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Abstract. We develop an individual simulation technique that explicitly makes
use of particular properties/structures of a given adversary’s functionality. Using
this simulation technique, we obtain the following results.

1. We construct the first protocols that break previous black-box barriers un-
der the standard hardness of factoring, both of which are polynomial time
simulatable against all a-priori bounded polynomial size distinguishers:
• Two-round selective opening secure commitment scheme.
• Three-round concurrent zero knowledge and concurrent witness hiding

argument for NP in the bare public-key model.
2. We present a simpler two-round weak zero knowledge and witness hiding

argument for NP in the plain model under the sub-exponential hardness of
factoring. Our technique also yields a significantly simpler proof that exist-
ing distinguisher-dependent simulatable zero knowledge protocols are also
polynomial time simulatable against all distinguishers of a-priori bounded
polynomial size.

The core conceptual idea underlying our individual simulation technique is an
observation of the existence of nearly optimal extractors for all hard distribu-
tions: For any NP-instance(s) sampling algorithm, there exists a polynomial-size
witness extractor (depending on the sampler’s functionality) that almost outper-
forms any circuit of a-priori bounded polynomial size in terms of the success
probability.

1 Introduction

1.1 Background

The simulation paradigm [GMR89] plays a pivotal role in complexity-based cryptogra-
phy, which takes the reductionist approach to prove the security of a given cryptosystem.
In a typical security proof, we devise a reduction algorithm, which invokes as a subrou-
tine the adversary that claims to break the target cryptosystem, to crack the underlying
hard problem. In this process, the reduction algorithm needs to simulate the honest par-
ties for the adversary in order to exploit its power. For most interactive cryptographic
protocols, simulating the adversary’s view is actually the essential part of the reduction.

The most commonly used simulation strategy is black-box simulation, which ap-
pears very restrictive since the black-box simulator ignores the internal workings of



the adversary completely. Indeed, starting from the seminal work of Impagliazzo and
Rudich [IR89], a lot of impossibility results regarding black-box simulation were proved
in a variety of settings. In the last two decades, several new simulation techniques, no-
tably the PCP-based non-black-box simulation [Bar01] and the recently distinguisher-
dependent simulation [JKKR17, BKP19] techniques, were developed to get around cer-
tain black-box barriers on the round-complexity of cryptographic protocols. However,
for many basic protocols, it still remains unclear whether the known black-box impossi-
bility results on their round-complexity might be overcome using new (non-black-box)
reduction/simulation techniques. In this paper, we consider the round-complexity of
several related fundamental protocols: selective opening secure commitments and zero
knowledge protocols.
Commitment scheme secure under the selective opening attacks. In a selective open-
ing attack against a commitment scheme, the receiver observes many commitments and
is allowed to ask the committer to open some of them. Dwork et al. [DNRS03] put
foward the notion of selective opening security and asked if we can construct such a
commitment that the unopened commitments in the selective opening attack still stay
hiding. As showed in [DNRS03], this problem has a deep connection with the existence
of 3-round zero knowledge and the soundness of the Fiat-Shamir heuristics.

Bellare et al. [BHY09] constructed the first selective opening secure commitment.
The high-level idea of their construction (and the follow-up from [ORSV13] by Ostro-
vsky et al.) is as follows. The receiver generates a trapdoor for an equivocal trapdoor
commitment scheme, and proves of knowledge of the trapdoor via a cut-and-choose
type protocol; the committer then uses this trapdoor commitment scheme to commit to
a value. In simulation, the simulator first extracts the trapdoor by rewinding the receiver,
and then can open a commitment to any value it wishes. So far, the best known con-
struction of (simulation-based notion of) selective opening secure commitment requires
three rounds [ORSV13].

There is an obstacle to further reduce the round-complexity of selective opening
secure commitment. Note that in a two-round scheme4 the receiver sends only one
message and the standard black-box simulator/extractor that treats the (possibly mali-
cious) receiver as a black-box would fail. Indeed, Xiao [Xia11, Xia13] proved that it is
impossible to achieve selective opening security in 2 rounds with a black-box simulator.
Zero knowledge protocols in two and three rounds. Early constructions of zero
knowledge proofs (with statistical soundness) [GMR89] and arguments (with compu-
tational soundness) [BCC88] are quite simple and round-efficient: only three messages
are exchanged in a session. However, this round efficiency is achieved at the cost of huge
soundness error. The work [FLS99] provides a very popular method–the so-called FLS-
paradigm– to construct four round zero knowledge argument with negligible soundness
error. In the FLS-paradigm, a zero knowledge protocol for proving some NP statement
x ∈ L proceeds in two phases. In the first phase, the verifier generates two puzzles and
proves to the prover that he knows a solution to one of these puzzles; In the second
phase, the prover proves to the verifier that either the statement being proven is true
or he knows a solution to one of puzzles. Both proofs are carried out using a witness

4 The round-complexity of a commitment scheme refers to the one of its committing phase. In
this paper we focus on commitment schemes with a non-interactive opening phase.
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indistinguishable proof of knowledge. In simulation, an efficient simulator is able to
extract a solution to one of these puzzles from a malicious verifier and then carry out
the second phase using the solution just extracted as a witness.

Whether there are 3-round zero knowledge protocols with negligible soundness er-
ror based on standard assumptions for non-trivial languages is still a widely open prob-
lem. On the negative side, the work [GK96] showed that it is impossible to achieve
3-round zero knowledge argument or proof via black-box simulation. Similar impossi-
bility result [Pas11] hold even for a relaxed notion of zero knowledge–witness hiding
protocol [FS90]. Recently, Fleischhacker et al. [FGJ18] and Canetti et al. [CCH+19]
extended this impossibility result to non-black-box simulation technique, and gave very
strong negative evidence against the existence of 3-round zero knowledge proofs for
non-trivial languages.

In their recently work [JKKR17], Jain et al. observed that a good distinguisher may
leak some useful secrets of the verifier in certain settings, which will enable a successful
simulation of the verifier’s view. They developed a distinguisher-dependent simulation
technique and constructed three-round delayed-input weak ε-distributional zero knowl-
edge [DNRS03] from standard assumptions in a model where the simulator is allowed
to depend on the distinguisher. Very recently, Bitansky et al. [BKP19] introduced a
homomorphic trapdoor paradigm and presented a three-round weak ε-zero knowledge
argument in the same model, but their simulator works for any individual statement
(rather than in the distributional setting). Both constructions of [JKKR17, BKP19] can
be made into two rounds assuming certain sub-exponential hardness.
Concurrent zero knowledge protocols and the bare public key (BPK) model. Dwork
et al. [DNS98] formalized the notion of concurrent zero knowledge in a setting where
multiple sessions of the same protocol take place, and a malicious verifier is allowed to
fully control the message scheduling. A protocol is called concurrent zero knowledge if
it preserves zero knowledge even in this concurrent setting. Prabhakaran et al. [PRS02]
refined the analysis of the simulators of [KP01, RK99] and proved (almost) logarith-
mic (Õ(log n)) round-complexity is sufficient for concurrent zero knowledge protocol,
which almost matches the black-box lower bound of [CKPR01]. In his breakthrough
work [Bar01], Barak introduced a non-black-box simulation technique that makes use
of the malicious verifier’s code in simulation, and generated a long-line follow-up works
(e.g., [DGS09, CLP13, BP15], just to name a few) to reduce the round-complexity of
concurrent zero knowledge. However, despite decades of intensive research, the known
constant-round constructions [CLP15a, FKP19] of concurrent zero knowledge still re-
quire non-standard assumptions.

Canetti et al. [CGGM00] introduced a very attracting model–the BPK model–to
further reduce the round-complexity of stronger notions of zero knowledge, such as
concurrent zero knowledge and resettable zero knowledge (which allows a verifier to
reset the prover). In this model, each verifier deposits a public key in a public file and
stores the associated secret key before any interaction with the prover begins. A huge
advantage of this model is that, the trapdoors/secret keys useful for the simulator are
fixed in advance, and if a simulator obtained all these trapdoors, it can simulate any
session in a straight-line manner. Many constructions [YZ07, DFG+11, SV12] of con-
current/resettable zero knowledge in this model follows the FLS paradigm in which the
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verifier proves knowledge of his secret key in the first phase, and thus they require at
least four rounds.

The question of whether we can achieve concurrent zero knowledge in fewer rounds
in the BPK model is also subject to black-box limitations: As showed in [MR01, APV05],
it is impossible to achieve concurrent black-box zero knowledge with concurrent (even
sequential) soundness in three rounds in this model.

1.2 Motivation

In black-box simulations mentioned above, a simulator is usually to extract a piece
of secret information from the adversary and then use it to mimic the honest parties
(without knowing their private inputs). For such an extraction to go through, we usually
design protocols so that the adversary is required to provide a proof of knowledge of
such a piece of secret information. This incurs several additional rounds of interaction
given the state-of-the-art constructions of proof of knowledge.

Indeed, Barak showed the adversary’s code and internal workings allow us to break
black-box barriers in certain settings. His non-black-box simulation technique relies
on the PCP mechanism and often gives rise to complicated and (relatively) round-
inefficient constructions. So far, for almost all known simulation techniques (including
Barak’s non-black-box simulation), the simulator is universal and is able to work for
any adversary. This is in sharp contrast to the individual simulators, as required in most
of security definitions, which switches the order of qualifiers ∃ Sim ∀ Adv:

– Universal Simulation: ∃ Sim ∀ Adv, Sim fools all efficient distinguishers.
– Individual Simulation: ∀ Adv ∃ Sim, Sim fools all efficient distinguishers.

Literally, an individual simulator is only required to work for a given individual ad-
versary, thus we can assume that the simulator “knows/hardwires” any useful proper-
ties/structures (if exists) of this adversary’s functionality, not just its code. This makes
individual simulators more powerful than universal/black-box ones. Under the widely
believed hardness of reverse engineering5, we cannot expect an efficient universal sim-
ulator to be able to figure out some useful property/structure about the adversary’s func-
tionality from its code. A natural question arises:

Can we develop individual simulations to break the known black-box barriers?

A motivating example is the black-box lower bound on round-complexity of con-
current zero knowledge [CKPR01], in which Canetti et al. constructed an explicit con-
current verifier strategy (for an arbitrary almost logarithmic round proof system) whose
view cannot be simulated by any efficient black-box simulator (unless the statement
being proven is trivial). However, as already showed in [Den17], an individual simula-
tor can simulate this adversary’s view in a straightforward way when given as input a
certain crucial subfunctionality of the adversary. This demonstrates the potential power
of individual simulations, but does not give a proof of the concurrent zero knowledge
of the underlying protocol, which requires us to show for any efficient verifier we can
build a successful individual simulator.

5 Under this assumption, the work [DGL+16] showed a limitation of universal simulation in a
particular setting.
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1.3 Summary of Our Results

In this paper we develop an individual simulation technique that explicitly makes use
of particular properties/structures of the adversary’s functionality, and achieve several
constructions for selective opening secure commitment and zero knowledge arguments
that break the known black-box lower bounds on their round-complexity.

As our main conceptual contribution, we show that for any NP-instance(s) sampling
algorithm, there exists a nearly optimal individual witness extractor (depending on the
sampler’s functionality) that almost outperforms any circuit of a-priori bounded size.
Combining this extraction strategy with an algebraic technique for Blum’s encryption
scheme, we obtain the following results.

The first protocols that break previous black-box barriers. We construct the first
protocols that break black-box barriers mentioned above under the standard hardness
of factoring, both of which are polynomial time simulatable against all a-priori bounded
polynomial size distinguishers:

– Two-round selective opening secure commitment scheme.
– Three-round concurrent zero knowledge and concurrent witness hiding argument

for NP in the bare public-key model.

All these protocols are quasi-polynomial time simulatable against all polynomial-size
distinguishers with a negligible distinguishing gap.

Simpler construction and analysis of zero knowledge protocols. We present a con-
struction of two-round weak zero knowledge and witness hiding argument for NP in
the plain model under the sub-exponential hardness of factoring, which is much simpler
than the constructions in [JKKR17, BKP19, DK18, BGI+17]. Our technique also yields
a significantly simpler proof of the equivalence theorem of [CLP15b]) for existing
distinguisher-dependent simulatable zero knowledge protocols in [JKKR17, BKP19],
showing that these protocols are also polynomial time simulatable against all distin-
guishers of a-priori bounded polynomial size.

1.4 Individual Extractions and Simulations: An Overview

Recall that the standard simulation-based security definitions only require that for ev-
ery adversary, there exists a simulator that can fool all efficient distinguishers. This
means such an existential simulator, like distinguishers, can depend on any proper-
ties/structures of the functionality of a given specific verifier.

Imagine that we have a two-round FLS-type protocol (A,B) in which B sends an
NP instance y in the first round, with these properties:

1. A solution to the instance y generated by a adversary B enables the simulator to
efficiently generate B’s view that is indistinguishable from the real interaction;
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2. Distinguishing the honest A’s message from even a dummy message is equivalent
to extracting a solution to y from B.

In this scenario, for a given adversary B, there are only two cases in which an effi-
cient simulator will win6: a) the simulator succeeds to extract a solution to y from B,
or, b) no efficient algorithm can extract a solution to y except for negligible probability.
In the former case, by the first property of (A,B), regardless of whether the distin-
guisher knows the solution, the simulator can reconstruct B’s view successfully; in the
latter case, the distinguisher does not know the solution either, and thus by the second
property of (A,B), a simulator can easily fool the distinguisher.

Nearly optimal extractors for single-instance Samplers. Note that the above solution
extraction algorithm– the key subroutine of the simulator–can also be individual: It can
depend on any property/structure of the individual adversary B, besides being given the
same input as B.

To simulate B’s view, one naive approach is to apply the best possible extractor
(in terms of success probability) to extract a solution then simulate. An issue with this
approach is that the success probability of an extractor may increase with its size. This
makes it hard to control the size of the extractor (and the simulator). In this paper, we
consider a weak simulation security–(T, ε)-simulatability: The simulation is required
only against distinguishers of size T with distinguishing gap less than ε. Note that this
notion is stronger than the distinguisher-dependent simulatability defined in [CLP15b,
JKKR17], where the simulator depends on the specific distinguishing algorithm, not
just its size.

We view B as a single-instance sampler, and show that for any B there exists of
a good extractor that outperforms all circuits of size T (given the same input as the
extractor) with at most gap ε. The basic proof strategy is to keep iterating to include
new powerful circuits into the extractor until we have a desired one.

Subtleties. One should be careful when carrying out this proof strategy. First, the num-
ber of iterations in this process may depend on the security parameter n, and this may
cause some difficulties in controlling the size of the final circuit family Ext; second, in
the asymptotic setting, when we add a new circuit family to the extractor, this family
may work only when the security parameter n is greater than a specific n0. Thus, it is
possible that the iterative procedure keeps increasing the number n0, and therefore we
are not able to specify any n′0 so that the final circuit family Ext works for all n > n′0.

To get around these difficulties, we use the a-priori fixed T and ε as a global guide-
line, and do local iterations at each parameter n7: In each iteration of this process, we
have an extractor Ext at the beginning and ask: Does there exist another instance solver
C of size T , given the same input as Ext, such that

Pr [y ← B : C extracts a solution to y but Ext fails] > ε?

6 Here we are aiming to construct a normal simulator, not a distinguisher-dependent simulator
like the ones in [JKKR17, BKP19].

7 We would like to stress that one cannot expect this process to be constructive.
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If so, then we have a new extractor: On input y, it runs the Ext first, and if Ext fails
then runs C to extract a solution to y. This will increase the success probability of the
extractor by at least ε; otherwise, we return the current extractor Ext.

It is not hard to verify that, after at most 1
ε steps, we will have an extractor Ext of

size at most O(T 1
ε ) such that, the event that Ext fails to extract a solution to y but some

other circuit of size T succeeds happens with probability at most ε.

The dependence on the functionality of the sampler. We give two examples to illus-
trate how the nearly optimal extractor Ext intrinsically depends on the functionality of
the sampler. Consider the following two image-sampling algorithms for some one-way
permutation g: (a) use randomness y and then generate an image x = g(y), and (b)
sample a random string x from the co-domain of g. Then, for the former sampler, there
is a nearly optimal extractor (taking the sampler’s randomness y) that can simply output
the pre-image y of the given sampled image xwith probability 1; for the latter, a dummy
algorithm (with success probability 0) is also an optimal extractor (this is almost best
possible since g is one-way).

With this nearly optimal extractor, we now have an individual simulator for B: it
first applies this nearly optimal individual extractor Ext to extract a solution to y gener-
ated by B and then simulates in a somewhat straightforward manner (see below). Note
that this simulator inherently depends on the functionality of the adversary (instance
sampler) since the nearly optimal extractor does, and that it will fool all distinguishers8

of size T except for probability at most ε.

Now, if the protocol (A,B) satisfies the above two properties, we have a good indi-
vidual simulator against all distinguishers of size T . Our remaining task is to construct
protocols with such properties.

A suitable building block for such protocols is the well-known encryption scheme
based on the hardness of factoring. The public key of the encryption scheme is a Blum
integer N , and the secret key is a prime factor of N . A ciphertext of a bit b is given by
c = (fN (s), h(s) ⊕ b), where fN : QRN → QRN defined by fN (s) = s2 mod N
and h is the hardcore of fN . A key property (implied by [TW87]) of this encryption
scheme we will make use of is the equivalence between distinguishing ciphertexts and
extracting a secret key, even if the public key N is not a Blum integer9.

Constructions. With these extraction and construction ideas in mind, we construct se-
lective opening secure commitment and zero knowledge arguments as follows.

Two-round selective opening secure commitment: In the committing phase, we have the
receiver generate a Blum integerN for the committer; upon receivingN , the committer
uses the trapdoor commitment scheme (a prime factor ofN serves as a trapdoor) [FS89]
to compute a commitment c, encrypts it bit-wise under the public-keyN and sends these
encryptions to the receiver; In the opening phase, the committer sends the opening
of c to the receiver, and the latter decrypts the encryptions received in the first phase

8 One can think of a distinguisher as a solution extractor since they are essentially equivalent
because of the property 2. of (A,B).

9 In this case, we view any prime factor of N as a secret key.
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and accepts if the plaintext is c and the opening received is a valid opening of c. This
construction relies on polynomial hardness of factoring.

Three-round weak concurrent zero knowledge in the BPK model: In the key registration
phase, each verifier generates two Blum integers (N0, N1) as its public-key, and stores
two prime factors (q0, q1), qi|Ni for i ∈ {0, 1}. In the proof phase, the prover and the
verifier execute the three round parallel version of Blum’s protocol (Let a session be of
the form (a, e, z)) in which the prover proves “the statement to be proven is true or I
know a prime factor of one of the two integers”, and in addition, the prover encrypts
the last message z bit-wise under each of verifier’s public key. The verifier decrypts all
these ciphertexts and obtains ẑ and z̃, and accepts if ẑ = z̃ and the underlying transcript
is accepting. This construction relies on polynomial hardness of factoring.

Two-round weak zero knowledge in the plain model: The verifier sends a Blum integer
N (and stores one prime factor) to the prover, and the prover computes a commitment
c to n zeros, sends back c together with ciphertexts (encrypted bit-wise under N ) of a
NIWI proof for “the statement to be proven is true or I know a prime factor of N”. The
verifier decrypts the ciphertexts, and accepts if the plaintexts forms an accepting NIWI
proof. This construction relies on sub-exponential hardness of factoring.

A difficulty in the individual simulations for composable protocols. At a high level,
our simulation strategy for these protocols are quite simple: The simulator first applies
the nearly optimal extractor to obtain the corresponding witness for each session, and
if the extractor succeeds, then it can simulate this session in a straightforward manner;
otherwise, it sends a dummy message in the last round of the protocol.

The simulator for the commitment scheme. Suppose that a malicious receiver R∗ ini-
tiates k sessions in parallel. In the committing phase, for each i ∈ [k], the simulator
first runs the nearly optimal extractor and tries to obtain a prime factor of Ni sent by
R∗, and commits to 0 via the trapdoor commitment scheme and obtains a commitment
ci, then sends encryptions of ci; In the opening phase, upon receiving {bi}i∈I and the
index set I , then the simulator opens ci in the following way: If bi = 0, open it in an
honest way; if bi = 1 and the extractor succeeds to extract a prime factor of Ni, then
use it as trapdoor and open ci to value 1; else send (bi = 1, dec′) to R∗, where the de-
commiment (bi = 1, dec′) is a valid opening of some commitment c′i. (In other words,
in the third case, the simulator pretends that the ciphertexts it sent in the committing
phase is bit-wise encryptions of c′i.)

The simulators for zero knowledge protocols are much simpler. For concurrent zero
knowledge protocol in the BPK model, after the key registration phase, for each pair
(N0, N1) registered by a malicious V ∗, the simulator first tries to extract a prime factor
of one of (N0, N1) using the nearly optimal extractor; if this extraction is successful,
then the simulator can simulate any session under (N0, N1) successfully; otherwise, the
simulator simply computes encryptions of all zeros under both public keys in the last
round. The same simulation strategy works also for the protocol in the plain model.

One must be careful in proving that these simulations are indistinguishable from the
real interaction against any distinguisher of a-priori bounded size T except for small
probability ε. A technical difficulty arises in such proofs due to the composition of
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the first two protocols. Let us take the example of the simulator for the commitment
scheme. As usual, the proof of (T, ε)-simulatability is done by a hybrid argument. We
construct a sequence of hybrid non-uniform simulators, gradually switching from the
simulation to the real interaction, so that a consecutive pair of simulators, say the i-th
and the (i+ 1)-th simulators, behave differently only in the i-th session in the case that
the extractor fails to factor Ni, and then prove that any two consecutive simulations are
indistinguishable except for a very small probability by contradiction: For any Dn of
size T that distinguishes the i-th and the (i+ 1)-th simulations with a large distinguish-
ing gap, we use Dn to construct a circuitAn that contradicts the optimality of the nearly
optimal extractor. However, to exploit the power of Dn,An needs also to simulate other
sessions for Dn, which in turn requires An to know prime factors for some other Nj’s
(j 6= i) obtained by the extractor. (otherwise An needs to run the extractor on its own,
which results in the circuitAn of size larger than the extractor and thus makes no sense.)

Nearly optimal extractors for multi-instance samplers. We prove a stronger result of
the existence of nearly optimal extractors for all multiple-instance sampling algorithms
to address the above issue. Specifically, for any polynomial t and any t-instance sam-
pler, we show there exists a nearly optimal extractor such that, for every i ∈ [t], for any
circuit C of a-prior bound size that is given the output of the extractor, the probability
that C solves the i-th instance but the extractor fails is small. This result is proved by a
similar argument as above, but a more delicate iterative procedure is requried.

Binding/soundness: Trust the adversary. At first glance, the binding and soundness
properties of the first two protocols seem to be problematic. For the binding of our
commitment scheme, a usual proof-by-contradiction approach is to construct a reduc-
tion with oracle access to the cheating committer to factor the public key N . A problem
with this approach is that the reduction itself does not know the corresponding secret
key (i.e., a prime factor of N ), and as a consequence, it cannot decrypt the message
from the committer to obtain the commitment c and determine whether the opening
sent by the cheating committer is a valid decommitment of c. Here we use a “trust the
adversary” trick to save the proof: Since the cheating committer can make the honest
receiver (who knows the secret key) accept two different decommitments, these decom-
mitments should be valid for the same commitment c. Hence, in reduction, the reduction
algorithm can trust the committer and simply assume that the two decommitments are
both valid for some unknown c.

A similar but more subtle problem occurs in the proof of soundness of the zero
knowledg protocol in the BPK model. In this case, a usual reduction algorithm keeps
one secret key of Ni (for a random i ∈ {0, 1}) in the public key pair (N0, N1), and
wants to use the power of the cheating prover to factorN1−i. However, such a reduction
seems to fail for the following cheating P ∗: At the begining P ∗ somehow magically
factors both N0 and N1 and obtains q0 and q1; in its last step, it compute z0 and z1
using witnesses q0 and q1 respectively, and sends to the verifier encryptions of z0 and
z1 under the public keys N0 and N1 respectively. Note that the reduction can decrypt
only the encryptions under public key Ni, and hence it can only obtain a prime factor
of Ni by rewinding P ∗ (using the special soundness of Blum’s protocol). However,
this issue is taken care by the verification step in which the honest verifier decrypts
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all encryptions and check if the two last round messages z0 and z1 are equal and both
acceptable. Thus, such a cheating P ∗ cannot make an honest verifier accept at all, and
therefore is not a successful cheating prover. In other words, for a successful cheating
prover, the reduction algorithm can trust that the two last round messages of Blum’s
protocol encrypted under both public keys are equal. This is the key to the proof of
soundness.

1.5 Related Work and Discussion

On upgrading the distinguisher-dependent simulatable zero knowledge. As men-
tioned earlier, it is proved in [CLP15b] that, in the plain model, distinguisher-dependent
simulatable zero knowledge protocols (such as [JKKR17, BKP19]) satisfy the stronger
notion of (T, ε)-simulatabibility. However, this “distinguisher-dependent simulation then
upgrade” approach to (T, ε)-simulatability seems to work only for standalone zero
knowledge protocols in the plain model. Note that the equivalence theorem of [CLP15b]
says nothing about zero knowledge in other models/settings, or other cryptographic
primitives, like the commitment schemes under parallel composition and concurrent
zero knowledge in the BPK model considered in this paper.

The equivalence theorem of [CLP15b] was proved via the minimax theorem, which
leads to a complicated proof10. Our proof of existence of a nearly optimal extractor
is quite simple and easy to understand, and it can also be used to upgrade existing
constructions of [JKKR17, BKP19]. However, it is unclear if our technique could be
used to prove the full version of the equivalence theorem of [CLP15b].

Other notions of selective opening security for commitments. The work of [BHY09]
also introduced the notion of selective opening security under concurrent composition,
where a malicious receiver is allowed to interact with the committers concurrently. This
notion is stronger than the selective opening security under parallel composition con-
sidered in this paper. However, as proved in [ORSV13], we cannot achieve such a se-
curity in the full-fledged concurrent setting if the simulator does not know the distribu-
tion of the message committed to by the honest committer. Another related notion is
the indistinguishability-based selective opening security, which can be achieved by any
statistical hiding (standalone) commitment scheme [BHY09].

Conditional disclosure schemes. A conditional disclosure scheme can be thought of
as interactive version of witness encryption [AIR01, BP12, PA17]. It is a useful tool for
constructing protocols of low round-complexity, such as the three round zero knowl-
edge protocol of [BKP19], but the usage of such a scheme often requires an additional
sub-protocol to make sure a (malicious) party indeed knows a relevant witness. The pro-
tocols in this paper do not need such an extra sub-protocol, and therefore is significantly
simpler than previous constructions.

(T, ε)-security in practice. A silent feature of the notion of (T, ε)-simulatability is
that the we need not embed the parameters T and ε into the protocol instructions.
That is, we can have a single construction that achieves (T, ε)-simulatability for any
10 See https://eprint.iacr.org/2013/260.pdf for the detailed proof.
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polynomial T and any inverse polynomial ε, which stands in sharp contrast to Barak’s
n-bounded concurrent zero knowledge argument, whose construction depends on the
a-priori upper-bound n on the number of total sessions allowed. From a practical point
of view, we think the weak notion of (T, ε)-simulatability is good enough in practice:
For any fixed security parameter λ, any constants κ and ε, it already achieves a con-
crete (κ, ε)-simulatability, since there always exist T and ε satisfying T (λ) > κ and
ε(λ) < ε.

1.6 Organization

We present relevant definitions in section 2. In section 3, we prove the existence of
nearly optimal extractors for all hard distributions. In section 4, we give a formal proof
of the equivalence between distinguishing ciphertexts and extracting a secret key for the
factoring-based encryption scheme. In the last three sections, we give our main results
on selective opening secure commitment, weak concurrent zero knowledge in the BPK
model and the two-round weak zero knowledge respectively.

2 Preliminaries

Throughout the paper, we let n be the security parameter. We write the set {1, 2, ...,m}
as [m], and the set {i, i+ 1, ..., j} as [i, j]. We denote by x̄ = {xi}i∈[k] ← D̄k the pro-
cess of sampling k times x from D independently. A function negl(n) is called negli-
gible if it vanishes faster than any inverse polynomial. We write {Xn}n∈N

c
≈ {Yn}n∈N

to indicate that the two distribution ensembles {Xn}n∈N and {Yn}n∈N are computa-
tionally indistinguishable. A Blum integer N is a product of two primes p, q satisfying
p, q ≡ 3 mod 4. We denote by Blum(1n) the algorithm that on input a security parame-
ter n outputs a Blum integer N and one of its prime factors q, where the corresponding
two prime factors are of length n. Due to space limitations, we refer readers to [Gol01]
for definitions of witness indistinguishability, witness hiding.

Commitment and trapdoor commitment schemes. Commitment schemes are “digi-
tal” safes. Formally, a commitment scheme (C,R) is a two-phase protocol between a
committer C and a receiver R. To commit to a bit b ∈ {0, 1}, C(b) and R execute the
committing phase of (C,R) (denoted by (C,R)Com) and generate a commitment tran-
script Com(b); To decommit Com(b), C and R execute the opening phase of (C,R)
(denoted by (C,R)Open) and reveal a decommitment (b, dec), and R accepts if the de-
commitment is valid.

Definition 1 (Commitment Scheme). A two-phase protocol (C,R) is called a com-
mitment scheme if it satisfies the following two properties:

– Binding: For every committer C∗ of polynomial-size, the probability of the follow-
ing event is negligible:C∗ interacts withR and generates a commitment Com(b) in
the committing phase, and then produces two decommitments (b, dec) and (b′, dec′)
with b 6= b′ in two executions of the opening phase.
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– Hiding: For every receiver R∗ of polynomial size, the commitments Com(0) and
Com(1) are computational indistinguishable.

A trapdoor commitment scheme is a commitment scheme with an additional prop-
erty: Given a trapdoor, C can later open a commitment to different values. In [FS89],
Feige and Shamir showed how to transform Blum’s 3-round interactive proof into a trap-
door commitment scheme. In our construction of selective opening secure commitment,
we need a version of Feige-Shamir trapdoor commitment based on factoring. Using a
standard commitment (built from the factoring assumption) Com as a building block,
our trapdoor commitment scheme (TDGen,TDCom,Open, Fakeopen) proceeds as
follows.

– TDGen: On input the security parameter n, TDGen generates (N, q)← Blum(1n).
Define an NP relation {(N, q) : q|N}, and transform (N, q) into a graph G and an
associated Hamiltonian cycle H ⊆ G. Output ((N,G), q).

– TDCom: On inputG, a bit b and randomness r, if b = 0, pick a random permutation
π and commit to the adjacency matrix of π(G); if b = 1, pick a random cycle H ′

and commit to the adjacency matrix of H ′. In both cases, we use commitment
scheme Com when committing to the adjacency matrix.

– Open: On input (G,TDCom(G, b, r), b, r), if b = 0, send π and open the entire
adjacency matrix of π(G); if b = 1, open the non-zero entries in the adjacency
matrix of H ′ (i.e., open the cycle H ′). We denote by (b, dec) the decommitment of
the commiment TDCom(G, b, r).

– Fakeopen: On input (G,H,TDCom(G, 0, r), b, r), open to b in the same way as
Open by setting H ′ = π(H). Note that only when TDCom commits to 0, the
commitment can be opened to both 0 and 1.

A crucial property. Our construction of a selective opening secure commitment scheme
relies on the following property of the above trapdoor commitment scheme, which can
be easily proved by applying standard hybrid argument to the underlying commitment
scheme Com:

{(c, (1, dec)) :c←TDCom(G, 1, r);(1, dec)← Open(G,TDCom(G, 1, r), 1, r)} and
{(c, (1, dec)) :c← TDCom(G, 0, r);(1, dec)←Fakeopen(G,H,TDCom(G,0,r),1,r)}
are indistinguishable.

(T, ε)-secure under selective opening attacks. Consider a k-parallel composition of a
commitment scheme (C,R). A committerCk and a receiverR∗ execute the committing
phase k times in parallel and generate k commitments {ζi}i∈[k] to b̄ = b1||b2|| · · ·
||bk, each ζi is a commitment to bi. In a selective opening attack, R∗ chooses a set
I ∈ I (possibly depending the commitments received) and asks the committer Ck to
open the commitments {ζi}i∈I , where I is the family of subset of [k]. Informally, the
commitment scheme (C,R) is said to be secure under selective opening attacks if the
remaining unopened commitments still stay secret.

Definition 2 ((T, ε)-secure under selective opening attacks). Let k be an arbitrary
polynomial in n, and B be a distribution on {0, 1}k, and I be the family of subset of

12



[k]. A commitment scheme (C,R) is (T, ε)-secure under selective opening attacks if for
any polynomial T , any inverse polynomial ε, any polynomial sizeB, and any polynomial
size R∗, there exists a polynomial size Sim such that for any distinguisher Dn of size
T , Dn cannot tell apart the following two distributions

– (Ck(b̄), R∗): b̄← B; {ζi}i∈[k] ← (Ck(b̄), R∗)Com; I ← R∗({ζi}i∈[k]); {(bi,
deci)}i∈I ← (Ck(b̄), R∗)Open;OutR∗ ← R∗({(bi, deci)}i∈I). Output (b̄, I, OutR∗);

– SIM: b̄← B; I ← Sim; OutSim ← Sim({bi}i∈I)). Output (b̄, I, OutSim),

with probability greater than ε, i.e.,

|Pr[Dn((Ck(b̄), R∗)) = 1]− Pr[Dn(SIM) = 1]| < ε.

Delayed input argument and (T, ε)-ZK. Let L be an NP language and RL be its
associated relation. An interactive argument system (P, V ) for L is a pair of parties
of polynomial size, in which the prover P wants to convince the verifier V of some
statement x ∈ L. We denote by (P, V )(x) the output of V at the end of interaction
on common input x, and by ViewPV (x) the view of the verifier in the real interaction.
Without loss of generality, we have the verifier V outputs 1 (resp. 0) if V accepts (resp.
rejects).

In this paper we consider delayed-input interactive arguments, in which the common
input to both parties is the size of the statement x, and the verifier receives x only in the
last round. Note that in a delayed-input interactive argument, a malicious prover may
choose statement depending on the history, and thus such an argument needs to satisfy
a stronger notion of adaptive soundness (cf. [JKKR17]).

A delayed-input argument system is zero knowledge if the view of the (even mali-
cious) verifier in an interaction can be efficiently reconstructed. In this paper, we con-
sider a weak version of zero knowledge–(T, ε)-zero knowledge [CLP15b], in which
the indistinguishability gap between the real interaction and the simulation is at most ε
against any T -size distinguisher.

Definition 3 (Delayed-input (T, ε)-zero knowledge). We say that a delayed-input in-
teractive argument (P, V ) for language L is (T, ε)-zero-knowledge if for any polyno-
mial T , any inverse polynomial ε, any polynomial-size V ∗, there exists a circuit Sim of
polynomial size such that for any x ∈ L and any probabilistic T -size circuit {Dn}n∈N
and sufficiently large n, it holds that∣∣∣Pr[Dn(ViewPV ∗(x)) = 1]− Pr[Dn(Sim(x)) = 1]

∣∣∣ < ε.

Concurrent zero knowledge with concurrent soundness in the BPK model. The
bare public-key model (BPK model) simply works in two phases: the key-registration
phase and the proof phase. In the key-registration phase, each verifier registers a public-
key pk (the honest verifier is supposed to store the corresponding secret key sk) on a
public-file F before the proof phase. In the proof phase, on a common input x, the
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prover and the verifier interact under the verifier’s public key. The completeness of an
interactive argument is normally defined.

Concurrent soundness in the BPK model. A malicious concurrent prover P ∗ is allowed
to launch the following attack: In the proof phase, on input a pubic key pk, P ∗ initi-
ates polynomially many sessions, in each of which it chooses a statement x adpatively
(based on the history so far), and fully controls the message scheduling in the entire
interaction with V .

Definition 4 (Concurrent Soundness in the BPK model). An interactive argument
(P, V ) for a languageL in the BPK model is called concurrent sound if for all malicious
concurrent prover P ∗, the probability that it makes V accept a false statement x /∈ L is
negligible.

Concurrent (T, ε)-zero knowledge in the BPK model. A malicious concurrent verifier
V ∗ is allowed to generate an arbitrary file F of polynomially many public keys in
the key-registration phase. In the proof phase, it receives s (for some polynomial s)
statements x̄ = {xi}i∈[s], and initiates at most s sessions under public keys on F .
During the entire interaction, V ∗ fully controls the message scheduling.

Definition 5 (Concurrent (T, ε)-zero knowledge In the BPK model). An interactive
argument (P, V ) for language L is called concurrent (T, ε)-zero-knowledge if for any
polynomial T , any inverse polynomial ε, any polynomial-size concurrent V ∗, any poly-
nomial s, there exists a circuit Sim of polynomial size such that for any Yes instances
x̄ = {xi}i∈[s], for any probabilistic T -size circuit {Dn}n∈N and sufficiently large n it
holds that ∣∣∣Pr[Dn(ViewP (F )

V ∗ (x̄)) = 1]− Pr[Dn(Sim(x̄)) = 1]
∣∣∣ < ε.

3 The Existence of nearly optimal Extractors for all Hard
Distribution

In this section we prove the existence of nearly optimal extractors for all NP-instance(s)
sampling algorithms. Essentially, we show that, for any NP-instance(s) sampler, any
polynomial T , any inverse polynomial ε, and any circuit family Cn of size T , there
exists an efficient extractor such that the probability that Cn extracts a witness for an
instance generated by the sampler but the extractor fails is at most ε. Furthermore, if
the extractor is allowed to be of quasi-polynomial size, then the same result holds with
respect to negligible ε.

Let Samp be an arbitrarily sampling algorithm over an NP languageL and {Yn}n∈N
be its input distribution ensemble. Throughout this paper, we assume that the input
y ← Yn to Samp includes its randomness. (Thus one can view Samp as a determinis-
tic algorithm.)
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Lemma 1. [nearly optimal (T, ε)-Extractor] Let Samp be as above. Let f : {0, 1}∗ →
{0, 1}∗ be an arbitrary (not necessarily efficient-computable) function.

1. For every polynomial T , every inverse polynomial ε, there exists a probabilistic cir-
cuit family Ext := {Extn}n∈N of polynomial size such that for every probabilistic
circuit family {Cn}n∈N of size T ,

Pr

[y ← Yn;x← Samp(y);
w ← Extn(x, y, f(y));
w′ ← Cn(x, y, f(y))

:
(x,w) /∈ RL ∧
(x,w′) ∈ RL

]
< ε(n) (1)

We call Ext a (T, ε)-extractor.
2. There exists a probabilistic circuit family Ext := {Extn}n∈N of quasi-polynomial

size such that for every probabilistic circuit family {Cn}n∈N of polynomial size, the
above probability is negligible.

Remark 1. Jumping ahead, in our protocols the receiver/verifier will play the role of
the hard instance sampler. For all our constructions, we need not take the function f
into account since they just compute a hard instance based solely on their random tape.
However, when our protocols are used as a sub-protocol in some big protocols or in the
settings of [JKKR17, BKP19], the receiver/verifier may compute a hard instance based
on some history y, and the simulator may need certain secret information f(y) (e.g., an
opening of a commitment in history y) to go through. In such cases, it is more flexible
to allow the extractor to take as additional input f(y).

As mentioned in the introduction, the basic idea underlying the proof is to keep
iterating to include new powerful circuits into the extractor until we have a desired one.
For applications, we need a stronger and robust version of Lemma 1 for samplers that
output multiple instances, which we prove below.

Fix a polynomial t and consider a t-instance sampler Samp that is given y as input
and outputs t instances of NP language L, (x1, x2, ·, ·, ·, xt) ← Samp(y), where y is
drawn from distribution Yn.

Lemma 2. [nearly optimal (T, ε)-Extractor for t-Instance Sampler] Let L be an NP
language and poly be the size of the circuits for deciding the NP-relationRL. Let Samp
be an arbitrarily t-instance sampling algorithm over L with input distribution ensem-
ble {Yn}n∈N. Let f : {0, 1}∗ → {0, 1}∗ be an arbitrary (not necessarily efficient-
computable) function.

1. For every polynomial T , every inverse polynomial ε, there exists a probabilistic
circuit family Ext := {Extn}n∈N of sizeO( tε (T+poly)), such that for every j ∈ [t],
every probabilistic circuit family {Cn}n∈N of size T ,

Pr

[ y ← Yn; {xk}k∈[t] ← Samp(y);
{wk}k∈[t] ← Extn({xk}k∈[t], y, f(y));
w′j ← Cn({xk}k∈[t], {wk}k∈[t], y, f(y))

:
(xj , wj) /∈ RL ∧
(xj , w

′
j) ∈ RL

]
< ε(n), (2)
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where the probability takes over the randomness choice of y, and the random tapes
for that for Extn and Cn.

2. There exists a probabilistic circuit family Ext := {Extn}n∈N of quasi-polynomial
size such that for every j ∈ [t] and every probabilistic circuit family {Cn}n∈N of
polynomial size, the above probability is negligible.

Remark 2. Notice that in the above lemma we allow the circuit Cn to take the output of
Extn as input. This does not matter for a single-instance sampler. However, as we shall
see in section 5 and 6, this property is critical for hybrid arguments to go through in the
composable settings.

Lemma 2 says there is an extractor for the multi-instance sampler that is nearly
optimal for solving instances in every coordinate j ∈ [t]. We argue the existence of
such a nearly optimal extractor via the following delicate iterative procedure. In each
outer iteration i ∈ [ tε ], for every j ∈ [t] we ask if there is circuit C(i)

n,j that, taking as
input the output of the current Extn, can be used to increase the success probability of
solving the j-th instance xj by (at least) ε, and if so, then we add Cn,j to Extn.

Proof. (of Lemma 2.) For every j ∈ [t], we define ]j composition of two circuits Extn
and Cn,j in the following way:

Extn]jCn,j({xk}k∈[t], y, f(y)):
1. Sampling a random tape for Extn, obtain {wk}k∈[t] ← Extn({xk}k∈[t], y, f(y));
2. If (xj , wj) ∈ RL, return {wk}k∈[t];
3. Sampling a random tape forCn,j , obtainw′j←Cn,j({xk}k∈[t],{wk}k∈[t],y,f(y));
4. If (xj , w

′
j)∈RL, thenwj←w′j and return {wk}k∈[t]; otherwise, return {wk}k∈[t].

Note that the order of executions of these two circuits matters here since we have the
second circuit take as input the output of the first circuit. This applies to each iteration
of the following construction, and the final circuit Extn will execute all these Cin,j in
the order of their appearance. Let Ext(0)n be a dummy circuit that outputs t zeros. For an
arbitrary t-instance Samp, we construct a nearly optimal extractor Extn as follows11.

Constructing circuit Extn for the t-instance Samp:
1. Extn ← Ext(0)n ;
2. For i = 1 to t

ε , do:
2.1 For j = 1 to t, do:

11 We would like to stress that in this construction the number of outer iterations may reach
t
ε
. Notice that in each iteration, the quality of the current extractor may have impact on the

answer to the question of whether or not there exists a new satisfactory circuit C(i)
n,j since the

new target circuit is given the output of the current extractor. Thus, even if there does not exists
a satisfactory C

(i)
n,j in the i-th outer iteration, we cannot rule out the possibility that we will

find a satisfactory C
(i+1)
n,j in the (i+ 1)-th outer iteration, because the extractor would become

more powerful as iterations proceed.

16



If ∃ a circuit C(i)
n,j of size T s.t.

Pr

 y ← Yn; {xk}k∈[t] ← Samp(y);
{wk}k∈[t] ← Extn({xk}k∈[t], y, f(y));

w′j ← C
(i)
n,j({xk}k∈[t], {wk}k∈[t], y, f(y))

:
(xj , wj) /∈ RL ∧
(xj , w

′
j) ∈ RL

 ≥ ε(n), (3)

then Extn ← Extn]jC(i)
n,j ;

2.2 If for any j ∈ [t], @ C(i)
n,j satisfying (3), then break and return Extn.

3. Return Extn

We now show that the Extn constructed above satisfies Lemma 2. We first make the
following two observations:

1. For any j′ 6= j, the circuit Extn ]j′ C(i)
n,j′ solves the j-th instance xj with exactly

the same probability of Extn. This is because in the above composition Cn,j is only
invoked to correct the witness wj obtained by Extn.

2. For each new C
(i)
n,j , the circuit Extn ]j C(i)

n,j increases the success probability of
solving the j-th instance xj by (at least) ε.

Note that if in some outer iteration i ≤ t
ε , no new circuit is added to Extn in any

inner iteration j ∈ [t], then the iterative process will return a desirable circuit Extn
as required in Lemma 2; otherwise, the following two events must happen during the
entire iterative process: (a) There are (at least) t

ε circuits C(i)
n,j of size T that are added

to Extn, and (b) For each j ∈ [t] the number of circuits C(im)
n,j (im ∈ [ tε ]) added to

Extn is at most 1
ε . The latter event (b) holds because of the two observations mentioned

above, which imply that adding more than 1
ε circuits C(im)

n,j would yield an extractor
with success probability of solving the j-th instance greater than 1.

Putting (a) and (b) together, we have that, for every j, exactly 1
ε circuits C(im)

n,j

are added to Extn, and the final circuit Extn returned solves the j-th instance with
probability 1. It is easy to verify that the size of the final Extn is of at most O( tε (T +
poly)). This concludes Lemma 2.

For the second part of this lemma, one can set T and ε to be nω(1) and 1
nω(1) respec-

tively, construct the circuit family Ext = {Extn}n∈N of size nω(1) in a similar way. ut

4 Extracting the Secret Key of a Variant of Rabin’s Encryption
Scheme

We are now going to apply Lemma 2 to a variant of a factoring-based encryption
scheme, and show the existence of a nearly optimal secret-key extractor, such that the
probability that an arbitrary bounded-size circuit family succeeds in distinguishing ci-
phertexts but the extractor fails to extract a secret key is very small.
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We consider an encryption scheme based on Rabin’s trapdoor one-way permuta-
tions. Let N be a Blum integer of length n, and QRN be the set of quadratic residues
(mod N ). Rabin’s trapdoor one way permutation fN : QRN → QRN (with a prime
factor of N as its trapdoor) is defined as fN (s) = s2 mod N . The one-wayness of fN
is based on the fact that different square roots lead to factor N . Specifically, given a
circuit A of size T that inverts fN (s) with probability ε, by Lemma 10 in [TW87], we
have a circuit of size O(T 1

ε ) that can factor N with probability negligibly close to 1.

Let h(·) be an arbitrary hard-core function of fN (·)12. We follow the classic ap-
proach and obtain the following semantically secure bit encryption scheme (Gen =
Blum,Enc,Dec). The public key is a randomly generated Blum integer N , and the
secret key is a prime factor of N :

– EncN : To encrypt a bit b, the encryption algorithm Enc selects a random s ∈ QRN
(which can be done by selecting a random t ∈ ZN and then set s to be t2 mod N ),
and computes fN (s) and h(s)⊕b. Enc outputs the ciphertext c = (fN (s), h(s)⊕b);

– DecN : To decrypt a ciphertext c, the decryption algorithm Dec uses the secret key
to invert the first part of c, and then computes h(s) and outputs b.

The semantic security follows from the hardness of factoring assumption: A good
ciphertext distinguisher will give rise to an efficient algorithm that finds square roots
modulo N , which can be used to factor N .

In our constructions of commitment and zero knowledge protocols, we will have
one party generate one (or two) public key(s) of the above encryption scheme and use
one secret key to decrypt the messages from the other party. We would like to stress that,
in case that a malicious party generates a non-Blum integer as its public key, the func-
tion fN in the encryption may no longer be a permutation. Fortunately, such a malicious
behavior only causes difficulty for the malicious party to decrypt the ciphertext com-
puted by the honest party, and does not affect the property –the equivalence between
distinguishing ciphertexts and factoring– that is required to establish simulatability of
our protocols.

We now give a formal statement of this property with respect to the encryption
scheme above. Here we slightly abuse these notations, and define fN : QRN → QRN
and the “encryption” function EncN (b) := (fN (s), h(s)⊕b) over an arbitrary (positive)
integer N .

Lemma 3. [Implied by [GL89, ACGS88, TW87]] For any positive integer N of length
n and any inverse polynomial δ(n), if there exists a probabilistic circuit family {An}n∈N
of size T such that for any auxiliary input α ∈ {0, 1}∗,

Pr[b← {0, 1}; c← EncN (b);An(c,N, α) = b′ : b = b′] ≥ 1

2
+ δ(n)

12 The constructions of the hardcore of fN (·) appeared in [ACGS88, GL89]. Note that, when
using the Goldreich-Levin hardcore function [GL89], we need to change the description of
our encryption scheme a little bit, since the Goldreich-Levin hardcore function is actually con-
structed for the permutation f ′

N (s, r) = (fN (s), r) (where |r| = |s|). We ignore such changes
in the description of our encryption scheme for the sake of simplifying the presentation.
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then there exists a probabilistic circuit family {Bn}n∈N of size O( 1
δ5n

3T ) that can
factor N with probability

Pr[q ← Bn(N,α) : q|N ] ≥ 1− negl(n).

Proof sketch. The hardcore theorems [GL89, ACGS88] state that, given a successful
distinguisherAn of size T for the “encryption” function EncN with advantage δ, we can
construct a new circuit of sizeO( 1

δ4n
3T ) that computes the square roots moduloN with

roughly the same successful probability. If δ is an inverse polynomial, then by [TW87]
such a square root circuit can be used to factor the integer N in size O( 1

δ5n
3T ) with

probability negligibly close to 1. ut
Applying Lemma 2 to a t-integer sampler {Ni}i∈[t] ← Samp, we can show that

there exists a nearly optimal extractor Ext for Samp such that for every j if Ext fails
to extract a prime factor of Nj , then no circuit of a-prior bounded size can distinguish
a ciphertext (except for small advantage). Formally, we obtain the following result (and
defer the proof of this lemma to the full version).

Lemma 4. Let t be a polynomial, and Samp be an arbitrarily t-integer sampling al-
gorithm with input distribution ensemble {Yn}n∈N. Let f : {0, 1}∗ → {0, 1}∗ be an
arbitrary (not necessarily efficiently computable) function.

1. For any polynomial T , any inverse polynomial ε, there exists a probabilistic cir-
cuit family Ext := {Extn}n∈N of polynomial-size such that for every probabilistic
circuit family {An}n∈N of size T , for every j ∈ [t], we have

Pr


y ← Yn; {Ni}i∈[t] ← Samp(y);

{qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y));
b← {0, 1}; c← EncNj

(b);
b′ ← An(c, {qi}i∈[t], {Ni}i∈[t], j, y, f(y))

:
b = b′ ∧
qj - Nj


<

1

2
Pr

[
y ← Yn; {Ni}i∈[t] ← Samp(y);

{qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y))
: qj - Nj

]
+ ε(n)

2. There exists a probabilistic circuit family Ext of quasi-polynomial size such that
for every probabilistic circuit family {Cn}n∈N of polynomial size, the above holds
with respect to a negligible function ε.

5 Selective Opening (T, ε)-Secure Commitment Scheme

We use the following ingredients in our construction of a selective opening secure com-
mitment scheme:

– The trapdoor commitment (TDGen,TDCom,Open,Fakeopen) described in sec-
tion 2;
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– The variant of Rabin’s encryption scheme presented in section 4.

With these two building blocks, we construct a selective opening secure commit-
ment scheme as follows. In the committing phase, we have the receiver run the trapdoor
generator and produce (N, q) (q|N ) and transform (N, q) into (G,H), then sendN and
the graph G to the committer; upon receiving N , the committer invokes TDCom and
generates a commitment c, encrypts c bit-by-bit under the public key N , and sends all
these encryptions to the receiver. In the opending phase, the committer simply sends the
opening of c to the receiver, who decrypts the ciphertexts received in the committing
phase using secret keys q and obtains c, and checks whether the opening received from
the committer is a valid decommitment of c.

Formally, our selective opening secure commitment scheme proceeds as follows.

Protocolsoa:

Committing phase:
R −→ C: ((N,G), q)← TDGen(1n). Send (N,G).
C −→ R: c = c1||c2|| · · · ||c` ← TDCom(G, b, r), {ζi ← EncN (ci)}i∈[`].

Send {ζi}i∈[`].

Opening Phase:
C −→ R: Send (b, dec)← Open(G,TDCom(G, b, r), b, r).

R: c← {DecN (ζi, q)}i∈[`]. Accept iff (b, dec) is a valid opening of c.

Theorem 1. Assuming the standard hardness of factoring, Protocolsoa is a commit-
ment scheme that satisfies the following properties:

1. (T, ε)-security under selective opening attacks.
2. Full security under selective opening attacks with a quasi-polynomial simulator.

Proof. Note that the second property follows directly from the first property and the
second part of Lemma 4. Here we just prove the first property.

Computational binding property. Suppose that there is a malicious adversary C∗ that
can open a random commitment to two different values with noticeable probability δ.
We construct an efficient algorithm Factor, which uses C∗ as a subroutine, to break the
factoring assumption.

Factor plays the role of the honest receiver R, except that it doesn’t check if a
decommitment is consistent with the plaintext c encrypted in the ciphertexts received
in the committing phase. More specifically, given a Blum integer N as input, Factor
transforms it into a graph G, and sends (N,G) to C∗ as its first message; upon re-
ceiving C∗’s committing phase message and two different decommitments (b, dec) and
(b′, dec′) (with b 6= b′), Factor applies the standard extractor to these decommitments,
and if it extracts a prime factor q of N , outputs it.
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Note that a successful opening in a real interaction implies at least that the decom-
mitment received by R is a valid opening of the plaintext c encrypted by C∗ in the
committing phase. That means, in case C∗ successfully opens a commitment to two
different decommitments (b, dec) and (b′, dec′) in the real world, one can alway extract
a prime factor ofN from only the two decommitments (without the need for knowledge
of the plaintext c). Thus, the above algorithm Factor will output a prime factor of N
with probability δ, breaking the factoring assumption.

(T, ε)-security under selective opening. Our simulation strategy for a k-parallel se-
lective opening attacker R∗ is quite simple in spirit. When receiving the first k integers
N1, N2, ..., Nk, the simulator applies the nearly optimal extractor against T -size cir-
cuits and tries to extract a prime factor for each Ni, if it succeeds for some Ni, then the
i-th commitment becomes equivocal and can be opened to different values; if it fails for
Ni, then, in the eye of a T -size distinguisher, the i-th commitment is also “equivocal”,
since it is unable to extract a secret key ofNi either, and hence unable to tell whether the
commitment c determined by the decommitment (b′, dec′) received is the very plaintext
encrypted in the ciphertexts.

To give a formal description of the simulator, we introduce the following notations.
(In what follows, we ignore the function f considered in section 3 and 4.)

– {Yn}n∈N : the distribution ensemble of the randomnesses for the k-parallel selec-
tive opening receiver R∗.

– Algorithm Samp is defined to be the committing phase ofR∗: y←Yn, {Ni, Gi}i∈[k]
← R∗(y), output {Ni}i∈[k].

– (T ′, δ) := ((kTc + T ), εk` ). Here Tc and T denote the size of the committer C
and the distinguisher Dn respectively. ε is the advantage of the distinguisher that
we tolerate. Note that our goal is to show that an arbitrary circuit of size T cannot
distinguish a simulation from the real interaction with advantage greater than ε.

For the above sampling algorithm Samp, Lemma 4 guarantees that there exists
a nearly optimal (T ′, δ = ε

k` )-extractor Ext := {Extn}n∈N against any plaintext-
extractor of size T ′. Let B be a k-bit message distribution.

Consider the following distribution SIM generated by Sim.

SIM:
1. y ← Yn; {Ni, Gi}i∈[k] ← R∗; b̄ = b1||b2|| · · · ||bk ← B;
2. Sim runs Extn({Ni}i∈[k], y) and obtains {qi}i∈[k].
3. Sim computes k commitments to 0 independently, ci ← TDcom(Gi, 0, ri),

1 ≤ i ≤ k, ζi ← {EncNi
(cij)}j∈[`], and sends {ζi}i∈[k] to R∗.

4. Upon receiving I ← R∗({ζi}i∈[k]) and {bi}i∈I , Sim opens {ζi}i∈I in the
following way:

(a) If bi = 0, open ζi to (bi = 0, deci) in an honest way;
(b) If qi|Ni and bi = 1, run Fakeopen(Gi, Hi, c

i, 0, ri) to open ζi to (bi =
1, deci), where Hi is a simple cycle of Gi, transformed from (Ni, qi);

(c) If qi - Ni and bi = 1, compute a commitment c̃i ← TDcom(Gi, 1, r̃i) to
1, and set the opening of ζi to be the decommitment (1, deci) of c̃i.
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5. Run OutSim ← R∗({(bi, deci))}i∈I), and output (b̄, I, OutSim).

We use hybrid argument to prove that SIM is indistinguishable from the real inter-
action between R∗ and Ck. Consider the following sequence of hybrid experiments, in
each of which we allow Sim to take the message b̄ as an auxiliary input.

Define SIM0 be identical to SIM. For 1 ≤ m ≤ k, SIMm acts in the same way as
SIMm−1 except that Sim in SIMm computes the m-th commitment cm to bm in step 3
and opens it honestly in step 4 when m ∈ I .

Note that SIMk is identical to the real interaction. To conclude the proof of Theo-
rem 1, it remains to show that, for every distinguisher Dn of size T , for all 1 ≤ m ≤ k,

|Pr[Dn(SIMm−1) = 1]− Pr[Dn(SIMm) = 1]| < ε

k
. (4)

We now construct a sequence of sub-hybrids to establish the inequality (4). Fix an
m ∈ [k]. For 0 ≤ t ≤ `, consider the hybrid SIMm

t :

SIMm
t :

1. Run step 1 and 2 of SIM and obtain b̄, {Ni, Gi}i∈[k] and {qi}i∈[k].
2. On input b̄, Sim runs TDcom and generates the first m − 1 commitments to

b1, b2, ..., bm−1, and the last k −m − 1 commitments to 0, and then encrypts
these commitments bit-wise and obtains {ζi}i∈[k]\m. Sim computes the m-th
commitment in the following way:

(a) If qm|Nm or bm = 0, Sim computes a commitment cm to 0 and generates
ζm correspondingly.

(b) If qm - Nm and bm = 1, it computes a commitment cm to 0 and a commit-
ment c̃m to 1, and the bit-wise encryptions ζm of ĉm = cm1 ||···||cmt ||c̃mt+1||·
· · ||c̃m` , where cmj and c̃mj are the j-th bit of cm and c̃m respectively.

Sim sends {ζi}i∈[k] to R∗.
3. Upon receiving I ← R∗({ζi}i∈[k]), Sim does the following: for i ∈ [m−1]∩I ,

open ζi in an honest way; for i ∈ [m+ 1, k] ∩ I , open ζi according to the step
4 of SIM; for i = m ∈ I , Sim opens ζi according to the step 4 of SIM except
that, in the case of qm - Nm and bm = 1, it sets the opening of ζm to be the
decommitment of c̃m (already computed in the previous step).

4. Run OutSim ← R∗({(bi, deci))}i∈I), and output (b̄, I, OutSim).

Observe that when t = 0, SIMm
0 computes the commitment cm to 0 in case qm -

Nm and bm = 1, and sets its opening to be the decommitment of an independent
commitment c̃m to 1. That is, SIMm

0 acts exactly in the same way as SIMm−1. We
conclude the inequality (4) (and the Theorem 1) by the following two lemmas.

Lemma 5. SIMm
`

c
≈ SIMm.
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Lemma 6. For all 1 ≤ t ≤ `, and for all distingshuier Dn of size T ,

|Pr[Dn(SIMm
t−1) = 1]− Pr[Dn(SIMm

t ) = 1]| < ε

k`
.

Due to space limitations, the proof of these two lemmas are provided in the full
verison of this paper. ut

6 Concurrent(T,ε)-Zero Knowledge and Witness Hiding in the
BPK Model

In this section we present a very simple three-round concurrent (T, ε)-zero knowledge
and witness hiding argument for NP in the BPK model. The construction relies on the
polynomial hardness of factoring, and makes use of only two simple building blocks:
the factoring-based encryption and the three round parallel version of Blum’s protocol
(PB, VB). Let a transcript of (PB, VB) be of the form (a, e, z), and P 1

B and P 2
B be the

first and the second prover steps respectively.

In the key registration phase, an honest verifier generates two Blum integersN0 and
N1 of length n, and stores two prime factors q0 and q1, qi|Ni for each i ∈ {0, 1}. It
registers (N0, N1) as his public-key. In the proof phase, on input the verifier’s public
key (N0, N1) and the statement x ∈ L, the prover and the verifier execute (PB, VB) in
which PB proves the statement “x ∈ L OR ∃q s.t. q|N0 or q|N1”. Denote such a prover
by PB(x∨N0∨N1)).

The formal description of our protocol follows.

Protocolczk:

Common input: x ∈ RL, (N0, N1).
Private input to P : w s.t. (x,w) ∈ RL.

P −→ V : Send a← P 1
B (x ∨N0 ∨N1)).

V −→ P : Send e← VB.

P −→ V : z = z1||z2||···||z` ← P 2
B (x∨N0∨N1), {ζi,j ← EncNi

(zj)}i∈{0,1}j∈[`].
Send {ζ0,j}j∈[`] and {ζ1,j}j∈[`].

V : ẑ ← {DecN (ζ0,j , q0)}j∈[`], z̃ ← {DecN (ζ1,j , q1)}j∈[`]. Accept iff
ẑ = z̃ and (a, e, ẑ) is accepting.

Theorem 2. Under the standard hardness assumption of factoring, Protocolczk is an
argument that satisfies the following properties:

1. Concurrent (T, ε)-zero knowledge with concurrent soundness.
2. Concurrent witness hiding.
3. Concurrent zero knowledge with quasi-polynomial time simulator.
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Proof. Completeness is obvious.

Concurrent soundness. Suppose, towards a contradiction, that a cheating concurrent
prover P ∗ initiates k sessions and makes the verifier accept a false statement x /∈ L
with noticeable probability δ in one session. We can then construct an efficient algo-
rithm Factor using P ∗ as a subroutine to factor a randomly chosen Blum integer with
noticeable probability. Factor takes a Blum integerN as input, chooses two primes p, q
(≡ 3 mod 4) and a random i ∈ {0, 1}, sets Ni to be pq, N1−i to be N . In the key
registration phase, Factor registers (N0, N1) as his public key and keeps q as its secret
key. In the proof phase, Factor chooses a random session, and try to obtain two accept-
ing accpeting transcripts (a, e, z) and (a, e′, z′) and compute a witness q′(i.e., a prime
factor of N0 or N1) from them.

It is not hard to show that q′ is a prime factor of N1−i with high probabiity, and
this contradicts the hardness of factoring. The actual proof can be done by combining
the standard analysis with a crucial observation, as mentioned in the introduction, that
a successful cheating on session s means it will pass an honest verifier’s check, which
in turn implies that at least the both collections of ciphertexts in the last message can be
decrypted to the same accepting z.

Concurrent (T, ε)-zero knowledge. Consider an arbitrary concurrent adversary V ∗ of
polynomial size. We show there exists a simulator of polynomial size to establish the
weak zero knowledge property.

Suppose that V ∗ registers k public keys {(N i
0, N

i
1)}i∈[k] and initiates at most s

sessions. As before, the simulator applies the nearly optimal extractor to factor all inte-
gers registered by V ∗ in the key registration phase. Once the simulator extracts a prime
factor of one of (N i

0, N
i
1), it can complete any session under the public key (N i

0, N
i
1)

successfully; if it fails for a public key (N i
0, N

i
1), the simulator computes encryptions

of zeros as its last message in the sessions under the public key (N i
0, N

i
1).

Let Yn be the distribution of V ∗’s randomness, and the sampling algorithm Samp to
be the V ∗’s registration step. Set (T ′, δ) to be ((s(2`Tenc+Tp)+T ), ε

4s` ), where Tenc,
Tp and T are the size of Enc, the honest prover of the Blum protocol (PB, VB) and the
distinguisher respectively, and ε is the advantage of the distinguisher that we tolerate.
By Lemma 4 we have a polynomial-size (T ′, δ = ε

4` )-extractor Ext := {Extn}n∈N
against any circuit family of size T ′.

On input s Yes instances x̄ = {xi}i∈[s], the simulator proceeds as follows.

Sim(x̄):
1. y ← Yn, {(N i

0, N
i
1)}i∈[k] ← V ∗(y).

2. {(qi0, qi1)}i∈[k] ← Extn({(N i
0, N

i
1)}i∈[k], y).

3. For a session under the public key (N i
0, N

i
1), do the following:

(a) If qi0|N i
0 or qi1|N i

1, complete this session using the extracted prime factor
as witness.

(b) Otherwise, produce an honest message a in its first step. Upon receiv-
ing a challenge e, set z = 0`, and compute {EncNi

0
(zj)}i∈[`] and

{EncNi
1
(zj)}i∈[`] as the last message of this session.
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4. Output the entire history when V ∗ terminates.

We are ready to prove the first part of Theorem 2. Suppose, towards a contradiction,
that there exists a distinguisher Dn of size T such that

|Pr[Dn(ViewPV ∗)(x̄)) = 1]− Pr[Dn(Sim(x̄)) = 1]| > ε. (5)

We order all s sessions according to its appearance, and construct the following
hybrid simulators with all witnesses hardwired: Define Sim0(x̄, w̄) be the Sim(x̄, w̄),
and Simk(x̄, w̄) as in the same way except that in each of the first k sessions it uses the
real witness to complete a proof. Clearly, Sims(x̄, w̄) is identical to the real interaction.
From (5), there must exist a m ∈ [s] such that

|Pr[Dn(Simm−1(x̄, w̄)) = 1]− Pr[Dn(Simm(x̄, w̄)) = 1]| > ε

s
. (6)

Fix such a m, and for t ∈ [2`], consider the sub-hybrid simulator Simm
t (x̄, w̄):

Simm
t (x̄, w̄):

1. Run step 1,2 of Simm(x̄, w̄) and obtain {(N i
0, N

i
1)}i∈[k] and {(qi0, qi1)}i∈[k].

2. For the session m under the public key (Nm
0 , N

m
1 ), do the following:

(a) If qi0|N i
0 or qi1|N i

1, act in the same way as Simm(x̄).
(b) Otherwise, produce an honest message a in its first step. Upon receiving

a challenge e, produce an accepting z using the real witness, set z′ =
0t||z2`−t, where z2`−t is the suffix of z||z, and encrypt the first half bits of
z′ under N i

0, their second half bits under N i
1.

For any other session, act in the same way as Simm−1(x̄, w̄).
3. Output the entire history when V ∗ terminates.

Observe that Simm
2`(x̄, w̄) = Simm(x̄, w̄). It follows from the witness indistin-

guishability of the Blum protocol that Simm
0 (x̄, w̄)

c
≈ Simm−1(x̄, w̄) (with a negligible

distinguishing gap). By (6), there must exist a t ∈ [2`] such that

|Pr[Dn(Simm
t−1(x̄)) = 1]− Pr[Dn(Simm

t (x̄)) = 1]| > ε

4s`
. (7)

Note that the only difference between Simm
t−1(x̄) and Simm

t (x̄) lies in the t-th ci-
phertext in case that the extractor fails to find any prime factors of the public key. Hence,
if the inequality (7) holds, we can construct a size-T ′ circuit An with (barx, w̄) hard-
wired, and show that it constradicts the (nearly) optimality of the extractor Extn. (The
detailed proof can be found in the full verson of this work.) This concludes the first part
of Theorem 2.

The second part of Theorem 2 follows from the fact that (concurrent) (T, ε)-zero
knowledge implies (concurrent) witness hiding (see [JKKR17] for the detailed proof).
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Here we just describe the underlying idea. For a given malicious verifier V ∗ of size
T that can output a witness of a statement drawn from Xn at the end of a session
with probability greater than some inverse polynomial ε, as we showed above, there
exists a simulator of polynomial size such that V ∗ cannot distinguish the real interaction
from simulation with probability greater than ε

2 . Combining the simulator and V ∗, we
will have a circuit family of polynomial size that breaks the hardness of Xn. Quasi-
polynomial simulatability follows again from the second part of Lemma 4 directly. ut

7 Simpler (T,ε)-Zero Knowledge and analysis in the Plain Model

In this section we present a very simple delayed-input 2-round (T, ε)-zero knowledge
argument for NP, and then sketch how to use our individual simulation technique to give
a significantly simpler proof that the distinguisher-dependent simulatable zero knowl-
edge protocols of [JKKR17, BKP19] also satisfy the stronger notion of (T, ε)-zero
knowledge.

We build such an argument on a quasi-polynomial extractable perfectly binding
commitment scheme Com [Pas03] (which can be based on sub-exponential hardness
of factoring) and a NIWI proof system (PWI, VWI)

13.

As usual, we denote by PWI(x∨ (N, c)) the prover of the NIWI proof that proves to
the verifier the statement “x ∈ L OR ∃ q such that c is a commitment to q and q|N”

Protocolzk:

Private input to P : w s.t. (x,w) ∈ RL.

V −→ P : (N, q)← Blum(1n). Send N to P .
P −→ V : c←Com(0n), z=z1||z2||· · ·||z`←PWI(x∨(N,c)),{ζj←EncN (zj)}j∈[`].

Send x, c and {ζj}j∈[`] to V .
V : z ← {DecN (ζj , q)}j∈[`]. Accept iff (x, z) is accepting.

Theorem 3. Under the sub-exponential hardness assumption of factoring, Protocolzk
is a delayed-input interactive argument that satisfies all the following properties:

1. Delayed-input (T, ε)-zero knowledge.
2. Delayed-input witness hiding.
3. Delayed-input zero knowledge with quasi-polynomial time simulator.

The soundness of this protocol is also straightforward. Note that a cheating prover
P ∗ on a false statement x /∈ L with noticeable success probability δ implies that the
message c sent by P ∗ is a commitment to a prime factor of N . This leads to a simple
quasi-polynomial factoring algorithm Factor with success probability at least δ that
contradicts the sub-exponential hardness of factoring: On input an integer N , it plays

13 One can also use two-round WI (such as [DN00]) here. We use NIWI (such as [GOS06]) to
simplify our construction.
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the role of the verifier and sends it to P ∗; upon receiving the message c, it extracts a
prime factor of N from c in quasi-polynomial time.

The proof of (T, ε)-zero knowledge, witness hiding and quasi-polynomial simulata-
bility are essentially the same as in the previous section, we omit it here.

Upgrade the distinguisher-dependent simulations. The work of [CLP15b] implies
that existing distinguisher-dependent simulatable weak zero knowledge protocols of
[JKKR17, BKP19] are also (T, ε)-zero knowledge. We note that both constructions
of [JKKR17, BKP19] enjoy the two properties of (A,B) listed in section 1.4, hence
our individual simulation technique can also be applied to prove that they satisfy the
stronger notion of (T, ε)-zero knowledge. For their 3-round protocols, one can view the
verifier step as an NP instance (to which a solution will enable a successful simulation)
sampler that takes as input its randomness and the first prover message a and outputs
an instance (verifier message). To show the (T, ε)-zero knowledge property, we can
construct an individual simulator in a similar way. The simulator applies a nearly op-
timal extractor (which is also given certain secret information f(a) about the message
a as an additional input14) to the sampler/verifier and tries to extract the corresponding
witness, and then follows the residual strategy of the distinguisher-dependent simulator
in [JKKR17, BKP19] after their extraction from the distinguisher oracle.
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