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Abstract. Approx-Svp is a well-known hard problem on lattices, which
asks to find short vectors on a given lattice, but its variant restricted to
ideal lattices (which correspond to ideals of the ring of integers OK of a
number field K) is still not fully understood. For a long time, the best
known algorithm to solve this problem on ideal lattices was the same as
for arbitrary lattice. But recently, a series of works tends to show that
solving this problem could be easier in ideal lattices than in arbitrary
ones, in particular in the quantum setting.
Our main contribution is to propose a new “twisted” version of the
PHS (by Pellet-Mary, Hanrot and Stehlé 2019) algorithm, that we call
Twisted-PHS. As a minor contribution, we also propose several improve-
ments of the PHS algorithm. On the theoretical side, we prove that our
Twisted-PHS algorithm performs at least as well as the original PHS al-
gorithm. On the practical side though, we provide a full implementation
of our algorithm which suggests that much better approximation factors
are achieved, and that the given lattice bases are a lot more orthogonal
than the ones used in PHS. This is the first time to our knowledge that
this type of algorithm is completely implemented and tested for fields of
degrees up to 60.
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1 Introduction

Lattice-based cryptography is one of the most promising post-quantum solution
to build cryptographic constructions, as shown by the large number of lattice-
based submissions to the recent NIST post-quantum competition. Among those
submissions, and the other recent more advanced constructions, several hard
problems are used to build the security proofs, such as the Learning With Er-
rors (LWE) problem [Reg05], its ring [SSTX09,LPR10] or module [LS15] variants
(respectively Ring-LWE and Module-LWE) or the NTRU problem [HPS98]. In
particular the Ring variant of the Learning With Errors problem is widely used
as it seems to allow a nice trade-off between security and efficiency. Indeed, it is
defined in a ring, usually R = Z/〈xn + 1〉 for n a power of 2, whose structure al-
lows constructions having a much better efficiency than if based on unstructured



problems like LWE. Concerning its hardness, there exists quantum worst-case
to average case reductions [SSTX09,LPR10,PRS17] from the approx Shortest
Vector Problem on ideal-lattices (Approx-id-Svp) to the Ring-LWE problem.

Approx-Svp is a well-known hard problem on lattices, which asks to find short
vectors on a given lattice, but its variant restricted to ideal lattices (correspond-
ing to ideals of the ring of integers R of a number field K) is still not fully under-
stood. For a long time, the best known algorithm to solve this problem on ideal
lattices was the same as for arbitrary lattices. The best trade-off in this case is
given by Schnorr’s hierarchy [Sch87], which allows to reach an approximation fac-

tor 2Õ(nα) in time 2Õ(n1−α), for α ∈ (0, 1), using the BKZ algorithm. But recently,
a series of works [CGS14,EHKS14,BS16,CDPR16,CDW17,DPW19,PHS19a] tends
to show that solving this problem could be easier in ideal lattices than in arbi-
trary ones, in particular in the quantum setting.

Hardness of Approx-SVP on ideal lattices. This series of works starts
with a claimed result [CGS14] of a quantum polynomial-time attack against a
scheme named Soliloquy, which solves the Approx-Svp problem on a principal
ideal lattice. The algorithm has two steps: the first one is solving the Principal
Ideal Problem (Pip), and finds a generator of the ideal, the second one is solv-
ing a Closest-Vector Problem (Cvp) in the log-unit lattice to find the shortest
generator of the ideal. On one hand, the results of [EHKS14,BS16] on describ-
ing a quantum algorithm to compute class groups and then solve Pip in arbi-
trary degree number fields allow to have a quantum polynomial-time algorithm
for the first step. On the other hand, a work by Cramer et al. [CDPR16] pro-
vides a full proof of the correctness of the algorithm described by [CGS14], and
then concludes that there exists a polynomial-time quantum algorithm which

solve Approx-Svp on ideal lattices for an approximation factor 2Õ(
√
n). In 2017,

Cramer, Ducas and Wesolowski [CDW17] show how to use the Stickelberger lat-
tice to generalize this result to any ideal lattice in prime power cyclotomic fields.
The practical impact of their result was evaluated by the authors of [DPW19] by
running extensive simulations. They conclude that the CDW algorithm should
beat BKZ-300 for cyclotomic fields of degree larger than 24000.

In parallel, Pellet-Mary, Hanrot and Stehlé [PHS19a] proposed an extended
version of [CDPR16,CDW17] which is now proven for any number fields K.
The main feature of their algorithm, that we call PHS, is to use an exponential
amount of preprocessing, depending only onK, in order to efficiently combine the
two principal resolution steps of [CDW17], namely the Cpmp (Close Principal
Multiple Problem) and the Sgp (Shortest Generator Problem). Combining these
two steps in a single Cvp instance provides some guarantee that the output of
the Cpmp solver has a generator which is “not much larger” than its shortest
non-zero vector. Hence, the PHS algorithm in a number field K of degree n and
discriminant ∆K is split in two phases, given ω ∈ [0, 1/2]:

1. The preprocessing phase builds a specific lattice, depending only on the
field K, together with some hint allowing to efficiently solve Approx-Cvp

instances. This phase runs in time 2Õ(log|∆K |) and outputs a hint V of bit-

size 2Õ(log1−2ω|∆K |).
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2. The query phase reduces each Approx-id-Svp challenge to an Approx-Cvp
instance in this fixed lattice. It takes as inputs any ideal of OK , whose
algebraic norm has bit-size bounded by 2poly(log|∆K |), the hint V, and runs

in time 2Õ(log1−2ω|∆K |)+TSu(K). It outputs a non-zero element x of the ideal

which solves Approx-Svp with an approximation factor 2Õ(logω+1|∆K |/n).

The term TSu(K) denotes the running time for computing S-unit groups which
can then be used to compute class groups, unit groups, and class group discrete
logarithms [BS16]. In the quantum world, TSu(K) = Õ

(
ln|∆K |

)
is polynomial,

as shown in [BS16], building upon [EHKS14]. In the classical world, it remains
subexponential in ln|∆K |, i.e. TSu(K) = exp Õ(lnα|∆K |), where α = 1/2 for
prime power cyclotomic fields [BEF+17], and α = 2/3 in the general case [BF14],
being recently lowered to 3/5 by Gélin [Gél17].

Forgetting about the preprocessing cost, the query phase beats the tradi-
tional Schnorr’s hierarchy [Sch87] when log|∆K | ≤ Õ(n1+ε) with ε = 1/3 in the
quantum case, and ε = 1/11 in the classical case [PHS19a, Fig. 5.3]. It should
be noted however that these bounds on the discriminant are not uniform as the
approximation factor varies, e.g. for an approximation factor set to 2

√
n, the time

complexity of the PHS algorithm asymptotically beats Schnorr’s hierarchy only
in the quantum case and only for ε ≤ 1/6.

Our contribution. Our main contribution is to propose a new “twisted” ver-
sion of the PHS [PHS19a] algorithm, that we call Twisted-PHS. As a minor
contribution, we also propose several improvements of the PHS algorithm, in a
optimized version described in §3.3. On the theoretical side, we prove that our
Twisted-PHS algorithm performs at least as well as the original PHS algorithm,
using the same Cvp solver using a preprocessing hint by Laarhoven [Laa16].

On the practical side though, we provide a full implementation of our al-
gorithm, which suggests that much better approximation factors are achieved
and that the given lattice bases are much more orthogonal than the ones used
in [PHS19a]. To our knowledge, this is the first time that this type of algo-
rithm is completely implemented and tested for fields of degrees up to 60. As a
point of comparison, experiments of [PHS19a] constructed the log-S-unit lattice
for cyclotomic fields of degrees at most 24, all but the last two being principal
[PHS19a, Fig. 4.1]. We shall also mention the extensive simulations performed
by [DPW19] using the Stickelberger lattice in prime power cyclotomic fields.
Adapting these results to our construction is not immediate, as we need explicit
S-units to compute our lattice. This is left for future work.

We explain our experiments in §5, where we evaluate three algorithms: the
original PHS algorithm, as implemented in [PHS19b]; our optimized version Opt-
PHS (§3.3), and our new twisted variant Tw-PHS (§4). We target two families
of number fields, namely non-principal cyclotomic fields Q(ζm) of prime conduc-
tors m ∈ J23, 71K, and NTRU Prime fields Q(zq) where zq is a root of xq−x−1,
for q ∈ J23, 47K prime. These correspond to the range of what is feasible in a
reasonable amount of time in a classical setting. For cyclotomic fields, we man-
aged to compute S-units up to Q(ζ71) for all factor bases in less than a day, and
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Fig. 1.1 – Approximation factors reached by Tw-PHS, Opt-PHS and PHS for
cyclotomic fields of conductors 23, 29, 31, 37, 41, 43, 47 and 53 (in log scale).

all log-S-unit lattice variants up to Q(ζ61). For NTRU Prime fields, we managed
all computations up to Q(z47).

Experiments. We chose to perform three experiments to test the performances
of our Twisted-PHS algorithm, and to compare it with the two other algorithms:

– We first evaluate the geometric characteristics of the lattice output by the
preprocessing phase: the root Hermite factor δ0, the orthogonality defect δ,
and the average vector basis angle θavg, as described in details in §2.5. The
last one seems difficult to interpret as it gives similar results in all cases, but
the two other seem to show that the lattice output by Twisted-PHS is of
better quality than in the two other cases. It shows significantly better root
Hermite factor and orthogonality defect than any other lattice.

– For our second experiment, we evaluate the Gram-Schmidt log norms of each
produced lattice. We propose two comparisons, the first one is before and
after BKZ reduction to see the evolution of the norms in each case: it shows
that the two curves are almost identical for Twisted-PHS but not for the
other PHS variants. The second one is between the lattices output by the
different algorithms, after BKZ reduction. The experiments emphasises that
the decrease of the log norms seems much smaller in the twisted case than
in the two other. Those two observations seem to corroborate the fact that
the Twisted-PHS lattice is already quite orthogonal.

– Finally, we implemented all three algorithms from end to end and used them
on numerous challenges to estimate their practically achieved approximation
factors. This is to our knowledge the first time that these types of algorithms
are completely run on concrete examples. The results of the experiments,
shown in Fig. 1.1, suggest that the approximation factor reached by our
algorithm increases very slowly with the dimension, in a way that could
reveal subexponential or even better. We think that this last feature would
be particularly interesting to prove.
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Technical overview. We first quickly recall the principle of the PHS algorithm
described in [PHS19a], which is split in two phases. The first phase consists in
building a lattice that depends only on the number field K and allowing to
express any Approx-id-Svp instance in K as an Approx-Cvp instance in the
lattice. This preprocessing chooses a factor base FB, and builds an associated
lattice consisting in the diagonal concatenation of some log-unit related lattice
and the lattice of relations in the class group ClK between ideals of FB, with
explicit generators. It then computes a hint of constrained size for the lattice
to facilitate forthcoming Approx-Cvp queries. Concretely, they suggest to use
Laarhoven’s algorithm [Laa16], which for any ω ∈ [0, 1/2] outputs a hint V of bit-

size bounded by 2Õ(log1−2ω|∆K |) that allows to deliver answers for approximation
factors Õ(log|∆K |ω) in time bounded by the bit-size of V [Laa16, Cor. 1–2].
The second phase reduces the resolution of Approx-id-Svp to a single call to
an Approx-Cvp oracle in the lattice output by the preprocessing phase, for any
challenge ideal b in the maximal order of K. The main idea of this reduction is
to multiply the principal ideal output by the Cldl of b on FB by ideals in FB
until a “better” principal ideal is reached, i.e. having a short generator.

Our first contribution is to propose three improvements of the PHS algo-
rithm. The first one consists in expliciting a candidate for the isometry used in
the first preprocessing phase to build the lattice, and to use its geometric prop-
erties to derive a smaller lattice dimension, while still guaranteeing the same
proven approximation factor. The last two respectively modify the composition
of the factor base and the definition of the target vector in a way that signifi-
cantly improves the approximation factor experimentally achieved by the second
phase of the algorithm. Although these improvements do not modify the core of
PHS algorithm and have no impact on the asymptotics, they nevertheless are of
importance in practice, as shown by our experiments in §5.

We now explain our main contribution, called Twisted-PHS, which is based
on the PHS algorithm. As in PHS algorithm, our algorithm relies on the so-
called log-S-unit lattice with respect to a collection FB of prime ideals, called the
factor base. This lattice captures local informations on FB, not only on (infinite)
embeddings, to reduce a close principal multiple of a target ideal b to a principal
ideal containing b which is guaranteed to have a somehow short generator. The
main feature of our algorithm is to use the Product Formula to describe this
log-S-unit lattice. This induces two major changes in PHS algorithm:

1. The first one is twisting the p-adic valuations by lnN (p), giving weight to
the fact that using a relation increasing the valuations at big norm ideals
costs more than a relation involving smaller norm ideals.

2. The second one is projecting the target directly inside the log-S-unit lattice
and not only into the unit log-lattice corresponding to fundamental units.

In fact, the way our twisted version uses S-units with respect to FB to reduce
the solution of the Cldl problem can be viewed as a natural generalization of the
way classical algorithms reduce principal ideal generators using regular units.

Adding weights lnN (p) to integer valuations at any prime ideal p intuitively
allows to make a more relevant combination of the S-units we use to reduce the
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output of the Cldl, quantifying the fact that increasing valuations at big norm
prime ideals costs more than increasing valuations at small norm prime ideals.
Besides, the product formula induces the possibility to project elements on the
whole log-S-unit lattice instead of projecting only on the subspace corresponding
to the log-unit lattice. As a consequence, it maintains inside the lattice the size
and the algebraic norm logarithm of the S-units. At the end, the Cvp solver
in this alternative lattice combines more efficiently the goal of minimizing the
algebraic norm for the Cpmp while still guaranteeing a small size for the Sgp
solution in the obtained principal multiple.

In §4, we describe two versions of our Twisted-PHS algorithm. The first one,

composed by A(Laa)
tw-pcmp and A(Laa)

tw-query is proven to perform at least as well as the
original PHS algorithm with the same Cvp solver using a preprocessing hint

by Laarhoven. But in practice, we propose two alternative algorithms A(bkz)
tw-pcmp

and A(np)
tw-query with the following differences. Algorithm A(bkz)

tw-pcmp performs a mini-
mal reduction step of the lattice as sole lattice preprocessing to smooth the input

basis. Algorithm A(np)
tw-query resorts to Babai’s Nearest Plane algorithm for the Cvp

solver role. Experimental evidence in §5 suggest that these algorithms perform
remarkably well, because the twisted description of the log-S-unit lattice seems
much more orthogonal than expected. Proving this property would remove, in a
quantum setting, the only part that is not polynomial in ln|∆K |.

2 Preliminaries

Notations. A vector is designated by a bold letter v, its i-th coordinate by vi
and its `p-norm, p ∈ N∗ ∪ {∞}, by ‖v‖p. As a special case, the n-dimensional
vector whose coefficients are all 1’s is written 1n. All matrices will be given using
row vectors, Dv is the diagonal matrix with coefficients vi on the diagonal, In is
the identity and 1n×n denotes the square matrix of dimension n filled with 1’s.

2.1 Number fields, ideals and class groups

In this paper, K always denotes a number field of degree n over Q and OK its
maximal order. The algebraic trace and norm of α ∈ K, resp. denoted by Tr(α)
andN (α), are defined as the trace and determinant of the endomorphism x 7→ αx
of K, viewed as a Q-vector space. The discriminant of K is written ∆K and
can be defined, for any Z-basis ω1, . . . , ωn of OK , as det

(
Tr(ωiωj)

)
i,j

. Most

complexities of number theoretic algorithms depend on ln|∆K |.
The fractional ideals of K are designated by gothic letters, like b, and form a

multiplicative group IK . The class group ClK of K is the quotient group of IK
with its subgroup of principal ideals PK

def
:=
{
〈α〉, for all α ∈ K

}
. The class

group is a finite group, whose order hK is called the class number of K. For any
ideal b ∈ IK , the class of b in ClK is denoted by

[
b
]
.

We will specifically target two families of number fields, widely used in
cryptography [Pei16]: cyclotomic fields Q(ζm), where ζm is a primitive m-th
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root of unity, and NTRU Prime [BCLV17] fields Q(zq), where zq is a root
of xq − x − 1 for q prime. Both families have discriminants of order nn. More
exactly, for cyclotomic fields OQ(ζm) = Z[ζm], so we have [Was97, Pr. 2.7]:

∆Q(ζm) = (−1)ϕ(m)/2 mϕ(m)∏
p|m pϕ(m)/(p−1) .

For NTRU Prime fields, the siuation is marginally more involved, as Z[zq] is
maximal if and only if its discriminant D0 = qq − (q − 1)q−1 [Swa62, Th. 2] is
squarefree [Kom75, Th. 4]: ∆Q(zq) =

∏
p|D0

pvp(D0) mod 2, where pvp(D0) divides
exactly D0. Note however that there is strong evidence that such D0’s are gener-
ically squarefree, say with probability roughly 0.99 [BMT15, Conj. 1.1]. Actually,
we checked that the conductor of Z[zq] is not divisible by any of the first 106

primes for all q ≤ 1000 outside the set {257, 487}, for which 592 | D0.

2.2 The product formula

Let (r1, r2) be the signature of K with n = r1 + 2r2. The real embeddings
of K are numbered from σ1 to σr1 , whereas the complex embeddings come in
pairs

(
σj , σj

)
for j ∈ Jr1 + 1, r2K.

Each embedding σ of K into C induces an archimedean absolute value |·|σ
on K, such that for α ∈ K, |α|σ = |σ(α)|; two complex conjugate embeddings
yield the same absolute value. Thus, it is common to identify the set S∞ of
infinite places of K with the embeddings of K into C up to conjugation, so
that S∞ =

{
σ1, . . . , σr1 , σr1+1, . . . , σr1+r2

}
. The completion of K with respect

to the absolute value induced by an infinite place σ ∈ S∞ is denoted by Kσ; it
is R (resp. C) for real places (resp. complex places).

Likewise, let p be a prime ideal of OK above p ∈ Z of residue degree f .
For α ∈ K, the largest power of p that divides 〈α〉 is called the valuation of α
at p, and denoted by vp(α); this defines a non-archimedean absolute value |·|p
on K such that |α|p = p−vp(α). This absolute value can also be viewed as induced
by any of the f embeddings of K into its p-adic completion Kp ⊆ Cp, which is
an extension of Qp of degree f . Hence, the set S0 of finite places of K is specified
by the infinite set of prime ideals of OK , and Ostrowski’s theorem for number
fields ([Con, Th. 3], [Nar04, Th. 3.3]) states that all non archimedean absolute
values on K are obtained in this way, up to equivalence.

Probably the most interesting thing is that these absolute values are tied
together by the following product formula ([Con, Th. 4], [Nar04, Th. 3.5]):

∏
σ∈S∞

|α|[Kσ:R]σ ·
∏

p∈S0⊃pZ
|α|[Kp:Qp]

p

(
= N (α) ·

∏
p∈S0

N (p)−vp(α)
)

= 1. (2.1)

As all but finitely many of the |α|v’s, for v ∈ S∞∪S0, are 1, their product is really
a finite product. Note that the S∞ part is |N (α)|, and each term of the S0 part
can be written as N (p)−vp(α). This formula is actually a natural generalization
to number fields of the innocuous looking product formula for r ∈ Q, written
as: |r| ·

∏
p prime p

−vp(r) = 1.
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2.3 Unit groups

A more thorough version of this section is given in the full version [BR20, §2.3].
Let O×K be the multiplicative group of units of OK , i.e. the group of all elements
of K of algebraic norm ±1, and let µ

(
O×K
)

be its torsion subgroup of roots of
unity of K. Classically, the logarithmic embedding from K to Rr1+r2 is defined
as [Coh93, Def. 4.9.6]: Log∞ α = ([Kσ : R] · ln|σ(α)|)σ∈S∞ . Actually, it will be

more convenient to use a flat logarithmic embedding from K to Rr1+2r2 , as in
[PHS19a,BDPW20], and defined as follows:

Log∞ α =
({

ln|σi(α)|
}
i∈J1,r1K,

{
ln|σr1+j(α)|, ln|σr1+j(α)|

}
j∈J1,r2K

)
. (2.2)

Dirichlet’s unit theorem [Nar04, Th. 3.13] states that O×K is a finitely gener-
ated abelian group of rank ν = r1+r2−1. Further, its image Log∞O×K under the
flat logarithmic embedding is a lattice, called the log-unit lattice, which spans H0,
defined as L0 ∩ Rn0 , i.e. the intersection of the trace zero hyperplane of Rn and
of L0 =

{
y ∈ Rn : yr1+2j−1 = yr1+2j , j ∈ J1, r2K

}
: there exist fundamental

torsion-free elements ε1, . . . , εν ∈ O×K such that:

O×K ' µ
(
O×K
)
× εZ1 × · · · × εZν . (2.3)

Let ΛK = (Log∞ εi)1≤i≤ν be any Z-basis of Log∞O×K . The regulator of K,
written RK , quantifies the density of the unit group in K. It is defined as the

absolute value of the determinant of Λ
(j)
K , where Λ

(j)
K is the submatrix of ΛK

without the j-th coordinate, for any j ∈ J1, r1 + r2K.

On the S-unit group. The S-unit group generalizes the unit group O×K by
allowing inverses of elements whose valuations are non zero exactly over a cho-
sen finite set of primes of S0. Let FB =

{
p1, . . . , pk

}
be such a factor basis,

and let O×K,FB denote the S-unit group of K with respect to FB. Formally, we

have O×K,FB =
{
α ∈ K : ∃e1, . . . , ek ∈ Z, 〈α〉 =

∏
p
ej
j

}
. Similarly, we define a flat

S-logarithmic embedding [Nar04, §3, p.98] from K to L = L0 × Rk by:

Log∞,FB α =
(

Log∞ α,
{
−vp(α) · lnN (p)

}
p∈FB

)
. (2.4)

From the product formula (2.1), the image of O×K,FB lies in H = L ∩ Rn+k0 , the
trace zero hyperplane of L. This fact is used to prove the following theorem:

Theorem 2.1 (Dirichlet-Chevalley-Hasse [Nar04, Th. III.3.12]). The S-
unit group is a finitely generated abelian group of rank ]S∞+]FB−1. Further, the
image Log∞,FB

(
O×K,FB/µ

(
O×K
))

is a lattice which spans the (ν+k)-dimensional

space H: there exist fundamental torsion-free S-units η1, . . . , ηk ∈ O×K,FB st.:

O×K,FB ' µ
(
O×K
)
× εZ1 × · · · × εZν × ηZ1 × · · · × ηZk .
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Let Λ̃K,FB =
(
{Log∞,FB εi}, {Log∞,FB ηj}

)
be a row basis of Log∞,FBO×K,FB,

which will be called the log-S-unit lattice. Using that Log∞,FB εi is uniformly zero

on coordinates corresponding to finite places, the shape of Λ̃K,FB is:

Λ̃K,FB
def
:=



Λ̃K 0

Log∞ η1
...

(
−vpj (ηi) lnN (pj)

)
1≤i,j≤k

Log∞ ηk


. (2.5)

Similarly, Th. 2.1 allows to define the S-regulator RK,FB of K wrpt. FB as
the absolute value of any of the (r1 + r2 + k) minors of any row basis ΛK,FB
of Log∞,FBO×K,FB. The value of RK,FB is given by the following proposition:

Proposition 2.2. Let h
(FB)
K the cardinal of the subgroup Cl

(FB)
K of ClK gen-

erated by classes of ideals in FB. Then, the S-regulator RK,FB can be written

as: RK,FB = h
(FB)
K RK

∏
p∈FB lnN (p).

The proof is given in the full version. We stress that the S-regulator could not
be consistently defined anymore if these twistings by the lnN (p)’s were removed,
as in this case, the property that all columns sum to 0 disappears. Finally, the
volume of the log-S-unit lattice is tied to RK,FB by the following proposition,
which generalizes [BDPW20, Lem. A.1], and that we also prove in [BR20]:

Proposition 2.3. Under the flat S-logarithmic embedding, the log-S-unit lattice

has volume: Vol
(
Log∞,FBO×K,FB

)
=
√
n+ k · 2−r2/2 · h(FB)

K RK
∏

p∈FB lnN (p).

Using an empty factor basis, it implies Vol
(
Log∞O×K

)
=
√
n · 2−r2/2 ·RK .

2.4 Algorithmic number theory

This section is split into §2.4 and §2.5 in the full version [BR20]. The former
recalls useful number theoretic bounds and relations, such as the analytic class
number formula, allowing to bound hKRK , Bach’s bound on the algebraic norm
of class group generators, and the Prime Ideal Theorem on the density of prime
ideals. All rely on the Generalized Riemann Hypothesis (GRH). We only recall
problem definitions discussed in the latter, the most essential being the Cldl.

Problem 2.4 (Class Group Discrete Logarithm (ClDL) [BS16]). Given

a set FB of prime ideals generating a subgroup Cl
(FB)
K of ClK , and a fractional

ideal b st.
[
b
]
∈ Cl

(FB)
K , output α ∈ K and vi ∈ Z st. 〈α〉 = b ·

∏
pi∈FB pvii .

Problem 2.5 (Close Principal Multiple Problem (CPMP) [CDW17,
§2.2]). Given a fractional ideal b, output a “reasonably small” integral ideal c

such that
[
c
]

=
[
b
]−1

.

Problem 2.6 (Shortest Generator Problem (SGP)). Given a = 〈α〉, prin-
cipal ideal generated by some α ∈ K, find the shortest α′ ∈ a such that a = 〈α′〉.
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2.5 Lattices geometry and hard problems

Let L be a lattice. For any p ∈ N∗ ∪ {∞} and 1 ≤ i ≤ dimL, the i-th

minimum λ
(p)
i (L) of L for the `p-norm is the minimum radius r > 0 such

that {v ∈ L : ‖v‖p ≤ r} has rank i [NV10, Def. 2.13]. For any t in the span of L,
the distance between t and L is distp(t, L) = infv∈L‖t− v‖p, and the covering
radius of L wrpt. `p-norm is µp(L) = supt∈L⊗R distp(t, L). For the euclidean
norm, we omit p = 2 most of the time.

A fractional ideal b of K can be seen, under the canonical embedding, as
a full rank lattice in Rn, called an ideal lattice, of volume

√
|∆K | · N (b). The

arithmetic-geometric mean inequality, using that |N (α)| ≥ N (b) for all α ∈ b,
and the Minkowski’s inequality [NV10, Th. 2.4] imply:

N (b)1/n ≤ λ(∞)
1 (b) ≤

√
|∆K |

1/n
N (b)1/n (2.6)

√
n · N (b)1/n ≤ λ(2)1 (b) ≤

√
n ·
√
|∆K |

1/n
N (b)1/n (2.7)

More precisely, λ1(b) ≤ (1+o(1))
√

2n/πe·Vol1/n(b), and the Gaussian Heuristic

for full rank random lattices [NV10, Def. 2.8] predicts λ1(b) ≈
√
n/2πe·Vol1/n(b)

on average. In the case of ideal lattices, this yields a pretty good estimation of
the shortness of vectors, even if λ1(b) is not known precisely.

We will consider the following algorithmic lattice problems. Both problems
can be readily restricted to ideal lattices under the labels Approx-id-Svp and
Approx-id-Cvp.

Problem 2.7 (Approximate Shortest Vector Problem (Approx-SVP)
[NV10, Pb. 2.2]). Given a lattice L and an approximation factor γ ≥ 1, find a
vector v ∈ L such that ‖v‖ ≤ γ · λ1(L).

Problem 2.8 (Approximate Closest Vector Problem (Approx-CVP)
[NV10, Pb. 2.5]). Given a lattice L, a target t ∈ L⊗R and an approximation
factor γ ≥ 1, find a vector v ∈ L such that ‖t− v‖ ≤ γ · dist(t, L).

Actually, it will be more convenient to work with a slightly modified version of
Approx-Cvp, where the output is required to be at distance absolutely bounded
by some B, independently of the target distance to the lattice. By abuse of
terminology, we still call this variant Approx-Cvp.

Evaluating the quality of a lattice basis. Let B = (b1, . . . ,bn) be a basis of
a full rank n-dimensional lattice L, and let the Gram-Schmidt Orthogonalization
of B be GSO(B) = (b?1, . . . ,b

?
n). Approximation algorithms usually attempt to

compute a good basis of the given lattice, i.e. whose vectors are as short and as
orthogonal as possible. These lattice reduction algorithms, such as LLL [LLL82]
or BKZ [CN11], try to limit the decrease of the Gram-Schmidt norms ‖b?i ‖:
intuitively, a wide gap in this sequence reveals that bi is far from orthogonal
to
〈
b1, . . . ,bi−1

〉
. Evaluating the quality of a lattice basis is actually a tricky

task that depends partly on the targeted problem (see e.g. [Xu13]). We will use
the following geometric metrics:
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1. the root-Hermite factor δ0 is widely used to measure the performance of lat-
tice reduction algorithms [NS06,GN08,CN11], especially for solving Svp-like

problems: δn0 (B) = ‖b1‖
Vol1/n L

. Experimental evidence suggest that on aver-

age, LLL achieves δLLL0 ≈ 1.02 [NS06,GN08] and BKZ with block size b

achieves δBKZb0 ≈
(
b

2πe (πb)1/b
)1/(2b−2)

for b ≥ 50 [Che13,CN11].
2. the normalized orthogonality defect δ [MG02, Def. 7.5] captures the global

quality of the basis, not just of the first vector, and is especially useful
for Cvp-like problems e.g. if the lattice possesses abnormally short vectors:

δn(B) =
∏n
i=1‖bi‖
VolL . For purely orthogonal bases δ = 1, and its smallest

possible value is
(∏

i λi(L)/VolL
)1/n ≤ √

1 + n
4 by Minkowski’s second

theorem [NV10, Th. 2.5].
3. the minimum vector basis angle, defined as [Xu13, Eq. (15)]: θmin(B) =

min1≤i<j≤n min
{
θij , π− θij

}
for θij =

arccos
〈
bi,bj

〉
‖bi‖‖bj‖ . We propose to consider

the mean vector basis angle θavg(B), which averages over all min
{
θij , π−θij

}
.

3 The PHS algorithm

This section describes the PHS algorithm for solving Approx-id-Svp, as intro-
duced by Pellet-Mary, Hanrot and Stehlé in [PHS19a], and discusses several im-
provements. The PHS algorithm extends the techniques from [CDPR16,CDW17]
to any number field K and is split in two phases:

1. the preprocessing phase Apre-proc, described in §3.1, builds a specific lattice
together with some hint allowing to efficiently solve Approx-Cvp instances;

2. the query phase Aquery, detailed in §3.2, reduces each Approx-id-Svp chal-
lenge to an Approx-Cvp instance in this fixed lattice.

More precisely, under the GRH and several heuristic assumptions detailed in
[PHS19a, H. 1–6], they prove the following theorem:

Theorem 3.1 ([PHS19a, Th. 1.1]). Let ω ∈ [0, 1/2] and K be a number field
of degree n and discriminant ∆K with a known basis of OK . Under some con-
jectures and heuristics, there exist two algorithms Apre-proc and Aquery such that:

– Algorithm Apre-proc takes as input OK , runs in time 2Õ(log|∆K |) and outputs

a hint V of bit-size 2Õ(log1−2ω|∆K |);
– Algorithm Aquery takes as inputs any ideal b of OK , whose algebraic norm

has bit-size bounded by 2poly(log|∆K |), and the hint V output by Apre-proc, runs

in time 2Õ(log1−2ω|∆K |)+TSu(K), and outputs a non-zero element x ∈ b such

that ‖x‖2 ≤ 2Õ(logω+1|∆K |/n) · λ1(b).

We start by describing the preprocessing phase Apre-proc in §3.1, then the
query phase together in §3.2. We thereafter discuss several algorithmic and the-
oretic minor improvements in §3.3.
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3.1 Preprocessing of the number field

From a number field K and a size parameter ω ∈ [0, 1/2], the preprocessing
phase consists in building and preparing a lattice Lphs that depends only on the
number field K and allows to express any Approx-id-Svp instance in K as an
Approx-Cvp instance in Lphs. The most significant part of this preprocessing is
devoted to the computation of a hint of constrained size that can be used to
facilitate those forthcoming Approx-Cvp queries.

We first define the lattice which is used in [PHS19a], discuss how the au-
thors derive its dimension from volume considerations, and then expose the full
preprocessing algorithm.

Definition of the lattice Lphs. Let FB =
{
p1, . . . , pk

}
be a set of prime

ideals generating the class group ClK . The lattice Lphs proposed in [PHS19a,
§3.1] consists in the diagonal concatenation of some log-unit related lattice and
the lattice of relations in ClK between ideals of FB, with explicit generators.
Formally, it is generated by the (ν + k) rows of the following square matrix:

BLphs
def
:=



c ·BΛ 0

c · fH0
(h(0)
η1 )

... ker fFB =
(
−vpj (ηi)

)
1≤i,j≤k

c · fH0
(h(0)
ηk

)


, (3.1)

– where fH0
is an isometry from H0 ⊂ Rn to Rν , where H0 is the intersection of

the span L0 of Log∞OK , i.e. L0 =
{
y ∈ Rn : yr1+2i−1 = yr1+2i, i ∈ J1, r2K

}
,

and of the trace zero hyperplane Rn0 = 1⊥n ;
– the matrix BΛ is a row basis of fH0

(
Log∞O×K

)
;

– the bottom right part of BLphs generates the lattice of all relations in ClK
between ideals of FB, i.e. is the kernel of fFB :

(
e1, . . . , ek

)
∈ Zk 7→

∏
j

[
pj
]ej

;
– each row basis vector vi = (vi1, . . . , vik) of ker fFB is associated to ηi ∈ K

such that 〈ηi〉·
∏
j p

vij
j = OK , thus vij = −vpj (ηi), and h(0)

ηi = πH0

(
Log∞ ηi

)
,

where πH0
is the projection on H0 in Rn;

– c is a scaling parameter whose value depends on fH0
(set later to n3/2/k).

The condition that the factor base generates ClK guarantees that for any chal-
lenge ideal there exists a solution to the Cldl on FB. It can be relaxed to some
extent to generate only a small index subgroup of ClK like in [CDW17]. As we
discuss in more details in [BR20, §3.1], the choice of the isometry fH0

is actually
not innocuous, and we exhibit in §3.3 a candidate with nice properties.

Finally, we detail in the full version a simpler formalism, viewing Lphs as
generated by the images of the fundamental elements generating O×K,FB under

the following isomorphism between O×K,FB/µ
(
O×K
)

and Lphs ( Rν × Zk:

ϕphs(α) =
(
c · fH0

◦ πH0

(
Log∞ α

)
,
{
−vpi(α)

}
1≤i≤k

)
. (3.2)
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Volume of Lphs and cardinality of FB. It remains to derive an explicit value
for the cardinality k of the factor base FB. As detailed in the full version [BR20]:

VolLphs = cν ·
√
n

2r2/2
· hKRK . (3.3)

The idea is then to choose k such that Vol1/(ν+k) = O(1), e.g. by taking (ν+
k) = ln VolLphs. Using the analytic class number formula as pointed in §2.4,
and using the fact that c will be later set to n3/2/k, VolLphs is asymptotically

bounded by exp Õ
(
ln|∆K |+ n ln ln|∆K |

)
; therefore, (ν + k) can be set to:

ν + k = max
{
ν + log hK , ln|∆K |+ n ln ln|∆K |

}
. (3.4)

The log hK part is there as a sufficient but not necessary condition ensuring
that ClK can be generated by k ≥ log hK ideals [PHS19a, Lem. 2.7]. As hK ≤
Õ(
√
|∆K |), we remark that the second term dominates, so the maximum in

the above formula can be ignored; in the associated code [PHS19b], (k + ν) is
explicitly set to bln|∆K |c. We stress that in practice the dimension of Lphs is
quite sensitive to small changes in the value of c or the targeted root volume.
We refer to §3.3 for more details and examples.

Preprocessing algorithm. Algorithm 3.1 details the complete preprocessing
procedure that, from a number field and some precomputation size parameter,
chooses a factor base FB, builds the associated matrix BLphs, and processes Lphs

in order to facilitate Approx-Cvp queries.
The dimension k of the factor base and the scaling factor c are set in step 1 as

in the published code [PHS19b]. Steps 2 and 3 are a concise version of [PHS19a,
Alg. 3.1, st. 1–5]; it basically enlarges a generating set of ClK of size k′ ≤ log hK
by picking (k−k′) random prime ideals of bounded norms. The crucial point is to
invoke the prime ideal theorem to show that taking a bound which is polynomial
in k and log|∆K | [PHS19a, Cor. 2.10] is actually sufficient.

The last step consists in preprocessing Lphs in order to solve Approx-Cvp
instances efficiently. As noted in [PHS19a, p.6], the problem is easy without any

Algorithm 3.1 PHS Preprocessing Apre-proc

Input: A number field K of degree n and a parameter ω ∈ [0, 1/2].
Output: The basis BLphs with the preimages O×K,FB of its rows, and Laarhoven’s

hint V(Lphs).

1: Set k =
(⌊

ln|∆K |
⌋
− ν
)

and c =
(
n3/2/k

)
.

2: Compute ClK =
〈[
p1
]
, . . . ,

[
pk′
]〉

, with k′ ≤ log hK .
3: Randomly extend

{
p1, . . . , pk′

}
by prime ideals of bounded norm to get FB ={

p1, . . . , pk
}

.
4: Compute fundamental elements ε1, . . . , εν , η1, . . . , ηk of O×K,FB as in Th. 2.1.
5: Create the matrixBLphs whose rows are ϕphs(ε1), . . . , ϕphs(ηk) as defined in Eq. (3.1).

6: Use Laarhoven’s algorithm to compute a hint V = V(Lphs) of size 2Õ(log1−2ω|∆K |).
7: return

(
O×K,FB, BLphs, V(Lphs)

)
.
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constraint on the size of the output hint. To guarantee a hint size that is not ex-
ceeding the query phase time, they suggest to use Laarhoven’s algorithm [Laa16],

which outputs a hint V of bit-size bounded by 2Õ((ν+k)1−2ω), i.e. 2Õ(log1−2ω|∆K |)

using (ν + k) = Õ(log|∆K |), allowing to deliver the answer for approximation
factors (ν + k)ω in time bounded by the bit-size of V [Laa16, Cor. 1–2].

3.2 Query phase: solving id-SVP using the preprocessing

This section describes the query phase Aquery of PHS algorithm; for any challenge
ideal b ⊆ K having a polynomial description in log|∆K |, it reduces the resolution
of Approx-id-Svp in b to a single call to an Approx-Cvp oracle in Lphs as output
by the preprocessing phase.

The main idea of this reduction is to multiply the principal ideal output by
the Cldl of b on FB by ideals in FB until a “better” principal ideal is reached,
i.e. having a short generator. In Lphs, it translates into adding vectors of Lphs to
some target vector derived from b until the result is short, hence into solving a
Cvp instance. This is formalized in Alg. 3.2, which rewrites [PHS19a, Alg. 3.2]
to take into account our change of conventions in the definition of Lphs and the
choice of Laarhoven’s algorithm as the Approx-Cvp oracle [Laa16, §4.2].

Algorithm 3.2 PHS Query Aquery

Input: A challenge b, Apre-proc(K,ω) =
(
O×K,FB, BLphs,V

)
, and β > 0 st. for any t,

the Approx-Cvp oracle using V(Lphs) outputs w ∈ Lphs with ‖t−w‖∞ ≤ β.
Output: A short element x ∈ b \ {0}.
1: Solve the Cldl for b on FB, i.e. find α ∈ K st. 〈α〉 = b ·

∏
pi∈FB pvii .

2: Define the target as t =
(
c · fH0 ◦ πH0

(
Log∞ α

)
,
{
−vi + β

}
1≤i≤k

)
.

3: Use the Approx-Cvp solver with V(Lphs) to output w ∈ Lphs st. ‖t−w‖∞ ≤ β.
4: Compute s = ϕ−1

phs(w) ∈ O×K,FB, using the preimages of BLphs rows.
5: return α/s.

Note that the output of the Cldl in step 1 is a S-unit if and only if b is only
divisible by prime ideals in the factor base. Each exponent vi can be expressed
as vi = vpi(α) − vpi(b). Then, the target defined in step 2 can be viewed as a
drifted by β image of α in Lphs; using the formalism we introduced in Eq. (3.2), it
writes simply as t = ϕphs(α) + bphs, where bphs = (0, . . . , 0, β, . . . , β) is non zero
only on the k last coordinates. We stress that the role of bphs in the definition
of the target serves a unique purpose: guarantee that α/s ∈ b. In practice, this
is not an anecdotic condition, and choosing carefully β has a significant impact
on the length of the output, as we will see in §3.3. The rest of the proof of
correctness, quality and running time of Alg. 3.2 is recalled in the full version.

3.3 Optimizing PHS parameters

In this section, we propose three improvements of the PHS algorithm. The first
one consists in expliciting a candidate for fH0

and using its geometric properties
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to derive a smaller lattice dimension, while still guaranteeing the same proven
approximation factor. The last two respectively modify the composition of the
factor base and the definition of the target vector in a way that drastically
improves the approximation factor experimentally achieved by Aquery.

Although these improvements do not modify the core of PHS algorithm and
have no impact on the asymptotics, they nevertheless are of importance in prac-
tice, as we will see in Section 5.

Expliciting the isometry: towards smaller factor bases. We exhibit ex-
plicitly a candidate for the isometry fH0

going from H0 = Rn0 ∩ L0 ⊆ Rn to Rν
and evaluate its effect on the infinity norm. It allows to lower the value of c in
Alg. 3.2 from n

√
n/k to n(1 + lnn)/k, inducing a smaller VolLphs, and in turn

implies using a smaller factor base for the same proven approximation factor.

We define the isometry fH0
as the linear map represented by GSO

T
(MH0

), with:

MH0

def
:=

−1 1

−1 1

. . .
. . .

−1 1





ν + 1

ν ·

Ir1

1
2

1
2

1
2

1
2

. . .
. . .

1
2

1
2





r1 2r2

r 1
r 2

. (3.5)

Actually, MH0
is simply a basis of Rn0 ∩L0 in Rn, constituted of vectors that

are orthogonal to 1n and to each of the r2 independent vectors vj , j ∈ J1, r2K,
that sends any y ∈ L0 to 0 by substracting yr1+2j from its copy yr1+2j−1 and
forgetting every other coordinate.

We prove that this isometry verifies ∀h ∈ H0, ‖h‖∞ ≤ (1 + lnn) · ‖fH0
(h)‖∞

[BR20, Pr. 3.2]. Hence, as fully explained in [BR20, §3.3], we can choose:

c = max

(
1,

(1 + lnn)n∑
p∈FB lnN (p)

)
. (3.6)

We quantify the gain obtained by this new value of c using several experiments,
all described and discussed in the full version of this paper [BR20, Tab. 3.1–2].

Lowering the factor base weight. Second, we suggest choosing the k elements
of the factor base as the k prime ideals of least possible norm, instead of randomly
picking them up to some polynomial bound. As discussed in the full version, this
incidentally lowers the approximation factor, which depends on

∏
p∈FBN (p).

Formally, this only modifies step 3 of Alg. 3.1 as follows. Let
{
p1, . . . , pk′

}
be

a generating set of ClK , with k′ ≤ log hK , as obtained by the previous step 2.
As in Alg. 3.1, using the prime ideal theorem yields that we can choose some
bound B polynomial in k and log|∆K | such that the set of prime ideals of norm
bounded by B contains at least k elements. Then, we order this set by increasing
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norms, choosing an arbitrary permutation for isonorm ideals, and remove ideals
that were already present in

{
p1, . . . , pk′

}
. It remains to extract the first (k−k′)

elements to obtain our factor base.
There is one issue to consider, namely adapting the justification of [PHS19a,

H. 4], relying on Lphs being a “somehow random” lattice to derive that µ∞(Lphs)

is close to λ
(∞)
1 (Lphs). We discuss this in more details for H. 4.8 in §4.2. Moreover,

in practice, it is always possible to empirically upper bound the infinity covering
radius of Lphs to verify that this heuristic holds. For example, as described in
[PHS19a, §4.1]: take sufficiently many random samples ti in the span of Lphs from
a continuous Gaussian distribution of sufficiently large deviation; solve Approx-
Cvp for the `2-norm for each of them to obtain vectors wi ∈ Lphs close to ti;
finally, majorate µ∞(Lphs) by maxi‖ti −wi‖∞. Then, if the expected heuristic
behaviour is too far from this estimate, we could still replace one ideal of FB by
an ideal of bigger norm and iterate the process.

Minimizing the target drift. Our last suggested improvement modifies the
definition of the target vector to take into account the fact that valuations at
prime ideals are integers. Hence, the condition enforcing α/s ∈ b, which was
written as ∀p ∈ FB, vp(α) − vp(s) ≥ 0, can be replaced by the equivalent
requirement that ∀p ∈ FB, vp(α)− vp(s) > −1. Intuitively, this reduces the val-
uations at prime ideals of the output element by one on average, hence lowering
the approximation factor bound. Formally, using the notations of Alg. 3.2, we
only modify the definition of the target t in step 2 of Alg. 3.2. For any 0 < ε < 1,
let β̃ = (β − 1 + ε) and let b̃phs = (0, . . . , 0, β̃, . . . , β̃) with non zero values only
on the k last coordinates. The modified target is defined as:

t̃ = ϕphs(α) + b̃phs =
(
c · fH0

◦ πH0

(
Log∞ α

)
,
{
−vi + β̃

}
1≤i≤k

)
. (3.7)

The remaining steps of Alg. 3.2 stay unchanged. We have to prove that the output
is still correct, i.e. that α/s ∈ b, where w = ϕphs(s) ∈ Lphs verifies ‖t̃−w‖∞ ≤ β.
This is done in the following Pr. 3.2, which adapts [PHS19a, Th. 3.3] to benefit
from all the improvements of this section. Its proof is moved to [BR20, Pr. 3.5].

Though this adjustment might seem insignificant at first sight, we stress that
the induced gain is of order

∏
p∈FBN (p)1/n, which is roughly subexponential

in n, and that its impact is very noticeable experimentally. In fact, the quality
of the output is so sensitive to this β̃ that we implemented a dichotomic strategy
to find, for each challenge b, the smallest possible translation β̃ that must be
applied to ϕphs(α) to ensure (α/s) ∈ b.

Proposition 3.2. Given access to an Approx-Cvp oracle that, on any input,
output w ∈ Lphs at infinity distance at most β, the modified algorithm Aquery

using the isometry fH0
defined in Eq. (3.5), the value c defined in Eq. (3.6), and

for any 0 < ε < 1, the modified target t̃ defined in Eq. (3.7), computes x ∈ b\{0}

such that: ‖x‖2 ≤
√
n · N (b)1/n · exp

[
(β+b2β−1c)·

∑
p∈FB lnN (p)

n

]
.
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4 Twisted-PHS algorithm

Our main contribution is to propose a twisted version of the PHS algorithm.
The main modification is to use the natural description of the log-S-unit lattice
given in Eq. (2.5) that is deduced from the product formula of Eq. (2.1).

On the theoretical side, we prove that our twisted-PHS algorithm performs
at least as well as the original PHS algorithm with the same Cvp solver using a
preprocessing hint by Laarhoven. More precisely:

Theorem 4.1. Let ω ∈ [0, 1/2] and K be a number field of degree n and dis-
criminant ∆K . Assume that a basis of OK is known. Under GRH and heuristics

H. 4.8 and 4.9, there exist two algorithms A(Laa)
tw-pcmp and A(Laa)

tw-query such that:

– Algorithm A(Laa)
tw-pcmp takes as input OK , runs in time 2Õ(log|∆K |) and outputs

a hint V of bit-size 2Õ(log1−2ω|∆K |);

– Algorithm A(Laa)
tw-query takes as inputs any ideal b of OK , whose algebraic norm

has bit-size bounded by 2poly(log|∆K |), and the hint V output by A(Laa)
tw-pcmp, runs

in time 2Õ(log1−2ω|∆K |)+TSu(K), and outputs a non-zero element x ∈ b such

that ‖x‖2 ≤ 2Õ(logω+1|∆K |/n) · λ1(b).

All the results of this section are fully proven in the full version [BR20, §4].
On the practical side though, experimental evidence given in §5 suggest that

we achieve much better approximation factors than expected, and that the given
lattice bases are a lot more orthogonal than the ones used in [PHS19a]. Thus,

in practice, we propose two alternative algorithms A(bkz)
tw-pcmp and A(np)

tw-query: the
former applies a minimal reduction strategy as sole lattice preprocessing, and
the latter resorts to Babai’s Nearest Plane algorithm for the Cvp solver role.

4.1 Preprocessing of the number field

As for the PHS algorithm, the preprocessing phase consists, from a number
field K and a size parameter ω ∈ [0, 1/2], in building and preparing a lattice Ltw

that depends only on the number field and allows to express any Approx-id-Svp
instance in K as an Approx-Cvp instance in Ltw.

Theoretically, the only difference between the original PHS preprocessing
and ours resides in the lattice definition and in the factor base elaboration. Its
most significant part still consists in computing a hint of constrained size to
facilitate forthcoming Approx-Cvp queries. In practice though, we replace this
hint computation by merely a few rounds of BKZ with small block size (see
§5). In a quantum setting this removes the only part that is not polynomial
in ln|∆K |, and in a classical setting avoids the dominating exponential part.

Defining the lattice Ltw: a full-rank version of the log-S-unit lattice.
Let FB =

{
p1, . . . , pk

}
be a set of prime ideals generating the class group ClK .

The lattice Ltw used by our twisted-PHS algorithm is basically the log-S-unit
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lattice Log∞,FBO×K,FB wrpt. FB under the flat logarithmic embedding, to which

we apply an isometric transformation to obtain a full-rank lattice in Rν+k.
Formally, Ltw is defined as the lattice generated by the images of the funda-

mental elements generating the S-unit group O×K,FB, as given by Th. 2.1, under

the following map ϕtw from K to Rν+k:

ϕtw(α) = fH ◦ πH
(
Log∞,FB α

)
, (4.1)

– where fH is an isometry from H ⊂ Rn+k to Rν+k, with H the intersection of
the trace zero hyperplane Rn+k0 = 1⊥n+k, and of the span of Log∞,FBO×K,FB,

i.e. L =
{
y ∈ Rn+k : yr1+2i−1 = yr1+2i, i ∈ J1, r2K

}
;

– πH is the projection on H, in particular it is the identity on the S-unit group.

This map naturally inherits from the homomorphism properties of Log∞,FB,

i.e. ϕtw(αα′) = ϕtw(α) + ϕtw(α′) and ∀λ ∈ Z, ϕtw(αλ) = λ · ϕtw(α), and also
defines an isomorphism between O×K,FB

/
µ
(
O×K
)

and Ltw.
The isometry fH must be carefully chosen in order to control its effect on

the `∞-norm. Nevertheless, it should be seen as a technicality allowing to work
with tools designed for full-rank lattices. Formally, let fH be the linear map

represented by GSO
T

(MH), which denotes the transpose of the Gram-Schmidt
orthonormalization of the following matrix:

MH
def
:=

−1 1

−1 1

. . .
. . .

−1 1




ν + 1 + k

ν
+
k ·

Ir1

1
2

1
2

1
2

1
2

. . .
. . .

1
2

1
2

Ik





r1 2r2 k

r 1
r 2

k

. (4.2)

Actually, MH is simply a basis of Rn+k0 ∩L in Rn+k, constituted of vectors that
are orthogonal to 1n+k and to each of the r2 independent vectors vj , j ∈ J1, r2K
that sends any y ∈ L to 0 by substracting yr1+2j from its copy yr1+2j−1 and
forgetting every other coordinate. Hence, graphically, a row basis of Ltw is:

BLtw
def
:=



Λ̃K 0

Log∞ η1
...

(
−vpj (ηi) lnN (pj)

)
1≤i,j≤k

Log∞ ηk


·GSO

T
(MH), (4.3)

where the first part is the basis Λ̃K,FB of Log∞,FBO×K,FB defined in §2.3.
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Volume of Ltw and optimal factor base choice. First, we evaluate the
volume of Ltw = fH

(
Log∞,FBO×K,FB

)
. As the isometry fH stabilizes the span

of the log-S-unit lattice, it preserves its volume, which is given by Pr. 2.3. Using

that ideal classes of FB generate the class group, hence h
(FB)
K = hK , yields:

VolLtw =
√
n+ k · 2−r2/2 · hKRK

∏
1≤i≤k

lnN (pi). (4.4)

Certainly, the volume of Ltw is growing with the log norms of the factor base
prime ideals, but a remarkable property is that this growth is at first slower
than the lattice density increase induced by the bigger dimension. The meaning
of this is that we can enlarge the factor base to densify our lattice up to an
optimal point, after which including new ideals become counter-productive.

Formally, let Vk′ denote the reduced volume Vol1/(ν+k
′) Ltw for a factor base

of size k′ ≥ k0, where k0 is the number of generators of ClK . We have:

Vk′+1 = Vk′ ·
(√

1 + 1
n+k′ ·

lnN (pk′+1)

Vk′

)1/(ν+k′+1)

. (4.5)

This shows that Vk′+1 < Vk′ is equivalent to lnN (pk′+1) < Vk′
/√

1 + 1
n+k′ .

Using this property, Alg. 4.1 outputs a factor base maximizing the density of Ltw.
First, for a fixed factor base of size k, we compare the reduced volume Vk

of Ltw with the reduced volume of Lphs, denoted Vphs
not
:=
(√

n
2r2 · hKRK

)1/(ν+k)
.

Lemma 4.2. We have:
Vk
Vphs

≤ e1/ne

k
·
∑

p∈FB lnN (p).

This means that the gap between the reduced volume of the twisted lattice
and the reduced volume of the untwisted lattice evolves roughly as the arithmetic
mean of the lnN (p). We stress that this bound is valid for any k.

Although the reduced volume significantly decreases in the first loop iter-
ations, reaching precisely the minimum value can be very gradual, so that it

Algorithm 4.1 Tw-PHS Factor Base Choice Atw-FB

Input: A number field K of degree n.
Output: An optimal factor base FB generating ClK that minimizes Vol1/(ν+k) Ltw.
1: Compute ClK =

〈[
q1
]
, . . . ,

[
qk0
]〉

, with k0 ≤ log hK .
2: Compute P(B) =

{
pi : N (pi) ≤ B

}
\
{
q1, . . . , qk0

}
ordered by increasing norms,

where B is chosen st. πK(B) = poly(ln|∆K |) ≥ k0.
3: FB←

{
q1, . . . , qk0

}
.

4: i← 0.
5: while lnN (pi+1) < Vk0+i

/√
1 + 1

n+k0+i
do

6: Add pi+1 to FB.
7: i← i+ 1.
8: end while
9: return FB.
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might be clever to early abort the loop in Alg. 4.1 when the gradient is too low,
or truncate the output to at most k′ = Õ(ln|∆K |). We quantify the fact that
the density loss is at most constant in the worst case in the following result.

Lemma 4.3. Let k′ = C
(
ln|∆K | + n ln ln|∆K |

)
. Let Vmin be the minimum re-

duced volume output by Atw-FB, and suppose Vmin is reached for some k > k′,
then Vk′ ≤ e1/C+1/ne · Vmin.

Proposition 4.4. Algorithm Atw-FB terminates in time TSu(K) + poly(ln|∆K |)
and outputs a factor base of size k = poly(ln|∆K |) using B = poly(ln|∆K |).

In practice, experiments of §5 report that the dimensions of the factor bases
output by Atw-FB are significantly smaller than those showed in [BR20, Tab. 3.1–
2] for the (optimized) PHS algorithm, so that Lem. 4.3 is never triggered.

Preprocessing algorithm. Algorithm 4.2 details the complete preprocessing
procedure that, from a number field and some precomputation size parameter,
chooses a factor base FB, builds the associated matrix BLtw, and processes Ltw

in order to facilitate Approx-Cvp queries.

Algorithm 4.2 Tw-PHS Preprocessing Atw-pcmp

Input: A number field K of degree n and a parameter ω ∈ [0, 1/2] or b.
Output: The basis BLtw with the preimages O×K,FB of its rows, and Laarhoven’s

hint V(Ltw).
1: Get an optimal factor base FB = Atw-FB(K) of size k = ]FB. If needed, truncate

the output to k = Õ(ln|∆K |) as in Lem. 4.3.
2: Compute fundamental elements ε1, . . . , εν , η1, . . . , ηk of O×K,FB as in Th. 2.1.
3: Create BLtw, whose rows are ϕtw(ε1), . . . , ϕtw(ηk) as defined in Eq. (4.3).

4: Use Laarhoven’s algorithm to compute a hint V = V(Ltw) of size 2Õ(log1−2ω|∆K |).
5: (or) Use a BKZ of small block size to reduce the basis of Ltw.
6: return

(
O×K,FB, BLtw, V(Ltw)

)
.

This Tw-PHS preprocessing differs from the original PHS preprocessing given
in Alg. 3.1 on two aspects: the factor base, output by Atw-FB in step 1 and which
is essentially much smaller in practice, and the new twisted lattice in step 3.

The last two alternative steps consists in preprocessing Ltw in order to solve
Approx-Cvp instances efficiently. Theoretically, we retain in step 4 the same
approach as in step 6 of the original PHS preprocessing Alg. 3.1, that guar-
antees a hint size not exceeding the query phase time using Laarhoven’s al-

gorithm [Laa16]. This outputs a hint V of bit size bounded by 2Õ(ν+k)1−2ω

,

i.e. 2Õ(log1−2ω|∆K |) using (ν + k) = Õ(log|∆K |), allowing to deliver the answer
for approximation factors (ν + k)ω in time bounded by the bit size of V [Laa16,

Cor. 1–2]. This theoretic version will be denoted by A(Laa)
tw-pcmp.

Nevertheless, in practice the twisted lattice output by Alg. 4.2 incidentally
appears to be a lot more orthogonal than expected. That’s the reason why we
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suggest to replace the exponential step 4 of Alg. 4.2 by step 5, which performs
some polynomial lattice reduction using a small block size BKZ. In a quantum
setting this removes the only part that is not polynomial in ln|∆K |, and in a
classical setting avoids the dominating exponential part. This practical version

will be denoted by A(bkz)
tw-pcmp.

4.2 Query phase

This section describes the query phase Atw-query of the Tw-PHS algorithm. As
for the query phase of the original PHS algorithm, it reduces the resolution
of Approx-id-Svp in b, for any challenge ideal b ⊆ K having a polynomial
description in log|∆K |, to a single call to an Approx-Cvp oracle in Ltw as output
by the preprocessing phase. The main idea of this reduction remains to multiply
the principal ideal generator output by the Cldl of b on FB by elements of O×K,FB
until we reach a principal ideal having a short generator. This translates into
adding vectors of Ltw to some target vector derived from b until the result is
short, hence into solving a Cvp instance in the log-S-unit lattice Ltw.

The essential difference of the Tw-PHS version lies in the definition of this
target, which is adapted in order to benefit from the twisted description of the
log-S-unit lattice. This is formalized in Alg. 4.3.

Note that the output of the Cldl in step 1 is not a S-unit unless b is divisible
only by prime ideals of FB. For each i, vi = vpi(α) − vpi(b). For convenience
and without any loss of generality we shall assume that b is coprime with all
elements of the factor base, i.e. ∀p ∈ FB, vp(b) = 0. In that case, the target
in step 2 writes naturally as t = ϕtw(α) + fH

(
btw

)
. This target definition calls

a few comments. First, the output of the Cldl is projected on the whole log-
S-unit lattice instead of only on the log-unit sublattice, hence maintaining its
length and algebraic norm logarithms in the instance scope. Thus, the way our
algorithm uses S-units to reduce the solution of the Cldl problem can be seen
as a smooth generalization of the way traditional Sgp solvers use regular units
to reduce the solution of the Pip as in [CDPR16]. Second, the sole purpose of
the drift by btw is to ensure that α/s ∈ b. Adapting its definition to the twisted

Algorithm 4.3 Tw-PHS Query Atw-query

Input: Challenge b, Atw-pcmp(K,ω) =
(
O×K,FB, BLtw,V

)
, and β̃ > 0 st. for any t, the

Approx-Cvp oracle using V(Ltw) outputs w ∈ Ltw with ‖f−1
H (t−w)‖∞ ≤ β̃.

Output: A short element x ∈ b \ {0}.
1: Solve the Cldl for b on FB, i.e. find α ∈ K st. 〈α〉 = b ·

∏
pi∈FB pvii .

2: Define the target t as f−1
H (t) = πH

(
Log∞ α,

{
−vi lnN (pi)

}
1≤i≤k

)
+ btw, where

the drift btw ∈ H will be defined in Eq. (4.6).

3: Solve Approx-Cvp with V(Ltw) to get w ∈ Ltw st. ‖f−1
H (t−w)‖∞ ≤ β̃.

4: (or) Use Babai’s Nearest Plane to get w ∈ Ltw st. ‖f−1
H (t−w)‖∞ is small.

5: Compute s = ϕ−1
tw (w) ∈ O×K,FB, using the preimages of the rows of BLtw.

6: return α/s.
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setting is slightly tedious and deferred to the next paragraph. The most notable
novelty is that we force the use of a drift that is inside the log-S-unit lattice
span. This somehow captures and compensates for the perturbation induced on
infinite places for correcting negative valuations on finite places using S-units.

Finally, as already mentioned, Ltw seems much more orthogonal in practice
than expected, so that we advise to resort to Babai’s Nearest Plane algorithm for
solving Approx-Cvp in Ltw, instead of using Laarhoven’s query phase with the
precomputed hint. We only keep Laarhoven’s algorithm to theoretically prove the
correctness and complexity of our new algorithm. The theoretical and practical

versions of Atw-query are respectively denoted by A(Laa)
tw-query and A(np)

tw-query.
We now detail explicitly our target choice, from which we deduce the cor-

rectness and the output quality of Alg. 4.3, as fully proven in [BR20].

Definition of the target vector. Recall that we assumed that b is coprime
with FB, hence f−1H (t) = πH

(
Log∞,FB α

)
+ btw, for some btw ∈ H that must

ensure α/s ∈ b, for s = ϕ−1tw (w) and when ‖f−1H (t−w)‖∞ ≤ β̃. Indexing coor-
dinates by places, we exhibit btw =

(
{bσ}σ∈S∞∪S∞ , {bp}p∈FB

)
, where:{

bσ = − k
n

(
lnN (b)
n+k + β̃

)
+ 1

n

∑
p∈FB lnN (p) for σ ∈ S∞ ∪ S∞,

bp = β̃ − lnN (p) + lnN (b)
n+k for p ∈ FB.

(4.6)

It is easy to verify that all coordinates sum to 0, i.e. btw ∈ H. We now explain
this choice, first showing that under the above hypotheses, Alg. 4.3 is correct.

Proposition 4.5. Given access to an Approx-Cvp oracle that on any input t,
outputs w ∈ Ltw st. ‖f−1H (t−w)‖∞ ≤ β̃, Atw-query outputs x ∈ b \ {0}.

The proof of Pr. 4.5 also quantifies the intuition that the output element
has smaller valuations at big norm prime ideals. In particular, strictly positive
valuations occur only for ideals st. lnN (p) ≤ β̃. This has a very valuable con-
sequence: estimating the `∞-norm covering radius of Ltw allows to control the
prime ideal support of any optimal solution. Hence, even if the Approx-Cvp
cannot reach µ∞(Ltw), it is possible to confine the algebraic norm of each query
output by not including in FB the prime ideals whose log-norm would in fine
exceed µ∞(Ltw), and at which the optimal solution provably has a null valuation.
Roughly speaking, this is what Atw-FB tends to achieve in Alg. 4.1.

Translating infinite coordinates. As already mentionned, one important nov-
elty consists in forcing the drift used to ensure α/s ∈ b to be inside the log-
S-unit span. The underlying intuition is that “correcting” negative valuations
at finite primes should only involve S-units. We modelize this by splitting the
weight of the bp’s evenly across the infinite places coordinates, hence obtaining
Eq. (4.6). This heuristically presumes that S-units absolute value logarithms are
generically balanced on infinite places. Let us summarize our target definition:

t = fH

({
ασ − 1

n

[
kβ̃ + lnN (b)−

∑
p∈FB lnN (p)

]}
σ
,
{
αp + β̃ − lnN (p)

}
p∈FB

)
. (4.7)

22



Quality of the output of A(Laa)
tw-query. To bound the quality of the output of

Alg. 4.3, the general idea is that minimizing the distance of our target to the
twisted lattice directly minimizes the p-adic absolute values −vp(α) lnN (p) in-
stead of minimizing the valuations vp(α) independently of lnN (p).

This makes use of the following log-S-unit lattice structure lemma, adapting
its log-unit lattice classical equivalent [PHS19a, Lem. 2.11–12], [CDPR16, §6.1]:

Lemma 4.6. For α ∈ K, let hα
def
:= πH

(
Log∞,FB α

)
. Decompose 〈α〉 on FB

as b ·
∏

p∈FB pvp(α), with b coprime to FB. Then Log∞,FB α = hα+ lnN (b)
n+k ·1n+k.

Furthermore, the length of α is bounded by:

‖α‖2 ≤
√
n · N (b)1/(n+k) · exp

[
max
1≤j≤n

(hα)j

]
.

Note that using the max of the coordinates of hα instead of its `∞-norm
norm acknowledges for the fact that logarithms of small infinite valuations can
become large negatives that should be ignored when evaluating the length of α.

Theorem 4.7. Given access to an Approx-Cvp oracle that on any input t, out-
puts w ∈ Ltw st. ‖f−1H (t−w)‖∞ ≤ β̃, Atw-query computes x ∈ b \ {0} such that

‖x‖2 ≤
√
n · N (b)1/n · exp

[
(n+k)β̃−

∑
p∈FB lnN (p)

n

]
.

This outperforms the bound of Pr. 3.2 if (n + k) · β̃ ≤ 2β ·
∑

p∈FB lnN (p).

In particular, this is implied by Lem. 4.2 if β̃/β ≈ Vk/Vphs for k ≥ n. We will
see that under some reasonable heuristics, this is indeed the case when using
the same factor base, and that experiments suggest a much broader gap. One
intuitive reason for this behaviour is that the covering radius of our twisted
lattice grows at a slower pace than the log-norm of the prime ideals of FB.

Heuristic evaluation of β̃. Proving the second part of Th. 4.1 necessitates
to evaluate β̃. This evaluation rely on several heuristics that adapt heuristics
[PHS19a, H. 4–6]. We argue that the arguments developped in [PHS19a, §4] to
support these heuristics can be transposed to our setting, as fully discussed in
the full version, and both heuristics are validated by experiments in §5.

Heuristic 4.8 (Adapted from [PHS19a, H. 4]). The `∞-norm covering ra-

dius of Ltw is O
(
Vol1/(ν+k) Ltw

)
. Likewise, µ2(Ltw) = O

(√
ν + k ·Vol1/(ν+k) Ltw

)
.

This assumption relies on Ltw to behave like a random lattice. Heuristi-
cally, prime ideals of FB represent uniform random classes in ClK , and S-units
archimedean absolute value logarithms are likely to be uniform in Rn

/
Log∞O×K .

Heuristic 4.9 (Adapted from [PHS19a, H. 5–6]). With non-negligible
probability over the input target vector t, the vector w output by Laarhoven’s
algorithm satisfies ‖f−1H (t−w)‖∞ ≤ O

(
ln(n+ k)/

√
n+ k

)
· ‖t−w‖2.

This heuristic conveys the idea that coefficients of the output of Laarhoven’s
algorithm are somehow balanced, so that ‖w‖2 ≈

√
n+ k · ‖f−1H (w)‖∞. In our

setting, this is justified by assuming t is uniformly distributed in
(
R⊗Ltw

)
/Ltw,

and can be randomized by multiplying b by small ideals coprime to FB.
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5 Experimental data

This is the first time to our knowledge that this type of algorithm is completely
implemented and tested for fields of degrees up to 60. As a point of compar-
ison, the experiments of [PHS19a] constructed the log-S-unit lattice Lphs for
cyclotomic fields of degrees at most 24 and hK ≤ 3, all but the last two being
principal [PHS19a, Fig. 4.1].

Hardware and library description. All S-units and class group computations, for
the log-S-unit lattice description and the Cldl resolution, were performed using
Magma v2.24-10 [BCP97].3 The BKZ reductions and Cvp/Svp computations
used fplll v5.3.2 [The16]. All other parts of the experiments rely on SageMath
v9.0 [The20]. All the sources and scripts are available as supplementary material
on https://github.com/ob3rnard/Twisted-PHS. The experiments took less
than a week on a server with 36 cores and 768 GB RAM.

Targeted algorithms. We evaluate three algorithms: the original PHS algorithm,
as implemented in [PHS19b]; our optimized version Opt-PHS described in §3.3,
and our new twisted variant Tw-PHS, which is described in §4. This yields three
different lattices, respectively denoted by Lphs, Lopt and Ltw. Note that there are
a few differences between [PHS19a] and its implementation in [PHS19b], but we
chose to stick to the provided implementation as much as possible.

In order to separate the improvements due toAtw-FB outputting smaller factor
bases from those purely induced by our specific use of the product formula to
describe the log-S-unit lattice, we also built lattices L(0)

phs and L(0)

opt corresponding
to PHS and Opt-PHS algorithms, but using the same factor base as Ltw.

Number fields. As announced in §2.1, we consider two families of number fields,
namely non-principal cyclotomic fields Q(ζm) of prime conductors m ∈ J23, 71K,
and NTRU Prime fields Q(zq) where zq is a root of xq − x− 1, for q ∈ J23, 47K
prime. These correspond to the range of what is feasible in a reasonable amount
of time, as the asymptotics of TSu(K) rapidly speak in a classical setting.

For cyclotomic fields, we managed to compute S-units up to Q(ζ71) for all
factor bases in less than a day, and all log-S-unit lattice variants up to Q(ζ61).
For NTRU Prime fields, we managed all computations up to Q(z47).

BKZ reductions and Cvp solving. We applied the same reduction strategy to
all of our lattices. Namely, lattices of dimension less than 60 were HKZ reduced,
while lattices of greater dimension were reduced using at most 300 loops of BKZ
with block size 40. This yields reasonably good bases for a small computational
cost [CN11, p.2]. Note the loop limit was in practice never hit.

For Cvp computations, we applied with these reduced bases Babai’s Nearest
Plane algorithm, as described in [Gal12, §18.1, Alg. 26].

3 Note that SageMath is significantly faster than Magma for computing class groups,
but behaves surprisingly poorly when it comes to computing S-units.
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Precision issues. Choosing the right bit precision for floating point arithmetic
in the experiments is particularly tricky. We generically used at most 500 bits
of precision in our experiments (corresponding to the lattice volume logarithm
in base 2 plus some extra margin). There are two notable exceptions:

1. The S-units wrpt. FB can have huge coefficients. Computing the absolute
values of their embeddings must then be performed at very high precision.
All our lattice constructions were conducted using 10000 bits of precision.

2. Computing the target involves the challenge and the Cldl solution, whose
coefficients are potentially huge rational numbers, up 225000 for e.g. Q(ζ53).
As above, we adjust the precision in order to obtain sensible values.

In all cases, once in the log space the resulting high precision data can be rounded
back to the generic precision before lattice reduction or Cvp computations.

5.1 Geometric characteristics

First, we evaluated the geometric characteristics of each produced lattice, using
indicators recalled in §2.5, namely: the root Hermite factor δ0, the orthogonality
defect δ, and the minimum θmin (resp. average θavg) vector basis angle. Each of
these indicators is declined before and after BKZ reduction to compare their
evolution. We also evaluated experimentally the relevance of H. 4.8 and 4.9, ac-
cording to the protocol we detailed in the full version [BR20]. Example results are
given in Tab. 5.1 for NTRU Prime fields, aside the lattices dimension d = ν + k
and reduced volume V 1/d. Extensive data can be found in the full version [BR20,
Tab. B.1–2] for both cyclotomic and NTRU primes fields.

Orthogonality indicators. We first remark that the minimum and average vector
basis angles seem difficult to interpret. They are slightly better for the NTRU
Prime field but it is harder to extract a general tendency for cyclotomic fields.

After a light BKZ reduction, twisted lattices show significantly better root
Hermite factor and orthogonality defect than any other log-S-unit lattice repre-
sentations, even when the lattices have the same dimension, i.e. when the same
factor base is used. Second, the evolution of the orthogonality defect before and
after the reduction is more restricted in the twisted case than in the others. In
particular, we observe that the BKZ-reduced versions of L(0)

opt and L(0)

phs have big-

δ0 δ θmin θavg ‖·‖∞/‖·‖2d V 1/d

– bkz – bkz – bkz – bkz
µ2 µ∞ real H. 4.9

Q(z47)

Ltw 40 4.576 0.913 0.913 1.650 1.358 49 60 82 84 11.04 5.607 0.632 0.519

L(0)
opt 40 6.231 0.938 0.938 4.628 1.915 37 57 81 81 16.59 8.398 0.658 0.583

L(0)

phs 40 12.06 0.951 0.951 7.908 1.946 38 55 81 81 30.85 15.50 0.662 0.583

Lopt 129 1.376 0.981 0.981 6.189 3.632 21 56 80 83 6.575 2.925 0.696 0.427
Lphs 180 1.309 0.989 0.989 10.15 4.527 31 53 80 83 8.022 2.882 0.704 0.387

Table 5.1 – Geometric characteristics of log-S-unit lattices for NTRU Prime
field Q(z47).
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ger orthogonality defects than the unreduced Ltw. This last observation is true
for all NTRU Prime fields we tested except Q(z23).

These two phenomenons (better values and small variations) are particularly
clear for NTRU Prime fields. We remark that in this case, the twisted version
of the log-S-unit lattice fully expresses, since for NTRU Prime fields most factor
base elements have distinct norms. On the contrary, factor bases for our targeted
cyclotomic fields are composed of one (or two, as for Q(ζ59)) Galois orbits whose
elements all have the same norm. Finally, we stress that reducing Ltw lattices is
much faster in practice than reducing L(0)

opt and L(0)

phs. This is corroborated by the
graphs of the Gram-Schmidt log norms in §5.2.

5.2 Plotting Gram-Schmidt log norms

For our second experiment, we evaluate the Gram-Schmidt norms of each pro-
duced lattice. We propose two comparisons, the first one is before and after
BKZ reduction to see the evolution of the norms in each case at iso factor bases
in Fig. 5.1, and the second one is between the different lattices (after BKZ re-
duction) in Fig. 5.2. Again, extensive data for other examples can be found in
[BR20, §B.2] for both cyclotomic fields and NTRU Prime fields.

Fig. 5.1 – Log-S-unit lattices for Q(ζ59): Gram-Schmidt log norms before and
after BKZ reduction at iso factor base Atw-FB(K) for: (a) Ltw; (b) L(0)

opt; (c) L(0)

phs.

Fig. 5.2 – Log-S-unit lattices for Q(ζ59): Gram-Schmidt log norms after BKZ
reduction: (a) at iso factor base Atw-FB(K); (b) at designed factor bases.
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We first remark that in Fig. 5.1 the two curves, before and after BKZ reduc-
tion, are almost superposed for the Twisted-PHS lattice. This does not seem to
be the case for the two other PHS variants we consider here.

Since the volume of Ltw is bigger, by roughly the average log norm of the
factor base elements by Lem. 4.2, the Gram-Schmidt log norms of our bases have
bigger values. The important phenomenon to consider is how these log norms
decrease. Figure 5.2 emphasises that the decrease of the Gram-Schmidt log norms
is very limited in the twisted case, compared to other cases (with iso factor base
on the left, and the original algorithms on the right), where the decrease of the
log norms seems significant. This observation seems to corroborate the fact that
the twisted-PHS lattice is already quite orthogonal.

Finally, we note that both phenomenons do not depend on the lattices having
the same dimension.

5.3 Approximation factors

We implemented all three algorithms from end to end and used them on numer-
ous challenges to estimate their practically achieved approximation factors. This
is to our knowledge the first time that these types of algorithms are completely
run on concrete examples.

Ideal Svp challenges and Cldl computations. For each targeted field, we chose 50
prime ideals b of prime norm q. Indeed, these are the most interesting ideals: in
the extreme opposite case, taking b inert of norm qn implies that q reaches the
lower bound of Eq. (2.7), as ‖q‖2 =

√
n · q, hence the id-Svp solution is trivial.

We then tried to solve the Cldl for these challenges wrpt. all targeted factor
bases. We stress that, using Magma, S-units computations for the Cldl become
harder as the norm of the challenge grows. This is especially true when the factor
base inflates, hence providing an additional motivation for taking as small as
possible factor bases. Therefore, we restricted ourselves to challenges of norms
around 100 bits. Computing the Cldl solutions for these challenges revealed
much harder than computing S-units on all factor bases, which contain only
relatively small prime ideals. As a consequence, we were able to compute the
Cldl step only up to Q(ζ53) (partially) and Q(z47).

Query algorithm. We exclusively used Babai’s Nearest Plane algorithm on the
BKZ reduced bases of all log-S-unit lattices to solve the Approx-Cvp instances.
Actually, the hardest computational task was to compute the output α/s, which
necessitates a multi-exponentiation over huge S-units. As a particular point of
interest, we stress that using directly the drift proposed in [PHS19a] would be

especially unfair. Hence, for a challenge b, the target drifts bphs, b̃phs and btw

were all minimized using an iterative dichotomic approach on β and β̃, taking a
bigger value if the output x /∈ b, and a smaller value if x ∈ b. After 5 iterations,
the shortest x that verified x ∈ b is returned.
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Fig. 5.3 – Approximation factors reached by Tw-PHS, Opt-PHS and PHS for
NTRU Prime fields of degrees 23, 29, 31 and 37 (in log scale).

Results. Fig. 1.1 and 5.3 report the obtained approximation factors. Note that
for these dimensions, it is still possible to exactly solve id-Svp in the Minkowski
space, so that these graphs show real approximation factors. We stress that
we used a logarithmic scale to represent on the same graphs the performances
of the Twisted-, Opt-PHS and PHS algorithms. The figures suggest that the
approximation factor reached by our algorithm increases very slowly with the
dimension, in a way that could reveal subexponential or even better. This feature
would be particularly interesting to prove.

As a final remark, we point out that increasing the factor base for our
Twisted-PHS algorithm has very little impact on the quality of the output.
This is expected, since the log norm of the prime ideals constrain the valuation
of the output, as in the proof of Pr. 4.5 [BR20]. On the contrary, increasing the
factor base for the PHS and Opt-PHS variants clearly sabotages the quality of
their output, as their lattice description is blind to these prime norms.

Acknowledgements. We thank Thomas Ricosset for valuable discussions on
the geometry of lattices. Part of this work was performed while the first author
was visiting Alice Pellet-Mary and Damien Stehlé at LIP, ENS Lyon for six
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Generator in Cyclotomic Integer Rings. In EUROCRYPT (1), vol. 10210
of LNCS, pp. 60–88. Springer, 2017.

BF14. J. Biasse and C. Fieker: Subexponential class group and unit group com-
putation in large degree number fields. LMS J. Comp. Math., 17(A):385–
403, 2014.

BMT15. D. W. Boyd, G. Martin and M. Thom: Squarefree values of trinomial
discriminants. LMS J. Comput. Math., 18(1):148–169, 2015.

BR20. O. Bernard and A. Roux-Langlois: Twisted-PHS: Using the Product
Formula to Solve Approx-SVP in Ideal Lattices (full version). Cryptology
ePrint Archive, Report 2020/1081, 2020. https://eprint.iacr.org.

BS16. J.-F. Biasse and F. Song: Efficient quantum algorithms for computing
class groups and solving the principal ideal problem in arbitrary degree
number fields. In SODA, pp. 893–902. SIAM, 2016.

CDPR16. R. Cramer, L. Ducas, C. Peikert and O. Regev: Recovering Short Gen-
erators of Principal Ideals in Cyclotomic Rings. In EUROCRYPT (2), vol.
9666 of LNCS, pp. 559–585. Springer, 2016.

CDW17. R. Cramer, L. Ducas and B. Wesolowski: Short Stickelberger Class
Relations and Application to Ideal-SVP. In EUROCRYPT (1), vol. 10210
of LNCS, pp. 324–348. Springer, 2017.

CGS14. P. Campbell, M. Groves and D. Shepherd: Soliloquy: A cau-tionary
tale,, 2014. http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/

S07_Systems_and_Attacks/S07_Groves_Annex.pdf.
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Gél17. A. Gélin: Calcul de groupes de classes d’un corps de nombres et applications
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