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Abstract. A Diophantine equation is a multi-variate polynomial equa-
tion with integer coefficients, and it is satisfiable if it has a solution
with all unknowns taking integer values. Davis, Putnam, Robinson and
Matiyasevich showed that the general Diophantine satisfiability problem
is undecidable (giving a negative answer to Hilbert’s tenth problem) but
it is nevertheless possible to argue in zero-knowledge the knowledge of a
solution, if a solution is known to a prover.
We provide the first succinct honest-verifier zero-knowledge argument for
the satisfiability of Diophantine equations with a communication com-
plexity and a round complexity that grows logarithmically in the size of
the polynomial equation. The security of our argument relies on stan-
dard assumptions on hidden-order groups. As the argument requires to
commit to integers, we introduce a new integer-commitment scheme that
has much smaller parameters than Damgård and Fujisaki’s scheme. We
finally show how to succinctly argue knowledge of solutions to several
NP-complete problems and cryptographic problems by encoding them
as Diophantine equations.

1 Introduction

A Diophantine equation is a multi-variate polynomial equation with integer co-
efficients, and it is satisfiable if it has a solution with all unknowns taking integer
values. Davis, Putnam, Robinson and Matiyasevich [?] showed that any compu-
tational problem can be modeled as finding a solution to such equations, thereby
proving that the general Diophantine-satisfiability problem is undecidable and
giving a negative answer to Hilbert’s tenth problem. For instance, several classi-
cal NP-problems such as 3-SAT, Graph 3-colorability or Integer Linear Program-
ming can be readily encoded as Diophantine equations. Several cryptographic
problems such as proving knowledge of an RSA signature, that a committed
value is non-negative or that encrypted votes are honestly shuffled by a mix-net,
can also be encoded as Diophantine equations.

Efficient zero-knowledge arguments of knowledge of solutions to Diophantine
equations, if a solution is known to a party, can thus be useful for many prac-
tical cryptographic tasks; and doing so requires to do zero-knowledge proofs on
committed integers.



1.1 Prior Work

Integer Commitments. Fujisaki and Okamoto [?] presented the first efficient in-
teger commitment scheme and also suggested a zero-knowledge protocol for veri-
fying multiplicative relations over committed values. Such a commitment scheme
allows to commit to any x ∈ Z in a group of unknown order, with a Pedersen-
like commitment scheme. This makes the security analysis more intricate since
division modulo the unknown group order cannot be performed in general. As
an evidence that this setting is error-prone, Michels showed that the Fujisaki–
Okamoto proof system was flawed. Damgård and Fujisaki [?] later proposed
a statistically hiding and computationally binding integer commitment scheme
under standard assumptions in a hidden-order group G with an efficient argu-
ment of knowledge of openings to commitments, and arguments of multiplicative
relations over committed values. This primitive gives rise to a (honest-verifier)
zero-knowledge proof of satisfiability of a Diophantine equation with M multi-
plications over Z that requires Ω(M) integer commitments and Ω(M) proofs of
multiplicative relations [?,?]. These complexities have not been improved since
then.

Circuit Satisfiability over Zp. Similarly, it is possible to design a zero-knowledge
proof of satisfiability of an arithmetic circuit over Zp using Pedersen’s commit-
ment scheme [?] in a group G of public prime order p. An immediate solution
is to use the additive homomorphic properties of Pedersen’s commitment and
zero-knowledge protocols for proving knowledge of the contents of commitments
and for verifying multiplicative relations over committed values [?,?].

For an arithmetic circuit with M multiplication gates, this protocol requires
Ω(M) commitments and Ω(M) arguments of multiplication consistency and has
a communication complexity of Ω(M) group elements. In 2009, Groth [?] pro-
posed a sub-linear size zero-knowledge arguments for statements involving linear
algebra and used it to reduce this communication complexity to O

(√
M

)
group

elements. This breakthrough initiated a decade of progress for zero-knowledge
proofs for various statements (see e.g., [?,?,?,?] and references therein). It cul-
minated with the argument system “Bulletproofs” proposed by Bünz, Bootle,
Boneh, Poelstra, Wuille and Maxwell [?] which permits to prove the satisfiabil-
ity of such an arithmetic circuit with communication complexity O(log(M)) and
round complexity O(log(M)). The corner stone of their protocol is an argument
that two committed vectors satisfy an inner-product relation. It has logarithmic
communication and round complexity in the vector length, and its security only
relies on the discrete-logarithm assumption and does not require a trusted setup.

Circuit satisfiability over any finite field is an NP-complete problem so the
“Bulletproofs” argument system has widespread applications. However, as men-
tioned above, in many cryptographic settings, it is desirable to prove statements
such as “the committed value x is a valid RSA signature on a message m for
an RSA public key (N, e)”. In this case, the prover has to convince the verifier
that xe = H (m) mod N , or in other words that there exists an integer k such
that xe + k N = H (m) where this equality holds over the integers for |k | ≤ Ne−1

2



and H some cryptographic hash function. In order to use directly an argument
of satisfiability of an arithmetic circuit to prove the knowledge of a pair (x, k)
which satisfies this equation, one needs to use a group G a prime order p with
p > Ne (and to additionally prove that x < N and k < Ne). For a large e, this
approach results in a proof with prohibitive communication complexity.

Moreover, in various settings, such as the Integer-Linear-Programming prob-
lem, there is no a priori upper-bound on the sizes of the integer solutions during
setup when p is defined. Being able to argue on integers instead of residue classes
modulo a fixed prime integer then becomes necessary. Besides, generic reductions
to circuit satisfiability over prime-order fields for some simple problems natu-
rally defined over the integers may return circuits with a very large number of
multiplication gates and even the “Bulletproofs” argument system could produce
large proofs. Modeling computational problems using Diophantine equations is
more versatile, and a succinct argument system for Diophantine satisfiability
thus has many potential applications.

1.2 Contributions

We provide the first succinct argument for the satisfiability of Diophantine equa-
tions with a communication complexity and a round complexity that grows loga-
rithmically in the size of the polynomial equation5. It is statistical honest-verifier
zero-knowledge and is extractable under standard computational assumptions
over hidden-order groups such as RSA groups or ideal-class groups.

Integer Commitments. Section ?? introduces a new computationally hiding and
binding commitment scheme that allows to commit to vectors of integers. It is
close to Damgård and Fujisaki’s seminal proposal, but has much smaller pa-
rameters. Denoting by λ the security parameter and letting 2bG be an upper
bound on the group order, the version of our scheme which allows to commit
to n integers at once has parameters consisting of O(bG + log n) bits instead of
Ω (nbG · polylog(λ)) as with the generalized version of Damgård and Fujisaki’s
scheme.

Damgård and Fujisaki’s commitment scheme, for n = 1, is a variant of Peder-
sen’s commitment in a hidden-order group G: given two group elements g, h ∈ G,
the commitment to an integer value x ∈ Z is C = gxhr , where r is an integer of
appropriate size. The hiding property of their scheme crucially relies on the fact
that g ∈ 〈h〉, which is not always guaranteed as the group may not be cyclic.
Damgård and Fujisaki’s proposed a Schnorr-type [?] protocol to prove such state-
ments, but their challenge set is restricted to {0, 1} to guarantee soundness under
the assumptions on the group. Their protocol must then be repeated logarithmi-
cally many times to achieve negligible soundness, and the resulting parameters
5 Our goals and techniques differ completely from those proposed by Bünz, Fisch and
Szepieniec [?] where they used what they called Diophantine Arguments of Knowl-
edge (DARK) to construct a commitment scheme for polynomials over prime finite
fields (using the so-called Kronecker substitution for determining the coefficients of
a polynomial by evaluating it at a single value, see e.g., [?, p. 245]).
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are large. The situation is worse when n is large as commitments are computed
as gx11 · · · g

xn
n hr and a proof for each gi must be computed.

Our scheme is based on the observation that proving that g2 ∈
〈
h2

〉
can

be done more efficiently in a single protocol run under the assumptions on the
group. Our commitments are thus computed as (gxhr )2 ∈ G. We further such
how to aggregate the proofs of several such statements to reduce the size of our
parameters when n is large.

Succinct Inner-Product Arguments on Integers. Section ?? presents a succinct
argument that two integer vectors committed with our scheme satisfy an inner-
product relation. That is, an argument of knowledge of vectors a and b ∈ Zn (and
of a randomness r ∈ Z) that open a commitment C and such that 〈a, b〉 = z given
a public integer z. Succinct here means that the communication complexity of
the prover is of order O(` + log(n)bG), where ` is the bit length of the largest
witness. The complexity is measured in bits as during the protocol, the prover
sends logarithmically many group elements and three integers, but these latter
could be arbitrarily large.

The argument of Bünz et al. [?] for inner-product relations over Zp is not
applicable to integers as their proof of extractability relies on the generalized
discrete-logarithm assumption for which there is no equivalent in hidden-order
groups that may not even be cyclic, and on the invertibility of elements in Z∗p
since it requires to solve linear systems over Zp. Besides, their argument is not
zero-knowledge and is on vectors committed with the non-hiding version of Ped-
ersen’s scheme (i.e., with nil randomness). Therefore, whenever it is used as a
sub-protocol of another one, techniques specific to the larger protocol must al-
ways be used to guarantee that it is zero-knowledge. del Pino, Seiler and Lyuba-
shevsky [?] later solved this issue by adapting the argument of Bünz et al. in
prime-order groups to make it perfectly honest-verifier zero-knowledge with the
full-fledged Pedersen’s scheme.

Our protocol uses halve-then-recurse techniques similar to those of Bünz et al.
for the Section-?? commitment scheme in hidden-order groups and thus allows
to succinctly argue on integers, but only uses the integrality of Z as a ring since
one cannot invert modulo the unknown order. (Note that these techniques are
themselves inspired by the recursive inner-product argument of Bootle et al. [?].)
In particular, we prove that even though one cannot a priori solve in Z the linear
system of Bünz et al. required to prove the extractability of their protocol, one
can instead solve a “relaxed” system in Z. Then, under the assumptions on the
hidden-order group, we show that the solution to the relaxed system is enough to
extract a representation of the commitment in the public bases. In groups with
public prime orders, the assumption that discrete-logarithm relations are hard to
compute allows to conclude that this representation of the commitment actually
leads to a valid witness, but this assumption is not a priori translatable to
hidden-order groups. Instead, we prove that a similar assumption in the subgroup
generated by a randomly sampled element is weaker than the assumptions on the
group, and that suffices to prove the extractability of the protocol. The details
of these technical challenges are outlined in Section ??.
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Furthermore, as the group order is unknown to all parties, the argument
is only statistically honest-verifier zero-knowledge. To ensure this property, the
randomness range of the prover is carefully6 adapted to allow for simulatability
without knowledge of a witness.

Succinct Arguments for Diophantine Equations. Section ?? presents our suc-
cinct protocol to argue satisfiability of Diophantine equations. Our approach
is inspired by Skolem’s method [?] which consists in reducing the degree of
the polynomial by introducing new variables to obtain a new polynomial of
degree at most 4, in such a way that the satisfiability of one polynomial im-
plies that of the other. Tailoring Skolem’s method to the problem of arguing
satisfiability, we show how to reduce the satisfiability of any polynomial in
Z[x1, . . . , xν] of total degree δ with µ monomials to the existence of vectors
aL =

[
aL,1 · · · aL,n

]
, aR =

[
aR,1 · · · aR,n

]
and aO =

[
aO,1 · · · aO,n

]
in Zn, for

n ≤ νblog δc + (δ − 1)µ, such that aO,i = aL,iaR,i for all i ∈ {1, . . . , n}, and that
satisfy 1 ≤ Q ≤ 1 + 2ν(blog δc − 1) + (δ − 2)µ linear constraints of the form

〈wL,q, aL〉 + 〈wR,q, aR〉 + 〈wO,q, aO〉 = cq,

where wL,q,wR,q,wO,q ∈ Z
n and cq ∈ Z for all q ∈ {1, . . . ,Q}. Our reduction is

constructive as it allows to infer the vectors and the constraints directly from
the original polynomial.

Bootle et al. [?] then Bünz et al. [?] gave an argument system for proving
knowledge of vectors in Zp (instead of Z) that satisfy such constraints. They
use this protocol to argue for the satisfiability of arithmetic circuits over Zp.
Our argument shares similarities with theirs, but again there are key technical
differences that arise from the fact that Z is not a field. Indeed, as one cannot
invert nor reduce integers modulo the unknown orders of the bases, we use
different techniques notably to prevent the integers involved in the argument
from increasing too much, and to ensure consistency between the variables in
the entry-wise product and those in the linear constraints. Guaranteeing this
latter consistency requires to construct new polynomials for the argument that
do not involve inverting integers. Besides, one cannot use their commitment-key
switching technique which consists in interpreting ga as a commitment to xa
to the base gx

−1 in groups of public prime order. Finally, extra precaution must
be taken to guarantee the zero-knowledge property as integers are not reduced
modulo p and may carry information about the witness. These challenges and
the ways we overcome them are described in details in the full version [?, Section
6.2].

As a result, the communication complexity of our Diophantine-satisfiability
argument has a communication complexity of O (δ` +min(ν, δ) log (ν + δ) bG + H)
bits, if the absolute value of all the polynomial coefficients is upper-bounded

6 As another evidence that cryptography in hidden-order groups is error prone, Fouque
and Poupard [?] broke the RDSA signature from [?] for which this randomness range
was not wisely selected.

5



by 2H for some integer H. In contrast, the overall communication complex-
ity using Damgård and Fujisaki’s multiplication argument is upper-bounded by
O

((
ν+δ
δ

) (
δ` + log

((
ν+δ
δ

))
H + bG

))
and lower-bounded by Ω

((
ν+δ
δ

)
(` + bG)

)
.

Applications. The full version [?] presents several applications of our Diophantine-
satisfiability argument. We provide explicit reductions to Diophantine satisfia-
bility for the following problems:

– argument of knowledge of a (possibly committed) RSA e-th root in ZN of
some public value with O (log(log(e))bG) bits. This has application to cre-
dential systems when combined with proofs of non-algebraic statements [?];

– argument of knowledge of O (log(log p)bG) bits for ECDSA signatures with
a prime p, and of O

(
log(log q)bG + log(log p)

)
bits for DSA signatures with

primes p and q. The signed message is public, but can be committed if the
argument is combined with proofs of non-algebraic statements [?];

– argument that two committed lists of integers of length n are permutations
of each other with O (` + log(n)bG) bits

– argument of satisfiability of a 3-SAT Boolean formula with m clauses and n
variables with O (log(n + m)bG) bits;

– argument of satisfiability of an Integer-Linear-Programming problem of the
form x ∈ Nn andAxT ≥ bT, forA ∈ Zm×n and b ∈ Zm, with O (` + log(4n + 3m)
bG + log ‖A‖∞ + log ‖b‖∞) bits.

2 Preliminaries

This section introduces the notation used throughout the paper, recalls stan-
dard assumptions on generators of hidden-order groups, and defines commitment
schemes and argument systems.

2.1 Notation

For x ∈ Z, |x | denotes its absolute value. All logarithms are in base 2. For any
two integers a ≤ b ∈ Z, ~a; b� denotes the set {a} if a = b and {a, a + 1, . . . , b} if
a < b. For an integer n ≥ 1, ~n� stands for the set ~1; n�. Given a vector a ∈ Zn,
aX denotes the vector

[
a1X a2X · · · anX

]
∈ Zn[X ].

For a given group (G, ·), TG denotes the binary complexity of computing group
operations. For h ∈ G,

√
〈h2〉 denotes the subgroup

{
g ∈ G : ∃α ∈ Z, g2 = h2α

}
.

For g ∈ Gn, if n is even, set g1 B
[
g1 · · · gn/2

]
and g2 B

[
gn/2+1 · · · gn

]
, and

if n is odd, set g1 B
[
g1 · · · gbn/2c 1G

]
and g2 B

[
gdn/2e · · · gn

]
. For a ∈ Zn, if

n is even, set a1 B
[
a1 · · · an/2

]
and a2 B

[
an/2+1 · · · an

]
, and if n is odd, set

a1 B
[
a1 · · · a bn/2c 0

]
and a2 B

[
a dn/2e · · · an

]
.

For n ∈ N∗, z ∈ Z and g =
[
g1 . . . gn

]
∈ Gn, let gz B

[
gz1 · · · g

z
n

]
∈ Gn. For

a =
[
a1 . . . an

]
∈ Zn, define ga B

∏n
i=1 g

ai

i . For g and h in Gn, g ◦ h ∈ Gn denotes
their Hadamard product, i.e., their component-wise product.
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2.2 Hidden-Order-Group Generators and Hardness Assumptions

A hidden-order-group generator G is an algorithm which takes as input a security
parameter 1λ and returns the description of a finite Abelian group (G, ·) and an
integer P ≥ 2. Integer P is assumed to be smaller than the order of G, but to
still be a super-polynomial function of the security parameter. The role of P is
mainly to adjust the soundness of the protocols herein, as their challenge spaces
will typically be

�
0; PΩ(1) − 1

�
.

It is also assumed that given the description of G, the group law and the
inversion of group elements can be efficiently computed, that group elements can
be sampled uniformly at random and that an upper bound 2bG on ord(G) can
be efficiently computed, with bG B bG(λ) polynomial in λ (it is further assumed
that bG = Ω(λ)). Recall that the bit complexity of an elementary operation in a
group G is denoted TG.

The following assumptions are classical for hidden-order-group generators
and were introduced by Damgård and Fujisaki [?]. They are best illustrated for
P such that natural integers less than P are factorizable in polynomial time in λ
(e.g., λlog

Ω(1) (λ) given current knowledge in computational number theory), and
for G as the group Z∗N for an RSA modulus N with prime factors p and q such
that p = q = 3 mod 4, gcd(p − 1, q − 1) = 2 and the number of divisors of p − 1
and q − 1 with prime factors less than P is of magnitude O(λ). However, these
assumptions are believed to also hold over generators of ideal-class groups.

Definition 2.1 (Strong-Root Assumption). A group generator G satisfies
the (T, ε)-strong-root assumption if for all λ ∈ N, for every adversary A that
runs in time at most T (λ),

Pr


gn = h ∧ n > 1:

(G, P) ← G
(
1λ

)
h ←$ G

(g, n) ← A(G, P, h)


≤ ε(λ).

This assumption is simply a generalization of the strong RSA assumption [?,?]
to hidden-order groups.

Definition 2.2 (Small-Order Assumption). A group generator G satisfies
the (T, ε)-small-order assumption if for all λ ∈ N, for every adversary A that
runs in time at most T (λ),

Pr

[
gn = 1G ∧ g2 , 1G

0 < n < P :
(G, P) ← G

(
1λ

)
(g, n) ← A(G, P)

]
≤ ε(λ).

The small-order assumption simply states that it should be hard to find
low-order elements in the group (different from 1G), except for square roots of
unity which may be easy to compute (e.g., −1 in RSA groups). In the group
Z∗N for N = pq with p and q prime such that gcd(p − 1, q − 1) = 2, Damgård
and Fujisaki [?] showed that factoring N can be reduced to this problem in
polynomial time if integers less than P are factorizable in polynomial time in λ.
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Definition 2.3 (Orders with Low Dyadic Valuation). A group generator
G satisfies the low-dyadic-valuation assumption on orders if for all λ ∈ N, for
every (G, P) ← G

(
1λ

)
, for every g ∈ G, ord(g) is divisible by 2 at most once.

Notice that in the group Z∗N for N = pq with p and q prime such that p = q = 3
mod 4, the order of any element is divisible by 2 at most once since 2 divides
p − 1 and q − 1 exactly once.

Definition 2.4 (Many Rough-Order Elements or µ-Assumption). An
integer is said to be P-rough if all its prime factors are greater than or equal to
P. A group generator G satisfies the µ-assumption that there are many rough-
order elements in the groups generated by G (or simply the µ-assumption) if for
all every parameter λ ∈ N,

Pr

[
ord(h) is P-rough :

(G, P) ← G
(
1λ

)
h ←$ G

]
≥ µ(λ).

2.3 Non-interactive Commitments

A (non-interactive) commitment scheme consists of an algorithm Setup
(
1λ

)
→

pp which generates public parameters (implicit inputs to the other algorithms); a
key-generation algorithm KG (pp) → ck ; a probabilistic algorithm Com (ck, x) →
(C, d) that computes a commitment C to a value x and an opening or de-
commitment information d on the input of ck ; and a deterministic algorithm
ComVf (ck,C, x, d) → b ∈ {0, 1} which returns a bit indicating whether the de-
commitment d is valid (bit 1) for C and x w.r.t. key ck , or not (bit 0). For-
mal definitions of the correctness, hiding and binding properties of commitment
schemes are given in the full version [?].

Discussion. The syntax above separates the commitment-key generation algo-
rithm from the setup algorithm although these are often tacitly combined, espe-
cially for commitments in public-order groups. The main reason is that doing so
allows to define the hiding property for schemes even when the keys are possibly
invalid. This question does not arise for schemes with keys that are elements
of a prime-order group G = 〈g〉 (e.g., Pedersen’s scheme [?]) since any element
h ∈ G∗ is a valid commitment key. However, when the scheme is defined over an
unknown-order group G which may not be cyclic, and that keys are elements of
the subgroup generated by an element (as it is the case for Damgård–Fujisaki
commitments recalled in Section ??), say h, there may not be an efficient way
to test whether another element g ∈ G is in 〈h〉. Computing a commitment with
an invalid key may then not guarantee that the commitment is hiding. That is
why the scheme will be required to be hiding even if commitments are computed
with a potentially invalid key.
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2.4 Argument Systems

This section defines argument systems for families of languages. The languages
are parametrized by public parameters and Common-Reference Strings (CRSs).
As a simple example, given an Abelian group G (which could be non-cyclic) and
an element h ∈ G (the parameters) and another element g ∈ 〈h〉 (the CRS),
consider the language of group elements C ∈ G such that there exists x, y ∈ Z for
which C = gxhy. This language is clearly parametrized by the parameters and
the CRS, and one can give an argument system for this parametrized language in
the same vein as what is subsequently done in the paper. However, to lighten the
notation, arguments will be (abusively) referred to as arguments for languages
rather than arguments for families of languages.

Formally, an argument system (or protocol) for a language L = Lpp,crs (or
equivalently, for the corresponding relation R = Rpp,crs) consists of a quadru-
ple Π = (Setup,CRSGen, Prove,Vf

)
such that Setup

(
1λ

)
→ pp returns public

parameters on the input of a security parameter, CRSGen(pp) → crs returns a
CRS, and 〈Prove(crs, x,w) 
 Vf (crs, x)〉 → (τ, b) ∈ {0, 1}∗ × {0, 1} are interac-
tive algorithms (τ denotes the transcript of the interaction and b the decision
bit of Vf). The public parameters are assumed to be tacit inputs to algorithms
Prove and Vf, even though they may at times be made explicit for instantiated
protocols, especially when the CRS is the empty string (in which case the CRS
is omitted from the syntax). The definitions of the (culpable) soundness, ex-
tractability and honest-verifier zero-knowledge properties of argument systems
are given in the full version [?].

The non-interactive argument system derived from an interactive one Π via
the Fiat–Shamir heuristic [?] with a random oracle H is denoted FS .ΠH .

3 Integer Commitments

This section recalls a scheme due to Damgård and Fujisaki which allows to com-
mit to integers7. Then comes a new integer-commitment scheme with parameters
smaller than those of Damgård and Fujisaki’s scheme, and which are also more
efficient to compute. For the version of our scheme which allows to commit to
n integers, the parameters are of O(bG + log n) bits instead of Ω(nbG log P) as
with the generalized version of Damgård and Fujisaki’s scheme, where 2bG is an
upper bound on the group order.

3.1 Damgård–Fujisaki Commitments

The Damgård–Fujisaki commitment scheme [?, ?], parameterized by a group
generator G, consists of the following algorithms.
7 Couteau, Peters and Pointcheval [?] proved that in the case of RSA groups (with
Blum integers), the security of Damgård and Fujisaki’s scheme is provable under (a
variant of) the RSA assumption instead of the strong RSA assumption. This also
holds for our scheme. However, this result does not concern generic hidden-order
groups.
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Setup
(
1λ

)
→ pp : run (G, P) ← G

(
1λ

)
, generate h ←$ G and return (G, P, h).

Recall that these parameters are implicit inputs to all the other algorithms.
KG(pp) → ck : generate α ←$

�
0; 2bG+λ

�
(2bG is an upper bound on ord(G)),

compute and return g ← hα.
Com(g, x ∈ Z) → (C, d) : generate r ←$

�
0; 2bG+λ

�
, compute C ← gxhr , set d ←

(r, 1G) and return (C, d).
ComVf (g,C, x, d) → b ∈ {0, 1} : parse d as (r, g̃). If C = gxhr g̃ and g̃2 = 1G, return

1, else return 0.

Equivalently, the commitment-algorithm could simply set the decommitment
information d to r, and the commitment-verification would return 1 if the equal-
ity C2 =

(
gxhd

)2
holds and 0 otherwise. The squaring in the verification is due

to the fact that the small-order assumption does not exclude the possibility to
efficiently compute square roots of unity, and they thus relaxed the verification
equation to allow for sound argument of knowledge of openings to commitments.
In other words, the scheme would still be binding without the squaring in the
verification equation, and the relaxation is simply an artifact to allow for sound
arguments.

More precisely, suppose that the verification were not relaxed, i.e., that it
would only check that C = gxhd. Two accepting transcripts (D, e1, z1, t1) and
(D, e2, z2, t2) of a standard Schnorr-type argument of knowledge of an opening
would imply that Ce1−e2 = gz2−z1 ht2−t1 . Assuming e1, e2 ∈ ~0; P − 1�, e1 , e2,
and that e1 − e2 divides z2 − z1 and t2 − t1 (Damgård and Fujisaki showed
that this latter event occurs with probability negligibly close to 1/2 under the
assumptions on the group generator), the previous equality would imply that(
g(z2−z1)/(e1−e2) h(t2−t1)/(e1−e2)C−1

)e1−e2
= 1G, and the small-order assumption would

only allow to conclude that C2 =
(
g(z2−z1)/(e1−e2) h(t2−t1)/(e1−e2)

)2
. The trivial at-

tack in which an adversary computes C as gxhd g̃ with g̃ ∈ G such that g̃2 = 1G
would then not be excluded by the protocol.

Properties. Damgård and Fujisaki’s scheme is correct, is computationally bind-
ing under the strong-root assumption and the µ-assumption, and is statistically
hiding. Its hiding property crucially relies on the fact that g ∈ 〈h〉. To guaran-
tee the statistical hiding property of the scheme without trusted key generation,
the party which computes g is then also required to compute a non-interactive
proof that g ∈ 〈h〉. The commitment algorithm would then verify the proof and
proceed as above if it is valid, and otherwise return ⊥. Damgård and Fujisaki
proposed to compute such a proof with a Schnorr-type protocol with {0, 1} as
challenge set. To attain a soundness error of at most 1/P, the proof must then
be repeated at least dlog Pe times. With the Fiat–Shamir heuristic, each proof
consists of (c, z), and the total proof in the public parameters then consists of
dlog Pe (bG + 2λ + 2) = Ω (bG log P) bits (recall that P is super-polynomial in λ,
e.g., λlog λ).
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3.2 A new Integer-Commitment Scheme

This section introduces a novel integer-commitment scheme that is close to
Damgård and Fujisaki’s scheme, but with an argument (rather than a proof)
of only O(bG) (with b such that ord(G) ≤ 2bG) bits in non-trusted keys, and the
argument only requires a single protocol run to reach the same soundness error.
As the soundness of the protocol relies on computational assumptions on the
group generator, the scheme is only computationally hiding, whereas Damgård
and Fujisaki’s cut-and-choose protocol is perfectly sound (the prover is not as-
sumed to be computationally bounded) but inefficient.

Formally, let G be a group generator and let FS .ΠH be a Fiat–Shamir non-
interactive argument system with random oracleH for the language {g ∈ G, ` ∈ N∗ :
∃α ∈

�
0; 2`
�
, g = hα

}
, given parameters (G, P, h, 1) (integer 1 is just to indicate

that there is only one group element g in the word for which the proof is com-
puted) and the empty string as CRS. The proof of the hiding property will
require the protocol to satisfy culpable soundness w.r.t. the language

√
〈h2〉. The

scheme, parameterized by G and further denoted C , consists of the following
algorithms:

Setup
(
1λ

)
→ pp : run (G, P) ← G

(
1λ

)
, generate h ←$ G and return (G, P, h).

Recall that these parameters are implicit inputs to all the other algorithms.
KG(pp) → ck : generate α ←$

�
0; 2bG+λ

�
, compute g ← hα and a proof π ←

FS .ΠH .Prove((G, P, h, 1), (g, bG + λ), α), and return (g, π).
Com ((g, π) , x ∈ Z) → (C, d) : if FS .ΠH .Vf ((G, P, h, 1), (g, bG + λ), π) = 0, then

return ⊥; else generate r ←$

�
0; 2bG+λ

�
, compute C ← (gxhr )2, set d ← r

and return (C, d).
ComVf ((g, π) ,C, x, d) → b ∈ {0, 1} : if C2 =

(
gxhd

)4
return 1, else return 0.

See the full version [?] for the proofs of correctness and security of the scheme.

Comparison with Damgård–Fujisaki Commitments. As for Damgård and Fu-
jisaki’s commitments, the squaring in the verification equation (compared to
the computation of commitments) is again to later allow for sound arguments
of knowledge of openings. The main difference compared to Damgård and Fu-
jisaki’s commitments is that commitments are computed as (gxhr )2 instead of
gxhr . It is simply due to the fact that π only guarantees that g2 ∈

〈
h2

〉
, not

that g ∈ 〈h〉, hence the power 2 in the computation of commitments to ascertain
that they are hiding. However, only requiring that g2 ∈

〈
h2

〉
instead of g ∈ 〈h〉

is precisely what allows to have much smaller arguments that can be computed
in a single protocol run.

Argument System FS.ΠH . It only remains to provide a protocol FS .ΠH to
argue knowledge of an integer α ∈ Z such that g2 = h2α, which is sufficient
for the commitment scheme to be computationally hiding. We first give an in-
teractive protocol Π for the language

{
g ∈ G, ` ∈ N∗ : ∃α ∈

�
0; 2`
�
, g = hα

}
given

11



parameters (G, P) ← G
(
1λ

)
and that satisfies culpable soundness w.r.t.

√
〈h2〉,

and then apply the Fiat–Shamir heuristic to obtain FS .ΠH .
In more detail, the (interactive) protocol Π is as follows: the prover generates

k ←$

�
0; 2`+λP

�
, computes t ← hk and sends t to the verifier; the verifier chooses

c ←$ ~0; P − 1� and sends it to the prover; the prover then replies with r ← k−cα,
and the verifier accepts if and only if hrgc = t. With the Fiat–Shamir heuristic,
the proof consists of (c, r), i.e., 2 blog Pc + ` + λ + 3 bits. For ` = bG + λ, that is
2 blog Pc + bG + 2λ + 3 = O(bG) bits (recall that P ≤ 2bG and bG = Ω(λ)).

The completeness, statistical honest-verifier zero-knowledge and extractabil-
ity properties of this protocol are proved in the full version [?].

Arguing Knowledge of Openings. As for Damgård and Fujisaki’s commit-
ments, one can efficiently argue knowledge of openings, i.e., of integers x and r
such that a given commitment C satisfies C2 = (gxhr )4.

The protocol imposes an upper bound of ` on the bit length of the witness,
with ` being part of the (public) word. It is simply to adapt the randomness range
of the prover (and of the honest-verifier zero-knowledge simulator) to ensure that
the protocol remains statistically honest-verifier zero-knowledge; and ` can be
arbitrarily large. The protocol does not guarantee that the largest absolute value
in the extracted witness is at most ` bits long 8. In technical terms, the protocol
is for the relation

{(
C ∈ G, ` ∈ N∗; x, r ∈

�
0; 2`
�)

: C2 = (gxhr )4
}
that satisfies cul-

pable extractability for the relation Σ B
{
(C ∈ G, ` ∈ N∗; x, r ∈ Z) : C2 = (gxhr )4

}
.

More precisely, consider the problem of arguing in zero-knowledge knowledge
of integers x and r such that C2 = (gxhr )4 and |x |, |r | ≤ 2` , for a group element
C chosen by the prover and public bases h and g, and a public proof π that
g ∈

√
〈h2〉. The prover first verifies π and aborts if it is invalid. The prover

generates y, s ←$

�
0; P2`+λ

�
, computes and sends D ← (gyhs)2 to the verifier.

The verifier then chooses e ←$ ~0; P − 1�, sends it to the prover, and this latter
replies with z ← y− ex and t ← s− er (computed in Z). The verifier then accepts
if and only if

(
gzht )2 Ce = D.

The properties of this protocol are proved in the full version [?].

Multi-Integer Commitments. The above commitments can be generalized to
vectors of integers just like Damgård–Fujisaki commitments (as Couteau, Peters
and Pointcheval did [?]). That is to say, the scheme can be extended to commit
to several integers at once.

Formally, let G be a group generator and suppose that there exists a non-
interactive argument system FS .ΠH with random oracle H for the language{
g1, . . . , gn ∈ G, ` ∈ N

∗ : ∃α1, . . . , αn ∈
�
0; 2`
�
,∀i ∈ ~n� gi = hαi } given parameters

(G, P, h, n) and the empty string as CRS.

Setup
(
1λ, n

)
→ pp : run (G, P) ← G

(
1λ

)
, generate h ←$ G and return (G, P, h, n).

8 To prove such statements using hidden-order groups, Lipmaa’s range argument [?],
corrected by Couteau, Peters and Pointcheval [?], is suitable.
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KG(pp) → ck : generate αi ←$

�
0; 2bG+λ

�
for i ∈ ~n�, compute gi ← hαi and

π ← FS .ΠH .Prove
(
(G, P, h, n) , (g, bG + λ), (αi)ni=1

)
, and return (g, π).

Com ((g, π) , x1, . . . , xn ∈ Z) → (C, d) : if FS .ΠH .Vf ((G, P, h, n) , (g, bG + λ), π) = 0

return ⊥; generate r ←$

�
0; 2bG+λ

�
, compute C ←

(∏n
i=1 gxii hr

)2
, set d ← r

and return (C, d).
ComVf ((g, π) ,C, x1, . . . , xn, d) → b ∈ {0, 1} : if C2 =

(∏
i g

xi
i hd

)4
return 1, else

return 0.

The only missing component is an interactive protocol Π that satisfies culpable
soundness w.r.t.

{
g1, . . . , gn ∈ G : ∃α1, . . . , αn ∈ Z,∀i ∈ ~n� g2i = h2αi

}
. A possible

solution is to run n times in parallel the protocol from the case n = 1 for each
of the αi values. However, they achieve an overall 2−λ statistical distance from n
simulated arguments, the range of the prover’s randomness in the protocol must
be multiplied by n so that each argument is 2−λn−1-zero-knowledge. A better
solution is to use the protocol presented in the full version [?, Section 5.3],
which results in arguments of O(bG+ log n) bits. This should be compared to the
Ω(nbG log P)-bit parameters of the generalized Damgård–Fujisaki commitments.

4 Succinct Inner-Product Arguments on Integers

This section gives a statistically honest-verifier zero-knowledge, logarithmic-size
inner-product argument on integers committed in hidden-order groups with the
scheme from Section ??. That is, an argument of knowledge of vectors a and
b ∈ Zn, and of a randomness r ∈ Z such that C2 =

(
gahb f r

)4
and 〈a, b〉 = z

given public bases g and h, a public commitment C and a public integer z;
and the bit-communication complexity of the protocol is logarithmic in of order
O(` + log nbG) where ` is an upper-bound on the bit length of the largest integer
witness and 2bG an upper-bound on the order of the group.

4.1 Formal Description

This section formalizes the protocol and states the properties it satisfies.

Relations. The protocol is an honest-verifier zero-knowledge argument for

R B
{(

C ∈ G, z ∈ Z, ` ∈ N∗; a, b ∈ Zn, r ∈ Z
)

: C2 =
(
gahb f r

)4
∧ 〈a, b〉 = z

∧


[
a b r

]∞ < 2`
}

given parameters (G, P, f , n) with f ∈ G and n ∈ N∗, and (g, h, πcrs ) ∈ G2n×{0, 1}∗

as CRS.
The relation imposes the largest value (in absolute value) in the witness[

a b r
]
to be at most ` bits long, with ` being part of the (public) word. As

for the argument of knowledge of openings in Section ??, it is again to adapt
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the randomness range of the prover and of the honest-verifier zero-knowledge
simulator to make sure that the protocol remains statistically honest-verifier
zero-knowledge; and ` can be arbitrarily large. However, the protocol does not
necessarily return a witness with integers of at most ` bits in absolute value. In
other words, the protocol satisfies culpable extractability w.r.t. the relation

Σ B
{(

C ∈ G, z ∈ Z, ` ∈ N∗; a, b ∈ Zn, r ∈ Z
)

: C2 =
(
gahb f r

)4
∧ 〈a, b〉 = z

}
.

The argument for R is actually reduced to a logarithm-size argument (given on
Figure ??) for the following relation in which the inner product is also committed:

R ′ B
{

(C ∈ G, ` ∈ N∗; a, b ∈ Zn, r ∈ Z) : C2 =
(
gahbe〈a,b〉 f r

)4
∧


[
a b r

]∞ < 2`
}

given parameters (G, P, f , n) with f ∈ G and n ∈ N∗, and (g, h, e, πcrs ) ∈ G2n+1 ×

{0, 1}∗ as CRS. Again, the protocol does not guarantee that the extracted witness
satisfies the bounds on its bit length – denote by Σ′ the relation defined as R ′
without the restriction on the size of the witness.

During the reduction, the verifier chooses a base e ∈ 〈 f 〉 and proves to the
prover that e is in

√
〈 f 2〉, which guarantees to the prover that the commitment

Ce2z remains hiding. (As explained in Section ??, this precaution is not needed
in groups of public prime orders.) However, since the protocol in Section ?? is
only honest-verifier, and the extractability of the argument system partly relies
on the fact that the prover does not know a discrete-logarithm relation between
e and f , the verifier must compute a non-interactive argument with a random
oracle. In other words, the extractability of the argument relies on the zero-
knowledge property of the protocol in Section ??. Moreover, the CRS of the
protocol includes a proof that g and h are in

√
〈 f 2〉

n
, and the argument is only

guaranteed to be honest-verifier zero-knowledge if it is indeed the case; that
is, the zero-knowledge property of the argument relies on the soundness of the
protocol. This mirroring in the properties of two protocols is simply due to the
fact that at the beginning of the inner-product argument, the prover becomes
the verifier of the protocol for g, h ∈

√
〈 f 2〉

n
.

Main Insights. The goal is to have a protocol for R ′ in which the prover
sends only 2dlog ne + 2 group elements and three integers of at most O(` + bG +
log(n) log(P)) bits. The main idea is to have the prover first send a constant
number of commitments that depend on the witness vectors (which are in Zn), so
that the verifier can thereafter choose integer linear combinations (defined by an
integer x) of the witness vectors that are of length n/2 (to ease the explanation,
further assume n to be a power of 2 in this section). These new vectors then
serve as witness for a new commitment derived from the original commitment
on which the proof is computed, the commitments sent by the prover and x; in
bases of length n/2 and determined by the original bases and x. The prover and
the verifier can thus recursively run the protocol with vectors of length n/2. After
log n recursive calls, the vectors are of length 1, and the parties run a protocol
that two committed integers a and b satisfy ab = z for a public z.
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In more detail, given a, b ∈ Zn and r ∈ Z such that C2 =
(
gahbe〈a,b〉 f r

)4
, the

prover first sends commitments U ←
(
g1

a2h2
b1e〈a2,b1〉 f su

)2
and V ←

(
g2

a1h1
b2

e〈a1,b2〉 f sv
)2
, for su and sv with uniform distribution over an integer set large

enough for the commitments to be hiding. The verifier chooses x ←$ ~0; P − 1�,
sends it to the prover, and this latter computes a′ ← a1 + xa2, b′ ← xb1 +b2 and
t ← sv + r x + su x2. Note that all these operations are performed in Z and do not
require to invert any integer. Now note that((

gx1 ◦ g2
)a′ (h1 ◦ hx

2

)b′ e〈a
′,b′〉 f t

)4
=

(
Ux2

CxV
)2
,

which means that the prover and verifier can run the protocol again with gx1 ◦ g2
and h1 ◦ h

x
2 as bases and a′ and b′ (all of size n/2 instead of n) as witness for

Ux2

CxV .
To understand how a witness consisting of integer vectors can be extracted,

suppose that one can obtain three transcripts
(
U,V, x j, a

′
j, b
′
j, t
′
j

)3
i=1

such that((
g1

x j ◦ g2
)a′j (

h1 ◦ h2
x j

)b′j e
〈
a′j,b

′
j

〉
f tj

)4
=

(
Ux2

j Cx j V
)2

for all j ∈ ~3�. The goal is to find a representation of C in the bases g, h, e and
f . To do so, consider the linear system:

X



ν1
ν2
ν3


=



0
1
0


for X B



1 1 1
x1 x2 x3
x21 x22 x23


and indeterminate



ν1
ν2
ν3


.

It does not necessarily have a solution in Z3 (and this is the first major difference
with Bulletproofs in groups with public prime orders). However, denoting by
adj(X) the adjugate matrix of X (which is in Z3×3), the column vector

νC B adj(X)


0
1
0


satisfies XνC = X adj(X)



0
1
0


=



0
det(X)

0



since X adj(X) = det(X)I3. Therefore, via linear combinations with coefficient
determined by νC , one can obtain aC, bC ∈ Z

n and zC, rC ∈ Z such that U2detX =(
gaChbC ezC f rC

)4
. If the challenges x1, x2, x3 are pairwise distinct, then detX ,

0, and Lemma ?? shows that under the assumptions on the group generator,
2 detX must divide (with overwhelming probability) 4zC , 4rC and each of the
components of 4aC , 4bC . Therefore, up to a relabeling of 2aC/detX and so on,
one can extract aC, bC ∈ Z

n and zC, rC ∈ Z such that U =
(
gaChbC ezC f rC

)2
g̃C

for g̃C ∈ G that satisfies g̃2C = 1G.
Nonetheless, it is not yet certain that zC = 〈aC, bC〉. To guarantee it, it suf-

fices to extract similar representations for U and V , and replacing U, C and

V by those representations in the equality
((
gx1 ◦ g2

)a′ (
h1 ◦ h

x
2

)b′
e〈a
′,b′〉 f t

)4
=

15



(
Ux2

CxV
)2

for any x ∈ {x1, x2, x3}. This leads to a discrete-logarithm relation
1G = g1

pg1 (x)g2
pg2 (x)h1

ph1 (x)h2
ph2 (x)epe (x) f p f (x) with pg1, pg2, ph1, ph2, pe, pf poly-

nomials in Z[x] of degree at most 2. Lemma ?? essentially states that it is hard to
find discrete-logarithm relations in the subgroup generated by a group element
f ←$ G (this is the second main difference with Bulletproofs in groups with pub-
lic prime orders). It thus implies that if the bases are all in 〈 f 〉 with exponents
chosen uniformly at random over a large integer set, these polynomials must all
be zero (with overwhelming probability) when evaluated at x; and pg1, ph2 and
pe together lead to an integer polynomial of degree 4, with leading coefficient
zC − 〈ac, bC〉, which must then be nil when evaluated at x. Therefore, starting
with five accepting transcripts instead of three entails that this polynomial of
degree 4 must be nil and thus zC = 〈ac, bC〉, i.e., aC, bC ∈ Zn, rC ∈ Z is a valid
witness for C.

As for the zero-knowledge property of the scheme, the ranges of su and sv
at each of the log n recursion step are chosen so that the statistical distance of
(U,V ) to a pair of uniform values in

〈
f 2

〉
is at most

(
log(n)2λ

)−1
. It then remains

to compute an upper-bound on the bit length of the witness at the last step of
the protocol so that the randomness of the prover can be chosen from a set of
which the bit length is λ times larger. The calculation is detailed in the proof of
the zero-knowledge property presented in the full version [?].

Protocol Algorithms. The argument system for relation R is further denoted
Π. It uses as building blocks a group generator G and the Fiat–Shamir non-
interactive variant FS .Π̃H with a random oracle H of a protocol Π̃ for the lan-
guage

{
(g, h) ∈ G2n : ∃α, β ∈ Z2n,∀i ∈ ~n� gi = f αi ∧ hi = f βi

}
given parameters

(G, P, f , 2n) and the empty string as CRS. Protocol Π̃H is later assumed to satisfy
culpable soundness w.r.t. the language

{
(g, h) ∈ G2n : ∃α, β ∈ Z2n,∀i ∈ ~n� g2i =

f 2αi ∧ h2
i = f 2βi

}
. The protocol algorithms are then as follows:

– Π.Setup
(
1λ, n ∈ N∗

)
runs (G, P′) ← G

(
1λ

)
, computes P B

⌊
P′1/3

⌋
(the power

1/3 is to ensure extractability under the assumptions on the group genera-
tor), generates f ←$ G and returns pp ← (G, P, n, f ) as public parameters.

– Π.CRSGen(pp) generates αi, βi ←$

�
0; 2bG+2λ

�
for i ∈ ~n�, computes gi ←

f αi , hi ← f βi and πcrs ← FS .Π̃H .Prove ((G, P, f , 2n), (g, h) , α, β), and re-
turns (g, h, πcrs ).

– Π.Prove and Π.Vf are as on Figure ??. They run as sub-routines the prov-
ing and verification algorithms of a protocol Π′ for relation R ′. Algorithms
Π′.Prove and Π′.Vf additionally take as input a variable i which keeps track
of the recursion depth during the protocol execution to adjust the random-
ness of the prover.

Prover-Communication Complexity. Throughout the protocol, the prover
sends 2n′+2 group elements (with n′ = dlog ne), two integers (a′ and b′) less than
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P
(
n, f , g, h, πcrs,C, z, `; a, b, r

)
V

(
n, f , g, h, πcrs,C, z, `

)
C2 =

(
gahb f r

)4
∧ 〈a, b〉 = z ∧ 

[
a b r

]∞ < 2`

if FS .Π̃H .Vf
(
(G, P, f , 2n), (g, h) , πcrs

)
= 0 α ←$

�
0; 2b+2λ

�
; e ← f α

then return ⊥ π ← FS .Π̃H .Prove((G, P, f , 1), e, α)
e,π
←−−−

if FS .Π̃H .Vf ((G, P, f , 1), e, π) = 0
then return ⊥

run the protocol on Figure ?? on input
(
1, n, f , g, h, e,C1 B Ce2z, `; a, b, r

)
Fig. 1. Inner-Product Argument on Integers.

2`Pn′ in absolute value and an integer (u) less than
(
2n′2bG+λPn′+3 + 2` (P − 1)n

′+2
)(

1 + 2λ
)
in absolute value. The bit communication complexity of the prover

is then of order O (` + log(n)(bG + log P) + λ +max (log log n + bG + λ, `)). Since
log P ≤ bG = Ω(λ), that is O (` + log(n)bG +max (log log n + bG, `)), or even
O (` + log(n)bG) bits (n is here assumed to be greater than 1).

Verification via a Single Multi-Exponentiation. As described on Fig-
ure ??, the verifier computes a new commitment U

x2
i

i Cxi
i Vi, and new vectors

gxi1 ◦ g2 and h1 ◦ h
xi
2 at each recursion step i. In total, the verifier then has

to compute n′ B dlog ne 3-exponentiations with exponents less than P2 and two⌈
n2−i

⌉
-exponentiations with exponents less than P for i = 0, . . . , n′−1. At the last

stage of the protocol, the verifier also has to check that
(
gxn′+1a

′

hxn′+1b
′

ea
′b′ f u

)4
=(

C
x2
n′+1

n′+1 Γ
xn′+1∆

)2
, i.e., a 7-exponentiation with exponents (in absolute value) less

than the bit length of the largest exponent.
Alternatively, the verifier could simply generate the challenges after receiv-

ing the Ui and Vi values, delay its verification to the last stage of the pro-
tocol and then do a single multi-exponentiation. As shown below, this multi-
exponentiation is a (2n + 2n′ + 5)-exponentiation, which results in computational
savings in practice since computing a k-exponentiation with `-bit exponents re-
quires ` group operations with a pre-computed table of 2k group elements follow-
ing classical sliding-window methods [?], which is much faster than computing
k separate single exponentiations with `-bit exponents (which requires k` group
operations with a single group element in memory) and multiplying the result9.

9 If n is large, then the pre-computation might be prohibitively long with the stan-
dard multi-exponentiation method, in which case one would rather split the multi-
exponentiation in small batches. In any case, delaying the verification until the last
step already has the benefit of eliminating latency in the verification.
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P
(
i, n, f , g, h, e,Ci, `; a, b, r

)
V

(
i, n, f , g, h, e,Ci, `

)
C2
i =

(
gahbe〈a,b〉 f r

)4
∧


[
a b r

]∞ < 2`

if n = 1

α, β ←$

�
0; 2`+λPi

�
s ←$

�
0; 2(i − 1)2bG+λ

�
t ←$

�
0; 2(i − 1)2bG+2λPi+2 + 2`+λ (P − 1)i+1

�
Replace i − 1 by 1 if i = 1

Γ ←
(
gαhβeαb+aβ f s

)2
∆←

(
eαβ f t

)2
Γ,∆
−−−→

xi ←$ ~0; P − 1�
xi
←−−

a′ ← α + axi
b′ ← β + bxi
u ← t + sxi + r x2i

a′,b′,u
−−−−−−→ (

gxia
′

hxib
′

ea
′b′ f u

)4 ?
=

(
Cxi
i
Γxi∆

)2
else

su, sv ←$

�
0; 2 (dlog ne + i − 1) 2bG+λ

�
Ui ←

(
g1

a2h2
b1e〈a2,b1〉 f su

)2
Vi ←

(
g2

a1h1
b2e〈a1,b2〉 f sv

)2
Ui,Vi
−−−−−→

xi ←$ ~0; P − 1�
xi
←−−

a′ ← a1 + xia2
b′ ← xib1 + b2
t ← sv + r xi + su x2i

recurse on
(
i + 1, dn/2e, f , gxi1 ◦ g2, h1 ◦ h

xi
2 , e, Ci+1 B U

x2
i

i
Cxi
i

Vi, `; a′, b′, t
)

Fig. 2. Argument for Relation R ′.

In the full version [?], we show that in case n is a power of 2, the verifier then
only has to check that

*
,

n∏
i=1

g
∏

j∈Si
x j

i
+
-

4xn′+1a
′

*
,

n∏
i=1

h
∏

j∈~n�\Si
x j

i
+
-

4xn′+1b
′

e4a
′b′ f 4u

=
*.
,
Uxn′
n′

n′−1∏
i=1

Uxi xi+1 · · ·xn′
i Cx1 · · ·xn′

n′−1∏
i=1

V xi+1 · · ·xn′
i Vn′

+/
-

2x2
n′+1

Γ
2xn′+1∆

2,
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with Si B { j ∈ ~n′� : n′ + 1 − jth bit of i − 1 is 0}, i.e., do a (2n + 2n′ + 5)-expo-
nentiation with exponents (in absolute value) less than

4 max
*...
,

2`P2n′+1,

|a′b′ |<︷  ︸︸  ︷
22`P2n′,

|u |<︷                                                   ︸︸                                                   ︷(
2n′2bG+λPn′+1 + 2` (P − 1)n

′+2
) (

1 + 2λ
)+///

-

.

Verification thus requires O(` + bG + log(n) log(P)) group operations (n ≥ 2). We
also show how to handle verification with a single multi-exponentiation in case
n is not a power of 2 unlike previous work.

4.2 Completeness and Security

In the full version [?], we prove that the protocol is complete, honest-verifier zero-
knowledge if Π̃ is sound, and that it is extractable under the assumptions on
the group generator presented in Section ??. The proof of extractability is based
on Lemma ?? and Lemma ??, and Lemma ?? relies on Lemma ??. The proof
of Lemmas ?? and ?? are given in this section as they are the main ingredients
of the proof of extractability which differ from those in the case of groups with
public prime orders. The proof of Lemma ?? relies on elementary arithmetic and
is given in full version.

Lemma 4.1. Let n be a natural integer and let a0, . . . , an, b and N be integers,
with N ≥ 1. Assuming that the ai integers are not all nil modulo N, the number
of tuples (x0, . . . , xn) ∈ Zn+1N such that a0x0 + · · · + anxn + b = 0 mod N is either
0 or Nn gcd(a0, . . . , an, N ).

Lemma 4.2. Consider the problem (depending on λ) of computing, on input
(G, P) ← G

(
1λ

)
and f ←$ G and ( f xi )ni=0 (for integers xi ←$

�
0; 22bG+λ(n + 1)

�
)

an element C ∈ G and integers a0, . . . , an, b, δ such that 1 < |δ | < P, δ does not
divide b or at least one of the ai integers, and Cδ = f a0

0 · · · f an
n f b.

Under the
(
T strg, εstrg

)
-strong-root assumption, the

(
Tord, εord

)
-small-order

assumption, the low-dyadic-valuation assumption and the µ-assumption over G,
the probability that any probabilistic algorithm running in time T solves this
problem is at most

(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg + 1 − µ

)
, if T is such that

(n + 1) max(log(n + 1), 1) log(P)bGTTG ≤ Ω
(
min

(
T strg,Tord

))
.

Proof. Let A be an algorithm as in the statement of the lemma and assume
without loss of generality that δ > 0 (if δ < 0, raise the equality to the power
−1). The equality Cδ = f a0

0 · · · f an
n f b implies that Cδ = f

∑
i ai xi+b. The goal is

to show that in case δ does not divide
∑

i ai xi + b, algorithm A can be used to
violate the assumptions on generator G; and to show that conditioned on the
event in which A solves the problem, the probability that δ divides

∑
i ai xi + b

is at most 1/2 + 2−λ + (1 − µ).
More precisely, if δ does not divide

∑
i ai xi + b, let d B gcd

(
δ,

∑
i ai xi + b

)
and u, v ∈ Z such that d = uδ + v

(∑
i ai xi + b

)
. Then, f d = ( f uCv)δ , i.e.,
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(
( f uCv)δ/d f −1

)d
= 1G. Since 1 ≤ d < δ < P by assumption, the small-order

assumption over G implies that the element g̃ B ( f uCv)δ/d f −1 is such that
g̃2 = 1G with probability at least εord. If g̃ = 1G and d > 1, then

(
( f uCv)δ/d , d

)
is a solution to the strong-root problem. Otherwise,

∗ if δ/d is odd, then g̃δ/d = g̃ and therefore, ( f uCv g̃, δ/d) is a solution to the
strong-root problem

∗ if δ/d is even, then the low-dyadic-valuation assumption on orders implies
that ord

(
( f uCv)δ/d

)
is odd, which is impossible if ord( f ) is P-rough (and

thus odd) since ord( f g̃) = 2 ord( f ) in this case.

Consequently, δ does not divide
∑

i ai xi +b with probability at most εord+εstrg+
1 − µ.

Since |ai |, |b| ≤ 2O(T ),
∑

i ai xi + b can be computed in time O ((n + 1)T (bG+
log(n + 1))). Then, u and v can be computed in time O((T +bG+ log(n+1)) log P)
with the extended Euclidean algorithm as |

∑
i ai xi + b| ≤ n(n + 1)2O(T )22bG+λ +

2O(T ) and |δ | ≤ P; and u and v are such that |u|, |v | ≤ max
(
|δ |, |

∑
i ai xi + b|

)
/d.

Besides, computing δ/d can be done in time O
(
log2 P

)
and then f uCv g̃ in

O (max (T + bG + log(n + 1), log P)) = O (T + bG + log(n + 1)) group operations
since P ≤ 2bG . The solution to the strong-root problem can thus be computed
in time O ((n + 1)(bG + log(n + 1))T + (T + bG + log(n + 1)) log(P)TG) , after the
bases f0, . . . , fn have been computed in O((n + 1) max(log(n + 1), 1)bG) group
operations.

It remains to show that δ divides
∑

i ai xi + b with probability at most 1/2 +
2−λ + 1 − µ conditioned on the event in which A solves the problem. To do so,
consider the event in which it occurs. Let p and j respectively be a prime and a
positive integer such that pj divides δ and pj does not divide b or at least one of
the ai integers. Such p and j necessarily exist for an assumption of the lemma
is that δ does not divide b or at least one of the ai integers. Note that pj cannot
divide all the ai integers as it would otherwise divide b as well, since it divides∑

i ai xi + b. Moreover, if µ-assumption that there are many rough-order elements
in the groups generated by G holds, p does not divide ord( f ). Therefore, if the
µ-assumption holds, pj does not divide ai ord( f ) for some i ∈ ~0; n�.

For i ∈ ~0; n�, let 0 ≤ ρi < ord( f ) be the unique integer such that xi =
ord( f ) bxi/ ord( f )c+ ρi, and note that f xi = f ρi . Then,

∑
i ai xi+b =

∑
i ai ord( f )

bxi/ ord( f )c+
∑

i ai ρi+b = 0 mod pj and ai ord( f ) , 0 mod pj for some i ∈ ~0; n�.
Lemma ?? shows that the equation

∑
i AiXi + B = 0 mod pj with Ai B ai ord( f )

and B B
∑

i ai ρi + b has at most pjn gcd
(
a0 ord( f ), . . . , an ord( f ), pj

)
solutions,

and gcd
(
a0 ord( f ), . . . , an ord( f ), pj

)
is at most pj−1 since ai ord( f ) , 0 mod pj

for some i ∈ ~0; n�. However, the variables Xi B bxi/ ord( f )c are identically dis-
tributed and independent of the values returned by A (G, P, f , f ρ0, . . . , f ρn ); and
their distribution is at a statistical distance of at most ord( f )2−2bG−λ(n + 1)−1 ≤
2−bG−λ(n+1)−1 from the uniform distribution over

�
0;

⌊
(n + 1)22bG+λ/ ord( f )

⌋�
⊇�

0; (n + 1)2bG+λ
�
. Besides, if a variable X is uniformly distributed over the set�

0; (n + 1)2bG+λ
�
, then the distribution of X mod pj is at a statistical distance of
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at most pj2−bG−λ(n+1)−1 ≤ (P−1)2−bG−λ(n+1)−1 from the uniform distribution
over Zp j . The distribution of the random vector

[
X0 mod pj · · · Xn mod pj

]
is

then at a statistical distance of at most P2−bG−λ ≤ 2−λ from the uniform distri-
bution over Zn+1

p j . Consequently, the equation
∑

i ai xi + b = 0 mod pj can then be

satisfied with probability at most 2−λ + pj (n+1)−1/
(
pj

)n+1
≤ 1/2 + 2−λ and thus,

δ divides
∑

i ai xi + b with probability at most 1/2 + 2−λ + 1 − µ.
In summary, denoting by ε the probability that A solves the problem of the

statement of the lemma, ε ≤ εord + εstrg + 1 − µ +
(
1/2 + 2−λ + 1 − µ

)
ε, which is

equivalent to ε ≤
(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg + 1 − µ

)
. ut

Lemma 4.3 (Discrete-Logarithm Relations). Let n be a non-negative in-
teger. Consider the problem (depending on λ) of computing, on the input of
(G, P) ← G

(
1λ

)
and of group elements f ←$ G and ( f xi )ni=0 (for xi ←$

�
0; 22bG+λ

(n + 1)�), integers a0, . . . , an, b such that f a0

0 · · · f an
n f b = 1G although at least one

of a0, . . . , an, b is non-zero. Under the
(
T strg, εstrg

)
-strong-root assumption, the(

Tord, εord
)
-small-order assumption, the low-dyadic-valuation assumption and

the µ-assumption over G, the probability that any probabilistic algorithm run-
ning in time at most T solves this problem is at most

εstrg +max
(
2−bG−λ+1,

(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg +1 − µ)

)
if T is such that (n + 1) max(log(n + 1), 1) log(P)bGTTG ≤ Ω

(
min

(
T strg,Tord

))
.

Proof. Let A be an algorithm as in the statement of the lemma and denote the
probability that it solves the problem by ε. If a0 = · · · = an = 0, then b , 0
by assumption and a lemma in the full version [?, Lemma 3.4] shows that since
f b = 1G, there exists an algorithm that solves the strong-root problem in time at
most T +O(log b) with probability at least ε, and since b = 2O(T ), ε ≤ εstrg. Now
turn to the case in which ai , 0 for some i ∈ ~0; n�. If n = 0, then f a0x0+b = 1G
by assumption. Writing x0 as x0 = ord( f ) bx0/ ord( f )c + ρ0 for 0 ≤ ρ0 < ord( f ),
the random variable X0 B bx0/ ord( f )c is independent of the values returned by
A (G, P, f , f ρ0 ), and is at a statistical distance of at most ord( f )2−2bG−λ ≤ 2−bG−λ

from the uniform distribution over
�
0;

⌊
22bG+λ/ ord( f )

⌋�
⊇
�
0; 2bG+λ

�
. However,

for A0 B a0 ord( f ) and B B a0ρ0 + b, the equation A0X0 + B = 0 in Z has
no solution if A0 - B and exactly one otherwise. Therefore, the probability that
a0x0+b = 0 in Z is at most 2−bG−λ+1, and there exists an algorithm that solves the
strong-root problem in time at most O(T ) with probability at least ε−2−b−G−λ+1,
so ε ≤ εstrg + 2−bG−λ+1.

If n > 0, it suffices to prove that the probability that f a0

0 · · · f an
n f b = 1G and∑

i ai xi + b = 0 is at most
(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg + 1 − µ

)
. Then, in

case f
∑

i ai xi+b = 1G and
∑

i ai xi + b , 0, a lemma in the full version [?, Lemma
3.4] shows that this probability is at most εstrg . This then would imply that

ε ≤ εstrg +
(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg + 1 − µ

)
.
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Suppose that
∑

i ai xi + b = 0 (and f a0

0 · · · f an
n f b = 1G). Let d B gcd(a0, . . . , an)

and note that d necessarily divides b. Besides,
∑

i ai xi + b = 0 if and only if∑
i (ai/d)xi + (b/d) = 0 and therefore, we have f a0/d

0 · · · f an/d
n f b/d = 1G with

gcd(a0/d, . . . , an/d) = 1. However, 12
G
= 1G = f a0/d

0 · · · f an/d
n f b/d although the

integers ai/d cannot all be even as they are coprime. Lemma ?? then implies
that

∑
i ai xi + b = 0 with probability at most

(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg

+1 − µ) . ut

5 Succinct Argument for Diophantine Equations

This section gives a succinct argument to argue satisfiability of Diophantine
equations. Although Davis, Putnam, Robinson and Matiyasevich [?] showed that
there does not exist an algorithm that can decide whether any Diophantine
equation has a solution (thereby giving a negative answer to Hilbert’s tenth
problem), one can argue in zero-knowledge knowledge of a solution, if a solution is
known to the prover, which convinces the verifier that the equation is satisfiable.

Damgård and Fujisaki gave [?, Section 4.2] a protocol to argue, given three
commitments C1,C2,C3 computed with their scheme, knowledge of openings
x1, x2, x3 such that x3 = x1x2. Therefore, to show the satisfiability of an ν-
variate polynomial

∑
i∈Nν aix

i1
1 · · · x

iν
ν of total degree δ using their scheme, if the

polynomial can be computed in M (ν, δ) multiplications, then one would have to
compute 2M (ν, δ) + 1 integer commitments and compute M (ν, δ) multiplication-
consistency arguments. As Damgård and Fujisaki’s scheme is additively homo-
morphic, the verifier can verify addition itself.

Computing a monomial xi11 · · · x
iν
ν can be done in at most δ−1 multiplications

since the polynomial is of total degree δ. Without any further restriction on the
polynomial than its number of variables ν and its total degree δ, the best bound
on the number of multiplications (between variables) one can give is δ − 1 as δ
could be less than ν, and all ik at most 1. Evaluating an ν-variate polynomial
of total degree δ thus a priori requires (δ − 1)

(
ν+δ
δ

)
multiplications as such a

polynomial has at most
(
ν+δ
δ

)
monomials. This can be improved to

(
ν+δ
δ

)
−ν−1 ≤(

ν+δ
δ

)
multiplications by evaluating all possible monomials (even those which

may have coefficient 0) recursively by increasing degree and storing the previous
evaluations. There exist more efficient methods for specific polynomials (e.g.,
recursive Horner’s method for polynomials with a small numbers of monomials
of large degree) but no better upper-bound on the number of multiplications is
known for generic polynomials.

Consider a prover that wants to argue the satisfiability of a (generic) ν-
variate polynomial of total degree δ with integer coefficients of absolute value
upper-bounded by 2H for some integer H. The communication complexity of the
arguments of the first multiplication gates are of order Ω(log P+`+bG) if ` denotes
the maximum bit length of any coordinate in the solution. Since the total degree
of the polynomial is δ, the bit length of the witness at the maximum-depth multi-
plication gates can be as large as δ`+ log

((
ν+δ
δ

))
H and the communication com-
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plexity of the argument of the satisfiability of the Diophantine equation (i.e., the
proof that the polynomial actually evaluates to 0) is Ω

(
δ` + log

((
ν+δ
δ

))
H + bG

)
.

The overall communication complexity with Damgård and Fujisaki’s scheme is
therefore upper-bounded by O

((
ν+δ
δ

) (
δ` + log

((
ν+δ
δ

))
H + bG

))
and lower-bounded

by Ω
((
ν+δ
δ

)
(` + bG)

)
for generic polynomials.

This section shows how to argue the satisfiability of Diophantine equations
with a communication complexity of order O (δ` +min(ν, δ) log (ν + δ) bG + H) .

5.1 Arguments via Polynomial-Degree Reductions

Our approach to argue for Diophantine satisfiability is different and is inspired
by Skolem’s method [?]. The idea is to give a systematic method to turn any
polynomial equation to another of degree at most 4 by increasing the number of
variables so that the satisfiability of one polynomial implies that of the other. The
resulting polynomial is such that its satisfiability is equivalent to the satisfiability
(over the integers) of a Hadamard product of the form aL ◦aR = aO and of linear
equations with the entries of aL, aR and aO as indeterminate. The length of
these latter vectors is the number of variables in the resulting polynomial, and
if the original polynomial is ν-variate and of total degree at most δ, then the
new polynomial has at most νblog δc + (δ − 1)µ variables, where µ ≤

(
ν+δ
δ

)
is the

number of monomials in the original polynomial.
On this account, if one can argue for the satisfiability of such Hadamard prod-

ucts and linear constraints, then one can argue for the satisfiability of the original
polynomial. In the protocol given in Section ??, the prover only sends logarith-
mically many group elements in the length of the vectors in the Hadamard
product, and a constant number of integers. The bit length of those integers is
upper-bounded by O (δ` + bG +min(ν, δ) log (ν + δ) log P + H) if the bit length
of the witness is upper-bounded by ` and the bit length of each coefficient of the
polynomial is at most H.

Reducing Arbitrary Polynomials to Polynomials of Degree at most 4.
We now give a systematic procedure to reduce any Diophantine equation into
an equation of degree at most 4 of which the satisfiability can be reduced to the
satisfiability of a Hadamard product and linear constraints; and the Hadamard
product and the constraints can be read immediately from the resulting poly-
nomial. The presentation is gradual as it starts with ν-variate affine equations,
proceeds with ν-variate Diophantine equations in which the degree in each vari-
able is at most 1, further tackles univariate polynomials of arbitrary degree and
then considers arbitrary Diophantine equations. The method applies to every
multivariate integer polynomial, but for specific polynomials, more astute tech-
niques could lead to a smaller number of new variables and/or constraints.

Step 1–Affine Equations. Given an integer polynomial a1x1+ · · ·+ aν xν + b ∈
Z[x1, . . . , xν], set aO ←

[
x1 · · · xν

]
and for all i ∈ ~ν�, set aL,i = 1 and

aR,i = xi. The equation a1x1 + · · · + aν xν + b = 0 is satisfied if and only if
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〈[
a1 · · · aν

]
, aO

〉
= −b and aL ◦ aR = aO. Note that no variable or linear

constraint was added to the system of equations.
Step 2–Restricted Diophantine Equations. Consider an integer polynomial∑

i∈Nν aix
i1
1 · · · x

iν
ν ∈ Z[x1, . . . , xν] of total degree δ s.t. ai , 0Z =⇒ i ∈ {0, 1}ν,

i.e., the polynomial is of degree at most 1 in each variable. For all i ∈ Nν\{0Nν }
such that ai , 0Z, let { j1, . . . , jw(i) } be the subset of ~ν� such that j1 < · · · <
jw(i) and i j1 = · · · = iw(i) = 1, with w(i) denoting the Hamming weight of i
(which is necessarily less than δ). If w(i) > 1, introduce new variables

ui,1 ← x j1 x j2, ui,2 ← ui,1x j3, . . . , ui,w(i)−1 ← ui,w(i)−2x jw (i),

with the convention that ui,0 B x j1 . Note that
∑

i∈Nν aix
i1
1 · · · x

iν
ν = 0 if and

only if

∑
i∈Nν : ai,0Z
w(i)>1

w(i)−1∑
k=1

(
ui,k − ui,k−1x jk+1

)2
+ *

,

∑
i∈Nν

aiui,w(i)−1+
-

2

= 0,

with the convention that u0Nν ,−1 = 1. This latter polynomial is of degree 4,
and the equation is satisfied if and only if the linear equation

∑
i∈Nν aiui,w(i)−1 =

0 is as well as the constraints ui,k − ui,k−1x jk+1 = 0. Set then

aL ←
[
x j1 ui,1 · · · ui,w(i)−2

]
aR ←

[
x j2 x j3 · · · x jw (i)

]
aO ←

[
ui,1 ui,2 · · · ui,w(i)−1

]
,

and introduce the linear constraints aL,i+1 − aO,i = 0 for i ∈ {1, . . . ,w(i) − 2}.
The procedure introduces at most δ − 1 new variables and δ − 2 new linear
constraints per monomial, and since there are at most

(
ν+δ
δ

)
monomials in an

ν-variate polynomial of total degree δ, that is at most (δ − 1)
(
ν+δ
δ

)
variables

and (δ − 2)
(
ν+δ
δ

)
constraints.

Step 3–Univariate Polynomials. Given a polynomial Z = a0 + a1x + · · · +
aδ xδ ∈ Z[x] of degree δ ≥ 2, introduce variables

u1 ← x2, u2 ← u2
1, . . . , u blog δc ← u2

blog δc−1.

Now notice that a0 + a1x + · · · + aδ xδ = 0 if and only if

(
u1 − x2

)2
+

blog δc∑
i=2

(
ui − u2

i−1

)2
+

(
Z ′(x, u1, . . . , u blog δc )

)2
= 0,

where Z ′(x, u1, . . . , u blog δc ) is blog δc + 1-variate integer polynomial in which
the degree of each variable is at most 1, i.e., if and only if Z ′(x, u1, . . . , u blog δc ) =
0 and the constraints u1 − x2 = 0 and ui+1 − u2

i = 0 are satisfied.
Since

δ∑
i=0

ai xi = a0 +

blog δc∑
k=0

2k+1−1∑
i=2k

ai xi = a0 +

blog δc∑
k=0

2k+1−1∑
i=2k

ai xi0ui11 · · · u
ik−1
k−1

uk,
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where i0, . . . , ik−1 is the binary decomposition of i and ai B 0 for i > δ, this
give an explicit expression for Z ′.
Set then aL ← aR ←

[
x u1 · · · u blog δc−1

]
and aO ←

[
u1 u2 · · · u blog δc

]
, and

introduce constraints

aL,i+1 − aO,i = aR,i+1 − aO,i = 0

for all i ∈ ~blog δc − 1�.
As the second step shows that the satisfiability of Z ′ can be reduced to
a Hadamard product and linear constraints, the satisfiability of Z can be
reduced to a Hadamard product and linear constraints. This procedure in-
troduces blog δc new variables and 2 (blog δc − 1) new linear constraints. It
is important for Step 4 to remark that the number of monomial of Z ′ is at
most the same as the number of monomials in Z.

Step 4–Arbitrary Diophantine Equations. For any integer polynomial Z =∑
i∈Nν aix

i1
1 · · · x

iν
ν ∈ Z[x1, . . . , xν] (for ν ≥ 2) of total degree δ, apply Step 3

to Z considering it as a polynomial in Z[x2, . . . , xν][x1], i.e., a polynomial in
x1 with coefficients in Z[x2, . . . , xν]. Let Z ′ be the resulting polynomial with
coefficients in Z[x2, . . . , xν] and of degree at most 1 in each variable as in Step
3. Repeat Step 3 with Z ′ and variable x2. After Step 3 has been repeated for
each x1, . . . , xν, at most νblog δc new variables and 2ν(blog δc −1) new linear
constraints have been introduced, the resulting polynomial is of degree at
most 1 in all variables and has coefficients in Z. Concerning its total degree,
note that during the process, for each monomial xi11 · · · x

iν
ν , the term xik

k
is

replaced by at most one variable if ik ≤ 2 and by the product of log ik+1 ≤ ik
variables if ßk > 2 for all k ∈ ~ν�, so the total degree remains at most δ.
Now apply then Step 2 to the resulting polynomial.

In summary, the procedure reduces the satisfiability of any polynomial in
Z[x1, . . . , xν] of total degree δ with µ monomials (µ ≤

(
ν+δ
δ

)
necessarily) to the

satisfiability of a Hadamard product aL ◦ aR = aO, with aL, aR and aO integer
vectors of length at most νblog δc + (δ−1)µ, and Q linear constraints of the form

〈wL,q, aL〉 + 〈wR,q, aR〉 + 〈wO,q, aO〉 = cq

for all q ∈ ~Q� with Q ≤ 1 + 2ν(blog δc − 1) + (δ − 2)µ and with wL,q,wR,q,wO,q

integer vectors and cq ∈ Z. The coefficients of the linear constraints introduced
by the procedure are in {−1, 0, 1}, except for one of which the coefficients are the
coefficients of the original polynomial.

Example. As a simple illustration of the procedure, consider the polynomial
2x3+xy−1. The procedure introduces new variables u ← x2, v ← xy and w ← ux,
and the equation 2x3+ xy−1 = 0 is satisfiable if and only if

(
u − x2

)2
+ (v − xy)2+

(w − ux)2 + (2w + v − 1)2 = 0 also is, which allows to write a Hadamard product
and linear constraints which are satisfiable if and only if this latter equation is.
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Diophantine Equations as Circuits. It is worth noting that any polynomial in
Z[x1, . . . , xν] can naturally be viewed as an arithmetic circuit with integer inputs,
and addition gates correspond to addition between two integers and similarly for
multiplication gates. One could then think of applying the procedure of Bootle et
al. [?, Appendix A] to turn the polynomial in a system of linear constraints and
a Hadamard product. However, their procedure a priori requires to put matrices
in reduced Row-Echelon form, which is not always possible with integer matrices
as one cannot divide in Z. We explain how to overcome this obstacle in the full
version [?].

In any case, the issue with using this procedure to argue for Diophantine
satisfiability is that one cannot readily infer the constraints from the initial
polynomial and one must always determine them on a case-by-case basis. Besides,
if one uses the circuit directly inferred by the monomials of the polynomial
without introducing new variables to decrease its degree (which would amount
to modifying the circuit), computing xδ1 for instance requires δ−1 multiplications
instead of blog δc as with our method.

5.2 Protocol

Section ?? shows how to reduce the satisfiability of any polynomial in Z[x1, . . . , xν]
of total degree δ with µ monomials (µ ≤

(
ν+δ
δ

)
necessarily) to the satisfiability of

a Hadamard product aL ◦ aR = aO, with aL, aR and aO integer vectors of length
at most νblog δc + (δ − 1)µ, and 1 + 2ν(blog δc − 1) + (δ − 2)µ linear constraints
of the form

〈wL,q, aL〉 + 〈wR,q, aR〉 + 〈wO,q, aO〉 = cq

for all q ∈ ~Q�, with wL,q,wR,q,wO,q integer vectors and cq ∈ Z.
To argue for Diophantine satisfiability, it thus suffices to give a protocol pro-

tocol such relations. The following protocol is actually for more general relations
in which variables of the polynomial can be committed (with the scheme in Sec-
tion ??), which allows to argue on committed values while saving the cost of
encoding the commitment scheme as an integer polynomial. More precisely, the
protocol is for the relation
{(
WL,WR,WO ∈ Z

Q×n,WV ∈ Z
Q×m,V ∈ Gm, c ∈ ZQ, ` ∈ N∗; aL, aR, aO ∈ Z

n, v, ρ ∈ Zm
)

:

aL ◦ aR = aO ∧WLa
T
L +WRa

T
R +WOa

T
O =WVv

T + cT ∧ ∀i ∈ ~m�V2
i = (evi f ρi )4

}

given parameters (G, P, n,Q,m, f ) such that f ∈ G and n,Q,m ∈ N∗, and (g, h, πcrs )
∈ G2n × {0, 1}∗. For fixed parameters n, Q and m, Section ?? shows that the pro-
tocol allows to prove the satisfiability of any polynomial in Z[X1, . . . , Xν] of total
degree δ and with µ monomials if νblog δc+ (δ−1)µ ≤ n and 1+2ν (blog δc − 1)+
(δ − 2)µ+m ≤ Q. The additional term m in the number of constraints compared
to the previous section is to ensure the consistency between the committed vari-
ables v and the ones in the inner product.

Bünz et al. [?] gave a protocol for a similar relation in Zp instead of Z to
argue for the satisfiability of arithmetic circuits over Zp (without the bounds
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related to integer polynomials as it was not their target) that is inspired by the
one of Bootle et al. [?]. The general idea of our protocol for this relation is similar
to the two previous ones, but there are key differences that arise from the fact
that Z is not a field. The full version [?] gives details about the construction
of the protocol. The main differences with that of Bünz et al. is that (1) one
cannot send integers in the protocol as they may contain information about the
witness (2) the polynomials l (X ) and r (X ) are different and of higher degree
again because Z is not a field and (3) the commitment-key switching techniques
used in their protocol is not applicable because the group order is unknown.

Building Blocks. The protocol builds mainly on the protocol on Figure ??, and
on three auxiliary protocols: a protocol Πcrs to prove that the CRS is well-
formed [?, Section 5.3], a protocol Π′ to aggregate arguments of opening to
integer commitments [?, Section 5.2] and a protocol Π̃ to argue knowledge of
an integer vector that opens to commitments in different bases [?, Section 5.4],
i.e., a base-switching argument. These arguments may be in the random-oracle
model with an oracle H .

Protocol Algorithms. The protocol is denoted Π. The parameter-generation
algorithm and the CRS generator are as in Section ??. The algorithms of the
prover and the verifier are given on Figure ??. On that figure, W denotes the
matrix

[
WL WR WO WV

]
. The values `′, ˜̀ and `?? are given in Section ??.

Prover-Communication Complexity. In the full version [?], we show that
the prover sends O (` + log(n)bG + log Q + log m + log ‖W ‖∞) bits during the pro-
tocol (the term log m disappears in case m = 0). Therefore, for a polynomial
in Z[X1, . . . , Xν] of total degree δ, with µ monomials and with coefficients less
than 2H in absolute value, assuming that νblog δc + (δ − 1)µ ≤ n and that 1 +
2ν (blog δc − 1)+ (δ−2)µ+m ≤ Q, the communication complexity of the protocol
is of order O

(
δ`′′ + log

(
δ
(
ν+δ
δ

))
bG + H

)
= O (δ`′′ +min(ν, δ) log (ν + δ) bG + H) ,

where `′′ is the maximum bit length of the integers in the solution. Here H =
blog ‖W ‖∞c + 1 as the procedure gives linear constraints determined by the co-
efficients of the polynomial.

Verification Efficiency. Similarly to Section ??, the verifications of Π′, Π̃ and
the protocol on Figure ?? can each be done via single multi-exponentiations, with
exponents of at most O (` + bG + log(n) log(P) + log Q+ log m + log ‖W ‖∞) bits.
For a polynomial in Z[X1, . . . , Xν] of total degree δ, with µ monomials and with
coefficients less than 2H in absolute value, that is O (δ`′′ + bG +min(ν, δ) log (ν + δ)
log P + H) bits, where `′′ is the maximum bit length of the integers in the solu-
tion.

Completeness and Security. In the full version [?], we show that the pro-
tocol Π is complete, honest-verifier zero-knowledge, and extractable under the
assumptions on the group generator.
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P
(

f , g, h, e, πcrs,W,V, c, `; aL, aR, aO, v, ρ
)

V

aL ◦ aR = aO ∧WLa
T
L +WRa

T
R +WOaT

O
=WVv

T + cT ∧ ∀i ∈ ~m�V2
i =

(
evi f ρi

)4


[
aL aR aO v ρ

]∞ < 2`

return ⊥ if FS .ΠHcrs .Vf
(
(G, P, f , 2n + 1), (g, h, e) , πcrs

)
= 0

ρI , ρO ←$

�
0; 2bG+λ+3

�
CI ←

(
gaLhaR f ρI

)2
CO ←

(
gaO f ρO

)2
CI ,CO
−−−−−−→

y ←$ ~0; P − 1�n

z←$ ~0; P − 1�Q
y,z
←−−

l (X ) ← (aL + zWR ) X + aOX2 + aLX3 − aOX4

r (X ) ← −1n + zWO + (aR + zWL ) X + yX2 + y ◦ aRX3

l (X ), r (X ) ∈ Zn[X ] and 1n B
[
1 1 · · · 1

]
∈ Zn

t(X ) ← 〈l (X ), r (X )〉 =
∑7
i=1 tiX i

t(X ) ∈ Z[X ] and t6 = 0

∀i ∈ ~7� \ {2, 6}, si ←$

�
0; 2bG+λ+3

�
,Ti ←

(
eti f si

)2
Commit to the non-zero coefficients of t(X ) except for t2
ρ′I ←$

�
0; 2bG+λ+3

�
, C′I ←

(
gaLhy◦aR f ρ

′
I

)2
Commit to the inputs in (g, h′) with h′ B

[
hy11 hy22 · · · hynn

]

TB
[
T1 T3 T4 T5 T7

]
,C′I

−−−−−−−−−−−−−−−−−−−−−−−→

(τ′,b′)←〈Π′.Prove(m+5, f ,e,T,V,`′;t,s)
Π′.Vf(m+5, f ,e,T,V,`′)〉
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Argue knowledge of representations of (Ti )i,2,6 and (Vj )mj=1 in (e, f )
if b′ = 0 return ⊥(

τ̃,b̃
)
←

〈
Π̃.Prove

(
2, f , (g,h), (g,h′),CI ,C

′
I ,
˜̀;aL,aR,ρI ,ρ

′
I

)

Π̃.Vf

(
2, f , (g,h), (g,h′),CI ,C

′
I ,
˜̀
)〉

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Argue that CI and C′I are commitments to the same inputs in (g, h) and (g, h′)
if b̃ = 0 return ⊥

x ←$ ~0; P − 1�
x
←−

l, r← l (x), r (x) ∈ Zn

σ ← ρI x + ρ′I x3 + ρO
(
x2 − x4

)
+ s1x + 〈zWV , ρ〉 x2

+
∑

3≤i,6≤7 si xi // ρ =
[
ρ1 · · · ρm

]

WL,WR,WO ← hzWL , gzWR , hzWO

Cl,r ← Cx
I

C′I
x3

C(x2−x4)
O

(
h−1

n
h′x

2

W x
L

W x
R

WO

)2
Cl,r is a commitment to l and r in (g, h)

C = C(x) ← Cl,rT x
1

(
e2(〈z,c〉+δ(z))VzWV

)x2 ∏
3≤i,6≤7 T xi

i

C =
(
glhre〈l,r〉 fσ

)2
run the protocol on Figure ?? on input

(
1, n, f , g, h, e,C, `??; l, r, σ

)
Fig. 3. Succinct Argument of Diophantine-Equation Satisfiability.
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