
Circuit Amortization Friendly Encodings and
their Application to Statistically Secure

Multiparty Computation

Anders Dalskov1, Eysa Lee2, and Eduardo Soria-Vazquez1

1 {anderspkd, eduardo}@cs.au.dk, Aarhus University, Aarhus, Denmark.
2 eysa@ccs.neu.edu, Northeastern University, Boston, United States.

Abstract. At CRYPTO 2018, Cascudo et al. introduced Reverse Mul-
tiplication Friendly Embeddings (RMFEs). These are a mechanism to
compute δ parallel evaluations of the same arithmetic circuit over a field
Fq at the cost of a single evaluation of that circuit in Fqd , where δ < d.
Due to this inequality, RMFEs are a useful tool when protocols require
to work over Fqd but one is only interested in computing over Fq. In this
work we introduce Circuit Amortization Friendly Encodings (CAFEs),
which generalize RMFEs while having concrete efficiency in mind. For
a Galois Ring R = GR(2k, d), CAFEs allow to compute certain circuits
over Z2k at the cost of a single secure multiplication in R. We present
three CAFE instantiations, which we apply to the protocol for MPC over
Z2k via Galois Rings by Abspoel et al. (TCC 2019). Our protocols allow
for efficient switching between the different CAFEs, as well as between
computation over GR(2k, d) and F2d in a way that preserves the CAFE
in both rings. This adaptability leads to efficiency gains for e.g. Machine
Learning applications, which can be represented as highly parallel cir-
cuits over Z2k followed by bit-wise operations. From an implementation
of our techniques, we estimate that an SVM can be evaluated on 250 im-
ages in parallel up to ×7 more efficiently using our techniques, compared
to the protocol from Abspoel et al. (TCC 2019).

1 Introduction

Secure Multi-Party Computation (MPC) protocols allow any n parties to com-
pute any function on their secret data, while revealing nothing beyond the func-
tion’s output. This is guaranteed even in the presence of an adversary A who
corrupts and coordinates up to t of the participants. The capabilities of A de-
termine the main limitations of MPC, as well as the most relevant techniques to
construct such protocols.

One of the main distinctions is whether corrupted parties follow the protocol
(but try to extract additional information from its execution) or if they arbitrar-
ily deviate from it. The former is known as passive corruption, whereas the latter
is active. Additionally, A could have limited computational resources, or rather
be unbounded. Finally, one of the most important aspects is whether corrupted
parties constitute a minority (t < n/2) or not and, if so, whether t < n/3.

https://orcid.org/0000-0002-4882-0230

All practical protocols capable of resisting a computationally unbounded,
active adversary are based in linear secret sharing schemes (LSSS), such as
Shamir’s LSSS [18]. Most of them follow a “gate-by-gate” paradigm3, where a
boolean (or arithmetic) circuit is computed on secret-shared inputs one gate at a
time. As the secret sharing scheme is linear, addition gates can then be computed
without interaction among the parties. Non-linear operations, such as multiply-
ing two secrets together, are more complicated. In fact, for all known protocols
in this setting which are able to compute any function efficiently, multiplica-
tion gates require running some interactive sub-protocol. If some preprocessed
correlated randomness is assumed, this usually consists in “opening” (i.e. re-
constructing to all parties) a linear combination of such randomness with either
the inputs (e.g. when using Beaver triples [4]) or the outputs (e.g. when using
double-shares [5]) of the multiplication gate. The protocol maintains the invari-
ant that inputs and outputs of any processed gate are secret-shared in the same
way, so that they can be combined and used as inputs to other gates.

Frequently, one is interested in computing functions which are naturally rep-
resented as either a boolean circuit or an arithmetic circuit over Z2k . Neverthe-
less, be it in order to achieve some security parameter [15] or because the number
of parties is bounded by the LSSS and the ring where computation takes place
[18,1], it is often required to “lift” the computation to a large enough exten-
sion ring. As a concrete example, when the goal is to evaluate a boolean circuit
(resp. a circuit over Z2k) using Shamir-style MPC, the computation has to take
place over F2d (resp. GR(2k, d), the degree-d Galois extension of Z2k), where
d = log(n + 1). This incurs on a multiplicative overhead of d in communica-
tion and d2 in computation, where the latter can be asymptotically reduced to
quasi-linear in d using FFT-style techniques.

Having the above in mind, the authors in [8] and [10] introduced Reverse Mul-
tiplication Friendly Embeddings (RMFEs), which exploit the inherent overhead
induced by the extension degree d as a mechanism to compute in parallel δ < d
copies of the boolean (resp. Z2k) circuit that was the original target. Namely,
through RMFEs, a single multiplication in F2d (resp. GR(2k, d)) translates into
a component-wise multiplication in Fδ2 (resp. Zδ2k). Interested in asymptotic re-
sults, most of the RMFE constructions provided by the authors involved alge-
braic geometry tools4, whose concrete computational efficiency is unclear and
for which the exact ratio δ/d might only become interesting for very large values
of d.

In this work we propose Circuit Amortization Friendly Encodings (CAFEs)
as a generalization of the RMFE paradigm, where we compute certain subcircuits
over Z2k at the cost of a single multiplication in R = GR(2k, d). Furthermore, as
the extension degree d is usually very small, we focus our attention on concrete
rather than asymptotic efficiency and provide an implementation which experi-

3 A notable exception here are protocols based on lookup tables, such as those de-
scribed in [9] or [14].

4 As an exception, their most practical construction, given in [8] for boolean circuits,
builds on polynomial interpolation.

2

Name #Inputs (in R) Expressiveness (as a Z2k -subcircuit)

Näıve [1] 2 Circuits with 1 multiplication and 1 output.
InnerProd 2 Inner products of length ≈ d/2.
SIMD 2 ≈ d0.6 parallel circuits w/ 1 mult. and 1 output each.

Näıve [1] m Depth 1 circuit with m multiplications and 1 output.
FLEX m Depth 1 circuit with m multiplications and d outputs.

Table 1. Encoding schemes. All rows assume a single “opening” in R = GR(2k, d).

mentally validates our claims. We apply our techniques to the protocol for MPC
over Z2k via Galois Rings by Abspoel et al. [1], but we expect our framework
to be useful for other protocols as well. Note that by setting k = 1 we obtain
CAFEs for boolean circuits at the cost of a multiplication in F2d .

The use of CAFEs allows us to match the efficiency improvements they
provide with a “subcircuit-by-subcircuit” rather than “gate-by-gate” view of
computation. Such view (and more general ones) is shared among many peo-
ple programming MPC, who view LSSS-based protocols as a series of linear
combinations and “openings” (secret reconstruction) rather than addition and
multiplication gates. In Table 1 we show our three CAFE proposals, which al-
low computing commonly found subcircuits, and compare them with using the
protocol by Abspoel et al. [1]. The RMFEs from [10] can be seen as a different
proposal for the Single Instruction Multiple Data (SIMD) CAFE.

From a more theoretical perspective, Circuit Amortization Friendly Encod-
ings (and RMFEs in particular) constitute a partial answer to the question “what
can we securely compute at the cost of one multiplication?”, rather than the more
usual “what is the cost of securely computing one multiplication?”. This means,
among other things, that our CAFEs can be naturally combined with packed
secret sharing techniques such as [13].

Bit-wise operations. Our previous discussion focused on the matter of comput-
ing circuits over Z2k . Many practical applications, however, make use of bit-wise
operations in order to compute e.g. comparisons between integers. These opera-
tions can be emulated in Z2k even when k > 1, but doing so loses the advantage
of XOR being “for free”: Whereas XOR is linear in Z2, it is not in Z2k . In fact,
for a, b ∈ {0, 1}, we have that a XOR b = a + b − 2ab mod 2k, so XOR reduces
to a multiplication in Z2k , which requires communication.

A solution to this problem is the use of doubly-authenticated bits (daBits)
[17], which are secret, random bits shared in two different algebraic structures.
In our case, these structures are GR(2k, d) and F2d , where we further make use
our CAFEs in order to compute sub-circuits over Z2k and F2, respectively.

1.1 Technical Overview and Contributions

The fact of being constantly switching between different algebraic structures
(Z2k , GR(2k, d),F2 and F2d) in an actively secure way introduces several techni-

3

cal challenges in our protocols, as we do not want the costs introduced by these
transformations to outweigh the benefit from using CAFEs. In order to deal with
these, we devise efficient protocols for creating correlated encoded randomness.

Both for efficiency and simplicity of presentation, we restrict ourselves to
the non-robust MPC scenario, where the adversary is able to abort the protocol
after seeing its outputs. This way we avoid describing (now standard) player
elimination techniques [5,1], the absence of which allows us to introduce batch
checking mechanisms for double-shares and daBits. Concretely, the use of our
batch checking allows us to duplicate the throughput of correlated randomness
production via hyper-invertible matrices [5,3,8,1]. Furthermore, even when using
hyper-invertible matrices over R = GR(2k, d), the batch check is compatible with
the production of double-shares which are bound by Z2k -linear relations, such
as those required for our CAFEs.

To the best of our knowledge, this is the first time batch checking is applied
to MPC protocols using hyper-invertible matrices, even in non-robust protocols
such as [3]. We remark that our non-robust preprocessing protocols using this
technique can still be used in the robust scenario in an optimistic way: Namely,
if an abort is induced by the batch check failure, parties can switch to the slower,
robust protocols. As no actual inputs to the MPC protocol have been provided
yet, our optimistic variant remains both secure and robust.

We would like to highlight that our concrete CAFE constructions are mostly
a clever combination of combinatorics, circuit randomization and multilinear
algebra. The individual components are generally simple, which we see as a
positive rather than a negative aspect of our work. Simple protocols usually
lead to more efficient implementations, which is something we back with our
experiments. Finally, we make a conscious effort to present our techniques in the
most elementary way, so that they are as broadly accessible as possible within
the community. In particular, we avoid using formal abstractions such as d-fold
generalized linear secret sharing from [8], which are useful and we implicitly use,
but we feel they could clog our presentation.

2 Preliminaries

We use n to denote the number of parties, among which t < n/3 are corrupted.
Denote by P = {P1, . . . ,Pn} the set of parties. We use boldface letters x to
denote vectors, for which we index their elements starting at 0, i.e., if x ∈ Rδ,
x = (x0, . . . , xδ−1). If X is a set, x ← X denotes a uniform random sampling
from X, the result of which is assigned to the variable x. Finally, [n] is used to
denote the set {0, . . . , n − 1} and [a, b] with a < b to denote the set {a, . . . , b}.
Let λ be the statistical security parameter.

2.1 Commutative Algebra

We briefly recall some previous results from commutative ring theory, as well as
the background for Galois Rings we will need. In this subsection, R denotes a
commutative ring with identity.

4

Definition 1. Let α0, . . . , αm−1 ∈ R. We call A = {α0, . . . , αm−1} an excep-
tional set if and only if αi − αj ∈ R∗ for all i, j ∈ [m] with i 6= j. We define the
Lenstra constant of R to be the size of the biggest exceptional subset of R.

The following is a generalization of the Schwartz-Zippel lemma which we will
need throughout the paper.

Lemma 1 ([6]). Let R be a commutative ring and f : Rn → R be an n-variate
non-zero polynomial. Let A ⊆ R be an exceptional set. Then

Pr
x←An

[f(x) = 0] ≤ deg f

|A|
.

2.2 Galois Rings

Galois Rings are the unique degree-d Galois extension of rings of the form Zpk ,
where p is a prime. Whereas for k = 1 such an extension yields the Galois Field
Fpd , for k > 1 Galois Rings contain zero-divisors, in particular the multiples of
p. We will use the following, equivalent definition of Galois Rings, as it is better
suited for our purposes.

Definition 2. A Galois Ring is a ring of the form R = Zpk [X]/(h(X)) where
p is a prime, k ≥ 1 and h(X) ∈ Zpk [X] is a monic polynomial of degree d ≥ 1
such that its reduction modulo p yields an irreducible polynomial in Fp[X].

Once p, k and d has been fixed in Definition 2, any valid choice of h(X) ∈
Zpk [X] will result in the same R, up to isomorphism. Hence, we shall denote
such a ring as R = GR(pk, d).

The ring R = GR(pk, d) is of characteristic pk and all its ideals (pi) form the
chain

R ⊃ (p) ⊃ (p2) ⊃ · · · ⊃ (pk−1) ⊃ (pk) = 0.

Thus, for i ∈ [1, k] we can define the natural homomorphisms πi : R → R/(pi)
which are computed by “reducing modulo pi”. Notice that R/(pi) ∼= GR(pi, d),
so by computing the quotient of R with its unique maximal ideal (p) we will
obtain the finite field Fpd . Furthermore, all non-units of R are nilpotent and
they constitute (p). We will need the following lemma:

Lemma 2. The Lenstra constant of GR(pk, d) is pd.

In order to reason about Galois Ring elements and their arithmetic, we will
sometimes describe them as it naturally follows from Definition 2. We will refer
to such explicit description as the additive representation of a. More concretely,
any element of a ∈ GR(pk, d) can be described as

a = a0 + a1 · ξ + . . .+ ad−1 · ξd−1, (1)

where ai ∈ Zpk and ξ is a root of h(X), i.e. GR(pk, d) ∼= Zpk [ξ].
Our work focuses in Galois Rings of the form R = GR(2k, d), hence of char-

acteristic 2k, maximal ideal (2), Lenstra constant 2d and such that R/(2) ∼= F2d .
Notice that in such case a ∈ R is a unit (i.e. a /∈ (2)) if and only if, given its
additive representation, there is at least one i ∈ [d] such that ai ≡ 1 mod 2.

5

2.3 Shamir’s secret sharing over Galois Rings

Shamir’s secret sharing scheme [18] extends to any commutative ring with iden-
tity, as long as it contains an exceptional set of size at least n + 1 [1]. Given
the fact that the Lenstra constant of a Galois Ring R = GR(2k, d) is 2d, we can
construct Shamir’s secret sharing for R if d ≥ log(n+ 1). We provide the precise
construction in ΠShare(s, t) (Protocol 1).

Protocol 1. ΠShare(s, t) — Degree-t Shamir’s LSSS over Galois Rings.

Let R = GR(2k, d) be a Galois Ring such that log(n + 1) ≤ d and let
A = {α0, α1, . . . , αn} ⊂ R be an exceptional set. Let Pi be the Dealer of the
secret, with input s ∈ R.

1. Pi samples a random degree-t polynomial p(X) ∈ R[X] such that
p(α0) = s.

2. Pi defines its own share as p(αi) and sends p(αj) to Pj for all j 6= i.

Denote the output as 〈s〉Rt = (p(α1), . . . , p(αn)), a “degree-t sharing” of s.

Since {αi}ni=0 is an exceptional set, Lagrange interpolation can be used with
t + 1 points to interpolate p(X) and thus recover the secret. We denote the
sharing of a value a as 〈a〉. Whenever there could be confusion about whether

a is shared in one of two rings R or R̃, we will use 〈a〉R and 〈a〉R̃ to avoid
misunderstandings.

To run MPC using Shamir’s scheme we also need the following protocols,
which are standard and we provide in the full version.

– Private reconstruction ΠrPriv(Pi, s): This reconstructs a Shamir secret shared
value to a single party. This only requires every party apart from Pi com-
municate a single element for a total of n− 1 elements.

– Public reconstruction ΠrPub(s0, . . . , sn−t−1): This reconstructs n− t Shamir
secret shared values simultaneously to all parties. To do so, parties privately
reconstruct a single share to each party, followed by each party sending the
reconstructed value to all other parties. This protocol requires communicat-
ing a total of 2 · n · (n− 1) elements.

2.4 Hyper-Invertible Matrices over Galois Rings

Hyper-Invertible Matrices (HIMs) were introduced in [5] as a tool to generate
secret correlated randomness in information-theoretic MPC. Their original de-
scription was limited to matrix whose entries are Finite Field elements, but HIMs
naturally generalize to rings having big enough exceptional sets, as shown in [1].

Definition 3. Let M be a r-by-c matrix. We say that M is Hyper-Invertible if,
for all A ⊆ [r], B ⊆ [c] with |A| = |B| > 0, the sub-matrix MB

A is invertible,
where MA denotes the matrix consisting of the rows i ∈ A of M , MB denotes
the matrix consisting of the columns j ∈ B of M , and MB

A = (MA)B.

6

For constructions of hyper-invertible matrices over Finite Fields and rings, we
refer the reader to [5] and [1].

The technical reason why hyper-invertible matrices are a powerful instrument
in MPC is the following lemma from [5].

Lemma 3. Let M ∈ Rm×m be a hyper-invertible matrix, and let y = Mx.
Then, for all A,B ⊆ [m] with |A|+ |B| = m, there exists a R-linear isomorphism
φ : Rm → Rm such that φ(xA,yB) = (xĀ,yB̄), where Ā = [m] \ A and B̄ =
[m] \B.

Informally, it states that any combination of m inputs/outputs of the R-linear
isomorphism induced by a square hyper-invertible matrix are uniquely deter-
mined by the remaining m inputs/outputs. This is key in enabling the “player
elimination” mechanism, which relies in revealing each of 2t outputs to a different
party. Player elimination enables, in turn, robust MPC.

Lemma 4. Let P1, . . . , Pn be parties out of which at most t are corrupted.
Let M ∈ R(n−t)×n be a hyper-invertible matrix. Let y = M · x, where y =
(y1, . . . , yn−t), x = (x1, . . . , xn) and each xi ∈ R is a secret, uniformly ran-
dom input chosen by party Pi. No Adversary can distinguish any yj ∈ R from
uniformly random.

Proof. Let H ⊂ [1, n] be a set of indices corresponding to any n − t honest
parties. We have that y = M ·x = MH ·xH +M H̄ ·xH̄ . Denote zH = MH ·xH .
As M is hyper-invertible, MH and all its entries are invertible. Then, as xH
consists only of secret, random values; we have that zH ∈ Rn−t is uniformly
random. Thus, so is y = (y1, . . . , yn−t). ut

3 Switching between Galois Rings and Galois Fields

Computation over Z2k , while attractive for many applications, is not the best
choice for operating on the level of bits. In fact, for many applications where
Z2k shines, such as machine learning, specialized conversion protocols are often
employed to deal with certain computations that cannot easily be expressed as
arithmetic in Z2k . For example, comparing two numbers a and b is equivalent to
computing the result of the comparison 0 < a− b, which amounts to extracting
the most significant bit of a− b (in two’s complement, this bit is 1 if the result
is negative, i.e., b > a and 0 otherwise). Common for many protocols for MSB
extraction, is a need for a secret-shared representation of the bit-decomposition of
a number. If we know v0, . . . , vk−1 such that v =

∑k−1
i=0 2ivi then MSB extraction

is easy. Obtaining secret-shares of v0, . . . , vk−1 given a secret-sharing of v can
be done in the following way. Suppose we have k pairs of values (〈bi〉F2d , 〈bi〉R);
that is, the same bit bi secret-shared in R as well as in F2d . First we open the
value z = 〈v〉R + 〈

∑
i 2ibi〉R after which z is decomposed into bits. Notice that

everyone now has a masked version of v + b in its bit representation (where

b =
∑k−1
i=0 2ibi), as well as secret-shares of the bits of b. Finally, shares of the

bits of v can be obtained by computing a binary adder.

7

Efficiently generating tuples of the kind (〈bi〉F2d , 〈bi〉R) has been the topic
of recent work such as [17], and more recently [12]. Both these works present a
generic approach (i.e., generating bits for any two algebraic structures). We will
instead focus on the specific case where the bits are shared over R = GR(2k, d)
and the residue field of R, that is F2d .

Let R̃ = GR(2k̃, d) and R = GR(2k, d) be two Galois Rings such that k̃ > k.
Let πk : R̃→ R be the “reduction modulo 2k” map.

Lemma 5. Let Ã = {α0, . . . , αm−1} ⊂ R̃ be an exceptional set. Then A =
πk(Ã) = {πk(α0), . . . , πk(αm−1)} is an exceptional set in R.

Proof. For any αi, αj ∈ Ã such that αi 6= αj , let βi,j ∈ R̃ be the inverse of

αi − αj ∈ R̃. We have the following equalities, all derived form the fact that πk
is an homomorphism:

πk(βi,j) · (πk(αi)− πk(αj)) = πk(βi,j) · πk(αi − αj) = πk(βi,j · (αi − αj))
= πk(1R̃) = 1R.

Hence, A = {πk(α0), . . . , πk(αm−1)} ⊂ R is an exceptional set. ut

Proposition 1. The “reduction modulo 2k” map πk : R̃ → R commutes with

Shamir secret sharing. More precisely, given a ∈ R̃ shared as 〈a〉R̃ using an
exceptional set Ã ⊂ R̃, then

πk(〈a〉R̃) = 〈πk(a)〉R,

where the shares of 〈πk(a)〉R use the exceptional set A = πk(Ã) ⊂ R and they

are computed by applying πk to the shares of 〈a〉R̃.

Proof. Let p̃(X) ∈ R̃[X] be the polynomial such that 〈a〉R̃ = (p̃(α1), . . . , p̃(αn))
and denote p(X) = πk(p̃(X)) ∈ R[X]. As p̃(X) is of degree at most m − 1, so
is p(X). Additionally, observe that πk(p̃(αi)) = πk(p̃(πk(αi))) = p(πk(αi)). As
shown in [1, Theorem 3], which follows from the Chinese Remainder Theorem
over rings, there is an isomorphism between p(X) ∈ R[X] and any m evaluations
of p(X) at points of the same exceptional set A ⊂ R. We conclude that

〈πk(a)〉R = (p(πk(α1)), . . . , p(πk(αn)))

= (πk(p̃(α1)), . . . , πk(p̃(αn))) = πk(〈a〉R̃). ut

Notice that, as a corollary of the previous proposition, we have that for any

k̃ ≥ 1, π1(〈a〉R̃) = 〈π1(a)〉F, where F = F2d is the residue field of R̃.

3.1 Double Authenticated Bits

In Section 4 we present concrete protocols for generating shares of random bits.
Here we outline the general technique that we will be using.

8

With the properties of R outlined in the previous section, a pair of secret-
shared bits—one in R and the other in F2d—is easy to obtain: We first generate
a secret shared bit 〈b〉R in R and then use the observation in Proposition 1 to
obtain 〈b〉F2d by simply having each party locally truncate their share of 〈b〉R
modulo 2.

It remains to discuss how to produce a random 〈b〉R, b ∈ {0, 1}. For this,
we will adapt the RandBit protocol from [11], which produces such values when
R = Z2k . We will make use of their following lemma when proving our protocols.

Lemma 6 ([11]). Let ` > 2. If a ∈ Z is such that a2 ≡ 1 mod 2`, then a is
congruent modulo 2` to one among {1,−1, 2`−1 − 1, 2`−1 + 1}.

4 Circuit Amortization Friendly Encodings

Given some private a1, . . . , am ∈ Z2k , consider that we want to securely compute
some circuit C taking them as inputs. In what we will call the näıve encoding
(which is the approach in [1] and [2]), sharings of the inputs 〈a1〉t, . . . , 〈am〉t
would have to be produced by first embedding each ai ∈ Z2k into R = GR(2k, d),
individually. Any multiplication gate in C would then be computed in the usual
way, that is, given 〈a〉t, 〈b〉t and a double sharing (〈r〉t, 〈r〉2t):

Protocol 2. Πonline-ds — Standard Online use of double-shares.

1. Parties locally compute 〈c〉2t = 〈a〉t · 〈b〉t.
2. Publicly reconstruct 〈z〉 = 〈c〉2t − 〈r〉2t.
3. Compute 〈c〉t = z + 〈r〉t.

However, this approach makes no use of the extension degree of R, and as
we previously outlined in Table 1, it would incur on more communication (and
computation) than the encodings we are about to present.

By making explicit the act of encoding the Z2k elements on which we want to
compute into elements in R, we can generalize the above protocol in the following
way. For a circuit C with 2 · δ1 inputs, δ2 outputs, and where δ2 ≤ δ1, define two
Z2k -linear homomorphisms Ein : (Z2k)δ1 → R and Eout : (Z2k)δ2 → R satisfying

Ein(a) · Ein(b) + Eout(c) = Eout(C(a,b) + c). (2)

Using Ein and Eout, Protocol 2 can be generalized as shown in Protocol 3:

Protocol 3. Πonline-enc-ds — Online use of encoded double-shares.

1. Parties locally compute 〈Ein(a) · Ein(b)〉2t = 〈Ein(a)〉t · 〈Ein(b)〉t.

9

2. Publicly reconstruct 〈Eout(C(a, b) − r)〉2t = 〈Ein(a) · Ein(b)〉2t −
〈Eout(r)〉2t.

3. From Eout(C(a, b)− r), compute Ein(C(a, b)− r).
4. Finally, define 〈Ein(C(a, b))〉t = Ein(C(a, b)− r) + 〈Ein(r)〉t.

Notice that by setting C(a, b) = a · b and encodings Ein(a) = Eout(a) = a we
get the näıve encoding and Protocol 2.

In the following, we present alternative definitions of Ein and Eout which work
for the more expressive circuits from Table 1: In Section 4.2 we give what we call
FLEX encoding, InnerProd encoding in Section 4.3, and finally SIMD encoding in
Section 4.4. The main challenge will be to produce pairs (〈Eout(r)〉2t, 〈Ein(r)t〉) in
an efficient manner. We also show how to produce random bits 〈b〉 ∈ {0, 1} ⊂ Z2k

compatible with each CAFE: For example, for the SIMD encoding we produce
sharings of the form 〈Eout(b)〉Rt , where b = (b0, . . . , bδ−1) and each bi ← {0, 1}
independently. Each presentation is concluded with an analysis of the technique’s
efficiency and expressiveness. An overview of our CAFEs and how they relate
to each other is given in Figure 1. By setting k = 1, we obtain the finite field
equivalent of our protocols, but without exploiting the fact of being in a structure
of characteristic two. Finally, note that, through the use of daBits, we can switch
between values with a given encoding in GR(2k, d) and their bit decomposition,
using the same encoding, in F2d

We briefly note that parties must check if private secret-shared inputs in
the online phase are correctly encoded and not arbitrary elements from R. In
the näıve case, this corresponds to verifying that parties input Z2k elements [1].
In our CAFEs, this can be done with the aid of preprocessing by making use
of the fact that Ein-encoded (resp. Eout-encoded) values will constitute a Z2k -
module. In the offline phase, parties generate shares of random encodings. Then,
in the online phase, to verify that some share is of the form 〈Ein(a)〉t, parties
can use a random share 〈Ein(r)〉t to open and check that the sum Ein(a + r) =
Ein(a) + Ein(r) is in the Z2k -module defined by Ein.

4.1 Hyper-Invertible Matrices and Z2k-modules

Let ΦM : Rn → Rn−t be the R-module homomorphism defined by multiplication
with a hyper-invertible matrix M ∈ R(n−t)×n, i.e. ΦM (x) = y, where y = Mx.
ΦM is trivial to define, as all the elements of M,x, and y belong to the ring R.
As the input and output encodings of CAFEs can be seen as some Z2k -module
N , we also need to define a Z2k -module homomorphism from multiplication by
M ∈ R(n−t)×n which preserves the properties of hyper-invertible matrices. We
will denote such homomorphism by ΨM : (Nd)n → (Nd)n−t.

As Nd is a Z2k -module, we know how to multiply its elements with scalars
from Z2k . But how can we multiply the elements of Nd with scalars from R,
the degree-d extension of Z2k? For the reader familiar with tensor products the

10

FLEX-R

SIMD-RInnerProd-R

FLEX-F

SIMD-F InnerProd-F

ΠSIMDds

ΠInnerProd-to-FLEXds

ΠFLEXds

ΠSIMDds

ΠInnerProd-to-FLEXds

ΠFLEXds

Fig. 1. Overview of how our Circuit Amortization Friendly Encodings relate to one
another. The direction of an edge indicates the transformation from one type of en-
coding to another. Dashed lines indicate protocols which we do not explicitly provide
in this work, but which are easy to build from the ones we give.

answer is simple: Nd is isomorphic to R⊗Z
2k
N as a Z2k -module, but R⊗Z

2k
N

can also be seen as an R-module compatible with the Z2k -module structure Nd.
Aiming for a broader audience, our following exposition will refrain from using
tensor products, giving instead explicit formulas to compute y = ΨM (x). We
refer those interested in a more systematic path towards the tensor product
argument to the sections on interleaved generalized secret sharing schemes in
[8], where all the mentions to vector spaces and finite fields can be replaced
by modules and Galois Rings without any harm. The tensoring technique was
also implicitly used by the authors of [1] when producing double-shares of Zpk
elements using matrices in (GR(pk, d))n×n.

Z2k-linear action of b ∈ R on Nd: Towards our goal of defining the Z2k -

module homomorphism ΨM : (Nd)n → (Nd)n−t, let us start by looking at how
the product between any a, b ∈ R is computed. If we express a in its addi-
tive representation, a =

∑
`∈[d] a` · ξ`, multiplication by b can be seen as the

Z2k -module homomorphism φb : Zd2k → Zd2k which maps the coefficients of a’s
additive representation to those of c = φb(a). We can represent this by the
following matrix-vector product:

 c0
...

cd−1

 =Mb ·

 a0

...
ad−1

 (3)

11

where Mb ∈ Zd×d
2k

is defined by φb. More explicitly, we know that

c = b · a = a0b0 + . . .+ (
∑

i,j∈[d],
i+j=`

aibj) · ξ` + . . .+ ad−1bd−1 · ξ2d−2, (4)

from which we reduce to the coefficients (c0, . . . , cd−1) ∈ Zd2k of c’s additive rep-
resentation, according to the polynomial h(X) such that R = Z2k [X]/(h(X)).
Hence, Mb can be written as the following sum, where the first matrix is lower
diagonal and Hb represents the reduction by the quotient polynomial in Equa-
tion (4):

Mb =

b0
b1 b0
...

...
. . .

bd−1 bd−2 . . . b0

+Hb

As R is isomorphic Zd2k , what we have shown in Equation (3) is the Z2k -linear
action of “multiplying by b” on an element a ∈ Nd when N = Z2k . Informally,
we can simply substitute the ai ∈ Z2k coefficients in Equation (3) with ai ∈ N ,
where N is a Z2k -module. As each ci would then be a Z2k -linear combination of
the ai’s, we have that ci ∈ N .

The Z2k-module homomorphism ΨM : (Nd)n → (Nd)n−t: Now, let M ∈
R(n−t)×n be a (hyper-invertible) matrix and x = (x1, . . . , xn) ∈ Rn, y =
(y1, . . . , yn−t) ∈ Rn−t be vectors such that y = Mx. We then have that

yi = mi,1 · x1 + . . .+mi,n · xn = φmi,1(x1) + . . .+ φmi,n(xn)

where (mi,1, . . . ,mi,n) ∈ Rn is the i-th row of M and φmi,j is the “multiplication
by mi,j” map. Hence, if we represent xj , yi ∈ R in their additive representations
and each of the Z2k -module homomorphisms φmi,j as in Equation (3), we obtain:

(yi,0, . . . , yi,d−1) = Mmi,1(x1,0, . . . , x1,d−1) + . . .+Mmi,n(xn,0, . . . , xn,d−1)

This leads to a “block-wise” view of the product of hyper-invertible matrices
with elements from Rn ∼= (Zd2k)n, which we depict in Equation (5).

y1,0

...
y1,d−1

...
yn−t,0

...
yn−t,d−1

=

Mm1,1 . . . Mm1,n

...
. . .

...
...

. . .
...

Mmn−t,1 . . . Mmn−t,n

·

x1,0

...
x1,d−1

...

...
xn,0

...
xn,d−1

(5)

12

The same way we did in Equation (3), we can replace x ∈ (Zd2k)n,y ∈ (Zd2k)n−t

with x ∈ (Nd)n,y ∈ (Nd)n−t. In other words, we can simply substitute each
xi,`, yj,` ∈ Z2k in Equation (5) with xi,`, yj,` ∈ N . This way, we have defined the
Z2k -module homomorphism ΨM : (Nd)n → (Nd)n−t. When writing y = ΨM (x)
while specifying each xi,`, yj,` ∈ N , we will use semicolons to preserve the lines
breaking up x ∈ (Nd)n and y ∈ (Nd)n−t into blocks of size d as in Equation (5).

Finally, the following lemma tells us that ΨM preserves the guarantees pro-
vided by Lemma 4.

Lemma 7. Let R = GR(2k, d) and let N be a Z2k -module. Consider the same
hypothesis as in Lemma 4 but with x ∈ (R⊗Z

2k
N)n and y ∈ (R⊗Z

2k
N)n−t, so

that now xi, yj ∈ Nd. For j ∈ [1, n − t], parse yj = (yj,0, . . . , yj,d−1) ∈ Nd. No
Adversary can distinguish any yj,` ∈ N from uniformly random.

Proof. Let H ⊂ [1, n] be a set of indices corresponding to any n − t honest
parties. Express y = M · x = MH · xH +M H̄ · xH̄ and denote zH = MH · xH .
As M is hyper-invertible, MH and all its entries are invertible. If we adopt the
“block-wise” view from Equation (5), H is selecting among the pre-established
size-d blocks and mi,j being invertible translates into Mmi,j being invertible. Due
to this and the fact that xH ∈ (Nd)n−t consist only of secret, random values, we
have that zH ∈ (Nd)n−t is uniformly random. Thus, so is y ∈ (Nd)n−t, which
in turn implies that the values yj,` ∈ N are i.i.d. uniformly random. ut

4.2 FLEX Encodings

Given m secret-shared values encoded as in the näıve [1] setting, our FLEX
encoding shows how to compute a circuit C with d outputs and multiplication
depth one. Such a circuit could of course be computed in the näıve setting, using
d openings in R; however we show how to compute it using only a single opening.

The encoding works as follows: During preprocessing, parties produce “double-
shares” of the form (〈r0〉t, 〈r1〉t, . . . , 〈rd−1〉t, 〈r〉2t) where r =

∑d−1
i=0 ri · ξi. Given

inputs {〈ai〉t}i∈[m], parties compute C(〈a0〉t, . . . , 〈am−1〉t). Let 〈zj〉2t for j ∈ [d]
denote the resultant shares. To reduce the degree of these d shares, parties do
the following:

1. Locally compute 〈z〉2t =
∑d−1
i=0 〈zi〉2t · ξi.

2. Open 〈w〉2t = 〈z〉2t − 〈r〉2t.
3. Parse w in its additive form as w ≡

∑d−1
i=0 wi · ξi.

4. Each party defines 〈zj〉t as 〈zj〉t := wj + 〈rj〉t for j ∈ [d].

Double share generation. It remains to be shown how to generate a double-
sharing for this encoding. ΠFLEXds in Protocol 4 shows how to do so using Hyper-
Invertible matrices. We remark that our protocol takes a different approach
than previous work, in that we utilize the Hyper-Invertible matrices only for
generating the double-sharings. By separating generation of the double-sharings
from their checking, we produce double-shares much more efficiently than [1], as
we can now batch check all the generated double-shares at once.

13

Protocol 4. ΠFLEXds — Double-sharings for FLEX encoding.

Let M ∈ R(n−t)×n be a Hyper-Invertible matrix and let ΨM : (Nd)n →
(Nd)n−t be as defined in Section 4.1 and depicted in Equation (5).

Generate. Parties produce a batch of d · (n− t) random double-shares as
follows:
1. For i ∈ [n], ` ∈ [d], each Pi samples at random si` ∈ Z2k and com-

putes si =
∑d−1
`=0 s

i
` · ξ`. Call ΠShare(s

i
`, t) and ΠShare(s

i, 2t) to dis-
tribute 〈si`〉t and 〈si〉2t shares to all parties in P.

2. Parties compute (〈r1〉2t, . . . , 〈r(n−t)〉2t) = M · (〈s1〉2t, . . . , 〈sn〉2t).
3. Parties compute:

(〈r1
0〉, . . . , 〈r1

d−1〉; . . . ; 〈rn−t0 〉, . . . , 〈rn−td−1〉)
= ΨM

(
〈s1

0〉, . . . , 〈s1
d−1〉; . . . ; 〈sn0 〉, . . . , 〈snd−1〉

)
Batch Check. Let m be the number of batches generated in the previous

step. Assume that m(n − t) > λ. Throughout, j ∈ [m] identifies each
batch.
I. Z2k-outputs: We check that each 〈rij,`〉t is a sharing of a Z2k element.

1. For each 〈rij,`〉t and τ ∈ [λ], call χi,τj,` ← Frand({0, 1}) to obtain a
random bit.

2. For each τ ∈ [λ], compute:

〈xτ 〉t =

m−1∑
j=0

n−t∑
i=1

d−1∑
`=0

χi,τj,` · 〈r
i
j,`〉t.

3. Call ΠrPub(x0, . . . , xλ−1). If xτ 6∈ Z2k for τ ∈ [λ], abort.
4. For τ ∈ [λ] pick a tuple (iτ , jτ , `τ) ∈ ([m] × [1, n −
t] × [d]) such that χiτ ,τjτ ,`τ

= 1 and discard the shares

〈riτjτ ,0〉t, . . . , 〈r
iτ
jτ ,d−1〉t, 〈r

iτ
jτ
〉2t. These shares are considered as

having acted like masks in the computation of 〈xτ 〉t as a lin-
ear combination.

II. Equality: Next we check that each double-share satisfies 〈rij〉2t =∑d−1
`=0 〈rij,`〉t · ξ`. Let λ̄ such that λ̄d > λ.

1. For τ ∈ [λ̄], j ∈ [m] and i ∈ [1, n − t]. Call χi,τj ← Frand(A),

where A is an exceptional set of R of length 2d.
2. For τ ∈ [λ̄], compute:

〈yτ 〉2t =

m−1∑
j=0

n−t∑
i=1

χi,τj · (〈r
i
j〉2t −

d−1∑
`=0

〈rij,`〉t · ξ`).

Call ΠrPub(y0, . . . , yλ̄−1). If yτ 6= 0 for any τ ∈ [λ̄], abort.

14

Output. Let D = {(iτ , jτ) | τ ∈ [λ]} be a set of indices corresponding to
the discarded values in Step I.4 of Batch Check. For (i, j) ∈ ([m]×[1, n−
t]) \D output the double-shares 〈rij,0〉t, . . . , 〈rij,d−1〉t, 〈rij〉2t as valid.

Theorem 1. ΠFLEXds in Protocol 4 securely produces a minimum of m·(n−t)−λ
valid double-sharings for the FLEX encoding.

Proof. Let A ⊂ [1, n] denote the indices of the parties corrupted byA and assume
a non-aborting execution ΠFLEXds. We do not care about the abort scenario, as
in such case all double-shares are discarded and, furthermore, no private MPC
inputs have been yet provided.

Correctness. In an honest protocol execution, it follows from the discussion in
Section 4.1 that ΠFLEXds produces double-shares of the right form. When A
deviates from the protocol, we need to look at what is implied by the non-
aborting execution of Batch Check.

I. Z2k-outputs: See each shared value 〈rij,`〉t in its unique additive representa-

tion, i.e. rij,` =
∑d−1
ι=0 r

i
j,`,ι · ξι where rij,`,ι ∈ Z2k . What we want to prove is

that 〈rij,`〉t = 〈rij,`,0〉t or, in other words, that rij,`,ι = 0 for ι ∈ [1, d− 1]. For

τ ∈ [λ], define also xτ =
∑d−1
ι=0 xτ,ι · ξι. Then we have that:

xτ,ι =

m∑
j=1

n−t∑
i=1

d−1∑
`=0

χi,τj,` · r
i
j,`,ι, ι ∈ {1, . . . , d− 1}.

Let M = m · (n − t) · d. We can look at xτ,ι as the evaluation in χi,τj,` of an

M -variate polynomial f of degree one with coefficients rij,`,ι ∈ Z2k . Assume

f is not the zero polynomial (i.e. that there exists any rij,`,ι 6= 0). Then,
by applying the Schwartz-Zippel Lemma (c.f. Lemma 1), as each variable
is evaluated only in elements of the exceptional set A = {0, 1} ⊂ Z2k , we
have that Prχτ←{0,1}M [xτ,ι = 0] = Prχτ←{0,1}M [f(χτ) = 0] ≤ 1/2. Let

χ = (χ1, . . . ,χλ). We conclude that for ι ∈ {1, . . . , d− 1}:

Pr
χ←{0,1}M·λ

[x0,ι = . . . = xλ,ι = 0] ≤ 2−λ.

Applying a union bound, the previous equation implies that the Adversary
can produce a rij,` /∈ Z2k (i.e. a rij,`,ι 6= 0 for ι 6= 0) with a success probability

of at most (d− 1) · 2−λ.
II. Equality: Let m̃ = m · (n − t) · d. We apply the Schwartz-Zippel Lemma

(c.f. Lemma 1), where each variable is evaluated only in elements of the
exceptional set A ⊂ GR(2k, d) of size |A| = 2d. For τ ∈ [λ̃], we have that

15

Prχτ←Am̃ [yτ = 0] = Prχτ←Am̃ [f(χτ) = 0] ≤ 2−d. Let χ = (χ1, . . . ,χλ̃), we
conclude:

Pr
χ←Am̃·λ̃

[y0 = . . . = yλ̃ = 0] ≤ 2−λ̃·d,

As λ̃ · d > λ, we are done.

Privacy. Let’s first look at the Generate step. The Adversary knows at most t
of the degree-2t inputs to which the hyper-invertible matrix M is applied, namely
{〈si〉2t}i∈A. By Lemma 4, we know that the values {〈ri〉2t}i∈[1,n] are secret and
uniformly random. For the degree-t sharings, A know t blocks of inputs, namely
{〈si0〉t, . . . , 〈sid−1〉t}i∈A. By Lemma 7, we know that the values {〈ri`〉t}i∈[1,n],`∈[d]

are secret and i.i.d. uniformly random from A’s perspective.
Finally, the outputs of Batch Check do not leak any information on the

output 〈r〉 values. This follows from the fact that yτ = 0 and that each revealed
xτ is one-time padded by the discarded 〈r〉 values indexed by the set D =
{(iτ , jτ) | τ ∈ [λ]}. ut

Generation of random bits for FLEX encoding. In Protocol 5 ΠFLEXbits, we
give an adaptation of the RandBit protocol of [11] to producing shares over R.
Moreover, applying FLEX encoding enables us to produce batches of d random
bits, compared to producing a single random bit if we were to only replace the
arithmetic sharing with Shamir secret sharing over R.

Protocol 5. ΠFLEXbits — Random bits for the FLEX encoding.

Let R̃ = GR(2k+2, d), R = GR(2k, d). Parties produce m batches of d
random bits as follows:

1. For j ∈ [m], ` ∈ [d] parties produce shares 〈uj,`〉R̃t of secret, random
uj,` ∈ Z2k+2 . This can be done as in the ΠFLEXds (Protocol 4) by skipping
steps related to the degree 2t sharings, including skipping Step II. of
Batch Check.

2. Compute 〈aj,`〉R̃t = 2 · 〈uj,`〉R̃t + 1 and 〈(aj,`)2〉R̃2t = 〈aj,`〉R̃t · 〈aj,`〉R̃t .

3. Compute 〈ej〉R̃2t = 〈(aj,0)2〉R̃2t + 〈(aj,1)2〉R̃2t · ξ + · · ·+ 〈(aj,d−1)2〉R̃2t · ξd−1.
4. Call ΠrPub to reconstruct ej for all j ∈ [m] and parse each revealed value
ej in its additive form as ej = ej,0 + ej,1 · ξ + · · ·+ ej,d−1 · ξd−1

5. For j ∈ [m], ` ∈ [d], let cj,` be the smallest square root modulo 2k+2 of
ej,` and let c−1

j,` be its inverse.

6. Each party computes 〈dj,`〉R̃t = c−1
j,` · 〈aj,`〉R̃t + 1.

7. Parties then divides their shares of dj,` by 2. This division is well-defined,

and we denote the result of this operation 〈b̃j,`〉R̃t .

8. Parties output 〈bj,`〉Rt = πk(〈b̃j,`〉R̃t).

16

Proposition 2. ΠFLEXbits in Protocol 5 securely produces m ·d shares of random
bits for the FLEX encoding.

Proof. Our proof, as our protocol, is very similar to that of [11, Proposition IV.1].
We limit our discussion to correctness, as privacy follows from the properties of
the secret sharing scheme. Observe that the coefficients ej,` ∈ Z2k+2 of ej ’s
additive representation are all odd integers, since aj,` = 2 · uj,` + 1. Hence, cj,`
is also odd, which implies the existence of c−1

j,` . Now, as both c−1
j,` and aj,` are

square roots of ej,`, we have that:

(c−1
j,` · aj,`)

2 ≡ c−2
j,` · a

2
j,` ≡ e−1

j,` · ej,` ≡ 1 mod 2k+2

Thus, by Lemma 6, c−1
j,` · aj,` ≡ ±1 mod 2k+1. Moreover, 1 and −1 are as likely

in this last congruence, since aj,` is guaranteed to be a uniformly random odd
value (because uj,` is uniformly random) and c−1

j,` is chosen in a unique, pre-

established way. Hence, dj,` = c−1
j,` · aj,` + 1 is congruent to a uniformly random

value among {0, 2} modulo 2k+1.
Finally, we need to argue about the “division by two” of dj,`, which results in

a b̃j,` that is congruent (with the same probability) to either 0 or 1 modulo 2k.

We perform such “division” by looking at the shares of 〈dj,`〉R̃ as elements of Z,
so this operation is well-defined as long as each share of dj,` is an even number.
Notice that this is the case, since:

〈dj,`〉R̃t = c−1
j,` · (2 · 〈uj,`〉

R̃
t + 1) + 1 = 2 · c−1

j,` · 〈uj,`〉
R̃
t + (1 + c−1

j,`)

As c−1
j,` is invertible in Z2k+2 , it is odd. Hence, an even public constant (1 + c−1

j,`)

is added to 2 · c−1
j,` · 〈uj,`〉R̃t . As the shares of the latter value are clearly even

(since they are the result of multiplying by an even public constant), we can

conclude that all the shares of 〈dj,`〉R̃t are even. Finally, observe that if we re-
interpret the new divided shares of dj,` as elements of Z2k+1 , it could be that their
reconstruction is not an element among {0, 1}, but rather among {0, 1, 2k, 2k+1}.
Hence, we need to compute 〈πk(b̃j,`)〉Rt , which we can just do by computing

πk(〈b̃j,`〉R̃) as shown in Proposition 1. ut

Analysis. We now analyze the FLEX encoding. This works over näıve shares (i.e.
by embedding Z2k into GR(2k, d), as in [1]) and outputs näıve shares. Online,
it can be used to compute any depth 1 circuit with any number of inputs and d
outputs at the cost of opening a single element in R.

Double shares for the FLEX encoding can be precomputed in batches of d·(n−
t) with n ·d calls to ΠShare(·, t) and n calls to ΠShare(·, 2t). Checking these double
shares requires (λ+ λ̄)/(n− t) invocations of ΠrPub. Notice the communication
cost of the Batch Check step of ΠFLEXds is independent of the number of shares
being checked as long as m · (n − t) > λ, where m is the number of batches of
shares generated. The amortized communication cost is therefore approximately
3(d+1)

2 calls to ΠShare per double-share.

17

ΠFLEXds can be adapted to generate shares of random Z2k elements by skip-
ping steps related to degree-2t shares. Doing so yields batches of d·(n−t) random
shares with d calls to ΠShare, and only requires λ/(n − t) calls to ΠrPub for the
Batch Check. Producing shares of ` random bits in ΠFLEXbits then only requires
generating shares of ` random Z2k+2 elements and `/(d · (n− t)) calls to ΠrPub.

4.3 InnerProd Encodings

Given sharings of the inputs, inner products can be computed with a single
opening in our previous FLEX encoding, which incurs very little communication.
Nevertheless, there are two major problems with such an approach: First, one
still needs to individually share each of the elements in the input vectors. Second,
the amount of multiplications to be computed is the same as in the näıve case.

In order to overcome such limitations, we introduce our InnerProd encoding
technique. Let δ be the encoding capacity of the encoding and consider the fol-
lowing two Galois Ring elements a, b ∈ R given in their additive representation:

a = a0 + a1 · ξ + · · ·+ aδ−1 · ξδ−1,

b = bδ−1 · ξδ + bδ−2 · ξδ+1 + · · ·+ b0 · ξ2δ−1. (6)

Our goal is that, by computing c = a·b, one can retrieve the value
∑δ−1
i=0 ai ·bi

as the coefficient associated to ξ2δ−1 in c. In order to achieve this, we need
to impose two restrictions on δ. Let h(X) be the degree-d polynomial used to
represent the Galois Ring, i.e. R = Z2k [X]/(h(X)). Define d̃ to be the degree
of the second-highest monomial in h(X). The following bounds on δ need to be
imposed:

1. δ < (d+ 1)/2. This is to ensure that b can be defined in Equation (6).
2. δ < d− d̃+ 1. This is in order to avoid “wrap-around” terms to be added to

the coefficient associated to ξ2δ−1 in c.

More precisely, we define encodings Einnin,L,E
inn
in,R,E

inn
out of a,b ∈ (Z2k)δ, c ∈ Z2k

as follows:

Einnin,L(a) = a0 + a1 · ξ + · · ·+ aδ−1 · ξδ−1,

Einnin,R(b) = bδ−1 · ξδ + bδ−2 · ξδ+1 + · · ·+ b0 · ξ2δ−1,

Einnout (c) = c · ξ2δ−1 +
∑

`∈[d], 6̀=2δ−1

r` · ξ`, r` ← Z2k .

Double shares from InnerProd to FLEX (ΠInnerProd-to-FLEXds). The results
of the InnerProd encoding can be easily converted into inputs of the FLEX en-
coding by producing double shares. For a randomly sampled r ← GR(2k, d),

r =
∑d−1
i=0 ri · ξi, these are of the form 〈r〉2t, 〈r2δ−1〉t or, what is the same,

〈Einnout (r2δ−1)〉2t, 〈r2δ−1〉t. Thus, these double shares can be produced exactly as
in ΠFLEXds (Protocol 4) by ignoring d− 1 of the degree-t shares.

18

Generation of random bits for InnerProd encoding. Random bits can be
generated in exactly the same way as in the previous encoding (see ΠFLEXbits Pro-
tocol 5). Nevertheless, those bits are not quite enough for values in the InnerProd
encoding. In particular, they cannot be used as-is for masking a value encoded
according to Einnout . Let c = Einnin,L(a) · Einnin,R(b). If we write c =

∑d−1
i=0 ci · ξi, we

have that c2δ−1 has the result of the inner product between a and b, but the
other components of c leak further information on the input vectors. Hence,
when reconstructing c, we will need a single random mask r satisfying that
r =

∑
`∈[d], 6̀=2δ−1 r` · ξ`, i.e. ensuring that r2δ−1 = 0. Such values can be pro-

duced using the same ideas as in ΠFLEXds or, more efficiently as we only need to
produce one such mask for each bit decomposition in the protocol, by adapting
the RandEl protocol of [1].

Analysis. As input, InnerProd encoding takes two sharings encoded as described
above. The output is an element of R ∼= Zd2k with the inner product as its
(2δ − 1)’th coefficient. The online cost is a single opening in R, and the offline
cost is the same as for FLEX encoding (since double-shares are produced with
the same protocol). It is worth remarking here that one can compute inner
products with näıve shares as well, at the same online communication cost.
I.e., given näıve sharings 〈a0〉, . . . , 〈ak−1〉 and 〈b0〉, . . . , 〈bk−1〉 for some k, the

inner product can be computed as 〈c〉 =
∑k−1
i=0 〈ai〉〈bi〉, because addition does

not increase the degree of a share. However, InnerProd encoding allows us to
decrease local computation (in the online phase) by around a factor of d/2,
which is significant as operations in R are non-trivial.

4.4 SIMD Encodings

Our final encoding allows us to compute multiple circuits in parallel. Hence,
we dub it SIMD, i.e., Single Instruction Multiple Data. Reverse Multiplication
Friendly Embeddings (RMFEs), as introduced in [8,10], can also be seen as a
SIMD encoding. On a technical level, the combinatorial problem behind our
SIMD construction has been previously applied in the context of packing for
homomorphic encryption [16] and leakage-resilient MPC [7].

Let δ denote the encoding capacity, and let I = {i0, . . . , iδ−1} and J =
{j0, . . . , jδ−1} be index sets. The sets I, J will describe in which positions of an
element in R we will “store” encoded Z2k elements. More precisely, we define
two Z2k -linear encodings ESIMD

in , ESIMD
out of a ∈ (Z2k)δ as follows:

ESIMD
in (a) = a0 · ξi0 + a1 · ξi1 + · · ·+ aδ−1 · ξiδ−1 ,

ESIMD
out (a) =

δ−1∑
k=0

ak · ξjk +
∑

`∈[d]\J

r` · ξ`, r` ← Z2k

Regardless of how we choose I and J , we have that adding ESIMD
in -encodings (resp.

ESIMD
out -encodings) results in an ESIMD

in -encoding (rep. ESIMD
out -encodings). Neverthe-

less, we further ask our encodings to satisfy the relation given by Equation (2).

19

In particular, we want following equality to hold:

ESIMD
in (a) · ESIMD

in (b) + ESIMD
out (c) = ESIMD

out (a ∗ b + c) (7)

where ∗ denotes the component-wise product. In order to achieve this, we need
to introduce the following restrictions to the way the index sets are chosen.

1. j` = 2 · i`. This implies that the product a`b` ends up in the degree j`
monomial.

2. For all i` ∈ I we require that i` < d/2, so that no wrap-around happens
during reduction in R.

3. For all i`, iι ∈ I that are pairwise different, then i` + iι /∈ J . This implies
that cross products between a` and bι (and aι and bδ) do not end up on a
monomial of J .

Under these restrictions, we obtain the following when multiplying ESIMD
in (a) and

ESIMD
in (b):

ESIMD
in (a) · ESIMD

in (b) = (a0 · ξi0 + · · ·+ aδ−1 · ξiδ−1) · (b0 · ξi0 + · · ·+ bδ−1 · ξiδ−1)

=
∑
`∈[δ]

(
a`b` · ξj` +

∑
ι∈([δ]\{`})

(a`bι + aιb`) · ξi`+iι
)
.

Notice that this is different from ESIMD
out (a ∗b), as the monomials of degree j /∈ J

have coefficients which have not been sampled independently and uniformly at
random from Z2k . Yet, we have that Equation (7) holds.

Turning our attention to δ, asymptotically we have δ ∼ d0.6, as pointed out
by [16]. However, for small values of d this allows for relatively large values of δ.
Taking into account that in Shamir secret sharing over Galois Rings (or small
finite fields) we would have that d = O(log n), we get reasonable values for δ
despite the poor asymptotic. Table 2 provides some examples of the index sets
defining ESIMD

in and ESIMD
out for different values of d.

d δ I J

3–6 2 {0, 1} {0, 2}
7–8 3 {0, 1, 3} {0, 2, 6}
9–16 4 {0, 1, 3, 4} {0, 2, 6, 8}
17 5 {0, 1, 3, 7, 8} {0, 2, 6, 14, 16}

Table 2. Examples of I and J for different values of d.

Double share generation. Protocol 6 shows how to generate double-shares for
SIMD encoding. As in our previous protocols, this is a two-step process, where
we first generate shares in batches and then we check for correctness all of them
at once.

20

Protocol 6. ΠSIMDds — Double-sharings for SIMD encoding.

Let M ∈ R(n−t)×n be a Hyper-Invertible matrix and δ the packing capability
of R. Let ΨM : (Nd)n → (Nd)n−t be as defined in Section 4.1 (Equation (5)).

Generate. Parties produce a batch of d · (n− t) random double-shares as
follows:
1. For ` ∈ [d], each party Pi samples si` ← (Z2k)δ and calls both
ΠShare(Ein(si`), t) and ΠShare(Eout(s

i
`), 2t).

2. Parties apply ΨM to their degree-t and degree-2t shares in the same
way:

(〈Ein(r1
0)〉, . . . , 〈Ein(r1

d−1)〉; . . . ; 〈Ein(rn−t0)〉, . . . , 〈Ein(rn−td−1)〉)
= ΨM

(
〈Ein(s1

0)〉, . . . , 〈Ein(s1
d−1)〉; . . . ; 〈Ein(sn0)〉, . . . , 〈Ein(snd−1)〉

)
(〈Eout(r1

0)〉, . . . , 〈Eout(r1
d−1)〉; . . . ; 〈Eout(rn−t0)〉, . . . , 〈Eout(rn−td−1)〉)

= ΨM
(
〈Eout(s1

0)〉, . . . , 〈Eout(s1
d−1)〉; . . . ; 〈Eout(sn0)〉, . . . , 〈Eout(snd−1)〉

)
Batch Check. Let m be the number of batches produced in the previous

step. We need to check that the degree t and degree 2t shares are using
their respective encodings (I and J). We also verify that both shares
encode the same vector r. Throughout, j ∈ [m] identifies each batch.
1. For each 〈Ein(rij,`)〉, 〈Eout(rij,`)〉 and τ ∈ [λ], parties generate a ran-

dom bit χi,τj,` ← Frand({0, 1}).
2. For τ ∈ [λ], parties compute:

〈xτ 〉t =

m−1∑
j=0

n−t∑
i=1

d−1∑
`=0

χi,τj,` · 〈Ein(rij,`)〉t

〈yτ 〉2t =

m−1∑
j=0

n−t∑
i=1

d−1∑
`=0

χi,τj,` · 〈Eout(r
i
j,`)〉2t

and call ΠrPub to reconstruct both xτ , yτ .
3. If for any τ ∈ [λ] parties observe either that

– xτ is not a I-encoding (i.e. xτ /∈ Im(Ein)), or
– E−1

in (xτ) 6= E−1
out(yτ)

then they abort.
4. For τ ∈ [λ], let (iτ , jτ , `τ) ∈ {[m] × [1, n − t] × [d]} be a triplet of

indices such that χiτ ,τjτ ,`τ
= 1. Define D = {(iτ , jτ , `τ) | τ ∈ [λ]}.

Output. For (i, j, `) ∈ {[m]×[1, n−t]×[d]}\D, where D is defined on Step 4
of Batch Check, output the double sharings (〈Ein(rij,`)〉t, 〈Eout(rij,`)〉2t).

21

Theorem 2. ΠSIMDds in Protocol 6 securely produces m · (n − t) · d − λ valid
double-sharings for the SIMD encoding.

Proof. Let A ⊂ [1, n] denote the indices of the parties corrupted byA and assume
a non-aborting execution ΠSIMDds. We do not care about the abort scenario, as
in such case all double-shares are discarded and, furthermore, no private MPC
inputs have been yet provided.

Correctness. In an honest protocol execution, it follows from the discussion in
Section 4.1 that ΠSIMDds produces double-shares of the right form. When A
deviates from the protocol, we need to look at what is implied by the non-
aborting execution of Batch Check.

Denote by 〈rij,`〉 (resp. 〈r̃ij,`〉) the output from Generate that in a fully
honest execution would be 〈Ein(rj,`)〉t (resp. 〈Eout(rj,`)〉2t). Batch Check has
two goals. The first one is ensuring that 〈rij,`〉 (resp. 〈r̃ij,`〉) is actually an Ein-

encoding (resp. Eout-encoding). In particular, if we see each rij,` ∈ R in its unique

additive representation rij,` =
∑d−1
ι=0 r

i
j,`,ι · ξι (where rij,`,ι ∈ Z2k), we want to

prove that ∀ι /∈ I, rij,`,ι = 0. Applying the same reasoning as in the proof of the
Z2k-outputs step of ΠFLEXds (see Theorem 1), we conclude from the Schwartz-
Zippel Lemma that this happens with probability at most (d− |I|) · 2−λ.

Express r̃ij,`, xτ , yτ in their unique additive representations, i.e. r̃ij,` =
∑d−1
ι=0 r̃

i
j,`,ι·

ξι and similarly for the others. The second goal of Batch Check is prov-
ing that ∀ι ∈ I, rij,`,ι = r̃ij,`,2ι. Let M = m · (n − t) · d. We can look at

fτ,ι = xiτ,ι − yiτ,2ι as an M -variate linear polynomial, where the coefficients

are rij,`,ι− r̃ij,`,2ι and the variables are evaluated at χi,τj,` ∈ {0, 1}. Once again, by
the Schwartz-Zippel Lemma, we have that if fτ,ι is not identically equal to zero,
then Prχτ←AM [fτ,ι(χ

τ) = 0] ≤ 1/2. Hence, ∀ι ∈ I, if we let χ = (χ1, . . . ,χλ),
then Prχ←{0,1}M·λ [f0,ι = . . . = fλ,ι = 0] ≤ 2−λ. Applying a union bound we can

conclude that, if the test passes, it is at most with probability |I| · 2−λ that we
do not have the same rij,` on the Ein and the Eout encodings.

Privacy. Let’s first look at the Generate step. For the degree-t and the degree-
2t shares, respectively, the Adversary knows at most t blocks of inputs, namely
{〈Ein(si0)〉t, . . . , 〈Ein(sid−1)〉t}i∈A and {〈Eout(si0)〉2t, . . . , 〈Eout(sid−1)〉2t}i∈A. By
Lemma 7, we know that the values {〈Ein(ri`)〉t, 〈Eout(ri`)〉2t}i∈[1,n],`∈[d] are secret
and i.i.d. uniformly random from A’s perspective.

Finally, the outputs of Batch Check do not leak any information on the
output values. This follows from the fact that each revealed (xτ , yτ) is one-time
padded by the discarded values indexed by the set D = {(iτ , jτ) | τ ∈ [λ]}. ut

Random bit generation for SIMD. This section we give a way for producing
shares of random bits for SIMD, but first we introduce an intermediate protocol
for producing shares of ESIMD

out (a), where a ∈ (Z2k)δ is some fixed, known vector.
This is given in Protocol 7 as ΠSIMDout.

22

At a high level, ΠSIMDout works by having parties generate zero shares and
offsetting these zero shares by a. Producing shares of zero is done in the same
manner as producing random ESIMD

out shares in ΠSIMDds by having parties instead
use s = 0. Batch checking also works in the same way as in ΠSIMDds, with parties
checking yτ = ESIMD

out (0). Proof of Proposition 3 follows the proof of Theorem 2.

Protocol 7. ΠSIMDout — Producing 〈Eout(a)〉 for a fixed a.

Let M ∈ R(n−t)×n a Hyper-Invertible matrix and let ΨM : (Nd)n →
(Nd)n−t be as defined in Section 4.1 and depicted in Equation (5). Let
δ the packing capability of R. Denote by 0 the all-zero vector of length
δ and parse the input a ∈ Zδ2k as a = (a0, . . . , aδ−1). Recall that Eout is
defined by J = {j0, . . . , jδ−1}.

Generate. Parties produce a batch of d · (n − t) random Eout-sharings of
zero as follows:
1. For ` ∈ [d], each Pi samples zi` = Eout(0) and calls ΠShare(z

i
`, t).

2. Parties apply ΨM to their shares in the following way:

(〈Z1
0 〉, . . . , 〈Z1

d−1〉, . . . , 〈Zn−t0 〉, . . . , 〈Zn−td−1〉)
= ΨM

(
〈z1

0〉, . . . , 〈z1
d−1〉, . . . , 〈zn0 〉, . . . , 〈znd−1〉

)
Batch Check. Let m be the number of batches produced in the previous

step. For j ∈ [m], ` ∈ [d] and i ∈ [1, n − t], we need to verify that
〈Zij,`〉 = Eout(0).

1. For each 〈Zij,`〉 and τ ∈ [λ], parties sample χi,τj,` ← Frand({0, 1}).
2. For τ ∈ [λ], parties compute:

〈xτ 〉 =

m−1∑
j=0

n−t∑
i=1

d−1∑
`=0

χi,τj,` · 〈Z
i
j,`〉

and call ΠrPub to reconstruct xτ .
3. If for any τ ∈ [λ] parties observe that E−1

out(xτ) 6= 0, they abort.
4. For τ ∈ [λ], let (iτ , jτ , `τ) ∈ {[m] × [1, n − t] × [d]} be a triplet of

indices such that χiτ ,τjτ ,`τ
= 1. Define D = {(iτ , jτ , `τ) | τ ∈ [λ]}.

Output. Let A =
∑δ−1
k=0 ak ·Xjk . For (i, j, `) ∈ {[m]× [1, n− t]× [d]} \D,

where D is defined on Step 4 of Batch Check, output the m ·(n−t) ·d−λ
different sharings of a as 〈Eout(a)〉 = 〈Zij,`〉+A.

Proposition 3. ΠSIMDout in Protocol 7 securely produces a minimum of m ·(n−
t) · d− δ shares of a public value for the SIMD encoding.

ΠSIMDbits in Protocol 8 gives a way of generating shares of the form 〈ESIMD
out (b)〉,

where b ← {0, 1}δ. Similar to ΠFLEXbits, this follows the outline of the RandBit

23

protocol of [11]. The main differences are in Steps 3 and 6 where add ESIMD
out

shares of some publicly know values, which we produce using ΠSIMDout. The rea-
son for this is that elements in ESIMD

out have uniformly random coefficients in the
positions j /∈ J . As the multiplication of two ESIMD

in values introduces the result
of some cross-products of the Z2k encoded values in such positions, we need to
add these secret sharings of ESIMD

out (0) and ESIMD
out (1) as a masking mechanism. By

Equation (7), we obtain the displayed results.

Protocol 8. ΠSIMDbits — Random bits for SIMD encoding.

Let R̃ = GR(2k+2, d), R = GR(2k, d), and δ the packing capability of R.
Denote 0 and 1 be the all-zero and all-one vectors of length δ, respectively.
For j ∈ [m], parties produce 〈Eout(bj)〉t, where bj ← {0, 1}δ as follows:

1. For j ∈ [m] parties produce shares 〈Ein(uj)〉R̃t of secret, random
uj = (uj,0, . . . , uj,δ−1) ∈ (Z2k+2)δ. This can be done as in ΠSIMDds (Pro-
tocol 6) by skipping the generation of Eout values there and hence the
computation of yτ .

2. Compute 〈Ein(aj)〉R̃t = 2 · 〈Ein(uj)〉R̃t + Ein(1).

3. Compute 〈Eout(a2
j)〉R̃2t = 〈Ein(aj)〉R̃t · 〈Ein(aj)〉R̃t + 〈Eout(0)〉R̃t where

〈Eout(0)〉R̃t is produced using Protocol 7.

4. Call ΠrPub to reconstruct 〈Eout(a2
j)〉R̃2t for all j ∈ [m] and parse the

revealed a2
j as a vector (a2

j,0, . . . , a
2
j,δ−1) ∈ (Z2k+2)δ.

5. For ` ∈ [δ], let cj,` be the smallest root modulo 2k+2 of a2
j,` and let c−1

j,`

be its inverse. Write c−1
j = (c−1

j,0 , . . . , c
−1
j,δ−1).

6. Compute 〈Eout(dj)〉R̃t = Ein(c−1
j) · 〈Ein(aj)〉R̃t + 〈Eout(1)〉R̃t , where

〈Eout(1)〉R̃t is produced using Protocol 7.

7. Finally, each party divides their share of 〈Eout(dj)〉R̃t by 2. We denote
the result of this operation 〈Eout(bj)〉Rt , which is our final output.

Proposition 4. ΠSIMDbits in Protocol 8 securely produces shares of m · δ ran-
dom bits for the SIMD encoding, where δ is the SIMD packing capacity of R =
GR(2k, d).

Analysis. We now discuss the SIMD encoding. This encoding can compute in
parallel δ ≈ d/4 + 1 circuits that each have one multiplication and one output.

Batches of d ·(n−t) double shares for SIMD encoding can be generated in the
offline phase with 2 ·d ·n calls to ΠShare. Similar to the FLEX Batch Check, the
communication cost of the Batch Check of SIMD double shares is independent
of the number of batches produced. Checking m batches of double shares can be
done with 2 · λ/(n− t) calls to ΠrPub.

24

Producing d · (n− t) shares of encodings (both fixed values or random) takes
d calls to ΠShare. The cost of the batch check in either of these cases takes
λ/(n − t) calls to ΠrPub. Producing m random bits takes m/(n − t) calls to
ΠShare, (λ+m)/(n− t) calls to ΠrPub, and 2 ·m calls to ΠSIMDout.

5 Efficiency Analysis

We implemented ΠFLEXds and ΠSIMDds and compared them with a double-share
generation protocol extracted from [1, Figure 2] as a baseline.5 We provide var-
ious microbenchmarks for different stages of these protocols, as well as our
InnerProd encoding scheme. For each of these protocols, we are mainly inter-
ested in their throughput, but we also compare our approach with that of [1] for
a specific circuit in Section 5.5.

5.1 Experiment setup.

We set k = 64 and d = 4. With k = 64, all operations in Z2k can take place on
uint64 t types, and setting d = 4 lets us support up to 15 parties. Our Galois
Ring is therefore GR(264, 4) = Z264 [X]/(h(X)) where h(X) = X4 + X + 1.
Our implementation was written in C++ and the code can be found at https:
//github.com/eysalee/cafe. Openmp was used in various places to speed up
local computation.

Experiments were run on c5.9xlarge machines on a local network. Each
machine is equipped with 36 cores, 76gb of memory, and are connected with a
10Gpbs network. The average rtt between machines is 0.29ms.

Everlasting/computational security. Our experiments constitute a prototype and
hence are not a statistically secure implementation of our protocols. If we ignore
the (obvious) fact that we do not use pure randomness in ΠShare, we actually
implement an everlasting version of our protocols [19]. In more detail, our pro-
tocols are secure against adversaries that are computationally unlimited after
the protocol execution. This stems from the fact that we implement Frand in a
computationally secure fashion, so that we can toss coins non-interactively once
a PRG seed is sampled. Thus, our overall protocol is everlasting-secure, since
we only require Frand to be computationally unpredictable during the protocol
execution, but once the randomness has already been sampled, an unbounded
adversary breaking the PRG cannot harm the protocol.

5 Although the protocol in [1] is used to generate sharings of random elements, it
is trivial to modify it to generate double-shares to use for multiplication: The same
random element is shared twice with degree t and 2t, and when the check is performed
we additionally check that the opened shares are equal.

25

https://github.com/eysalee/cafe
https://github.com/eysalee/cafe

5.2 Experiments

We experimentally investigate the efficiency of the preprocessing protocols pre-
sented in Protocol 4 (ΠFLEXds) and Protocol 6 (ΠSIMDds) by comparing them
against a double share procedure presented extracted from [1]. For each proto-
col, we measured the running time of the generation step as well as the batch
check. For the protocol in [1], the generation step encompasses generating ran-
domness, sending shares and evaluating the hyper-invertible matrices. The check
step involves reconstructing 2t double-shares per batch and verifying that (1) the
reconstructed tuple are Z2k elements and (2) that the two shares are the shame
(thus being a valid double share). We note that our implementation of [1] uses
ΠrPub rather than ΠrPriv, making it somewhat sub-optimal. Nevertheless, we re-
mark that the communication complexity of ΠrPub is roughly just twice that
of ΠrPriv, and that the extra round in ΠrPub will not affect much our reported
numbers due to the low network latency. Hence, even with this quantitative
inaccuracies, the qualitative results of our experiments remain the same.

We ran each protocol several times and took the average of the running
time. Each protocol was run with n set to 4, 7, 10 and 13 parties (thus giving us
thresholds 1, 2, 3 and 4). For each n we generated 1260, 12 600, 63 000, 126 000
and 630 000 double-shares.6 For our InnerProd encoding, we report on local com-
putation times. Since generating double shares for this encoding is captured by
the experiments pertaining to ΠFLEXds, looking at the speedup in terms of local
computation is more insightful.

Finally, we use our results to analytically obtain the running time of evalu-
ating an SVM on 100 inputs in parallel. This is done both to get an intuition
about the cost of our protocols in connection with a real application, as well as
to showcase the functionality of our SIMD encoding.

5.3 Results

Figure 2 shows running time for increasing number of double share generation for
a fixed number of parties (4 and 13).7 Interestingly, we see that the näıve double-
share protocol of [1] is faster for a smaller number of parties. However, when the
number of parties increase, our protocols are a lot more efficient.

We can further see this fact in Figure 3. Indeed, the running time of both
our protocols increase only slightly when the number of parties increase. This
demonstrates the benefit of the check we utilize, which does not depend on
the number of parties, as opposed to the protocol in [1] which need to open 2t
shares per batch. We note that the plots for our protocols should ideally follow a
parabolic curve as well, but that it would increase at a much slower rate than the
curve for [1]. We explain this difference by the relatively small number of data
points as well as the fact that local computation is in many cases a dominant
factor. We return to this point in the next section.

6 A quirk in our implementation requires the number of double shares that are gener-
ated to be divisible by the different batch sizes.

7 Our experiments lack a data point for FLEX in the case of 630k shares.

26

Fig. 2. Running time generating a varying number of shares for fixed number of parties.

Fig. 3. Varying the number of parties who generate 126k double-shares.

Finally, we consider the distribution of time spent when generating, respec-
tively checking shares. Figure 4 shows timings presented in Figure 3, but sepa-
rated into the generation step and checking step.

We clearly see that the generation step of each protocol is not that different.
On the other hand, the right graph in Figure 4 clearly shows the benefit of
the check step in our protocol. This graph also shows that we are not making
an unfair comparison by having sub optimal protocol for [1]. Indeed, even if
this protocol communicated half the number of bits, the general trend we see
would still be present, and the extra round does not impact the result as the
round-trip-time in our setup is less than 0.3ms

5.4 Micro benchmarks

We also run a number of micro-benchmarks. First, we look at the speedup by
using our InnerProd encoding. Not surprisingly, we see a speedup approaching

27

Fig. 4. Running time for the generation (left) and check (right) step of double share
protocols, for variable number of parties generating 126k double-shares.

×2. The table below shows local computation times of computing inner products
of varying lengths (with the length denoted as multiplies of 100 000).

Length 0.1 1 10 100 500

Näıve [1] (ns) 298.7 320.7 404.9 421.0 461.1
InnerProd (ns) 207.2 104.0 289.5 350.5 347.1

We further perform timings of the local computation that is performed in
the generation step of ΠFLEXds and ΠSIMDds, as this is where the majority of
computation is spent. The table below provides some insight in this regard.

double-shares 1 260 12 600 63 000 126 000 630 000

SIMD (s) 0.03 0.12 0.47 0.91 4.44
FLEX (s) 0.05 0.13 0.51 0.99 4.87
Näıve [1] (s) 0.01 0.07 0.31 0.61 3.00

We see a small difference in times between our protocols and the one in [1];
besides slight variations in programming style (which may affect compiler opti-
mizations), the main difference comes from the added processing (e.g., encoding)
of the random values that is needed in our protocols; something which does not
exist in the protocol of [1].

5.5 Extrapolation to practical applications

Finally, we examine the running time of evaluating an SVM using our SIMD
encoding, and compare this with the protocol of [1]. To be concrete, we consider
a linear SVM on a dataset of 3072 features and 10 classes.8 Thus, the function we

8 This matches an SVM trained on the CIFAR10 image prediction problem.

28

wish to evaluate is f(x) = argmaxi(wix+bi) where wi and bi are the parameters
of the model, and i denotes a class. This computation can be expressed as follows:
Compute z = Wx + b, where W is a matrix with the vectors wi arranged in
the rows. z will be a 10× k vector, where k denotes the number of images, and
the remaining step is to find the index of the entry with the highest value, for
which we can use a bit-sliced circuit which requires 1216 AND gates since we
have 10 classes and 64 bit wide values. We present here two cost formulas that
can be used to derive the number of double-shares required to evaluate an SVM
on k images. How we arrive at these formulas is described in the full version:

Näıve case: C0(k) = k(1216 + 2 · 64 · 10).

SIMD case: CSIMD(k) = k/2(1216 + 2.5 · 64 · 10).

Acknowledgements

We thank the Asiacrypt 2020 reviewers for their useful feedback. Eduardo Soria-
Vazquez was supported by the Carlsberg Foundation under the Semper Ardens
Research Project CF18-112 (BCM). Anders Dalskov was supported by the Dan-
ish Independent Research Council under Grant-ID DFF-6108-00169 (FoCC).
Eysa Lee was supported by the National Science Foundation grant 1646671 and
Office of the Director of National Intelligence (ODNI), Intelligence Advanced
Research Project Activity (IARPA) under contract number 2019-19-020700009
(ACHILLES).

References

1. Mark Abspoel, Ronald Cramer, Ivan Damg̊ard, Daniel Escudero, and Chen Yuan.
Efficient information-theoretic secure multiparty computation over Z/pkZ via ga-
lois rings. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part I, volume
11891 of LNCS, pages 471–501. Springer, Heidelberg, December 2019.

2. Mark Abspoel, Anders Dalskov, Daniel Escudero, and Ariel Nof. An efficient
passive-to-active compiler for honest-majority MPC over rings. Cryptology ePrint
Archive, Report 2019/1298, 2019. https://eprint.iacr.org/2019/1298.

3. Assi Barak, Martin Hirt, Lior Koskas, and Yehuda Lindell. An end-to-end system
for large scale P2P MPC-as-a-service and low-bandwidth MPC for weak partici-
pants. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018, pages 695–712. ACM Press, October 2018.

4. Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan
Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 420–432. Springer,
Heidelberg, August 1992.

5. Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure MPC with linear
communication complexity. In Ran Canetti, editor, TCC 2008, volume 4948 of
LNCS, pages 213–230. Springer, Heidelberg, March 2008.

6. Anurag Bishnoi, Pete L Clark, Aditya Potukuchi, and John R Schmitt. On zeros of
a polynomial in a finite grid. Combinatorics, Probability and Computing, 27(3):310–
333, 2018.

29

https://eprint.iacr.org/2019/1298

7. Alexander R. Block, Hemanta K. Maji, and Hai H. Nguyen. Secure computation
based on leaky correlations: High resilience setting. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages 3–32.
Springer, Heidelberg, August 2017.

8. Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan. Amortized com-
plexity of information-theoretically secure MPC revisited. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS,
pages 395–426. Springer, Heidelberg, August 2018.

9. Geoffroy Couteau. A note on the communication complexity of multiparty com-
putation in the correlated randomness model. In Yuval Ishai and Vincent Rij-
men, editors, EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 473–503.
Springer, Heidelberg, May 2019.

10. Ronald Cramer, Matthieu Rambaud, and Chaoping Xing. Asymptotically-good
arithmetic secret sharing over Z/p`Z with strong multiplication and its applications
to efficient mpc. Cryptology ePrint Archive, Report 2019/832, 2019. https://

eprint.iacr.org/2019/832.
11. Ivan Damg̊ard, Daniel Escudero, Tore Kasper Frederiksen, Marcel Keller, Peter

Scholl, and Nikolaj Volgushev. New primitives for actively-secure MPC over rings
with applications to private machine learning. In 2019 IEEE Symposium on Secu-
rity and Privacy, pages 1102–1120. IEEE Computer Society Press, May 2019.

12. Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl.
Improved primitives for MPC over mixed arithmetic-binary circuits. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume 12171
of LNCS, pages 823–852. Springer, Heidelberg, August 2020.

13. Matthew K. Franklin and Moti Yung. Communication complexity of secure com-
putation (extended abstract). In 24th ACM STOC, pages 699–710. ACM Press,
May 1992.

14. Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Peter Scholl, Eduardo Soria-
Vazquez, and Srinivas Vivek. Faster secure multi-party computation of AES and
DES using lookup tables. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi,
editors, ACNS 17, volume 10355 of LNCS, pages 229–249. Springer, Heidelberg,
July 2017.

15. Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious
arithmetic secure computation with oblivious transfer. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,
ACM CCS 2016, pages 830–842. ACM Press, October 2016.

16. Emmanuela Orsini, Nigel P. Smart, and Frederik Vercauteren. Overdrive2k: Effi-
cient secure MPC over Z2k from somewhat homomorphic encryption. In Stanislaw
Jarecki, editor, CT-RSA 2020, volume 12006 of LNCS, pages 254–283. Springer,
Heidelberg, February 2020.

17. Dragos Rotaru and Tim Wood. MArBled circuits: Mixing arithmetic and Boolean
circuits with active security. In Feng Hao, Sushmita Ruj, and Sourav Sen Gupta,
editors, INDOCRYPT 2019, volume 11898 of LNCS, pages 227–249. Springer, Hei-
delberg, December 2019.

18. Adi Shamir. How to share a secret. Communications of the Association for Com-
puting Machinery, 22(11):612–613, November 1979.

19. Dominique Unruh. Everlasting multi-party computation. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages
380–397. Springer, Heidelberg, August 2013.

30

https://eprint.iacr.org/2019/832
https://eprint.iacr.org/2019/832

	Circuit Amortization Friendly Encodings and their Application to Statistically Secure Multiparty Computation

