
ALBATROSS: publicly AttestabLe BATched
Randomness based On Secret Sharing

Ignacio Cascudo1 and Bernardo David2∗

1 IMDEA Software Institute, Madrid, Spain, ignacio.cascudo@imdea.org
2 IT University of Copenhagen, Copenhagen, Denmark, bernardo@bmdavid.com

Abstract. In this paper we present ALBATROSS, a family of multi-
party randomness generation protocols with guaranteed output delivery
and public verification that allows to trade off corruption tolerance for
a much improved amortized computational complexity. Our basic stand
alone protocol is based on publicly verifiable secret sharing (PVSS) and
is secure under in the random oracle model under the decisional Diffie-
Hellman (DDH) hardness assumption. We also address the important
issue of constructing Universally Composable randomness beacons, show-
ing two UC versions of Albatross: one based on simple UC NIZKs and
another one based on novel efficient “designated verifier” homomorphic
commitments. Interestingly this latter version can be instantiated from
a global random oracle under the weaker Computational Diffie-Hellman
(CDH) assumption. An execution of ALBATROSS with n parties, out of
which up to t = (1/2− ε) · n are corrupt for a constant ε > 0, generates
Θ(n2) uniformly random values, requiring in the worst case an amortized
cost per party of Θ(logn) exponentiations per random value. We signif-
icantly improve on the SCRAPE protocol (Cascudo and David, ACNS
17), which required Θ(n2) exponentiations per party to generate one uni-
formly random value. This is mainly achieved via two techniques: first,
the use of packed Shamir secret sharing for the PVSS; second, the use of
linear t-resilient functions (computed via a Fast Fourier Transform-based
algorithm) to improve the randomness extraction.

1 Introduction

Randomness is essential for constructing provably secure cryptographic primi-
tives and protocols. While in many cases it is sufficient to assume that each party
executing a cryptographic construction has access to a local trusted source of
unbiased uniform randomness, many applications (e.g. electronic voting [?] and
anonymous messaging [?,?]) require a randomness beacon [?] that can periodi-
cally provide fresh random values to all parties. Constructing such a randomness
beacon without relying on a trusted third party requires a multiparty protocol
that can be executed in such a way that all parties are convinced that an unbi-
ased random value is obtained after the execution terminates, even if a fraction

∗Work partially done while visiting IMDEA Software Institute. This work was sup-
ported by a grant from Concordium Foundation, DFF grant number 9040-00399B
(TrA2C) and Protocol Labs grant S2LEDGE.

of these parties are corrupted. Moreover, in certain scenarios (e.g. in electronic
voting [?]) it might be necessary to employ a publicly verifiable randomness
beacon, which allows for third parties who did not participate in the beacon’s
execution to verify that indeed a given random value was successfully obtained
after a certain execution. To raise the challenge of constructing such randomness
beacons even more, there are classes of protocols that require a publicly veri-
fiable randomness beacon with guaranteed output delivery, meaning that the
protocol is guaranteed to terminate and output an unbiased random value no
matter what actively corrupted parties do. A prominent class of protocols re-
quiring publicly verifiable randomness beacons with guaranteed output delivery
is that of Proof-of-Stake based blockchain consensus protocols [?,?], which are
the main energy-efficient alternative to wasteful Proof-of-Work based blockchain
consensus protocols [?,?].

Related Works: A number of randomness beacons aiming at being amenable
to blockchain consensus applications have been proposed based on techniques
such as Verifiable Delay Functions (VDF) [?], randomness extraction from data
in the blockchain [?], Publicly Verifiable Secret Sharing [?,?,?] or Verifiable Ran-
dom Functions [?,?]. However, most of these schemes do not guarantee either
the generation of perfectly uniformly random values [?,?,?] or that a value will
be generated regardless of adversarial behavior [?]. Those methods that do have
those two guarantees suffer from high computational and communication com-
plexity [?] or even higher computational complexity in order to improve com-
munication complexity [?]. Another issue with VDF based approaches is that
their security relies on very precise estimates of the average concrete complex-
ity of certain computational tasks (i.e. how much time it takes an adversary
to compute a VDF), which are hard to obtain for real world systems. While
SCRAPE [?] does improve on [?], it can still be further improved, as is the goal
of this work. Moreover, none of the protocols that guarantee generation of truly
unbiased uniformly random values have any composability guarantees. This is
a very important issue, since these protocols are not used in isolation but as
building blocks of more complex systems and thus need composability.

Our Contributions: We present ALBATROSS, a family of multiparty random-
ness generation protocol with guaranteed output delivery and public verification,
where parties generate Θ(n2) independent and uniformly random elements in a
group and where the computational complexity for each party in the worst case
is of Θ(log n) group exponentiations (the most computationally expensive oper-
ation in the protocol) per random element generated, as long as the number of
corrupted parties is t = n/2−Θ(n). Our contributions are summarized below:

– The first randomness beacon with Θ(log n) group exponentiations per party.
– The first Universally Composable randomness beacon producing unbiased

uniformly random values.
– The first randomness beacon based on the Computational Diffie-Hellman

(CDH) assumption via novel “designated verifier” homomorphic commit-
ments, which might be of independent interest.

2

Our basic stand alone protocol builds on SCRAPE [?], a protocol based
on publicly verifiable secret sharing (PVSS). We depart from the variant of
SCRAPE based on the Decisional Diffie-Hellman (DDH) assumption, which re-
quired Θ(n2) group exponentiations per party to generate just one uniformly
random element in the group, but tolerated any dishonest minority. Therefore,
what we obtain is a trade-off of corruption tolerance in exchange for a much more
efficient randomness generation, under the same assumptions (DDH hardness,
RO model). We gain efficiency for ALBATROSS in the suboptimal corruption
scenario by introducing two main techniques on top of SCRAPE, that in fact can
be applied independently from each other: the first one is the use of “packed” (or
“ramp”) Shamir secret sharing in the PVSS, and the second is the use of privacy
amplification through t-resilient functions that allows to extract more uniform
randomness from a vector of group elements from which the adversary may con-
trol some of the coordinates. Applying these techniques requires us to overcome
significant obstacles (see below) but using them together allows ALBATROSS
to achieve the complexity of Θ(log n) exponentiations per party and random
group element. Moreover, this complexity is worst case: the log n factor only
appears if a large number of parties refuse to open the secrets they have com-
mitted to, thereby forcing the PVSS reconstruction on many secrets, and a less
efficient output phase. Otherwise (if e.g. all parties act honestly) the amortized
complexity is of O(1) exponentiation per party and element generated.

Our Techniques: In order to create a uniformly random element in a group
in a multiparty setting, a natural idea is to have every party select a random
element of that group and then have the output be the group operation applied
to all those elements. However, the last party in acting can see the choices of
the other parties and change her mind about her input, so a natural solution
is to have every party commit to their random choice first. Yet, the adversary
can still wait until everyone else has opened their commitments and decide on
whether they want to open or not based on the observed result, which clearly
biases the output. In order to solve this, we can have parties commit to the
secrets by using a publicly verifiable secret sharing scheme to secret-share them
among the other parties as proposed in [?,?]. The idea is that public verifiability
guarantees that the secret will be able to be opened even if the dealer refuses
to reveal the secrets. The final randomness is constructed from all these opened
secrets.

In the case of SCRAPE the PVSS consists in creating Shamir shares σi for a
secret s in a finite field Zq, and publishing the encryption of σi under the public
key pki of party i. More concretely, the encryption is pkσi

i , and pki = hski for h a
generator of a DDH-hard group Gq of cardinality q; what party i can decrypt is
not really the Shamir share σi, but rather hσi . However these values are enough
to reconstruct hs which acts as a uniformly random choice in the group by
the party who chose s. The final randomness is

∏
hs

a

. Public verifiability of the
secret sharing is achieved in SCRAPE by having the dealer commit to the shares
independently via some other generator g of the group (i.e. they publish gσi),
proving that these commitments contain the same Shamir shares via discrete

3

logarithm equality proofs, or DLEQs, and then having verifiers use a procedure
to check that the shares are indeed evaluations of a low-degree polynomial. In
this paper we will use a different proof, but we remark that the latter technique,
which we call LocalLDEI test, will be of use in another part of our protocol
(namely it is used to verify that hs is correctly reconstructed).

In ALBATROSS we assume that the adversary corrupts at most t parties
where n− 2t = ` = Θ(n). The output of the protocol will be `2 elements of Gq.

Larger Randomness via Packed Shamir Secret Sharing. In this sub-
optimal corruption scenario, we can use packed Shamir secret sharing, which
allows to secret-share a vector of ` elements from a field (rather than a single
element). The key point is that every share is still one element of the field and
therefore the sharing has the same computational cost (Θ(n) exponentiations)
as using regular Shamir secret sharing. However, there is still a problem that we
need to address: the complexity of the reconstruction of the secret vector from
the shares increases by the same factor as the secret size (from Θ(n) to Θ(n2)
exponentiations). To mitigate this we use the following strategy: each secret vec-
tor will be reconstructed only by a random subset of c parties (independently
of each other). Verifying that a reconstruction is correct only requires Θ(n) ex-
ponentiations, by using the aforementioned LocalLDEI . The point is that if we
assign c = log n, then with large probability there will be only at most a small
constant number of secret tuples that were not correctly reconstructed by any
of the c(n) parties and therefore it does not add too much complexity for the
parties to compute those. The final complexity of this phase is then O(n2 log n)
exponentiations for each party, in the worst case.

Larger Randomness via Resilient Functions. To simplfy, let us first
assume that packed secret sharing has not been used. In that case, right before
the output phase from SCRAPE, parties will know a value hsa for each of the
parties Pa in the set C of parties that successfully PVSS’ed their secrets (to
simplify, let us say C = {P1, P2, . . . , P|C|}), where h is a generator of a group
of order q. In the original version of SCRAPE, parties then compute the final

randomness as
∏|C|
a=1 h

sa , which is the same as h
∑|C|

a=1 sa .

Instead, in ALBATROSS, we use a randomness extraction technique based on
a linear t-resilient function, given by a matrix M , in such a way that the parties
instead output a vector of random elements (hr1 ,...,hrm) where (r1, ..., rm) =
M(s1, . . . , s|C|). The resilient function has the property that the output vector
is uniformly distributed as long as |C| − t inputs are uniformly distributed, even
if the other t are completely controlled by the adversary. If in addition packed
secret sharing has been used, one can simply use the same strategy for each of
the ` coordinates of the secret vectors created by the parties. In this way we can
create `2 independently distributed uniformly random elements of the group.

An obstacle to this randomness extraction strategy is that, in the presence
of corrupted parties some of the inputs si may not be known if the dealers of
these values have refused to open them, since PVSS reconstruction only allows
to retrieve the values hsi . Then the computation of the resilient function needs

4

to be done in the exponent which in principle appears to require either O(n3)
exponentiations, or a distributed computation like in the PVSS reconstruction.

Fortunately, in this case the following idea allows to perform this compu-
tation much more efficiently: we choose M to be certain type of Vandermonde
matrix so that applying M is evaluating a polynomial (with coefficients given
by the si) on several n-th roots of unity. Then we adapt the Cooley-Tukey fast
Fourier transform algorithm to work in the exponent of the group and compute
the output with n2 log n exponentiations, which in practice is almost as fast as
the best-case scenario where the si are known. This gives the claim amortized
complexity ofO(log n) exponentiations per party and random element computed.

Additional Techniques to Decrease Complexity. We further reduce the
complexity of the PVSS used in ALBATROSS, with an idea which can also be
used in SCRAPE [?]. It concerns public verification that a published sharing is

correct, i.e. that it is of the form pk
p(i)
i for some polynomial of bounded degree,

say at most k. Instead of the additional commitment to the shares used in [?],
we use standard Σ-protocol ideas that allow to prove this type of statement,
which turns out to improve the constants in the computational complexity. We
call this type of proof a low degree exponent interpolation (LDEI) proof.

Universal Composability. We extend our basic stand alone protocol to
obtain two versions that are secure in the Universal Composability (UC) frame-
work [?], which is arguably one of the strongest security guarantees one can
ask from a protocol. In particular, proving a protocol UC secure ensures that
it can be used as a building block for more complex systems while retaining
its security guarantees, which is essential for randomness beacons. We obtain
the first UC-secure version of ALBATROSS by employing UC non-interactive
zero knowledge proofs (NIZKs) for discrete logarithm relations, which can be
realized at a reasonable overhead. The second version explores a new primitive
that we introduce and construct called “designated verifier” homomorphic com-
mitments, which allows a sender to open a commitment towards one specific
receiver in such a way that this receiver can later prove to a third party that
the opening revealed a certain message. Instead of using DDH based encryption
schemes as before, we now have the parties commit to their shares using our
new commitment scheme and rely on its homomorphic properties to perform
the LDEI proofs that ensure share validity. Interestingly, this approach yields a
protocol secure under the weaker CDH assumption in the random oracle model.

2 Preliminaries

[n] denotes the set {1, 2, . . . , n} and [m,n] denotes the set {m,m + 1, . . . , n}.
We denote vectors with black font lowercase letters, i.e. v. Given a vector v =
(v1, . . . , vn) and a subset I ⊆ [n], we denote by vI the vector of length |I| with
coordinates vi, i ∈ I in the same order they are in v. Throughout the paper, q
will be a prime number and Zq = Z/qZ is a finite field of q elements. For a field
F, Fm×n is the set of m×n matrices with coefficients in F. Moreover, we denote
by F[X]≤m the vector space of polynomials in F[X] with degree at most m. For

5

a set X , let x
$← X denote x chosen uniformly at random from X ; and for a

distribution Y, let y
$← Y denote y sampled according to the distribution Y.

Polynomial Interpolation and Lagrange Basis. We recall a few well known
facts regarding polynomial interpolation in fields.

Definition 1 (Lagrange basis). Let F be a field, and S = {a1, . . . , ar} ⊆ F. A
basis of F[X]≤r−1, called the Lagrange basis for S, is given by {Lai,S(X) : i ∈ [r]}
defined by

Lai,S(X) =
∏

aj∈S\{ai}

X − aj
ai − aj

.

Lemma 1. Let F be a field, and S = {a1, . . . , ar} ⊆ F. Then the map F[X]≤r−1 →
Fr given by f(X) 7→ (f(a1), . . . , f(ar)) is a bijection, and the preimage of
(b1, . . . , br) ∈ Fr is given by f(X) =

∑r
i=1 bi · Lai,S(X).

Packed Shamir Secret Sharing. From now on we work on the finite field
Zq. Shamir secret sharing scheme [?] allows to share a secret s ∈ Zq among a
set of n parties (where n < q) so that for some specified 1 ≤ t < n, the secret
can be reconstructed from any set of t + 1 shares via Lagrange interpolation
(t+ 1-reconstruction), while any t or less shares convey no information about it
(t-privacy). In Shamir scheme each share is also in Zq and therefore of the same
size of the secret.

Packed Shamir secret sharing scheme ([?,?]) is a generalization that allows
for sharing a vector in Z`q while each share is still one element of Zq. Standard
Shamir is the case ` = 1. Packing comes at the inevitable cost of sacrificing
the threshold nature of Shamir’s scheme, which is replaced by an (optimal)
quasithreshold (often called “ramp”) behavior, namely there is t-privacy and
t + ` reconstruction. The description of the sharing and reconstruction (from
t+ ` shares) algorithms can be found in Figure ??.

Remark 1. The points 0,−1, . . . ,−(` − 1) (for the secret) and 1, . . . , n (for the
shares) can be replaced by any set of n + ` pairwise distinct points. In this
case the reconstruction coefficients should be changed accordingly. Choosing
other evaluation points may be beneficial due to efficient algorithms for both
computing the shares and the Lagrange coefficients [?]. In this work we will not
focus on optimizing this aspect and use the aforementioned points for notational
simplicity.

Linear Codes. The Hamming weight of a vector c ∈ Znq is the number of
nonzero coordinates of c. An [n, k, d]q-linear error correcting code C is a vector
subspace of Znq of dimension k and minimum distance d, i.e., the smallest Ham-
ming weight of a nonzero codeword in C is exactly d. A generator matrix is a
matrix M ∈ Zk×nq such that C = {m ·M : m ∈ Zkq}.

Given n pairwise distinct points x1, . . . , xn in Znq , a Reed Solomon of length
n and dimension k is defined as = {(f(x1), . . . , f(xn)) : f ∈ Zq[X],deg f < k}. It
is well known that this is an [n, k, n− k+ 1]q-linear code, and therefore achieves

6

Packed Shamir secret sharing

Packed Shamir secret sharing over Zq for ` secrets with n parties, t-privacy and
t+ `-reconstruction. We require n+ ` ≤ q, 1 ≤ t, t+ ` ≤ n.
Sharing algorithm.
On input (s0, s1, . . . , s`−1) ∈ Z`q:

– The dealer chooses a polynomial uniformly at random in the affine space

{f ∈ Zq[X]≤t+`−1, f(0) = s0, f(−1) = s1, . . . , f(−(`− 1)) = s`−1}.

– For i = 1, . . . , n, the dealer sends f(i) to the i-th party.
Reconstruction algorithm.
On input the shares σi = f(i), i ∈ Q for a set of parties Q ⊆ [n], with |Q| = t+ `.

– For m = 0, . . . , `− 1, parties compute

sm =
∑
i∈Q

σiLi,Q(−m) =
∑
i∈Q

σi
∏

j∈Q,j 6=i

−m− j
i− j

– Output (s0, s1, . . . , s`−1)

Fig. 1. Packed Shamir Secret Sharing (Sharing Algorithm)

the largest possible minimum distance for a code of that length and dimension.
These codes are called MDS (maximum distance separable).

The dual code of a code C, denoted C⊥, is the vector space consisting of
all vectors c⊥ ∈ Znq such that 〈c, c⊥〉 = 0 for all c ∈ C where 〈·, ·〉 denotes
the standard inner product. For the Reed-Solomon code above, its dual is the
following so-called generalized Reed-Solomon code

C⊥ = {(u1 · f∗(x1), . . . , un · f∗(xn)) : g ∈ Zq[X],deg f∗ < n− k}

where u1, ..., un are fixed elements of Znq , namely ui =
∏n
j=1,j 6=i(xi − xj)−1.

Linear Perfect Resilient Functions. Our optimizations make use of random-
ness extractors which are linear over Zq and hence given by a matrix M ∈ Zu×rq

satisfying the following property: the knowledge of any t coordinates of the input
gives no information about the output (as long as the other r− t coordinates are
chosen uniformly at random). This notion is known as linear perfect t-resilient
function [?].

Definition 2. A Zq-linear (perfect) t-resilient function (t-RF for short) is a
linear function Zrq → Zuq given by x 7→M · x such that for any I ⊆ [r] of size t,
and any aI = (aj)j∈I ∈ Ztq, the distribution of M ·x conditioned to xI = aI and
to x[r]\I being uniformly random in Zr−tq , is uniform in Zuq .

Note that such a function can only exist if u ≤ r − t. We have the following
characterization in terms of linear codes.

Theorem 1. [?] An u× r matrix M induces a linear t-RF if and only if M is
a generator matrix for an [r, u, t+ 1]q-linear code.

7

Remark 2. Remember that with our notation for linear codes, the generator
matrix acts on the right for encoding a message, i.e. m 7→ m · M . In other
words the encoding function for the linear code and the corresponding resilient
function given by the generator matrix as in Theorem ?? are “transpose from
each other”.

A t-RF for the optimal case u = r − t is given by any generator matrix of
an [r, r − t, t + 1]q MDS code, for example a matrix M with Mij = ai−1j for
i ∈ [r − t], j ∈ [r], where all aj ’s are distinct, which generates a Reed-Solomon
code. It will be advantageous for us to fix an element ω ∈ Z∗q of order at least

r− t and set aj = ωj−1, that is we will use the matrix M = M(ω, r− t, r) where

Mij = ω(i−1)(j−1), i ∈ [r − t], j ∈ [r]

Then M · x = (f(1), f(ω), · · · , f(ωr−t−1)) where f(X) := x0 + x1X + x2X
2 +

· · · + xr−1X
r−1, and we can use the Fast Fourier transform to compute M · x

very efficiently, as we explain later.

3 Basic Algorithms and Protocols

In this section we introduce some algorithms and subprotocols which we will
need in several parts of our protocols, and which are relatively straight-forward
modifications of known techniques.

3.1 Proof of Discrete Logarithm Equality.

We will need a zero-knowledge proof that given g1, ..., gm and x1, ..., xm the
discrete logarithms of every xi with base gi are equal. That is xi = gαi for all
i ∈ [m] for some common α ∈ Zq. Looking ahead, these proofs will be used by
parties in the PVSS to ensure they have decrypted shares correctly. A sigma-
protocol performing DLEQ proofs for m = 2 was given in [?]. We can easily
adapt that protocol to general m as follows:

1. The prover samples w ← Zq and, for all i ∈ [m], computes ai = gwi and
sends ai to the verifier.

2. The verifier sends a challenge e← Zq to the prover.
3. The prover sends a response z = w − αe to the verifier.
4. The verifier accepts if ai = gzi x

e
i for all i ∈ [m].

We transform this proof into a non-interactive zero-knowledge proof of knowl-
edge of α in the random oracle model via the Fiat-Shamir heuristic [?,?]:

– The prover computes e = H(g1, . . . , gm, x1, . . . , xm, a1, . . . , am), for H(·) a
random oracle (that will be instantiated by a cryptographic hash function)
and z as above. The proof is (a1, . . . , am, e, z).

– The verifier checks that e = H(g1, . . . , gm, x1, . . . , xm, a1, . . . , am) and that
ai = gzi x

e
i for all i.

This proof requires m exponentiations for the prover and 2m for the verifier.

8

3.2 Proofs and Checks of Low-Degree Exponent Interpolation.

We consider the following statement: given generators g1, g2, . . . , gm of a cyclic
group Gq of prime order q, pairwise distinct elements α1, α2, . . . , αm in Zq and
an integer 1 ≤ k < m, known by prover and verifier, the claim is that a tuple

(x1, x2, . . . , xm) ∈ Gmq is of the form (g
p(α1)
1 , g

p(α2)
2 , . . . , g

p(αm)
m) for a polynomial

p(X) in Zq[X]≤k. We will encounter this statement in two different versions:

– In the first situation, we need a zero-knowledge proof of knowledge of p(X)
by the prover. This type of proof will be used for a dealer in the publicly
verifiable secret sharing scheme to prove correctness of sharing. We call this
proof LDEI((gi)i∈[m], (αi)i∈[m], k, (xi)i∈[m]).

– In the second situation, we have no prover, but on the other hand we have
g1 = g2 = · · · = gm. In that case we will use a locally computable check
from [?]: indeed, verifiers can check by themselves that the statement is
correct with high probability. This type of check will be used to verify cor-
rectness of reconstruction of a (packed) secret efficiently. We call such check
LocalLDEI((αi)i∈[m], k, (xi)i∈[m])).

3

In [?], the first type of proof was constructed by using a DLEQ proof of
knowledge of common exponent to reduce that statement to one of the second
type and then using the local check we just mentioned. However, this is unnec-
essarily expensive both in terms of communication and computation. Indeed, a
simpler Σ-protocol for that problem is given in Figure ??.

Protocol LDEI (ZK PoK of Low-Degree Exponent Interpolation)

Public parameters: prime q, cyclic group Gq of prime order q, g1, ..., gm generators
of Gq, α1, α2, . . . , αm pairwise distinct elements in Zq, integer 1 ≤ k < m.

Statement: (x1, x2, . . . , xm) ∈
{(
g
p(α1)
1 , g

p(α2)
2 , . . . , g

p(αm)
m

)
: p ∈ Zq[X], deg p ≤ k

}
and the prover knows p.

Protocol:
– Sender chooses r(X) ∈ Zq[X]≤k uniformly at random and sends ai = g

r(αi)
i for

all i ∈ [m] to the verifier.
– Verifier chooses e ∈ Zq uniformly at random.
– Sender sends z(X) = e · p(X) + r(X) to the verifier

– Verifier checks that z(X) ∈ Zq[X]≤k and xei · ai = g
z(αi)
i for all i ∈ [m].

Fig. 2. Protocol LDEI Zero-Knowledge Proof of Knowledge of Low-Degree Exponent
Interpolation.

Proposition 1. Protocol LDEI in Figure ?? is an honest-verifier zero-knowledge
proof of knowledge for the given statement.

3This type of statement is independent of the generator g1 of the group we choose:
it is true for a given generator if and only if it is true for all of them.

9

Proof. The proof of this proposition follows standard arguments in Σ-protocol
theory and is given in the full version of this paper [?].

Applying Fiat-Shamir heuristic we transform this into a non-interactive proof:

– The sender chooses r ∈ Zq[X]≤k uniformly at random and computes ai =

g
r(αi)
i for all i = 1, . . . ,m, e = H(x1, x2, . . . , xm, a1, a2, . . . , am) and z =
e · p+ r. The proof is then (a1, a2, . . . , am, e, z).

– The verifier checks that z ∈ Zq[X]≤k, that xei · ai = g
z(αi)
i holds for all

i = 1, . . . ,m and that e = H(x1, x2, . . . , xm, a1, a2, . . . , am).

Now we consider the second type of situation mentioned above. The local
check is given in Figure ??.

Algorithm LocalLDEI to Verify Low-Degree Exponent Interpolation

Public parameters: prime q, cyclic group Gq of prime order q, integer m.
Input: pairwise distinct elements (α1, α2, . . . , αm) in Zq, integer 1 ≤ k < m, tuple
(x1, x2, . . . , xm) ∈ Gq, a group generator g.

Statement: (x1, x2, . . . , xm) ∈
{(
gp(α1), gp(α2), . . . , gp(αm)

)
: p ∈ Zq[X], deg p ≤ k

}
.

Algorithm:
– Verifier defines ui = 1/

∏
6̀=i(αi − α`) for all i = 1, . . . ,m.

– Verifier chooses a polynomial p∗ uniformly at random in Zq[X]≤m−k−2 \ {0}
and computes vi = ui · p∗(αi) for all i.

– Verifier checks that
∏m
i=1 x

vi
i = 1 and accepts if and only if that is the case.

Fig. 3. Algorithm LocalLDEI to Verify Low-Degree Exponent Interpolation

Proposition 2. The local test LocalLDEI in Figure ?? always accepts if the
statement is true and rejects with probability at least 1− 1/q if the statement is
false.

Correctness is based on the fact that the vector (u1p∗(α1), . . . , unp∗(αm))
is in the dual code C⊥ of the Reed Solomon code C given by the vectors
(p(α1), . . . , p(αm)) with deg p ≤ k, hence if the exponents of the xi’s (in base
g) indeed form a codeword in C, the verifier is computing the inner product of
two orthogonal vectors in the exponent. Soundness follows from the fact that, if
the vector is not a codeword in C, then a uniformly random element in C⊥ will
only be orthogonal to that vector of exponents with probability less than 1/q.
See [?, Lemma 1] for more information about this claim.

3.3 Applying Resilient Functions “in the Exponent”

In our protocol we will need to apply resilient functions in the following way.
Let h1, . . . , hr be public elements of Gq, chosen by different parties, so that
hi = hxi (for some certain public generator h of the group) and xi is only known

10

to the party that has chosen it. Our goal is to extract (ĥ1, . . . , ĥu) ∈ Guq which
is uniformly random in the view of an adversary who has control over up to t of
the initial elements xi. In order to do that, we take a t-resilient function from
Zrq to Zuq given by a matrix M and apply it to the exponents, i.e., we define

ĥi = hyi where x 7→ y = M · x; this satisfies the desired properties. Because the
resilient function is linear, the values ĥi can be computed from the hi by group
operations, without needing the exponents xi. We define the following notation.

Definition 3. As above, let Gq be a group of order q in multiplicative notation.
Given a matrix M = (Mij) in Zu×rq and a vector h = (h1, h2, . . . , hr) ∈ Grq, we

define ĥ = M � h ∈ Guq , as ĥ = (ĥ1, ĥ2, . . . , ĥr), where ĥi =
∏u
k=1 h

Mik

k .

Remark 3. Given a generator h of Gq, if we write h = (hx1 , hx2 , . . . , hxr), x =
(x1, x2, . . . , xr), then M � h = (hy1 , hy2 , . . . , hyr) where (y1, y2, . . . , yr) = M · x.

Now let M = M(ω, r − t, r) as in Section ??. In order to minimize the
number of exponentiations that we need to compute M � h recall first that
M · x = (f(1), f(ω), . . . , f(ωr−t−1)), where f is the polynomial with coefficients
fi = xi+1, for i ∈ [0, r − 1]. Assuming there exists n > r − t − 1 a power of 2
that divides q − 1, we can choose ω to be a n-th root of unity for n and use the
well known Cooley-Tukey recursive algorithm [?] for computing the Fast Fourier
Transform. The algorithm in fact evaluates a polynomial of degree up to n − 1
on all powers of ω up to ωn−1 with O(n log n) multiplications. We can just set
fj = 0 for j ≥ r, and ignore the evaluations in ωi, for i ≥ r− t). In our situation
the xi’s are not known; we use the fact that in the Cooley-Tukey algorithm all
operations on the xi are linear, so we can operate on the values hi = hxi instead.
The resulting algorithm is then given in Figure ?? (since we denoted fi = xi+1,
then hi = hfi−1).

“Cooley-Tukey FFT in the exponent” algorithm FFTE

Parameters: A large prime q, and a group Gq of cardinality q.
Input: An integer n = 2k dividing q − 1, a tuple h = (h1, h2, . . . , hn) ∈ Gnq , and an
n-th root of unity ω ∈ Zq.
Output: The tuple ĥ = (ĥ1, ĥ2, . . . , ĥn) = M ′ � h ∈ Gnq , where M ′ ∈ Zn×nq is given

by M ′ij = ω(i−1)(j−1) for i, j ∈ [n].

If n = 1, return h1.
Else:

– For j = 1, . . . , n/2, compute vj = hj · hj+n/2, v∗j = (hj · (hj+n/2)−1)ω
j−1

. Set
v = (v1, v2, . . . , vn/2), v∗ = (v∗1 , v

∗
2 , . . . , v

∗
n/2).

– Apply the algorithm recursively to (n/2,v, ω2) and on (n/2,v∗, ω2) obtaining
outputs v̂ = (v̂1, v̂2, . . . , v̂n/2) and v̂∗ = (v̂∗1, v̂∗2, . . . , v̂∗n/2) respectively.

– Return (v̂1, v̂∗1, v̂2, v̂∗2, . . . , v̂n/2, v̂∗n/2).

Fig. 4. Algorithm FFTE (Cooley-Tukey FFT in the exponent)

11

At every recursion level of the algorithm, it needs to compute in total n
exponentiations, and therefore the total number of exponentiations in Gq is
n log2 n. In fact, half of these are inversions, which are typically faster.

4 ALBATROSS Protocols

We will now present our main protocols for multiparty randomness generation.
We assume n participants, at most t < (n− 1)/2 of which can be corrupted by
some active static adversary. We define then ` = n−2t > 0. Note that n−t = t+`,
so we use these two quantities interchangeably. For asymptotics, we consider
that both t and ` are Θ(n), in particular t = τ · n for some 0 < τ < 1/2. The n
participants have access to a public ledger, where they can publish information
that can be seen by the other parties and external verifiers.

Our protocols take place in a group Gq of prime cardinality q, where we
assume that the Decisional Diffie-Hellman problem is hard. Furthermore, in order
to use the FFTE algorithm we require that Gq has large 2-adicity, i.e., that q−1
is divisible by a large power of two 2u. Concretely we need 2u > n − t. DDH-
hard elliptic curve groups with large 2-adicity are known, for example both the
Tweedledee and Tweedledum curves from [?] satisfy this property for u = 33,
which is more than enough for any practical application.

4.1 A PVSS Based on Packed Shamir Secret Sharing

As a first step, we show a generalization of a PVSS from [?], where we use packed
Shamir secret sharing in order to share several secrets at essentially the same
cost for the sharing and public verification phases. In addition, correctness of
the shares is instead verified using the LDEI proof. This is different than in
[?] where the dealer needed to commit to the shares using a different generator
of the group, and correctness of the sharing was proved using a combination of
DLEQ proofs and the LocalLDEI check, which is less efficient. In Figure ??, we
present the share distribution and verification of the correctness of the shares of
the new PVSS. We discuss the reconstruction of the secret later.

Under the DDH assumption, πPPV SS satisfies the property of IND1-secrecy
as defined in [?] (adapted from [?,?]), which requires that given t shares and a
vector x′ = (s′0, s

′
1, . . . , s

′
`−1), the adversary cannot tell whether x′ is the actual

vector of secrets.

Definition 4. Indistinguishability of secrets (IND1-secrecy) We say that
the PVSS is IND1-secret if for any polynomial time adversary APriv corrupting
at most t−1 parties, APriv has negligible advantage in the following game played
against a challenger.

1. The challenger runs the Setup phase of the PVSS as the dealer and sends all
public information to APriv. Moreover, it creates secret and public keys for
all honest parties, and sends the corresponding public keys to APriv.

12

Protocol πPPV SS

Let h be a generator of a group Gq of order q. Let H(·) be a random oracle.
Protocol πPPV SS is run between n parties P1, . . . , Pn, a dealer D and an external
verifier V (in fact any number of external verifiers) who have access to a public
ledger where they can post information for later verification.

1. Setup: Party Pi generates a secret key ski ← Zq, a public key pki = hski and
registers the public key pki by posting it to the public ledger, for 1 ≤ i ≤ n.

2. Distribution: The dealer D samples a polynomial p(X) ← Zq[X]≤t+`−1 and
sets s0 = p(0), s1 = p(−1), . . . , s`−1 = p(−(` − 1)). The secrets are defined to
be S0 = hs0 , S1 = hs1 , . . . , S`−1 = hs`−1 . D computes Shamir shares σi = p(i)
for 1 ≤ i ≤ n. D encrypts the shares as σ̂i = pkσii and publishes (σ̂1, . . . , σ̂n)

in the public ledger along with the proof LDEI that σ̂i = pk
p(i)
i for some p of

degree at most t+ `− 1.
3. Verification: The verifier checks the proof LDEI.

Fig. 5. Protocol πPPV SS

2. APriv creates secret keys for the corrupted parties and sends the correspond-
ing public keys to the challenger.

3. The challenger chooses values x0 and x1 at random in the space of secrets.
Furthermore it chooses b ← {0, 1} uniformly at random. It runs the Dis-
tribution phase of the protocol with x0 as secret. It sends APriv all public
information generated in that phase, together with xb.

4. APriv outputs a guess b′ ∈ {0, 1}.

The advantage of APriv is defined as |Pr[b = b′]− 1/2|.

Proposition 3. Protocol πPPV SS is IND1-secret under the DDH assumption.

We prove this proposition in the full version of the paper [?], but we note
that the proof follows from similar techniques as in the security analysis of the
PVSS in SCRAPE [?] and shows IND1-secrecy based on the `-DDH hardness as-
sumption, which claims that given (g, gα, gβ0 , gβ1 , · · · , gβ`−1 , gγ0 , gγ1 , · · · , gγ`−1)
where the γi either have all been sampled at random from Zq or are equal to
α ·βi, it is hard to distinguish both situations. However, when ` is polynomial in
the security parameter (as is the case here) `-DDH is equivalent to DDH, see [?].

We now discuss how to reconstruct secrets in πPPV SS . Rather than giving
one protocol, in Figure ?? we present a number of subprotocols that can be
combined in order to reconstruct a secret. The reason is to have some flexibility
about which parties will execute the reconstruction algorithm and which ones
will verify the reconstruction in the final randomness generation protocol.

In the share decryption protocol party Pi, using secret key ski, decrypts the
share σ̂i and publishes the obtained value hσi . Moreover Pi posts a DLEQ proof
to guarantee correctness of the share decryption; if several secret tuples need to
be reconstructed, this will be done by a batch DLEQ proof.

Once n − t values hσi have been correctly decrypted (by a set of parties
Q), any party can compute the ` secret values Sj = hsj using the reconstruc-
tion algorithm RecQ, which boils down to applying Lagrange interpolation in

13

the exponent. Note that since Lagrange interpolation is a linear operation, the
exponents σi do not need to be known, one can operate on the values hσi instead.

However, the computational complexity of this algorithm is high (O(n2) ex-
ponentiations) so we introduce the reconstruction verification algorithmRecV erQ
which allows any party to check whether a claimed reconstruction is correct
at a reduced complexity (O(n) exponentiations). RecV erQ uses the local test
LocalLDEI that was presented in Figure ??.

Reconstruction protocol and algorithms in πPPV SS

Protocols used in the reconstruction of secrets in PVSS πPPV SS from Figure ??.
Same conditions and notations as there.

– Share decryption (for Pi): On input σ̂i, pki, decrypt share σ̃i = σ̂
1

ski
i = hσi

and publish it in the ledger together with PROOFi = DLEQ((h, σ̃i), (pki, σ̂i))
(showing that the decrypted share σ̃i corresponds to σ̂i).

– Amortized share decryption (for Pi): If the PVSS has been used several
times where Pi has received in each case a share σ̂ai , Pi can decrypt shares as
above but publish one single proof PROOFi = DLEQ((h, (σ̃ai)a), (pki, (σ̂

a
i)a)).

– Share decryption verification: Apply the verification algorithm of the
DLEQ proof PROOFi and complain if this is not correct.

– Secret reconstruction algorithm RecQ: On input {σ̃i}i∈Q for a set Q of
exactly n− t indices, for j ∈ [`− 1]:

• Set λ
(j)
i =

∏
m:m∈Q,m 6=i

−j−m
i−m for all i ∈ Q and compute

Sj =
∏
i∈Q

(σ̃i)
λ
(j)
i =

∏
i∈Q

hp(i)λ
(j)
i = hp(−j) = hsj ,

• Publish the values Sj .
– Reconstruction verification algorithm RecV erQ: On input

(S0, S1, . . . , S`−1, {σ̃i}i∈Q), and calling Q = {i1, . . . , in−t} execute

LocalLDEI((αj)j∈[−(`−1),n−t], t+ `− 1, (Σj)j∈[−(`−1),n−t]),

where αj = j and Σj = S−j for j ∈ [−(` − 1), 0] and αj = ij , Σj = σ̃ij for
j ∈ [1, n− t].

Fig. 6. Reconstruction protocols and algorithms in πPPV SS

We remark that the most expensive computation is reconstruction of a secret
which requires O(n2) exponentiations.

4.2 Scheduling of non-private computations

In ALBATROSS, parties may need to carry out a number of computations of
the form M �h, where M ∈ Zr×mq , h ∈ Gmq for some r,m = O(n). This occurs if
parties decide not to reveal their PVSSed secrets, and it happens at two moments
of the computation: when reconstructing the secrets from the PVSS and when
applying the resilient function at the output phase of the protocol.

14

These computations do not involve private information but especially in the
PVSS they are expensive, requiring O(n2) exponentiations. Applying a resilient
function via our FFTE algorithm is considerably cheaper (it requires O(n log n)
exponentiations), but depending on the application it still may make sense to
apply the distributed computation techniques we are going to introduce.

On the other hand, given a purported output for such a computation, veri-
fying their correctness can be done locally in a cheaper way (O(n) exponentia-
tions) using respectively the tests LocalLDEI for verifying PVSS reconstruction
and a similar test which we call LocalLExp for verifying the correct application
of FFTE (since we will not strictly need LocalLExp , we will not describe it here
but it can be found in the full version of our paper).

In the worst case where Θ(n) parties abort after having correctly PVSSed
their secrets, Θ(n) computations of each type need to be carried out. We balance
the computational complexity of the parties as follows: for each of the tasks taski
to be computed, a random set of computing parties Ai is chosen of cardinality
around some fixed value c(n), who independently compute the task and publish
their claimed outputs; the remaining parties verify which one of the outputs is
correct, and if none of them is, they compute the tasks themselves.

Remark 4. The choice of Ai has no consequences for the correctness and security
of our protocols. The adversary may at most slow down the computation if it
can arrange too many sets Ai to contain no honest parties, but this requires
a considerable amount of biasing of the randomness source. We will derive this
randomness using a random oracle applied to the transcript of the protocol up to
that moment, and assume for simplicity that each party has probability roughly
c(n)/n to belong to each Ai.

Let T = {task1, ..., taskf(n)} be a set of computation tasks, each of which
consists of applying the same algorithm AlgComp to an input ini. Likewise,
let AlgV er be a verifying algorithm that given an input in and a purported
output out always accepts if the output is correct and rejects it with very large
probability if it is incorrect. We apply the protocol in Figure ??.

Distributed computation protocol DistComp(T ,P, c(n))

For each i = 1, . . . , f(n):
– A random subset Ai ⊆ P of c(n) parties is selected.
– Each party Pj ∈ Ai independently executes AlgComp(ini) and publishes

outPj . Let Li be the list of published claimed outputs for taski ordered from
most frequent (the one that is claimed to be the output by more parties in Ai)
to least frequent.

– Each party Pk ∈ P \Ai does the following
• Pk applies AlgV er(ini, out) for out ∈ Li in the order they appear in Li

until she finds a correct one, and accepts this as output of taski.
• If none of the out ∈ Li passes the test, Pk computes AlgComp(ini) and

sets the result as output for taski.

Fig. 7. Distibuted computation protocol DistComp(T ,P, c(n))

15

Computational complexity. We assume that |P| = Θ(n), and that AlgComp
requires ccost(n) group exponentiations while AlgV er needs vcost(n). On ex-
pectation, each party will participate as computing party for O(f(n) · c(n)/n)
tasks and as verifier for the rest, in each case needing to verify at most c(n) com-
putations. Note that we schedule the verifications so that parties check first the
most common claimed output, as this will likely be the correct one. For a given
taski, if Ai contains at least one honest party, then one of the verifications will
be correct. Ai contains only corrupt parties with probability τ c(n) where τ = t/n
and therefore we can assume that the number of i’s for which this happens will
be at most O(τ c(n)f(n)), so parties will need to additionally apply AlgComp
on this number of tasks. Therefore the number of exponentiations per party is
ccost(n) ·O((c(n)/n+ τ c(n)) · f(n)) + vcost(n) ·O (c(n) · (1− c(n)/n) · f(n)) .

PVSS reconstruction. In the case of reconstruction of the PVSS’ed values, we
have AlgComp = Rec (Figure ??), which has complexity ccost(n) = O(n2)
and AlgV er is RecV er where vcost(n) = O(n). The number of computations
f(n) equals the number of corrupted parties that correctly share a secret but
later decide not to reveal it. In the worst case f(n) = Θ(n). In that case, setting
c(n) = log n gives a computational complexity of O(n2 log n) exponentiations. In
fact the selection c(n) = log n is preferable unless f(n) is small (f(n) = O(log n))
where c(n) = n (everybody reconstructs the f(n) computations independently)
is a better choice. For the sake of simplicity we will use c(n) = log n in the
description of the protocols.

Output reconstruction via FFTE. For this case we always have f(n) = ` =
Θ(n). We use FFTE as AlgComp, so ccost(n) = O(n log n), while AlgV er is
LocalLExp where vcost(n) = O(n). Setting c(n) = |P|, c(n) = log n or c(n) =
Θ(1) all give O(n2 log n) exponentiations in the worst case.

Setting c(n) = Θ(1) (a small constant number of parties computes each task,
the rest verify) has a better best case asymptotic complexity: if every party acts
honestly each party needs O(n2) exponentiations.

On the other hand, c(n) = |P| corresponds to every party carrying out the
output computation by herself, so we do not really need DistComp (and hence
neither do we need LocalLExp). This requires less use of the ledger and a smaller
round complexity, as the output of the majority is guaranteed to be correct.
Moreover the practical complexity of FFTE is very good, so in practice this
option is computationally fast. We henceforth prefer this option, and leave c(n) =
Θ(1) as an alternative.

4.3 The ALBATROSS Multiparty Randomness Generation
Algorithm

Next we present our randomness generation protocol ALBATROSS. We first
introduce the following notation for having a matrix act on a matrix of group
elements, by being applied to the matrix formed by their exponents.

16

Definition 5. As above, let Gq be a group of order q, and h be a generator.
Given a matrix A = (Aij) in Zm1×m2

q and a matrix B = (Bij) ∈ Gm2×m3
q , we

define C = A �B ∈ Gm1×m3
q with entries Cij =

∏m2

k=1B
Aik

kj .

Remark 5. An alternative way to write this is C = hA·D, where D in Zm2×m3
q is

the matrix containing the discrete logs (in base h) of B, i.e. Dij = DLogh(Bij).
But we remark that we do not need to know D to compute C.

The protocol can be found in Figure ?? and Figure ??. In Figure ?? we
detail the first two phases Commit and Reveal: in the Commit phase the parties
share random tuples (hs

a
0 , . . . , hs

a
`−1) and prove correctness of the sharing. In the

Reveal phase parties first verify correctness of other sharings. Once n− t correct
sharings have been posted,4 the set C of parties that successfully posted correct
sharings now open the sharing polynomials. The remaining parties verify this is
consistent with the encrypted shares. If all parties in C open secrets correctly,
then all parties learn the exponents sai and compute the final output by applying
the resilient function in a very efficient manner, as explained in Figure ??, step
4’.

If some parties do not correctly open their secret tuples, the remaining parties
will use the PVSS reconstruction routine to retrieve the values hs

a
j , and then

compute the final output from the reconstructed values, now computing the
resilient functions in the exponent. This is explained in Figure ??.

Note that once a party gets into the set C, her PVSS is correct (with over-
whelming probability) and her tuple of secrets will be used in the final output,
no matter the behaviour of that party from that point on. This is important:
it prevents that the adversary biases the final randomness by initially playing
honestly so that corrupted parties get into C, and at that point deciding whether
or not to open the secrets of each corrupted party conditioned on what other
parties open. The fact that the honest parties can reconstruct the secrets from
any party in C makes this behaviour useless to bias the output. On the other
hand, the properties of the resilient function prevent the corrupted parties from
biasing the output before knowing the honest parties’ inputs.

Theorem 2. With overwhelming probability, the protocol ΠALB has guaranteed
output delivery and outputs a tuple of elements uniformly distributed in G`2q , as
long as the active, static, computationally bounded adversary corrupts at most t
parties (where 2t+ ` = n).

Proof. This theorem is based on the remarks above and formally proven in the
full version of this paper [?].

Computational complexity: Group exponentiations. In Table ?? we
collect the complexity of ALBATROSS in terms of number of group exponen-
tiations per party, comparing it with the SCRAPE protocol, where for ALBA-
TROSS we assume ` = Θ(n). For the figures in the table, we consider both

4This is since n − t is the maximum we can guarantee if t parties are corrupted.
However we can also adapt our protocol to work with more than n − t parties in C if
these come before a given time limit.

17

Protocol ΠALB (Commit and Reveal phases)

Protocol ΠALB is run between a set P of n parties P1, . . . , Pn who have access to a
public ledger where they can post information for later verification. It is assumed
that the Setup phase of πPPV SS is already done and the public keys pki of each
party Pi are already registered in the ledger. In addition, the parties have agreed
on a Vandermonde (n− 2t)× (n− t)-matrix M = M(ω, n− 2t, n− t) with ω ∈ Z∗q
as specified in section ??.

1. Commit: For 1 ≤ j ≤ n:
– Party Pj executes the Distribution phase of the PVSS as Dealer for
` = n − 2t secrets, publishing the encrypted shares σ̂j1, . . . , σ̂

j
n and shar-

ing correctness verification information LDEIj on the public ledger, also

learning the secrets hs
j
0 , . . . , hs

j
`−1 and the exponents sj0, . . . , s

j
`−1.

2. Reveal:
– For every set of encrypted shares σ̂j1, . . . , σ̂

j
n and the verification information

LDEIj published in the public ledger, all parties run the Verification phase
of the PVSS sub protocol.

– Once n− t parties have posted a valid sharing on the ledger (we call C the
set of these parties) each party Pj ∈ C reveals her sharing polynomial pj .

– Every party now verifies that indeed pj is the sharing polynomial that Pj
used in step 1 by reproducing the Distribution phase of Pj , i.e., computing
the secrets sji and shares σji of Pj , and verifying that σ̂ji is indeed equal to

pk
σ
j
i
i . Note that at the same time they have computed the vector of secrets

of Pj , i.e., (sj0, . . . , s
j
`−1).

– At this point, if every party in C has opened their secrets correctly, go to
step 4′ in Figure ??. Otherwise proceed to step 3 in Figure ??

Fig. 8. Protocol ΠALB (Commit and Reveal phases)

the worst case where Θ(n) parties in C do not open their secrets in the Reveal
phase, and the best case where all the parties open their secrets. As we can
see the amortized cost for generating a random group element goes down from
O(n2) exponentiations to O(log n) in the first case and O(1) in the second.

More in detail, in the Commit phase, both sharing a tuple of ` elements in
the group costs O(n) exponentiations and proving their correctness take O(n)
exponentiations. The Reveal phase takesO(n2) exponentiations since every party
checks the LDEI proofs of O(n) parties, each costing O(n) exponentiations, and
similarly they later execute, for every party that reveals their sharing polynomial,
O(n) exponentiations to check that this is consistent with the encrypted shares.

In the worst case O(n) parties from C do not open their secrets. The Recovery
phase requires each then O(n2 log n) exponentiations per party, as explained in
Section ??. The Output phase also requires O(n2 log n) exponentiations since
FFTE is used O(n) times (or if the alternative distributed technique is used,
the complexity is also O(n2 log n) by the discussion in Section ??.

In the best case, all parties from C reveal their sharing polynomials correctly,
the Recovery phase is not necessary and the Output phase requires O(n2) expo-

18

Protocol ΠALB continued (Recovery and Output phase)

3 Recovery: Let CA be the set of parties Pa ∈ C that do not publish the openings
of their secrets in the Reveal phase, or that publish an erroneous opening.

– Every party Pj ∈ P executes the Amortized Share Decryption protocol for
all PVSSs where a party Pa ∈ CA was the dealer as described in Figure ??.
That is, Pj posts all decrypted shares σ̃aj and a unique PROOFj =
DLEQ((h, (σ̃aj)Pa∈CA)(pk, (σ̂aj)Pa∈CA)) to the public ledger.

– Each party Pi ∈ P verifies each proof PROOFj published by some Pj .
– Once a set Q of n − t parties publish valid decrypted shares, the secrets

are reconstructed as follows:
For every Pa ∈ CA, we define taskRec,a to be the computation of
(hs

a
0 , . . . , hs

a
`−1) from the decrypted shares with AlgComp = RecQ as de-

scribed in PVSS reconstruction. Let TRec = {taskRec,a}Pa∈CA .
Parties call DistComp(TRec,P, logn), where DistComp is as described in
Figure ?? (where AlgV er = RecV erQ, as in Figure ??) using as random-
ness the output of a random oracle applied to the transcript so far.

4 Output: Let T be the (n− t)× ` matrix with rows indexed by the parties in
C and where the row corresponding to Pa ∈ C is (hs

a
0 , . . . , hs

a
`−1).

– Each computes the ` × `-matrix R = M � T by applying FFTE to each
column T (j) of T , resulting in column R(j) of R (since R(j) = M �T (j) and
M is Vandermonde) for j ∈ [0, `− 1]. a.

– Parties output the `2 elements of R as final randomness.
4’ Alternative output: if every party in C has opened her secrets correctly in

step Reveal, then:
– Parties compute R = M � T in the following way:

Let S be the (n− t)× ` matrix with rows indexed by the parties in C and
where the row corresponding to Pa ∈ C is (sa0 , . . . , s

a
`−1). Then each party

computes U = M · S ∈ Z`×`q (using the standard FFT in Zq to compute
each column) and R = hU . b

– Parties output the `2 elements of R as final randomness.

aAlternatively DistComp can be used to distribute the computation, using com-
mittees of size O(1) to compute each column and a local test to verify these com-
putations, see discussion in Section ?? and full version of the paper

bMeaning the (i, j)-th element in R is hy where y is the (i, j)-th element in U

Fig. 9. Protocol ΠALB continued

nentiations per party as parties can compute the result directly by reconstructing
the exponents first (where in addition one can use the standard FFT in Zq).

Computational complexity: Other operations. The total number of
additional computation of group operations (aside from the ones involved in
computing group exponentiations) is O(n2 log n). With regard to operations in
the field Zq, parties need to carry out a total of O(n) computations of poly-
nomials of degree O(n) in sets of O(n) points, which are always subsets of the
evaluation points for the secrets and share. In order to speed this computation up
we can use 2n− th roots of unity as evaluation points (instead of [−`−1, n]) and
make use of the FFT yielding a total of O(n2 log n) basic operations in Zq. We
also need to compute Lagrange coefficients and the values ui in LocalLDEI but

19

Scheme
Output Complexity(# group exponentiations) Amortized

size Commit Reveal Recovery Output Total complexity

SCRAPE 1 O(n) O(n2) O(n2) O(1) O(n2) O(n2)

ALBATROSS,
O(n2) O(n) O(n2) O(n2 logn) O(n2 logn) O(n2 logn) O(logn)

worst case

ALBATROSS,
O(n2) O(n) O(n2) - O(n2) O(n2) O(1)

best case
Table 1. Computational complexity in terms of numbers of exponentiations for each
phase of the protocols, and exponentiations per created element (per party).

this is done only once per party. In addition, the recent article [?] has presented
efficient algorithms for all these computations.

Smaller outputs. ALBATROSS outputs O(n2) random elements in the
group Gq. However, if parties do not need such large output, the protocol can be
adapted to have a smaller output and a decreased complexity (even though the
amortized complexity will be worse than the full ALBATROSS). In fact there are
a couple of alternatives to achieve this: The first is to use standard (i.e., “non-
packed” Shamir’s secret sharing, so a single group element is shared per party,
as in SCRAPE; yet the resilient function based technique is still used to achieve
an output of O(n) (assuming t = (1/2− ε)n). This yields a total computational
complexity per party of O(n2) exponentiations (O(n) per output). A similar
alternative is to instead use ALBATROSS as presented until the Recovery phase,
and then only a subset I ⊂ [0, ` − 1] of the coordinates of the secret vectors is
used to construct a smaller output, and the rest is ignored. Then parties only
need to recover those coordinates and apply the output phase to them. The
advantage is that at a later point the remaining unused coordinates can be used
on demand, if more randomness is needed (however it is important to note this
unused randomness can not be considered secret anymore at this point, as it is
computable from the information available to every party). If initially only O(n)
random elements are needed, we set |I| = O(1) and need O(n2) exponentiations
per party (O(n) per output). We give more details in the full version.

Implementation. A toy implementation of some of the algorithms used in
ALBATROSS can be found in [?].

5 Making ALBATROSS Universally Composable

In the previous sections, we constructed a packed PVSS scheme πPPV SS and
used it to construct a guaranteed output delivery (G.O.D.) randomness beacon
ΠALB . However, as in previous G.O.D. unbiasable randomness beacons [?,?],
we only argue stand alone security for this protocol. In the remainder of this
work, we show that ΠALB can be lifted to achieve Universally Composability
by two different approaches: 1. using UC-secure zero knowledge proofs of knowl-
edge for the LDEI and DLEQ relations defined above, and 2. using UC-secure

20

additively homomorphic commitments. We describe the UC framework, ideal
functionalities and additional modelling details in the full version [?].

Modeling Randomness Beacons in UC We are interested in realizing a
publicly verifiable G.O.D. coin tossing ideal functionality that functions as a
randomness beacon (i.e. it allows any third party verifier to check whether a
given output was previously generated by the functionality). We define such a

functionality Fm,DCT in Figure ??. Notice that it provides random outputs once all
honest parties activate it with (Toss, sid) independently from dishonest parties’
behavior. We realize this simple functionality for single shot coin tossing because
it allows us to focus on the main aspects of our techniques. In order to obtain a
stream of random values as in a traditional beacon, all parties can periodically
call this functionality with a fresh sid.

Functionality Fk,DCT

Fk,DCT is parameterized by k ∈ N and a distribution D, interacting with a set of
parties P = {P1, . . . ,Pn}, a set of verifiers V and an adversary S through the
following interfaces:

Toss: Upon receiving (Toss, sid) from all honest parties in P, uniformly sample k

random elements x1, . . . , xk
$← D and send (Tossed, sid, x1, . . . , xk) to all parties

in P.
Verify: Upon receiving (Verify, sid, x1, . . . , xk) from Vj ∈ V, if (Tossed,
sid, x1, . . . , xk) has been sent to all parties in P set f = 1, otherwise, set f = 0.
Send (Verified, sid, x1, . . . , xk, f) to Vj .

Fig. 10. Functionality Fk,DCT for G.O.D. Publicly Verifiable Coin Tossing.

5.1 Using UC-secure Zero Knowledge Proofs

Our first approach is to modify the commit and reveal phases of Protocol ΠALB

and use NIZK ideal functionalities as setup (along with an authenticated pub-
lic bulletin board ideal functionality FAPBB as defined in the full version [?])
in order to obtain an UC-secure version of protocol. The crucial difference is
that instead of having all parties reveal the randomness of the PVSS sharing
algorithm (i.e. the polynomial p(X)) in the reveal phase in order to verify that
certain random inputs were previously shared in the commit phase, we have the
parties commit to their random inputs using an equivocal commitment and then
generate a NIZK proof that the random inputs in the commitments correspond
to the ones shared by the PVSS scheme in the commit phase. In the reveal
phase, the parties simply open their commitments. In case a commitment is not
opened, the honest parties use the PVSS reconstruction to recover the random
input. Intuitively, using an equivocal commitment scheme and ideal NIZKs al-
lows the simulator to first extract all the random inputs shared by the adversary
and later equivocate the simulated parties’ commitment openings in order to

21

trick the adversary into accepting arbitrary random inputs from simulated hon-
est parties that result in the same randomness as obtained from FCT. Protocol
ΠCT−ZK is presented in Figures ?? and ??.

Pedersen Commitments We will use a Pedersen commitment [?], which is an
equivocal commitment, i.e. it allows a simulator who knows a trapdoor to open a
commitment to any arbitrary message. In this scheme, all parties are assumed to
know generators g, h of a group Gq of prime order q chosen uniformly at random
such that the discrete logarithm of h on base g is unknown. In order to commit

to a message m ∈ Zq, a sender samples a randomness r
$← Zq and computes a

commitment c = gmhr, which can be later opened by revealing (m, r). In order
to verify that an opening (m′, r′) for a commitment c is valid, a receiver simply
checks that c = gm

′
hr
′
. However, a simulator who knows a trapdoor td such

that h = gtd can open c = gmhr to any arbitrary message m′ by computing
r′ = m+td·r−m′

td and revealing (m′, r′). For a message m ∈ Zq and randomness
r ∈ Zq, we denote a commitment c as Com(m, r), the opening of c as Open(m, r)
and the opening of c to an arbitrary message m′ ∈ Zq given trapdoor td as
TDOpen(m, r,m′, td).

NIZKs We use three instances of functionality FRNIZK. The first one is FLDEINIZK ,
which is parameterized with relation LDEI (Section ??). The second one is

FDLEQNIZK , which is parameterized with relation DLEQ for multiple statements
DLEQ((h, (σ̃ij)i∈I)(pk, (σ̂

i
j)i∈I)) (Section ??). The third and final one is FCOMC

NIZK ,
which is parameterized with a relation COMC showing that commitments
Com(sj0, r

j
0), . . . ,Com(sj`−1, r

j
`−1) contain the same secrets sj0, . . . , s

j
`−1 as in the

encrypted shares σ̂j1, . . . , σ̂
j
n generated by πPPV SS (Figure ??).

CRS and Bulletin Board In order to simplify our protocol description and secu-
rity analysis, we assume that parties have access to a CRS containing the public
parameters for the Pedersen equivocal commitment scheme and Vandermonde
matrix for the PVSS scheme πPPV SS . Moreover, a CRS would be necessary to
realize the instances of FRNIZK we use. Nevertheless, we remark that the parties
could generate all of these values in a publicly verifiable way through a multi-
party computation protocol [?] and register them in the authenticated public
bulletin board functionality in the beginning of the protocol.

Communication Model Formally, for the sake of simplicity, we describe our pro-
tocol using an ideal authenticated public bulletin board FAPBB that guarantees
all messages appear immediately in the order they are received and become
immutable. However, we remark that our protocols can be proven secure in a
semi-synchronous communication model with a public ledger where messages are
arbitrarily delayed and re-ordered by the adversary but eventually registered (i.e.
the adversary cannot drop messages or induce an infinite delay). Notice that the
protocol proceeds to each of its steps once n − t parties (i.e. at least all hon-
est parties) post their messages to FAPBB , so it is guaranteed to terminate if

22

Protocol ΠCT−ZK (Initialization, Commit and Reveal)
It is assumed that FCRS provides Pedersen commitment parameters gp, hp ∈ Gq
and a Vandermonde (n − 2t) × (n − t)-matrix M = M(ω, n − 2t, n − t) with
ω ∈ Z∗q as specified in section ??. We denote the commitment and open procedures
of a Pedersen commitment as Com(m, r) and Open(m, r), respectively. Protocol
ΠCT−ZK is run between a set P = {P1, . . . , Pn} (out of which at most t are cor-
rupted) and a set of verifiers V interacting with each other and with functionalities
FCRS,FAPBB ,FLDEINIZK ,FDLEQNIZK ,FCOMC

NIZK as follows:
1. Initialization: Upon being activated for the first time, all parties in P and V

send (CRS, sid) to FCRS, obtaining (CRS, sid, gp, hp,M). Each party Pi ∈ P
samples ski ← Zq, computes pki = hski and sends (Post, sid,MID, pki) to
FAPBB using a fresh MID. Finally, all parties obtain all pki from FAPBB .

2. Commit: For 1 ≤ j ≤ n:
(a) Party Pj executes the Distribution phase of of πPPV SS (Figure ??) as

Dealer for ` = n − 2t random inputs using FLDEINIZK to compute the
NIZKs, obtaining encrypted shares σ̂j1, . . . , σ̂

j
n, a NIZK proof πjLDEI , se-

crets hs
j
0 , . . . , hs

j
`−1 and exponents sj0, . . . , s

j
`−1.

(b) Pj computes Com(sj0, r
j
0), . . . ,Com(sj`−1, r

j
`−1) (with fresh randomness

rj0, . . . , r
j
`−1 ← Zq) and obtains from FCOMC

NIZK a NIZK proof πjCOMC that

these commitments contain the same secrets sj0, . . . , s
j
`−1 as σ̂j1, . . . , σ̂

j
n.

(c) Pj sends (Post, sid,MID, (σ̂j1, . . . , σ̂
j
n, π

j
LDEI ,Com(sj0, r

j
0), . . . ,

Com(sj`−1, r
j
`−1), πjCOMC)) to FAPBB using a fresh MID.

3. Reveal:
(a) All parties in P send (Read, sid) to FAPBB , receive (Read, sid,M)

and, for every new (Pi, sid,MID, (σ̂j1, . . . , σ̂
j
n, π

j
LDEI ,Com(sj0, r

j
0), . . . ,

Com(sj`−1, r
j
`−1), πjCOMC)) in M, verify proof πjCOMC using FCOMC

NIZK and

run the Verification phase of πPPV SS (Figure ??) using FLDEINIZK .
(b) Once n − t parties have posted valid σ̂j1, . . . , σ̂

j
n, πjLDEI and

Com(sj0, r
j
0), . . . ,Com(sj`−1, r

j
`−1), πjCOMC on FAPBB (we call C

the set of these parties) each party Pj ∈ C sends (Post,
sid,MID,

(
Open(sj0, r0,j), . . . ,Open(sj`−1, r`−1,j)

)
) to FAPBB using a

fresh MID, for j ∈ C.
(c) All parties in Pi send (Read, sid) to FAPBB , receive (Read, sid,M) and

check that (Pi, sid,MID,
(
Open(sj0, r0,j), . . . ,Open(sj`−1, r`−1,j)

)
) is in M

for all j ∈ C. Once this check succeeds, all parties in P verify that these cor-

respond to the secrets that were shared, by computing all hs
j
i and checking

the consistency of these values with the published shares with the check
LocalLDEI , in the same way that they would do in Figure ??.

(d) If any of the checks in the previous step fails, proceed to the recovery phase
of Figure ??. Otherwise, if every party in C has opened their secrets cor-
rectly, parties compute R = M �T as follows. Let S be the (n−t)×` matrix
with rows indexed by the parties in C and where the row corresponding to
Pa ∈ C is (sa0 , . . . , s

a
`−1). All parties in P compute U = M · S ∈ Z`×`q and

R = hU , outputting the `2 elements of R as final randomness.

Fig. 11. Protocol ΠCT−ZK , optimistic case (Initialization, Commit and Reveal).

23

Protocol ΠCT−ZK continued, pessimistic case (Recovery phase)

4 Recovery: Let CA be the set of parties Pa ∈ C that do not publish a valid
opening of their commitments in the reveal phase. Every party Pj ∈ P proceed
as follows:
(a) Execute the Share Decryption protocol for each PVSS where a party Pa ∈
CA was the dealer as described in Figure ?? using FDLEQNIZK to compute
πjDLEQ. Pj sends (Post, sid,MID, ({σ̃aj }Pa∈CA , π

j
DLEQ)) to FAPBB using

a fresh MID.
(b) Send (Read, sid) to FAPBB , receive (Read, sid,M) and, for every new

(Pi, sid,MID, ({σ̃aj }Pa∈CA , π
j
DLEQ)) in M, verify proof πjDLEQ using

FDLEQNIZK .
(c) Once a set Q of n − t parties have posted valid decrypted shares on
FAPBB , the secrets are reconstructed as follows. For every Pa ∈ CA,
we define taskRec,a to be the computation of (hs

a
0 , . . . , hs

a
`−1) from the

decrypted shares with RecQ as described in PVSS reconstruction. Let
TRec = {taskRec,a}Pa∈CA . Then call DistComp(TRec,P, logn), where
DistComp is as described in Figure ?? with AlgComp = RecQ and
AlgV er = RecV erQ (Figure ??), taking all inputs from FAPBB and post-
ing all outputs to FAPBB .

(d) Send (Read, sid) to FAPBB , obtainingM. Let T be the (n− t)× ` matrix
with rows indexed by the parties in C and where the row corresponding to
Pa ∈ C is (hs

a
0 , . . . , hs

a
`−1), which are obtained from M.

(e) Each computes the ` × `-matrix R = M � T by applying FFTE to each
column T (j) of T , resulting in column R(j) of R (since R(j) = M �T (j) and
M is Vandermonde) for j ∈ [0, `− 1].

(f) Output the `2 elements of R as final randomness.
5 Verify: On input (Verify, sid, x1, . . . , xk), a verifier Vi ∈ V checks that the

protocol transcript registered in FAPBB is valid using the verification interfaces
of FLDEINIZK ,FDLEQNIZK ,FCOMC

NIZK . If the transcript is valid and results in output
x1, . . . , xk, AlgV eri sets b = 1, else, it sets b = 0. Vi outputs (Verified,
sid, x1, . . . , xk, b).

Fig. 12. Protocol ΠCT−ZK continued, pessimistic case (Recovery phase)

honest party messages are delivered eventually regardless of the order in which
these messages appear or of the delay for such messages to become immutable.
Using the terminology of [?,?], if we were to use a blockchain based public ledger
instead of FAPBB , each point we state that the parties wait for n− t valid mes-
sages to be posted to FAPBB could be adapted to having the parties wait for
enough rounds such that it is guaranteed by the chain growth property that
a large number enough blocks are added to the ledger in such a way that the
chain quality property guarantees that at least one of these blocks is honest (i.e.
containing honest party messages) and that enough blocks are guaranteed to be
added after this honest block so that the common prefix property guarantees
that all honest parties have this block in their local view of the ledger. A similar
analysis has been done in [?,?] in their constructions of randomness beacons.

24

Complexity We execute essentially the same steps of Protocol ΠALB with the
added overhead of having each party compute Pedersen Commitments to their
secrets and generate a NIZK showing these secrets are the same as the ones
shared through the PVSS scheme. Using the combined approaches of [?,?] to
obtain these NIZKs, the approximate extra overhead of using UC NIZKs in rela-
tion to the stand alone NIZKs of ΠALB will be that of computing 2 evaluations
of the Paillier cryptosystem’s homomorphism and 4 modular exponentiations
over Gq per each secret value in the witness for each NIZK. In the Commit
and Reveal phases, this yields an approximate fixed extra cost of 4n2 evalua-
tions of the Paillier cryptosystem’s homomorphism and 8n2 modular exponenti-
ations over Gq for generating and verifying NIZKs with FLDEINIZK and FCOMC

NIZK . In
the recovery phase, if a parties fail to open their commitments, there is an ex-
tra costs of 2a(n− t) evaluations of the Paillier cryptosystem’s homomorphism
and 4a(n − t) modular exponentiations over Gq for generating and verifying

NIZKs with FDLEQNIZK . In terms of communication, the approximate extra over-
head is of one Paillier ciphertext and two integer commitments per each secret
value in the witness for each NIZK, yielding an approximate total overhead of
(n2 + a(n− t)) · |Paillier|+ (2n2 + a(n− t)) · |Gq| bits where |Paillier| is the length
of a Paillier ciphertext and |Gq| is the length of a Gq element.

Theorem 3. Protocol ΠCT−ZK UC-realizes Fk,DCT for k = `2 = (n − 2t)2 and

D = {hs|h ∈ Gq, s
$← Zq} in the FCRS,FAPBB ,FLDEINIZK ,FDLEQNIZK ,FCOMC

NIZK -hybrid
model with static security against an active adversary A corrupting corrupts at
most t parties (where 2t+ ` = n) parties under the DDH assumption.

Proof. We prove this theorem in the full version [?].

5.2 Using Designated Verifier Homomorphic Commitments

In the stand alone version of ALBATROSS and the first UC-secure version we
construct, the main idea is to encrypt shares of random secrets obtained from
packed Shamir secret sharing and prove in zero knowledge that those shares were
consistently generated. Later on, zero knowledge proofs are used again to prove
that decrypted were correctly obtained from the ciphertexts that have already
been verified for consistency, ensuring secrets can be properly reconstructed.
We now explore an alternative where we instead commit to their shares using
a UC additively homomorphic commitment scheme and perform a version the
LocalLDEI check on the committed shares and open the resulting commitment
in order to prove that their shares were correctly generated. In order to do that,
we need a new notion of a UC additively homomorphic commitment that allows
for the sender to open a commitments to an specific share towards a specific
party (so that only that party learns its share) but allows for those parties to
later prove that they have received a valid opening or not, allowing the other
parties to reconstruct the secrets from the opened shares. In the remainder of
this section, we introduce our new definition of such a commitment scheme and
show how it can be used along with FAPBB to realize Fk,DCT .

25

Functionality FDVHCOM

FDVHCOM keeps two initially empty lists opendes and openpub. FDVHCOM interacts
with a sender PS , a set of receivers P = {P1, . . . , Pt}, a set of verifiers V and an
adversary S and proceeds as follows:

– Commit Phase: The length of the committed messages λ is fixed and known
to all parties.
• Upon receiving a message (commit, sid, ssid, PS , P,m) from PS , where

m ∈ {0, 1}λ, record the tuple (ssid, PS , P,m) and send the message
(receipt, sid, ssid, PS , P) to every receiver Pi ∈ P and S. Ignore any fu-
ture commit messages with the same ssid from PS to P .

• If a message (abort, sid) is received from S, the functionality halts.
– Addition: Upon receiving a message (add, sid, ssid1, ssid2, ssid3, PS , P) from
PS : If tuples (ssid1, PS , P,m1), (ssid2, PS , P,m2) were previously recorded
and ssid3 is unused, record (ssid3, PS , P,m1 + m2) and send the message
(add, sid, ssid1, ssid2, ssid3, PS , P, success) to PS , every Pi ∈ P and S.

– Schedule Public Open: Upon receiving a message (P− Open, sid, ssid) from
PS , if a tuple (ssid, PS , P,m) was previously recorded, append ssid to openpub.

– Schedule Designated Open: Upon receiving a message
(D− Open, sid, Pd, ssid) from PS for Pd ∈ P , if a tuple (ssid, PS , P,m)
was previously recorded, append (Pd, ssid) to opendes.

– Execute Open: Upon receiving a message (Do− Open, sid) from PS :
• For every ssid ∈ openpub, send (p-reveal, sid, PS , P, ssid,m) to every re-

ceiver Pi ∈ P where m is in the recorded tuple (ssid, PS , P,m).
• For every pair (Pd, ssid) ∈ opendes send (d-reveal, sid, PS , Pd, ssid) to

every receiver in P and send (d-reveal, sid, PS , Pd, ssid,m) to Pd where
m is in the recorded tuple (ssid, PS , P,m).

Stop responding to P− Open, D− Open and Do− Open queries.
– Reveal Designated Open Upon receiving message (Reveal-D-Open,
sid, Pd, ssid) from Pd, if (Pd, ssid) ∈ opendes and Execute Open has happened,
send (p-reveal, sid, PS , P, ssid,m) to every receiver Pi ∈ P where m is in the
recorded tuple (ssid, PS , P,m).

– Verify Upon receiving (Verify, sid, ssid, PS ,m) from Vj ∈ V, if (p-reveal,
sid, PS , P, ssid,m) was sent to every receiver Pi ∈ P , set f = 1, else, set f = 0.
Send (Verified, sid, ssid, PS ,m, f) to Vj .

Fig. 13. Functionality FDVHCOM

Designated Verifier Commitments We define a new flavor of multi-receiver
commitments that we call Designated Verifier Commitments, meaning that they
allow a sender to open a certain commitment only towards a certain receiver in
such a way that this receiver can later prove that the commitment was correctly
opened (also revealing its message) or that the opening was not valid. Moreover,
we give this commitments the ability to evaluate linear functions on commit-
ted values and reveal only the result of these evaluations but not the individual
values used as input, a property that is called additive homomorphism. We de-
part from the multi-receiver additively homomorphic commitment functionality
from [?] and augment it with designated verifier opening and verification inter-
faces. Functionality FDVHCOM is presented in Figure ??. The basic idea to realize
this functionality is that we make two important changes to the protocol of [?]:

26

1. all protocol messages are posted to the authenticated bulletin board FAPBB ;
2. designated openings are done by encrypting the opening information from the
protocol of [?] with the designated verifier’s public key for a cryptosystem with
plaintext verification [?], which allows the designated verifier to later publicly
prove that a certain (in)valid commitment opening was in the ciphertext. In-
terestingly, FDVHCOM can be realized in the global random oracle model under
the Computational Diffie Hellman (CDH) assumption. We show how to realize
FDVHCOM in the full version [?].

Realizing Fk,D
CT with ΠCT−COM The main idea in constructing Proto-

col ΠCT−COM is to have each party compute shares of their random secrets
using packed Shamir secret sharing and then generate designated verifier com-
mitments FDVHCOM to each share. Next, each party proves that their committed
shares are valid by executing the LocalLDEI test on the committed shares (in-
stead of group exponents), which involves evaluating a linear function on the
committed shares and publicly opening the commitment containing the result
of this evaluation. At the same time, each party performs designated openings
of each committeed share towards one of the other parties, who verify that they
have obtained a valid designated opening and post a message to FAPBB confirm-
ing that this check succeeded. After a high enough number of parties successfully
confirms this check for each of the sets of committed shares, each party publicly
opens all of their committed shares, allowing the other parties to reconstruct the
secrets. If one of the parties does not open all of their shares, the honest par-
ties can still reconstruct the secrets by revealing the designated openings they
received for their shares. We present Protocol ΠCT−COM in Figure ?? and state
its security in Theorem ??. Since FDVHCOM can be realized in the global ran-
dom oracle model under the Computational Diffie Hellman (CDH) assumption

as shown in the full version [?], we obtain an instantiation of Fk,DCT with security
based on CDH.

Theorem 4. Protocol ΠCT−COM UC-realizes Fk,DCT for k = `2 = (n − 2t)2

and D = {hs|h ∈ Gq, s
$← Zq} in the FDVHCOM,FAPBB-hybrid model with

static security against an active adversary A corrupting at most t parties (where
2t+ ` = n).

Proof. This theorem is proven in the full version [?].

6 Acknowledgements

The authors would like to thank the anonymous reviewers for their suggestions,
Diego Aranha, Ronald Cramer and Dario Fiore for useful discussions and Eva
Palandjian for the implementation in [?] and remarks about the initial draft.

27

Protocol ΠCT−COM

Let ` = n − 2t. We assume the parties have a Vandermonde (`) × (n − t)-matrix
M = M(ω, `, n − t) with ω ∈ Z∗q as specified in section ??. Protocol ΠCT−COM
is run between a set P = {P1, . . . , Pn} (out of which at most t are corrupted)
and a set of verifiers V interacting with each other and with functionalities
FAPBB ,FDVHCOM as follows:

1. Commit: On input (Toss, sid), every party Pi ∈ P proceeds as follows:
(a) Pi acts as dealer in Shamir packed secret sharing, sampling a polynomial

p(X)← Zq[X]≤t+`−1 such that s0 = p(0), s1 = p(−1), . . . , s`−1 = p(−(`−
1)) and computing shares σi = p(i) for 1 ≤ i ≤ n.

(b) For 1 ≤ j ≤ n, Pi picks an unused ssidij and sends (commit,
sid, ssidj ,Pi,P, σj) to FDVHCOM.

(c) Pi uses the Addition interface of FDVHCOM to evaluate the LocalLDEI
test on the committed shares identified by ssidi1, . . . , ssid

i
n obtaining a

new commitment identified by ssidiLDEI . The random polynomial used by
LocalLDEI is sampled via de Fiat-Shamir heuristic using the output of a
global random oracle queried on the protocol transcript so far.

(d) Pi sends (P− Open, sid, ssidiLDEI) to FDVHCOM (scheduling a public open-
ing the commitment with the LocalLDEI result) and, for 1 ≤ j ≤ n, sends
(D− Open, sid,Pj , ssidij) to FDVHCOM (scheduling the delegated opening
of share σj towards Pj). Finally, Pi sends (Do− Open, sid) to FDVHCOM

execute all openings and sends (Post, sid,MID,mi
LDEI) to FAPBB using

a fresh MID (registering the result of the LDEI test on the bulletin board).
(e) For 1 ≤ j ≤ n, Pi checks that it has received (p-reveal,

sid,Pj ,P, ssidjLDEI , 0) (meaning that the shares from Pj passed
the LocalLDEI test), (d-reveal, sid,Pj ,Pi, ssidji , σ

j
i) and (d-reveal,

sid,Pj ,Pi, ssidjj′) for every j′ = 1, . . . , n, j′ = j (meaning that Pj
opened each committed share towards the right designated verifier) from
FDVHCOM. We call the set of parties for which this check succeeds C, which
is guaranteed to contain at least n− t parties (all honest parties).

2. Reveal and Output: Every party Pi ∈ P proceeds as follows:
(a) For every party Pj ∈ C, Pi sends (Reveal-D-Open, sid,Pi, ssidji) to
FDVHCOM and (Post, sid,MID, σji) to FAPBB using a fresh MID.

(b) After the n − t honest parties open their committed shares, perform the
recovery procedure of ΠALB directly on the set of shares σjo such that
Pj ∈ C and Po revealed its shares in the previous step (which is guaranteed
to contain at least n− t shares revealed by the honest parties). Output the
`2 elements of R as final randomness.

3. Verify: On input (Verify, sid, x1, . . . , xk), a verifier Vi ∈ V checks that the
protocol transcript registered in FAPBB is valid using the verification interface
of FDVHCOM. If the transcript is valid and results in output x1, . . . , xk, AlgV eri
sets b = 1, else, it sets b = 0. Vi outputs (Verified, sid, x1, . . . , xk, b).

Fig. 14. Protocol ΠCT−COM .

28

