations so as to
obtain Round 5. The 4 times MixColumns operation requires 277×4 = 1108
CNOT operations. According to the key algorithm of AES-128, after the
SubWord operation, we still need 32 × 8 = 256 CNOT gates and 1 NOT
gate to compute W20, W21, W22, W23. As a result, we can implement the
AddRoundKey operation with 256+128=384 CNOT gates and 1 NOT gate.

That is, we need 2160 Toffoli gates, 13512 CNOT gates, 465 NOT gates to
obtain Round 5 and remove Round 4, while the Toffoli depth is 232. We can
compute the time and space cost of the left 5 rounds in Part 3 in a similar way.
However, different rounds of AES-128 require different cost in the AddRoundKey

26

operation. According to the key schedule of AES-128, we need 256 × 3 = 768
CNOT gates and 1× 3 = 3 NOT gate to generate the 3 round-keys of Round 6,
Round 7 and Round 8, while the round-key of Round 9 and Round 10 require
256× 2 = 512 CNOT gates and 4× 2 = 8 NOT gates.

The time and memory cost of our quantum circuit of AES-128 can be ob-
tained by summing Part 1, Part 2 and Part 3. All in all, our quantum circuit
of AES-128 needs 512 qubits, 19788 Toffoli gates, 128517 CNOT gates and 4528
NOT gates. The Toffoli depth of our quantum circuit of AES-128 is 2016 (see in
Table 6).

6.2 Quantum Circuit Implementations of AES-192 and AES-256

Since our quantum circuit implementation of AES-192 and AES-256 are similar
to AES-128, we just show the conclusions and omit the details (see in Table 6).
Our quantum circuit of AES-192 requires 640 qubits, 22380 Toffoli gates, 152378
CNOT gates and 5128 NOT gates. The Toffoli depth of our quantum circuit
implementation of AES-192 is 2022. Our quantum circuit of AES-256 requires
768 qubits, 26774 Toffoli gates, 177645 CNOT gates and 6103 NOT gates. The
Toffoli depth of our quantum circuit implementation of AES-256 is 2292.

7 Conclusion

In this paper, we propose some improved quantum circuit implementations of
AES. In the future, there are still several research directions. First, we can ex-
plore some possible time-space trade-offs for our quantum circuit of AES by
using Kim et al.’s work. Second, we can explore some improved quantum cir-
cuits for the other construction, such as the Feistel-SPN. Third, we can explore
some improved quantum circuits of the S-box of the other block cipher, such as
SM4 and Camellia.

Acknowledgments. We would like to thank anonymous referees for their help-
ful comments and suggestions. Jian Zou is supported by the National Natural
Science Foundation of China (No.61902073). Zihao Wei and Siwei Sun are sup-
ported by the National Key Research and Development Program of China (Grant
No. 2018YFA0704704), the Chinese Major Program of National Cryptography
Development Foundation (Grant No. MMJJ20180102), the National Natural Sci-
ence Foundation of China (61772519, 61802400), and the Youth Innovation Pro-
motion Association of Chinese Academy of Sciences. Wenling Wu is supported
by the National Natural Science Foundation of China (No.61672509).

References

1. Circuit minimization team (cmt) http://www.cs.yale.edu/homes/peralta/

CircuitStuff/CMT.html.

27

http://www.cs.yale.edu/homes/peralta/ CircuitStuff/ CMT.html
http://www.cs.yale.edu/homes/peralta/ CircuitStuff/ CMT.html

Table 6. The quantum resource for AES-128 AES-192 and AES-256.

Algorithm Operation Toffoli Depth # Toffoli # CNOT # NOT

AES-128

Obtain Round 1 and Remove Round 0 74 920 7972 337

Obtain Round 2 and Remove Round 1 157 1968 13548 465

Obtain Round 3 and Remove Round 2 194 1928 13529 465

Obtain Round 4 and Remove Round 3 199 2012 13504 465

Obtain Round 5 and Remove Round 4 232 2160 13512 465

Obtain Round 6 and Remove Round 5 232 2160 13512 465

Obtain Round 7 and Remove Round 6 232 2160 13512 465

Obtain Round 8 and Remove Round 7 232 2160 13512 465

Obtain Round 9 and Remove Round 8 232 2160 13512 468

Obtain Round 10 and Remove Round 9 232 2160 12404 468

Sum of 10 rounds 2016 19788 128517 4528

AES-192

Obtain Round 1 and Remove Round 0 74 920 7940 81

Obtain Round 2 and Remove Round 1 97 1744 12132 448

Obtain Round 3 and Remove Round 2 97 2080 13908 465

Obtain Round 4 and Remove Round 3 157 1928 13620 465

Obtain Round 5 and Remove Round 4 157 1744 12260 448

Obtain Round 6 and Remove Round 5 157 1968 13676 465

Obtain Round 7 and Remove Round 6 194 1928 13529 465

Obtain Round 8 and Remove Round 7 194 1928 13573 448

Obtain Round 9 and Remove Round 8 199 2012 13472 465

Obtain Round 10 and Remove Round 9 232 2160 13284 465

Obtain Round 11 and Remove Round 10 232 1808 12228 448

Obtain Round 12 and Remove Round 11 232 2160 12756 465

Sum of 12 rounds 2022 22380 152378 5128

AES-256

Obtain Round 1 and Remove Round 0 37 736 6568 64

Obtain Round 2 and Remove Round 1 97 1774 12152 465

Obtain Round 3 and Remove Round 2 97 1774 12152 464

Obtain Round 4 and Remove Round 3 97 1774 12344 465

Obtain Round 5 and Remove Round 4 97 2080 13684 464

Obtain Round 6 and Remove Round 5 157 1928 13588 465

Obtain Round 7 and Remove Round 6 157 1968 13548 464

Obtain Round 8 and Remove Round 7 194 1928 13461 465

Obtain Round 9 and Remove Round 8 199 2012 13536 464

Obtain Round 10 and Remove Round 9 232 2160 13544 465

Obtain Round 11 and Remove Round 10 232 2160 13544 464

Obtain Round 12 and Remove Round 11 232 2160 13544 465

Obtain Round 13 and Remove Round 12 232 2160 13544 464

Obtain Round 14 and Remove Round 13 232 2160 12436 465

Sum of 14 rounds 2292 26774 177645 6103

28

2. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. CoRR
quant-ph/0406196 (2004)

3. Almazrooie, M., Samsudin, A., Abdullah, R., Mutter, K.N.: Quantum reversible
circuit of AES-128. Quantum Inf. Process. 17(5), 112 (2018)

4. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: Quantum security analysis
of AES. IACR Trans. Symmetric Cryptol. 2019(2), 55–93 (2019)

5. Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In: Festa, P. (ed.) Experimental Algorithms, 9th In-
ternational Symposium, SEA 2010, Ischia Island, Naples, Italy, May 20-22, 2010.
Proceedings. Lecture Notes in Computer Science, vol. 6049, pp. 178–189. Springer
(2010)

6. Boyar, J., Peralta, R.: A small depth-16 circuit for the AES s-box. In: Gritzalis,
D., Furnell, S., Theoharidou, M. (eds.) Information Security and Privacy Research
- 27th IFIP TC 11 Information Security and Privacy Conference, SEC 2012, Her-
aklion, Crete, Greece, June 4-6, 2012. Proceedings. IFIP Advances in Information
and Communication Technology, vol. 376, pp. 287–298. Springer (2012)

7. Canright, D.: A very compact s-box for AES. In: Rao, J.R., Sunar, B. (eds.) Cryp-
tographic Hardware and Embedded Systems - CHES 2005, 7th International Work-
shop, Edinburgh, UK, August 29 - September 1, 2005, Proceedings. Lecture Notes
in Computer Science, vol. 3659, pp. 441–455. Springer (2005)

8. Datta, K., Shrivastav, V., Sengupta, I., Rahaman, H.: Reversible logic implemen-
tation of AES algorithm. In: Proceedings of the 8th International Conference on
Design & Technology of Integrated Systems in Nanoscale Era, DTIS 2013, 26-28
March, 2013, Abu Dhabi, UAE. pp. 140–144. IEEE (2013)

9. Dong, X., Sun, S., Shi, D., Gao, F., Wang, X., Hu, L.: Quantum collision attacks
on AES-like hashing with low quantum random access memories. In: Advances in
Cryptology - ASIACRYPT 2020 - the 26th Annual International Conference on
the Theory and Application of Cryptology and Information Security (2020)

10. Golubitsky, O., Maslov, D.: A study of optimal 4-bit reversible toffoli circuits and
their synthesis. IEEE Trans. Computers 61(9), 1341–1353 (2012)

11. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying grover’s al-
gorithm to AES: quantum resource estimates. In: Takagi, T. (ed.) Post-Quantum
Cryptography - 7th International Workshop, PQCrypto 2016, Fukuoka, Japan,
February 24-26, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9606,
pp. 29–43. Springer (2016)

12. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller,
G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996. pp.
212–219. ACM (1996)

13. Hosoyamada, A., Sasaki, Y.: Finding hash collisions with quantum computers by
using differential trails with smaller probability than birthday bound. In: Advances
in Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-
14, 2020, Proceedings, Part II. pp. 249–279 (2020)

14. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in gf(2m̂)
using normal bases. Inf. Comput. 78(3), 171–177 (1988)

15. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing grover oracles for
quantum key search on AES and lowmc. In: Canteaut, A., Ishai, Y. (eds.) Advances
in Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on the

29

Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-
14, 2020, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12106, pp.
280–310. Springer (2020)

16. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential
and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2016(1), 71–94 (2016)

17. Kim, P., Han, D., Jeong, K.C.: Time-space complexity of quantum search algo-
rithms in symmetric cryptanalysis: applying to AES and SHA-2. Quantum Inf.
Process. 17(12), 339 (2018)

18. Langenberg, B., Pham, H., Steinwandt, R.: Reducing the cost of implementing
AES as a quantum circuit. IACR Cryptol. ePrint Arch. 2019, 854 (2019)

19. Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: A systematic evaluation of
compact hardware implementations for the rijndael s-box. In: Menezes, A. (ed.)
Topics in Cryptology - CT-RSA 2005, The Cryptographers’ Track at the RSA
Conference 2005, San Francisco, CA, USA, February 14-18, 2005, Proceedings.
Lecture Notes in Computer Science, vol. 3376, pp. 323–333. Springer (2005)

20. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information
(10th Anniversary edition). Cambridge University Press (2016)

21. NIST: Specification for the advanced encryption standard (aes), federal information
processing standards publication 197 (2001)

22. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic
circuits. IEEE Trans. on CAD of Integrated Circuits and Systems 22(6), 710–722
(2003)

23. Shi, Y.: Both toffoli and controlled-not need little help to do universal quantum
computing. Quantum Inf. Comput. 3(1), 84–92 (2003)

24. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

25. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5),
1474–1483 (1997)

26. Svore, K.M., Geller, A., Troyer, M., Azariah, J., Granade, C.E., Heim, B., Kliuch-
nikov, V., Mykhailova, M., Paz, A., Roetteler, M.: Q#: Enabling scalable quan-
tum computing and development with a high-level DSL. In: Proceedings of the
Real World Domain Specific Languages Workshop, RWDSL@CGO 2018, Vienna,
Austria, February 24-24, 2018. pp. 7:1–7:10 (2018)

27. Toffoli, T.: Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.)
Automata, Languages and Programming, 7th Colloquium, Noordweijkerhout, The
Netherlands, July 14-18, 1980, Proceedings. Lecture Notes in Computer Science,
vol. 85, pp. 632–644. Springer (1980)

28. Wei, Z., Sun, S., Hu, L., Wei, M., Boyar, J., Peralta, R.: Scrutinizing the tower
field implementation of the F28 inverter - with applications to aes, camellia, and
SM4. IACR Cryptol. ePrint Arch. 2019, 738 (2019)

29. Wei, Z., Sun, S., Hu, L., Wei, M., Peralta, R.: Searching the space of tower field
implementations of the F28 inverter with applications to AES, Camellia, and SM4.
International Journal of Information and Computer Security (IJICS) (2020)

30

	Quantum Circuit Implementations of AESwith Fewer Qubits
	Jian Zou, Zihao Wei, Siwei Sun, Ximeng Liu , Wenling Wu
	Introduction
	Notations
	The AES Block Cipher
	Specification of AES
	The algebraic structures of the S-box of AES
	Our Improved Classical Circuit of the S-box-1 of AES

	The Quantum Circuits for the basic AES operations
	Quantum Circuits for three linear transformations of AES
	Improved Quantum Circuit Implementations of AES's S-box
	Improved Quantum Circuit Implementation of the S-box-1

	Our Strategies for the Zig-zag method and the Key Schedule of AES
	Zig-zag method with Improved Depth-Qubit Trade-Offs
	Improved Quantum Circuits for the Key Schedule of AES
	Our Strategy for The Key Schedule of AES-128.
	Our Strategy for The Key Schedule of AES-192 and AES-256.

	Improved Quantum Circuit Implementations of AES
	Our Improved Quantum Circuit of AES-128.
	The time and space cost of Part 1.
	The time and space cost of Part 2
	The time and space cost of Part 3.

	Quantum Circuit Implementations of AES-192 and AES-256

	Conclusion
	Acknowledgments.

